当前位置:文档之家› 2020年高考物理一轮复习文档:第7章 动量守恒定律 热点专题(四) 第33讲 含答案

2020年高考物理一轮复习文档:第7章 动量守恒定律 热点专题(四) 第33讲 含答案

2020年高考物理一轮复习文档:第7章 动量守恒定律 热点专题(四) 第33讲 含答案
2020年高考物理一轮复习文档:第7章 动量守恒定律 热点专题(四) 第33讲 含答案

第33讲动力学、动量和能量观点在力学中的应用

热点概述(1)本热点是力学三大观点在力学中的综合应用,高考将作为计算题压轴题的形式命题。(2)学好本热点,可以帮助同学们熟练应用力学三大观点分析和解决综合问题。(3)用到的知识、规律和方法有:动力学观点(牛顿运动定律、运动学基本规律);动量观点(动量定理和动量守恒定律);能量观点(动能定理、机械能守恒定律和能量守恒定律)。

1.解决力学问题的三个基本观点

综合问题要综合利用上述三种观点的多个规律,才能顺利求解。

2.力学三大观点的选用原则

(1)如果要列出各物理量在某一时刻的关系式,可用牛顿第二定律。

(2)研究某一物体受到力的持续作用发生运动状态改变时,一般用动量定理(涉及时间的问题)或动能定理(涉及位移的问题)去解决问题。

(3)若研究的对象为一物体系统,且它们之间有相互作用,一般用两个守恒定律去解决问题,但需注意所研究的问题是否满足守恒的条件。

(4)在涉及相对位移问题时,则优先考虑能量守恒定律,利用系统克服摩擦力所做的总功等于系统机械能的减少量,即转变为系统内能的量。

(5)在涉及碰撞、爆炸、打击、绳绷紧等物理现象时,需注意到这些过程一般均隐含有系统机械能与其他形式能量之间的转换。这种问题由于作用时间都极短,因此动量守恒定律一般能派上大用场。

3.动量定理与牛顿第二定律的比较

(1)牛顿第二定律揭示了力的瞬时效应,在研究某一物体所受力的瞬时作用与物体运动的关系时,或者物体受恒力作用,且直接涉及物体运动过程中的加速度问题时,应采用动力学观点。

(2)动量定理反映了力对时间的累积效应,适用于不涉及物体运动过程中的加速度、位移,而涉及运动时间的问题,特别对冲击类问题,因时间短且冲力随时间变化,应采用动量定理求解。

4.动量守恒定律和机械能守恒定律的比较

5.用力学三大观点解题的步骤

(1)认真审题,明确题目所述的物理情境,确定研究对象。

(2)分析研究对象的受力情况、运动状态以及运动状态的变化过程,作草图。

(3)根据运动状态的变化规律确定解题观点,选择适用规律。

①若用力的观点解题,要认真分析运动状态的变化,关键是求出加速度。

②若用两大定理求解,应确定过程的始、末状态的动量(动能),分析并求出过程中的冲量(功)。

③若可判断研究对象在某运动过程中满足动量守恒或机械能守恒的条件,则可根据题意选择合适的始、末状态,列守恒关系式,一般这两个守恒定律多用于求研究对象在末状态时的速度(率)。

(4)根据选择的规律列式,有时还需要挖掘题目中的其他条件(如隐含条件、临界条件、几何关系等)并列出辅助方程。

(5)代入数据,计算结果。

[例1]如图所示,一辆质量为M的小车静止在光滑的水平面上,小车的立柱上固定了一条长度为L、拴有小球的细绳。质量为m的小球从与悬点在同一水平面处由静止释放,重力加速度为g,不计阻力。求细绳拉力的最大值。

解析 当小球摆至最低点时,设此时小球和小车的速度大小分别为v 1和v 2,取水平向右为正方向,系统在水平方向上动量守恒,有m v 1-M v 2=0

系统机械能守恒,有 mgL =12m v 21+12M v 2

2 解得v 1=

2MgL M +m

,v 2=m

M 2MgL

M +m

小球摆到最低点时细绳拉力最大,以小车为参考系,由牛顿第二定律有 T -mg =m (v 1+v 2)2

L

解得T =(3M +2m )mg

M 。

答案 (3M +2m )mg M

方法感悟

研究某一物体瞬时受力作用时,一般用动力学观点;研究多个物体组成的系统时,更多用到动量观点。

[例2] 如图所示,半径为R 的光滑半圆形轨道CDE 在竖直平面内,与光滑水平轨道AC 相切于C 点,水平轨道AC 上有一根弹簧,左端连接在固定的挡板上,弹簧自由端所在点B 与轨道最低点C 的距离为4R 。现有质量完全相同的两个小球,一个放在水平轨道的C 点,另一个小球压缩弹簧(不拴接)。当弹簧的压缩量为l 时,释放小球,使之与C 点的小球相碰并粘在一起,两球恰好通过光滑半圆形轨道的最高点E ;若拿走C 点的小球,再次使小球压缩弹簧,释放后小球经过BCDE 后恰好落在B 点。已知弹簧压缩时弹性势能与压缩量的二次方成正比,弹簧始终处在弹性限度内,求第二次使小球压缩弹簧时,弹簧的压缩量。

解析 设压缩量为l 时,弹簧的弹性势能为E p ,小球离开弹簧后的速度为v 0,释放小球后,弹簧的弹性势能转化为小球的动能,由机械能守恒定律得E p =1

2m v 20

设小球的质量为m ,与C 点的小球相碰后粘在一起的瞬间共同速度为v 1,根据动量守恒定律得m v 0=2m v 1

设两小球通过最高点E 时的速度为v 2,由临界条件可知

2mg =2m v 22

R

由能量守恒定律得12·2m v 2

1=2mg ·2R +12·2m v 22 联立解得E p =10mgR

第二次压缩时,设压缩量为x ,弹簧的弹性势能为E p ′,小球通过最高点E 时的速度为v 3,

由能量守恒定律得E p ′=mg ·2R +12m v 23

小球经过E 点后做平抛运动,有 2R =12gt 2 4R =v 3t

联立解得E p ′=4mgR 由已知条件可得E p ′E p =x 2

l 2

即4mgR 10mgR =x 2l 2 解得x =10

5l 。 答案

105l

方法感悟

1.应用力学三大观点解题时应注意的问题

(1)弄清有几个物体参与运动,并划分清楚物体的运动过程。 (2)进行正确的受力分析,明确各运动过程的运动特点。

(3)光滑的平面或曲面,还有不计阻力的抛体运动,机械能一定守恒;碰撞过程、子弹打击木块、不受其他外力作用的两物体相互作用问题,或受外力但其内力远大于外力时,或系统在某一方向不受力或所受合力为零,一般考虑用动量守恒定律分析。

(4)如含摩擦生热问题,则考虑用能量守恒定律分析。

2.能量与动力学观点应用于直线运动、圆周运动和平抛运动的组合模型

(1)模型特点:物体在整个运动过程中,历经直线运动、圆周运动和平抛运动或几种运动的组合。

(2)表现形式:①直线运动:水平面上的直线运动、斜面上的直线运动、传送带上的

直线运动。②圆周运动:绳模型的圆周运动、杆模型的圆周运动、拱形桥模型的圆周运动。③平抛运动:与水平面相关的平抛运动、与圆轨道相关的平抛运动。

(3)应对方法:这类模型一般不难,各阶段的运动过程具有独立性,只要对不同过程分别选用相应规律即可,物体运动到两个相邻过程的连接点时的速度是联系两过程的纽带,很多情况下平抛运动末速度的方向或初速度的大小是解决问题的重要突破口。

[例3] 两个质量分别为M 1和M 2的劈A 和劈B 高度相同,倾斜面都是光滑曲面,曲面下端均与光滑水平面相切,如图所示,一块位于劈A 的曲面上距水平面的高度为h 的物块从静止开始滑下,又滑上劈B 。求物块能沿劈B 曲面上升的最大高度。

解析 设物块到达劈A 的底端时,物块和劈A 的速度大小分别为v 和v A ,物块和劈A 在水平方向上动量守恒,由机械能守恒定律和动量守恒定律得

mgh =12m v 2+12M 1v 2

A M 1v A =m v

设物块在劈B 上达到的最大高度为h ′,此时物块和B 的共同速度大小为v ′,物块和劈B 在水平方向动量守恒,由机械能守恒定律和动量守恒定律得

mgh ′+12(M 2+m )v ′2=12m v 2 m v =(M 2+m )v ′ 联立解得h ′=

M 1M 2

(M 1+m )(M 2+m )

h 。

答案 M 1M 2

(M 1+m )(M 2+m )

h

方法感悟

(1)注意研究过程的合理选取,不管是动能定理还是机械能守恒定律或动量守恒定律,都应合理选取研究过程。

(2)要掌握摩擦力做功的特征、摩擦力做功与动能变化的关系以及物体在相互作用时能量的转化关系。

(3)注意方向性问题,运用动量定理或动量守恒定律求解时,都要选定一个正方向,对力、速度等矢量都应用正、负号代表其方向,代入相关的公式中进行运算。另外,对于碰撞问题,要注意碰撞的多种可能性,做出正确的分析判断后,再针对不同情况进行计算,避免出现漏洞。

1.(2019·山西吕梁高三期末)如图所示,一轨道由粗糙的水平部分和光滑的四分之一圆弧部分组成,置于光滑的水平面上,如果轨道固定,将可视为质点的物块从圆弧轨道的最高点由静止释放,物块恰好停在水平轨道的最左端。如果轨道不固定,仍将物块从圆弧轨道的最高点由静止释放,下列说法正确的是()

A.物块与轨道组成的系统机械能不守恒,动量守恒

B.物块与轨道组成的系统机械能守恒,动量不守恒

C.物块仍能停在水平轨道的最左端

D.物块将从轨道左端冲出水平轨道

答案 C

解析轨道不固定时,物块在轨道的水平部分运动时因摩擦产生内能,所以系统的机械能不守恒;物块在轨道的圆弧部分下滑时,合外力不为零,动量不守恒,故A、B 错误。设轨道的水平部分长为L,轨道固定时,根据能量守恒定律得:mgR=μmgL;轨道不固定时,假设物块能停在轨道上,且与轨道相对静止时共同速度为v,在轨道水平部分滑行的距离为x,取向左为正方向,根据水平方向动量守恒得:0=(M+m)v,则得v

=0;根据能量守恒定律得:mgR=1

2(M+m)v

2+μmgx,联立解得x=L,所以物块仍能停

在水平轨道的最左端,假设成立,故C正确,D错误。

2.如图所示,光滑水平面上有一质量M=4.0 kg的平板车,车的上表面是一段长L =1.5 m的粗糙水平轨道,水平轨道左侧连一半径R=0.25 m的四分之一光滑圆弧轨道,圆弧轨道与水平轨道在点O′相切。现使一质量m=1.0 kg的小物块(可视为质点)从平板车的右端以水平向左的初速度v0滑上平板车,小物块与水平轨道间的动摩擦因数μ=0.5,小物块恰能到达圆弧轨道的最高点A。取g=10 m/s2,求:

(1)小物块滑上平板车的初速度v 0的大小;

(2)小物块与车最终相对静止时,它距点O ′的距离。 答案 (1)5 m/s (2)0.5 m

解析 (1)平板车和小物块组成的系统水平方向动量守恒,设小物块到达圆弧轨道最高点A 时,二者的共同速度为v 1

由动量守恒得m v 0=(M +m )v 1①

由能量守恒得12m v 20-1

2(M +m )v 21=mgR +μmgL ② 联立①②并代入数据解得v 0=5 m/s ③

(2)设小物块最终与车相对静止时,二者的共同速度为v 2,从小物块滑上平板车,到二者相对静止的过程中,由动量守恒得m v 0=(M +m )v 2④

设小物块与车最终相对静止时,它在平板车水平面上滑动的路程为x ,由动能定理得: 12m v 20-12(M +m )v 22=μmgx ⑤ 联立③④⑤并代入数据解得x =2 m

可知此时它距点O ′的距离x 0=x -L =0.5 m 。⑥

3.一质量为M 的木块静止放在光滑的水平面上,一质量为m 的子弹以初速度v 0水平打进木块并留在其中,设子弹与木块之间的相互作用力为f 。则

(1)子弹、木块相对静止时的速度是多少? (2)子弹在木块内运动的时间为多长?

(3)从子弹刚打上木块到留在木块内相对木块静止的过程中,子弹、木块发生的位移以及子弹打进木块的深度分别是多少?

(4)系统损失的机械能、系统增加的内能分别是多少? (5)要使子弹不射出木块,木块至少多长? 答案 (1)

m

M +m v 0 (2)Mm v 0f (M +m )

(3)Mm (M +2m )v 202f (M +m )2 Mm 2v 202f (M +m )2 Mm v 2

02f (M +m )

(4)Mm v 202(M +m ) Mm v 202(M +m ) (5)Mm v 202f (M +m )

解析 (1)设子弹、木块相对静止时的速度为v ,由动量守恒定律得m v 0=(M +m )v

解得v =

m

M +m v 0

。 (2)设子弹在木块内运动的时间为t ,由动量定理得 对木块:ft =M v -0 解得t =Mm v 0

f (M +m )

(3)设子弹、木块发生的位移分别为s 1、s 2,如图所示,由动能定理得 对子弹:-fs 1=12m v 2-1

2m v 20

解得s 1=Mm (M +2m )v 202f (M +m )2

对木块:fs 2=1

2M v 2-0。 解得s 2=Mm 2v 20

2f (M +m )2

子弹打进木块的深度等于相对位移,即 s 相=s 1-s 2=Mm v 20

2f (M +m )。

(4)系统损失的机械能为

E 损=12m v 20-12(M +m )v 2

=Mm v 202(M +m )

系统增加的内能为Q =f ·s 相=Mm v 20

2(M +m )

系统增加的内能等于系统损失的机械能。 (5)假设子弹恰好不射出木块,此时有 fL =12m v 20-12(M +m )v 2 解得L =Mm v 202f (M +m )

因此木块的长度至少为Mm v 20

2f (M +m )

4.如图所示,在光滑的水平桌面上静止放置一个质量为980 g 的长方体匀质木块,现有一颗质量为20 g 的子弹以大小为300 m/s 的水平速度沿木块的中心轴线射向木块,最终留在木块中没有射出,和木块一起以共同的速度运动,已知木块沿子弹运动方向的长度为10 cm ,子弹打进木块的深度为6 cm 。设木块对子弹的阻力保持不变。

(1)求子弹和木块的共同速度以及它们在此过程中所增加的内能;

(2)若子弹是以大小为400 m/s 的水平速度从同一方向水平射向该木块,则在射中木块后能否射穿该木块?

答案 (1)6 m/s 882 J (2)能

解析 (1)设子弹射入木块后与木块的共同速度为v ,对子弹和木块组成的系统,由动量守恒定律得

m v 0=(M +m )v 解得v =

m v 0

M +m =0.02×3000.98+0.02

m/s =6 m/s 此过程系统所增加的内能

ΔE =-ΔE k =12m v 20-12(M +m )v 2=12×0.02×3002 J -1

2×(0.98+0.02)×62 J =882 J 。 (2)设子弹以v 0′=400 m/s 的速度入射时刚好能够射穿质量与粗糙程度均与该木块相同、厚度为d ′的另一个木块,则对以子弹和木块组成的系统,由动量守恒定律得

m v 0′=(M +m )v ′

解得v ′=m v 0′M +m =0.02×4000.98+0.02 m/s =8 m/s

此过程系统所损耗的机械能为

ΔE ′=-ΔE k ′=12m v 0′2-12(M +m )v ′2=12×0.02×4002 J -1

2×(0.98+ 0.02)×82 J =1568 J

由功能关系有 ΔE =fs 相=fd ΔE ′=fs 相′=fd ′ 则

ΔE ΔE ′=fs 相fs 相′=fd fd ′=d d ′

解得d ′=ΔE ′ΔE d =1568

882×6 cm =10.67 cm 因为d ′>10 cm ,所以能射穿该木块。

课后作业

1.(多选)交警正在调查发生在无信号灯的十字路口的一起汽车相撞事故。根据两位司机的描述得知,发生撞车时汽车A正沿东西大道向正东行驶,汽车B正沿南北大道向正北行驶。相撞后两车立即熄火并在极短的时间内叉接在一起后并排沿直线在水平路面上滑动,最终一起停在路口东北角的路灯柱旁,交警根据事故现场情况画出了如图所示的事故报告图。通过观察地面上留下的碰撞痕迹,交警判定撞车的地点为该事故报告图中P点,并测量出相关的数据标注在图中,又判断出两辆车的质量大致相同。为简化问题,将两车均视为质点,且它们组成的系统在碰撞的过程中动量守恒,根据图中测量数据可知下列说法中正确的是()

A.发生碰撞时汽车A的速率较大

B.发生碰撞时汽车B的速率较大

C.发生碰撞时速率较大的汽车和速率较小的汽车的速率之比约为12∶5

D.发生碰撞时速率较大的汽车和速率较小的汽车的速率之比约为23∶ 5

答案BC

解析设两车碰撞后的加速度大小为a,碰撞后一起滑行的位移为x,则x=6.02+2.52m=6.5 m。设碰后两车的速度大小为v,由v2=2ax可得v=13a。设v的方向与正东方向间夹角为θ,由动量守恒定律可得:m v A0=2m v cosθ,m v B0=2m v sinθ。又

sinθ=12

13,cosθ=

5

13,可知,v B0>v A0,则

v B0

v A0=

sinθ

cosθ=

12

5,故B、C正确,A、D错误。

2. 如图所示,在足够长的光滑水平面上有一静止的质量为M的斜面,斜面表面光滑、高度为h、倾角为θ。一质量为m(m

A .h B.m

M +m

h C.m M h D.M M +m

h 答案 D

解析 若斜面固定,由机械能守恒定律可得1

2m v 2=mgh ;若斜面不固定,系统水平方向动量守恒,有m v =(M +m )v 1,由机械能守恒定律可得12m v 2=mgh ′+1

2(M +m )v 21。联立以上各式可得h ′=

M

M +m

h ,故D 正确。 3. 如图所示,在光滑水平面上放置一个质量为M 的滑块,滑块的一侧是一个1

4圆弧形凹槽OAB ,凹槽半径为R ,A 点切线水平。另有一个质量为m 的小球以速度v 0从A 点冲上凹槽,重力加速度大小为g ,不计摩擦。下列说法中正确的是( )

A .当v 0=2gR 时,小球能到达

B 点

B .如果小球的速度足够大,球将从滑块的左侧离开滑块后落到水平面上

C .当v 0=2gR 时,小球在弧形凹槽上运动的过程中,滑块的动能一直增大

D .如果滑块固定,小球返回A 点时对滑块的压力为mg -m v 20

R 答案 C

解析 弧形槽不固定,当v 0=2gR 时,设小球沿槽上升的高度为h ,则有:m v 0=(m +M )v ,12m v 20=12(M +m )v 2+mgh ,解得h =M

M +m R <R ,故A 错误;因小球对弧形槽

的压力始终对滑块做正功,故滑块的动能一直增大,C 正确;当小球速度足够大,从B 点离开滑块时,由于B 点切线竖直,在B 点时小球与滑块的水平速度相同,离开B 点后

将再次从B点落回,不会从滑块的左侧离开滑块后落到水平面上,B错误;如果滑块固

定,小球返回A点时对滑块的压力为mg+m v20

R,D错误。

4.(2018·德阳一诊)如图所示,放在光滑水平桌面上的A、B两小木块中部夹一被压缩的轻弹簧,当轻弹簧被放开时,A、B两小木块各自在桌面上滑行一段距离后,飞离桌面落在地面上。若m A=3m B,则下列结果正确的是()

A.若轻弹簧对A、B做功分别为W1和W2,则有W1∶W2=1∶1

B.在与轻弹簧作用过程中,两木块的速度变化量之和为零

C.若A、B在空中飞行时的动量变化量分别为Δp1和Δp2,则有Δp1∶Δp2=1∶1 D.若A、B同时离开桌面,则从释放轻弹簧开始到两木块落地的这段时间内,A、B 两木块的水平位移大小之比为1∶3

答案 D

解析弹簧弹开木块过程中,两木块及弹簧组成的系统动量守恒,取水平向左为正方向,由动量守恒定律得:m A v A-m B v B=0,则速度之比v A∶v B=1∶3,根据动能定理得:

轻弹簧对A、B做功分别为W1=1

2m A

v2A,W2=

1

2m B

v2B,联立解得W1∶W2=1∶3,故A错

误。根据动量守恒定律得知,在与轻弹簧作用过程中,两木块的动量变化量之和为零,即m AΔv A+m BΔv B=0,可得,Δv A+Δv B≠0,故B错误。A、B离开桌面后都做平抛运动,它们抛出点的高度相同,运动时间相等,设为t,由动量定理得:A、B在空中飞行时的动量变化量分别为Δp1=m A gt,Δp2=m B gt,所以Δp1∶Δp2=3∶1,故C错误。平抛运动水平方向的分运动是匀速直线运动,由x=v0t知,t相等,则A、B两木块的水平位移大小之比等于v A∶v B=1∶3,故D正确。

5.(2018·潍坊统考)(多选)如图所示,带有挡板的小车质量为m,上表面光滑,静止于光滑水平面上。轻质弹簧左端固定在小车上,右端处于自由伸长状态。质量也为m的小球,以速度v从右侧滑上小车,在小球刚接触弹簧至与弹簧分离的过程中,以下判断正确的是()

A .弹簧的最大弹性势能为1

4m v 2 B .弹簧对小车做的功为14m v 2

C .弹簧对小球冲量的大小为m v

D .弹簧对小球冲量的大小为1

2m v 答案 AC

解析 小球与小车组成的系统动量守恒,由题意知,小球和小车共速时弹簧的弹性势能最大,则由动量守恒定律以及能量守恒定律可知,m v =2m v ′,12m v 2=1

2×2m v ′2+E p ,解得E p =1

4m v 2,A 正确;当小球与弹簧分离时,假设小车的速度为v 1、小球的速

度为v 2,则由动量守恒定律与能量守恒定律得,m v =m v 1+m v 2,12m v 2=12m v 21+12m v 2

2,解得v 1=v 、v 2=0,则弹簧对小车做的功为W =12m v 21=12m v 2,B 错误;弹簧对小球的冲量为I =0-m v =-m v ,即冲量的大小为m v ,C 正确,D 错误。

6.(2018·全国卷Ⅰ)一质量为m 的烟花弹获得动能E 后,从地面竖直升空。当烟花弹上升的速度为零时,弹中火药爆炸将烟花弹炸为质量相等的两部分,两部分获得的动能之和也为E ,且均沿竖直方向运动。爆炸时间极短,重力加速度大小为g ,不计空气阻力和火药的质量。求:

(1)烟花弹从地面开始上升到弹中火药爆炸所经过的时间; (2)爆炸后烟花弹向上运动的部分距地面的最大高度。 答案 (1)1

g 2E m (2)2E mg

解析 (1)设烟花弹上升的初速度为v 0,由题给条件有

E =12m v 20①

设烟花弹从地面开始上升到火药爆炸所用的时间为t ,由运动学公式有0-v 0=-gt ②

联立①②式得t =1g 2E m ③

(2)设爆炸时烟花弹距地面的高度为h 1,由机械能守恒定律有

E =mgh 1④

火药爆炸后,烟花弹上、下两部分均沿竖直方向运动,设炸后瞬间其速度分别为v 1和v 2。

由题给条件和动量守恒定律有

14m v 21+14m v 2

2=E ⑤ 12m v 1+1

2m v 2=0⑥

由⑥式知,烟花弹两部分的速度方向相反,向上运动部分做竖直上抛运动。设爆炸后烟花弹上部分继续上升的高度为h 2,由机械能守恒定律有14m v 21=1

2mgh 2⑦

联立④⑤⑥⑦式得,烟花弹上部分距地面的最大高度为h =h 1+h 2=2E

mg 。

7.(2018·全国卷Ⅱ)汽车A 在水平冰雪路面上行驶,驾驶员发现其正前方停有汽车B ,立即采取制动措施,但仍然撞上了汽车B 。两车碰撞时和两车都完全停止后的位置如图所示,碰撞后B 车向前滑动了4.5 m ,A 车向前滑动了2.0 m ,已知A 和B 的质量分别为2.0×103 kg 和1.5×103 kg ,两车与该冰雪路面间的动摩擦因数均为0.10,两车碰撞时间极短,在碰撞后车轮均没有滚动,重力加速度大小g =10 m/s 2。求:

(1)碰撞后的瞬间B 车速度的大小; (2)碰撞前的瞬间A 车速度的大小。 答案 (1)3.0 m/s (2)4.25 m/s

解析 (1)设B 车质量为m B ,碰后加速度大小为a B ,根据牛顿第二定律有μm B g =m B a B ①

式中μ是汽车与路面间的动摩擦因数。

设碰撞后瞬间B 车速度的大小为v B ′,碰撞后滑行的距离为s B 。由运动学公式有v B ′2=2a B s B ②

联立①②式并利用题给数据得v B ′=3.0 m/s ③

(2)设A 车的质量为m A ,碰后加速度大小为a A 。根据牛顿第二定律有μm A g =m A a A ④ 设碰撞后瞬间A 车速度的大小为v A ′,碰撞后滑行的距离为s A 。由运动学公式有v A ′2=2a A s A ⑤

设碰撞前瞬间A 车速度的大小为v A ,两车在碰撞过程中动量守恒,有m A v A =m A v A ′+m B v B ′⑥

联立③④⑤⑥式并利用题给数据得v A =4.25 m/s 。

8.(2018·北京高考)2022年将在我国举办第二十四届冬奥会,跳台滑雪是其中最具观赏性的项目之一。某滑道示意图如右,长直助滑道AB 与弯曲滑道BC 平滑衔接,滑道BC 高h =10 m ,C 是半径R =20 m 圆弧的最低点,质量m =60 kg 的运动员从A 处由静止开始匀加速下滑,加速度a =4.5 m/s 2,到达B 点时速度v B =30 m/s 。取重力加速度g =10 m/s 2。

(1)求长直助滑道AB 的长度L ;

(2)求运动员在AB 段所受合外力的冲量I 的大小;

(3)若不计BC 段的阻力,画出运动员经过C 点时的受力图,并求其所受支持力F N 的大小。

答案 (1)100 m (2)1800 N·s (3)图见解析 3900 N

解析 (1)已知AB 段的初末速度,则利用运动学公式可以求解AB 的长度,即v 2B -v 20

=2aL ,

可解得L =v 2B -v 2

2a =302-02×4.5

m =100 m 。

(2)根据动量定理可知合外力的冲量等于动量的变化量, 所以I =m v B -m v 0=(60×30-0) N·s =1800 N·s 。 (3)运动员经过C 点时的受力如图所示。

由牛顿第二定律可得F N -mg =m v 2C

R ,① 从B 运动到C 由动能定理可知

mgh =12m v 2C -12m v 2

B ,② 由①②式并代入数据 解得F N =3900 N 。

9.(2018·全国卷Ⅲ)如图,在竖直平面内,一半径为R 的光滑圆弧轨道ABC 和水平轨道P A 在A 点相切。BC 为圆弧轨道的直径。O 为圆心,OA 和OB 之间的夹角为α,sin α=3

5,一质量为m 的小球沿水平轨道向右运动,经A 点沿圆弧轨道通过C 点,落至水平轨道;在整个过程中,除受到重力及轨道作用力外,小球还一直受到一水平恒力的作用,已知小球在C 点所受合力的方向指向圆心,且此时小球对轨道的压力恰好为零。重力加速度大小为g 。求:

(1)水平恒力的大小和小球到达C 点时速度的大小; (2)小球到达A 点时动量的大小;

(3)小球从C 点落至水平轨道所用的时间。 答案 (1)3

4mg

5gR 2 (2)m 23gR 2

(3)3

5

5R

g

解析 (1)设水平恒力的大小为F 0,小球到达C 点时所受合力的大小为F 。 由力的合成法则有 F 0

mg =tan α① F 2=(mg )2+F 20②

设小球到达C 点时的速度大小为v ,由牛顿第二定律得F =m v 2R ③ 由①②③式和题给数据得F 0=3

4mg ④ v =5gR 2⑤

(2)设小球到达A 点的速度大小为v 1,如图作CD ⊥P A ,交P A 于D 点,由几何关系得

DA =R sin α⑥ CD =R (1+cos α)⑦

由动能定理有-mg ·CD -F 0·DA =12m v 2-12m v 2

1⑧

由④⑤⑥⑦⑧式和题给数据得,小球在A 点的动量大小为p =m v 1=

m 23gR

2

⑨ (3)小球离开C 点后在竖直方向上做初速度不为零的匀加速运动,加速度大小为g 。设小球在竖直方向的初速度为v ⊥,从C 点落至水平轨道上所用时间为t 。由运动学公式有

v ⊥t +1

2gt 2=CD ⑩ v ⊥=v sin α?

由⑤⑦⑩?式和题给数据得t =3

5

5R g 。

10.(2015·山东高考)如图,三个质量相同的滑块A 、B 、C ,间隔相等地静置于同一水平直轨道上。现给滑块A 向右的初速度v 0,一段时间后A 与B 发生碰撞,碰后A 、B 分别以18v 0、3

4v 0的速度向右运动,B 再与C 发生碰撞,碰后B 、C 粘在一起向右运动。滑块A 、B 与轨道间的动摩擦因数为同一恒定值。两次碰撞时间均极短。求B 、C 碰后瞬间共同速度的大小。

答案 21

16v 0

解析 设滑块质量为m ,A 与B 碰撞前A 的速度为v A ,由题意知,碰后A 的速度v A ′=18v 0,B 的速度v B =3

4v 0,由动量守恒定律得

m v A=m v A′+m v B①

设碰撞前A克服轨道阻力所做的功为W A,由功能关系得W A=1

2m v

2

1

2m v

2

A

设B与C碰撞前B的速度为v B′,B克服轨道阻力所做的功为W B,由功能关系得

W B=1

2m v

2

B

1

2m v B′

2③

据题意可知W A=W B④

设B、C碰后瞬间共同速度的大小为v,由动量守恒定律得m v B′=2m v⑤

联立①②③④⑤式,代入数据得v=

21

16

v0。

11.(2018·兰化一中模拟)如图所示,有半径相同的小球a、b,a球质量为2m,b球质量为m,b球位于光滑轨道ABC的水平段BC的末端C处。a球从距BC水平面高h的A处由静止滑下,在C处与b球发生弹性正碰。求:

(1)碰前瞬间a球的速度v;

(2)两球在水平地面DE上的落点间的距离s。

答案(1)2gh(2)2h

解析(1)对a球碰撞前的过程,由机械能守恒定律得:

2mgh=1 2·2m v

2

解得:v=2gh。

(2)设两球碰后的速度分别为v1、v2,由水平方向动量守恒和机械能守恒定律得:2m v=2m v1+m v2

1

2(2m)v 2=

1

2(2m)v

2

1

1

2m v

2

2

两球碰后均从C点做平抛运动,且运动时间相同,设平抛的时间为t,两球平抛运动

的水平位移分别为x1、x2,由平抛运动的规律得:0.5h=1

2gt

2,

x1=v1t,x2=v2t,s=x2-x1,

联立解得:s=2h。

12. (2018·抚顺模拟)如图所示,竖直平面内的光滑半圆形轨道MN的半径为R, MP为粗糙水平面。两个小物块A、B可视为质点,在半圆形轨道圆心O的正下方M处,处于静止状态。若A、B之间夹有少量炸药,炸药爆炸后,A恰能经过半圆形轨道的最高点N,而B到达的最远位置恰好是A在水平面上的落点。已知粗糙水平面与B之间的动摩擦因数为μ=0.8,求:

(1)B到达的最远位置离M点的距离;

(2)极短爆炸过程中,A受到爆炸力的冲量大小;

(3)A与B的质量之比。

答案(1)2R(2)m A5gR(3)4∶5

解析(1)A恰能经过半圆形轨道的最高点,由牛顿第二定律得:m A g=m A v2N R,

解得:v N=gR,

A做平抛运动,由平抛运动规律:2R=1

2gt

2,

水平方向:x=v N t,

联立可得B到达的最远位置离M点的距离即为x=2R。

(2)A上升到N的过程,由机械能守恒定律:

1

2m A v2A=

1

2m A

v2N+m A g·2R,

解得:v A=5gR,

根据动量定理可得:I=m A v A=m A5gR。

(3)对B,由动能定理:-μm B gx=0-1

2m B

v2B,

炸药爆炸过程由动量守恒定律:m A v A-m B v B=0,

联立以上两式可得:m A

m B=

5

4

5。

13. (2018·江南十校检测)如图所示,粗糙的水平地面上有一块长为3 m的木板,小滑块放置于长木板上的某一位置。现将一个水平向右,且随时间均匀变化的力F=0.2t作用

高考物理动量守恒定律试题经典及解析

高考物理动量守恒定律试题经典及解析 一、高考物理精讲专题动量守恒定律 1.如图所示,在水平地面上有两物块甲和乙,它们的质量分别为2m 、m ,甲与地面间无摩擦,乙与地面间的动摩擦因数恒定.现让甲以速度0v 向着静止的乙运动并发生正碰,且碰撞时间极短,若甲在乙刚停下来时恰好与乙发生第二次碰撞,试求: (1)第一次碰撞过程中系统损失的动能 (2)第一次碰撞过程中甲对乙的冲量 【答案】(1)2 014 mv ;(2) 0mv 【解析】 【详解】 解:(1)设第一次碰撞刚结束时甲、乙的速度分别为1v 、2v ,之后甲做匀速直线运动,乙以 2v 初速度做匀减速直线运动,在乙刚停下时甲追上乙碰撞,因此两物体在这段时间平均速 度相等,有:2 12 v v = 而第一次碰撞中系统动量守恒有:01222mv mv mv =+ 由以上两式可得:0 12 v v = ,20 v v = 所以第一次碰撞中的机械能损失为:2 2 22012011 11222 2 24 E m v m v mv mv ?=--=g g g g (2)根据动量定理可得第一次碰撞过程中甲对乙的冲量:200I mv mv =-= 2.(16分)如图,水平桌面固定着光滑斜槽,光滑斜槽的末端和一水平木板平滑连接,设物块通过衔接处时速率没有改变。质量m 1=0.40kg 的物块A 从斜槽上端距水平木板高度h=0. 80m 处下滑,并与放在水平木板左端的质量m 2=0.20kg 的物块B 相碰,相碰后物块B 滑行x=4.0m 到木板的C 点停止运动,物块A 滑到木板的D 点停止运动。已知物块B 与木板间的动摩擦因数 =0.20,重力加速度g=10m/s 2,求: (1) 物块A 沿斜槽滑下与物块B 碰撞前瞬间的速度大小; (2) 滑动摩擦力对物块B 做的功; (3) 物块A 与物块B 碰撞过程中损失的机械能。 【答案】(1)v 0=4.0m/s (2)W=-1.6J (3)E=0.80J

动量、冲量及动量守恒定律

动量、冲量及动量守恒定律

动量和动量定理 一、动量 1.定义:运动物体的质量和速度的乘积叫动量;公式p=m v; 2.矢量性:方向与速度的方向相同.运算遵循平行四边形定则. 3.动量的变化量 (1)定义:物体在某段时间内末动量与初动量的矢量差(也是矢量),Δp=p′-p(矢量式). (2)动量始终保持在一条直线上时的运算:选定一个正方向,动量、动量的变化量用带有正负号的数值表示,从而将矢量运算简化为代数运算(此时的正负号仅代表方向,不代表大小). 4.与动能的区别与联系: (1)区别:动量是矢量,动能是标量. (2)联系:动量和动能都是描述物体运动状态的物 理量,大小关系为E k=p2 2m或p=2mE k. 二、动量定理 1.冲量 (1)定义:力与力的作用时间的乘积.公式:I=

Ft.单位:牛顿·秒,符号:N·s. (2)矢量性:方向与力的方向相同. 2.动量定理 (1)内容:物体在一个运动过程中始末的动量变化量等于它在这个过程中所受力的冲量. (2)公式:m v′-m v=F(t′-t)或p′-p=I.3.动量定理的应用 碰撞时可产生冲击力,要增大这种冲击力就要设法减少冲击力的作用时间.要防止冲击力带来的危害,就要减小冲击力,设法延长其作用时间.(缓冲) 题组一对动量和冲量的理解 1.关于物体的动量,下列说法中正确的是() A.运动物体在任一时刻的动量方向,一定是该时刻的速度方向 B.物体的动能不变,其动量一定不变 C.动量越大的物体,其速度一定越大 D.物体的动量越大,其惯性也越大 2.如图所示,在倾角α=37°的斜面上, 有一质量为5 kg的物体沿斜面滑下,物 体与斜面间的动摩擦因数μ=0.2,求物体下滑2

经典验证动量守恒定律实验练习题(附答案)

验证动量守恒定律 由于v 1、v1/、v2/均为水平方向,且它们的竖直下落高 度都相等,所以它们飞行时间相等,若以该时间为时间单 位,那么小球的水平射程的数值就等于它们的水平速度。 在右图中分别用OP、OM和O/N表示。因此只需验证: m1?OP=m1?OM+m2?(O/N-2r)即可。 注意事项: ⑴必须以质量较大的小球作为入射小球(保证碰撞后两小球都向前运动)。 ⑵小球落地点的平均位置要用圆规来确定:用尽可能小的圆把所有落点都圈在里面,圆心就是落点的平均位置。 ⑶所用的仪器有:天平、刻度尺、游标卡尺(测小球直径)、碰撞实验器、 ⑷若被碰小球放在斜槽末端,而不用支柱,那么两小球将不再同时落地,但两个小球都将从斜槽末端开始做平抛运动,于是验证式就变为:m1?OP=m1?OM+m2?ON,两个小球的直径也不需测量 实验练习题 1. 某同学设计了一个用打点计时器验证动量守恒定律的实验:在小车A的前m 端粘有橡皮泥,推动小车A使之作匀速运动。然后与原来静止在前方的小车B 相碰并粘合成一体,继续作匀速运动,他设计的具体装置如图所示。在小车A 后连着纸带,电磁打点计时器电源频率为50Hz,长木板垫着小木片用以平衡摩擦力。 若已得到打点纸带如上图,并测得各计数点间距标在间上,A为运动起始的第一点,则应选____________段起计算A的碰前速度,应选___________段来计算A 和B碰后的共同速度。(以上两格填“AB”或“BC”或“CD”或“DE”)。已测得小l车A的质量m1=0.40kg,小车B的质量m2=0.20kg,由以上测量结果可得:碰前总动量=__________kg·m/s. 碰后总动量=_______kg·m/s 2.某同学用图1所示装置通过半径相同的A. B两球的碰撞来验证动量守恒定律。图中PQ是斜槽,QR为水平槽,实验时先使A球从斜槽上某一固定位置G由静止开始滚下,落到位于水平地面的记录纸上,留下痕迹。重复上述操作10次,得到10个落点痕迹再把B球放在水平槽上靠近槽末端的地方,让A球仍从位置G由静止开始滚下,记录纸上的垂直投影点。B球落点痕迹如图2所示,其中米尺水平放置。且平行于G.R.Or所在的平面,米尺的零点与O 点对齐。 (1)碰撞后B球的水平射程应取为______cm. (2)在以下选项中,哪些是本次实验必须进行的测量?答:

高考物理动量定理真题汇编(含答案)

高考物理动量定理真题汇编(含答案) 一、高考物理精讲专题动量定理 1.图甲为光滑金属导轨制成的斜面,导轨的间距为1m l =,左侧斜面的倾角37θ=?,右侧斜面的中间用阻值为2R =Ω的电阻连接。在左侧斜面区域存在垂直斜面向下的匀强磁场,磁感应强度大小为10.5T B =,右侧斜面轨道及其右侧区域中存在竖直向上的匀强磁场,磁感应强度为20.5T B =。在斜面的顶端e 、f 两点分别用等长的轻质柔软细导线连接导体棒ab ,另一导体棒cd 置于左侧斜面轨道上,与导轨垂直且接触良好,ab 棒和cd 棒的质量均为0.2kg m =,ab 棒的电阻为12r =Ω,cd 棒的电阻为24r =Ω。已知t =0时刻起,cd 棒在沿斜面向下的拉力作用下开始向下运动(cd 棒始终在左侧斜面上运动),而ab 棒在水平拉力F 作用下始终处于静止状态,F 随时间变化的关系如图乙所示,ab 棒静止时细导线与竖直方向的夹角37θ=?。其中导轨的电阻不计,图中的虚线为绝缘材料制成的固定支架。 (1)请通过计算分析cd 棒的运动情况; (2)若t =0时刻起,求2s 内cd 受到拉力的冲量; (3)3 s 内电阻R 上产生的焦耳热为2. 88 J ,则此过程中拉力对cd 棒做的功为多少? 【答案】(1)cd 棒在导轨上做匀加速度直线运动;(2)1.6N s g ;(3)43.2J 【解析】 【详解】 (1)设绳中总拉力为T ,对导体棒ab 分析,由平衡方程得: sin θF T BIl =+ cos θT mg = 解得: tan θ 1.50.5F mg BIl I =+=+ 由图乙可知: 1.50.2F t =+ 则有: 0.4I t = cd 棒上的电流为:

动量及动量守恒定律全章典型习题精讲

动量及动量守恒定律全章典型习题精讲

————————————————————————————————作者: ————————————————————————————————日期:

动量及动量守恒定律全章典型习题精讲 一.学法指导: 动量这部分内容,本身并不复杂,主要有冲量和动量这两个概念,还有动量定理和动量守恒定律这两个重要规律.动量定理是对一个物体说的,它受到合外力的冲量等于该物体动量的增量.动量守恒定律是对相互作用的系统而言的,在系统不受外力作用的情况下,系统的总动量守 本章的难点主要在于冲量和动量都是矢量,矢量的运算比起标量的运算来要困难得多.我们中学阶段目前只要求计算同一直线上的动量问题,对于同一直线上的动量,可以用正负号表示方向,从而把矢量运算转化为代数运算. 这部分内容的另一个难点是涉及到相互作用的系统内物体的动量和机械能的综合问题,为此,我们在学习时要把动量这部分内容与机械能部分联系起来.下面三个方面的问题是我们学习中要重点理解和掌握的. 1、4个重要的物理概念,即冲量、动量、功和动能,下面把它们归纳、整理、比较如下: (1)冲量和功,都是“力”的,要注意是哪个力的冲量,哪个力做的功. 动量和动能,都是“物体”的,要注意是哪个物体的动量、哪个物体的动能. (2)冲量和功,都是“过程量”,与某一段过程相对应.要注意是哪个过程的冲量,是哪个过程中做的功. 动量和动能,都是“状态量”,与某一时刻相对应.要注意是哪个时刻的动量或动能,过程量是不能与状态量划等号的,即决不能说某力的冲量等于某时刻的动量,或说某个功等于某时刻的动能.动量定理和动能定理都是“过程关系”,它们说的是在某段过程中,物体受到的合外力的冲量或做的功,等于物体动量或动能的增量,这里“增量”又叫“变化量”,是相应过程的“始”、“末”两个状态量的差值,表示的还是某一段过程的状态的变化 此外,还有一点要注意,那就是这些物理量与参考系的关系.由于位移和速度都是与参考系有关的物理量,因此动量、功、动能都是与参考系有关的物理量,只有冲量与参考系无关.凡没有提到参考系的问题,都是以地面为参考系的. 2、两个守恒定律是物理学中的重要物理规律,下面把有关两个守恒定律的问题整理列表如下:

经典验证动量守恒定律实验练习题(附答案)

· 验证动量守恒定律由于v 1、v1/、v2/均为水平方向,且它们的竖直下落高 度都相等,所以它们飞行时间相等,若以该时间为时间单位,那么小球的水平射程的数值就等于它们的水平速度。在右图中分别用OP、OM和O/N表示。因此只需验证: m 1OP=m 1 OM+m 2 (O/N-2r)即可。 注意事项: ⑴必须以质量较大的小球作为入射小球(保证碰撞后两小球都向前运动)。 ⑵小球落地点的平均位置要用圆规来确定:用尽可能小的圆把所有落点都圈 在里面,圆心就是落点的平均位置。 ⑶所用的仪器有:天平、刻度尺、游标卡尺(测小球直径)、碰撞实验器、复写纸、白纸、重锤、两个直径相同质量不同的小球、圆规。 ⑷若被碰小球放在斜槽末端,而不用支柱,那么两小球将不再同时落地,但两个小球都将从斜槽末端开始做平抛运动,于是验证式就变为: m 1OP=m 1 OM+m 2 ON,两个小球的直径也不需测量 《 实验练习题 1. 某同学设计了一个用打点计时器验证动量守恒定律的实验:在小车A的前m 端粘有橡皮泥,推动小车A使之作匀速运动。然后与原来静止在前方的小车B 相碰并粘合成一体,继续作匀速运动,他设计的具体装置如图所示。在小车A 后连着纸带,电磁打点计时器电源频率为50Hz,长木板垫着小木片用以平衡摩擦力。 若已得到打点纸带如上图,并测得各计数点间距标在间上,A为运动起始的第一点,则应选____________段起计算A的碰前速度,应选___________段来计算A 和B碰后的共同速度。(以上两格填“AB”或“BC”或“CD”或“DE”)。已测得 小l车A的质量m 1=0.40kg,小车B的质量m 2 =0.20kg,由以上测量结果可得:碰 前总动量=__________kg·m/s. 碰后总动量=_______kg·m/s 2.某同学用图1所示装置通过半径相同的A. B两球的碰撞来验证动量守恒定律。图中PQ是斜槽,QR为水平槽,实验时先使A球从斜槽上某一固定位置G由静止开始滚下,落到位于水平地面的记录纸上,留下痕迹。重复上述操作10次,得到10个落点痕迹再把B球放在水平槽上靠近槽末端的地方,让A球仍从位置G

高考物理动量定理技巧(很有用)及练习题

高考物理动量定理技巧(很有用)及练习题 一、高考物理精讲专题动量定理 1.如图1所示,水平面内的直角坐标系的第一象限有磁场分布,方向垂直于水平面向下,磁感应强度沿y 轴方向没有变化,与横坐标x 的关系如图2所示,图线是双曲线(坐标是渐近线);顶角θ=53°的光滑金属长导轨MON 固定在水平面内,ON 与x 轴重合,一根与ON 垂直的长导体棒在水平向右的外力作用下沿导轨MON 向右滑动,导体棒在滑动过程中始终保持与导轨良好接触,已知t =0时,导体棒位于顶角O 处;导体棒的质量为m =4kg ;OM 、ON 接触处O 点的接触电阻为R =0.5Ω,其余电阻不计,回路电动势E 与时间t 的关系如图3所示,图线是过原点的直线,求: (1)t =2s 时流过导体棒的电流强度的大小; (2)在1~2s 时间内导体棒所受安培力的冲量大小; (3)导体棒滑动过程中水平外力F (单位:N )与横坐标x (单位:m )的关系式. 【答案】(1)8A (2)8N s ?(3)32 639 F x =+【解析】 【分析】 【详解】 (1)根据E-t 图象中的图线是过原点的直线特点,可得到t =2s 时金属棒产生的感应电动势为 4V E = 由欧姆定律得 24A 8A 0.5 E I R = == (2)由图2可知,1(T m)x B =? 由图3可知,E 与时间成正比,有 E =2t (V ) 4E I t R = = 因θ=53°,可知任意t 时刻回路中导体棒有效切割长度43 x L = 又由 F BIL =安

所以 163 F t 安= 即安培力跟时间成正比 所以在1~2s 时间内导体棒所受安培力的平均值 163233N 8N 2 F += = 故 8N s I F t =?=?安 (3)因为 43 v E BLv Bx ==? 所以 1.5(m/s)v t = 可知导体棒的运动时匀加速直线运动,加速度 21.5m/s a = 又2 12 x at = ,联立解得 32 639 F x =+ 【名师点睛】 本题的关键首先要正确理解两个图象的数学意义,运用数学知识写出电流与时间的关系, 要掌握牛顿运动定律、闭合电路殴姆定律,安培力公式、感应电动势公式. 2.如图所示,长为L 的轻质细绳一端固定在O 点,另一端系一质量为m 的小球,O 点离地高度为H 。现将细绳拉至与水平方向成30?,由静止释放小球,经过时间t 小球到达最低点,细绳刚好被拉断,小球水平抛出。若忽略空气阻力,重力加速度为g 。 (1)求细绳的最大承受力; (2)求从小球释放到最低点的过程中,细绳对小球的冲量大小; (3)小明同学认为细绳的长度越长,小球抛的越远;小刚同学则认为细绳的长度越短,小球抛的越远。请通过计算,说明你的观点。

高中物理-动量守恒定律及其应用(实验)教案

高中物理-动量守恒定律及其应用(实验)教案 【学习目标】 1.知道动量与冲量的概念,理解动量定理与动量守恒定律. 2.会用动量定理与动量守恒定律解决实际应用问题. 3.明确探究碰撞中的不变量的基本思路. 【要点导学】 1.冲量与动量的概念理解. 2.运用动量定理研究对象与过程的选择. 3.动量守恒定律的适用条件、表达式及解题步骤. 4.弹性碰撞和非弹性碰撞 (1)弹性碰撞:___________________________________ (2)非弹性碰撞:____________________________________ (3)在光滑水平面上,质量为m 1的小球以速度v 1与质量为m 2的静止小球发生弹性正碰,根据动量 守恒和机械能守恒,碰后两个小球的速度分别为: v 1’=_____________v 2’=_____________。 【典型例题】 类型一 冲量与动量定理 【例1】质量为m 的小球,从沙坑上方自由下落,经过时间1t 到达沙坑表面,又经过时间2t 停在沙坑里。 求: (1)沙对小球的平均阻力F ; (2)小球在沙坑里下落过程所受的总冲量I 的大小. 类型二 动量守恒定律及守恒条件判断 【例2】 把一支枪水平固定在小车上,小车放在光滑的水平面上,枪发射出一颗子弹时,关于枪、 弹、 车,下列说法正确的是( ) A .枪和弹组成的系统,动量守恒 B .枪和车组成的系统,动量守恒 C .三者组成的系统,因为枪弹和枪筒之间的摩擦力很小,使系统的动量变化很小,可以忽略不计,故系 统动量近似守恒 D .三者组成的系统,动量守恒,因为系统只受重力和地面支持力这两个外力作用,这两个外力的合 力为零 【变式训练1】如图A 、B 两物体的质量之比m A ∶m B =3∶2,原来静止在平板小车C 上,A 、B 间有 一根被压缩了的弹簧,A 、B 与平板车上表面间的滚动摩擦系数相同,地面光滑,当弹簧突然释放后, 则( ) A .A 、B 组成的系统动量守恒 B .A 、B 、 C 组成的系统动量守恒 C .小车向左运动 D .小车向右运动 类型三 动量守恒与能量守恒的综合应用 【例3】在静止的湖面上有一质量为M=100kg 的小船,船上站一个质量为m=50kg 的人。船长6米, A B C

五年真题之2016年高考物理专题动量含答案

专题6 动量 1.[2016·全国卷Ⅰ3-5(2)10分] 某游乐园入口旁有一喷泉,喷出的水柱将一质量为M的卡通玩具稳定地悬停在空中.为计算方便起见,假设水柱从横截面积为S的喷口持续以速度v0竖直向上喷出;玩具底部为平板(面积略大于S);水柱冲击到玩具底板后,在竖直方向水的速度变为零,在水平方向朝四周均匀散开.忽略空气阻力.已知水的密度为ρ,重力加速度大小为g.求: (i)喷泉单位时间内喷出的水的质量; (ii)玩具在空中悬停时,其底面相对于喷口的高度. 答案:(i)ρv0S(ii)v20 2g - M2g 2ρ2v20S2 解析: (i)设Δt时间内,从喷口喷出的水的体积为ΔV,质量为Δm,则 Δm=ρΔV① ΔV=v0SΔt② 由①②式得,单位时间内从喷口喷出的水的质量为 Δm Δt =ρv0S③ (ii)设玩具悬停时其底面相对于喷口的高度为h,水从喷口喷出后到达玩具底面时的速度大小为v.对于Δt时间内喷出的水,由能量守恒得 1 2(Δm)v2+(Δm)gh= 1 2 (Δm)v20④ 在h高度处,Δt时间内喷射到玩具底面的水沿竖直方向的动量变化量的大小为Δp=(Δm)v⑤ 设水对玩具的作用力的大小为F,根据动量定理有 FΔt=Δp⑥ 由于玩具在空中悬停,由力的平衡条件得 F=Mg⑦ 联立③④⑤⑥⑦式得 h=v20 2g - M2g 2ρ2v20S2 ⑧ 2.[2016·北京卷] (1)动量定理可以表示为Δp=FΔt,其中动量p和力F都是矢量.在运用动量定理处理二维问题时,可以在相互垂直的x、y两个方向上分别研究.例如,质量为m的小球斜射到木板上,入射的角度是θ,碰撞后弹出的角度也是θ,碰撞前后的速度大小

动量定理与动量守恒定律·典型例题解析

动量定理与动量守恒定律·典型例题解析 【例1】 在光滑的水平面上有一质量为2m 的盒子,盒子中间有一质量为m 的物体,如图55-1所示.物体与盒底间的动摩擦因数为μ现给物体以水平速度v 0向右运动,当它刚好与盒子右壁相碰时,速度减为 v 02 ,物体与盒子右壁相碰后即粘在右壁上,求: (1)物体在盒内滑行的时间; (2)物体与盒子右壁相碰过程中对盒子的冲量. 解析:(1)对物体在盒内滑行的时间内应用动量定理得:-μmgt = m mv t 0·-,=v v g 0022 (2)物体与盒子右壁相碰前及相碰过程中系统的总动量都守恒,设碰 撞前瞬时盒子的速度为,则:=+=+.解得=,=.所以碰撞过程中物体给盒子的冲量由动量定理得=-=,方向向右. v mv m v 22mv (m 2m)v v v I 2mv 2mv mv /61001212210v v 0043 点拨:分清不同的物理过程所遵循的相应物理规律是解题的关键. 【例2】 如图55-2所示,质量均为M 的小车A 、B ,B 车上 挂有质量为的金属球,球相对车静止,若两车以相等的速率M 4 C C B 1.8m/s 在光滑的水平面上相向运动,相碰后连在一起,则碰撞刚结束时小车的速度多大?C 球摆到最高点时C 球的速度多大? 解析:两车相碰过程由于作用时间很短,C 球没有参与两车在水平方向的相互作用.对两车组成的系统,由动量守恒定律得(以向左为正):Mv -Mv =

2Mv 1两车相碰后速度v 1=0,这时C 球的速度仍为v ,向左,接着C 球向左上方摆动与两车发生相互作用,到达最高点时和两车 具有共同的速度,对和两车组成的系统,水平方向动量守恒,=++,解得==,方向向左.v C v (M M )v v v 0.2m /s 222M M 4419 点拨:两车相碰的过程,由于作用时间很短,可认为各物都没有发生位移,因而C 球的悬线不偏离竖直方向,不可能跟B 车发生水平方向的相互作用.在C 球上摆的过程中,作用时间较长,悬线偏离竖直方向,与两车发生相互作用使两车在水平方向的动量改变,这时只有将C 球和两车作为系统,水平方向的总动量才守恒. 【例3】 如图55-3所示,质量为m 的人站在质量为M 的小车的右端,处于静止状态.已知车的长度为L ,则当人走到小车的左端时,小车将沿光滑的水平面向右移动多少距离? 点拨:将人和车作为系统,动量守恒,设车向右移动的距离为s ,则人向左移动的距离为L -s ,取向右为正方向,根据动量守恒定律可得M ·s -m(L -s)=0,从而可解得s .注意在用位移表示动量守恒时,各位移都是相对地面的,并在选定正方向后位移有正、负之分. 参考答案 例例跟踪反馈...;;.×·3 m M +m L 4 M +m M H [] 1 C 2h 300v 49.110N s 04M m M 【例4】 如图55-4所示,气球的质量为M 离地的高度为H ,在气球下方有一质量为m 的人拉住系在气球上不计质量的软绳,人和气球恰悬浮在空中处于静止状态,现人沿软绳下滑到达地面时软绳的下端恰离开地面,求软绳的长度.

高中物理_复习:《验证动量守恒定律实验》教学设计学情分析教材分析课后反思

复习:《实验:验证动量守恒定律》教学设计 一、教学目标: 【知识与技能】 1、明确验证动量守恒定律的基本思路; 2、掌握同一条直线上运动的两个物体碰撞前后的速度的测量方法; 3、掌握实验数据处理的方法; 【过程与方法】 1、学习根据实验要求,设计实验,完成气垫导轨实验和斜槽小球碰撞实验的设计方法; 2、学习根据实验数据进行处理、归纳、总结的方法。 【情感态度与价值观】 1、通过对实验方案的设计,培养学生积极主动思考问题的习惯,并锻炼其思考的全面性、准确性与逻辑性。 2、通过对实验数据的记录与处理,培养学生实事求是的科学态度,能使学生灵活地运用科学方法来研究问题,解决问题,提高创新意识。 3、在对实验数据处理、误差处理的过程中合作探究、头脑风暴,提高学生合作探究能力。 4、在对现象规律的语言阐述中,提高了学生的语言表达能力,还体现了各学科之间的联系,可引伸到各事物间的关联性,使自己溶入社会。 【教学重难点】 教学重点:验证动量守恒定律的实验探究 教学难点:速度的测量方法、实验数据的处理. 【教学过程】 (一)复习导入:问题1、动量守恒定律的内容是什么? 2、动量守恒的条件是什么? (二)讲授新课 实验方案一:气垫导轨以为碰撞实验 1、实验器材 气垫导轨、光电计时器、天平、滑块(两个)、重物、弹簧片、细绳、弹性碰撞架、胶布、撞针、橡皮泥等. 2、实验步骤

(1)测质量:用天平测出滑块的质量. (2)安装:正确安装好气垫导轨. (3)实验:接通电源,利用配套的光电计时装置测出两滑块各种情况下碰撞前后的速度(①改变滑块的质量;②改变滑块的初速度大小和方向③通过放置橡皮泥、振针、胶布等改变能量损失). (4)验证:一维碰撞中的动量守恒. (5)数据处理 1.滑块速度的测量:v =Δx Δt ,式中Δx 为滑块挡光片的宽度(仪器说明书上给出,也可直接测量),Δt 为数字计时器显示的滑块(挡光片)经过光电门的时间. 2.验证的表达式:m 1v 1+m 2v 2=m 1v′1+m 2v′2。 (6)注意事项 气垫导轨应水平 [典例1] 现利用图(a)所示的装置验证动量守恒定律.在图(a)中,气垫导轨上有A 、B 两个滑块,滑块A 右侧带有一弹簧片,左侧与打点计时器(图中未画出)的纸带相连;滑块B 左侧也带有一弹簧片,上面固定一遮光片,光电计时器(未完全画出)可以记录遮光片通过光电门的时间. 实验测得滑块A 的质量m1=0.310 kg ,滑块B 的质量m2=0.108 kg ,遮光片的 宽度d =1.00 cm ;打点计时器所用交流电的频率f =50.0 Hz. 将光电门固定在滑块B 的右侧,启动打点计时器,给滑块A 一向右的初速度,使它与B 相碰.碰后光电计时器显示的时间为ΔtB =3.500 ms ,碰撞前后打出的纸带如图(b)所示. 实验测得滑块A 的质量m1=0.310 kg ,滑块B 的质量m2=0.108 kg ,遮光片的 宽度d =1.00 cm ;打点计时器所用交流电的频率f =50.0 Hz. 将光电门固定在滑块B 的右侧,启动打点计时器,给滑块A 一向右的初速度,使它与B 相碰.碰后光电计时器显示的时间为ΔtB =3.500 ms ,碰撞前后打出的纸带如图(b)所示. (b) 若实验允许的相对误差绝对值× 100%最大为5%,本实验是否在误差范围内验证了动量守恒

高考物理动量守恒定律题20套(带答案)及解析

高考物理动量守恒定律题20套(带答案)及解析 一、高考物理精讲专题动量守恒定律 1.两个质量分别为0.3A m kg =、0.1B m kg =的小滑块A 、B 和一根轻质短弹簧,弹簧的 一端与小滑块A 粘连,另一端与小滑块B 接触而不粘连.现使小滑块A 和B 之间夹着被压缩的轻质弹簧,处于锁定状态,一起以速度03/v m s =在水平面上做匀速直线运动,如题8图所示.一段时间后,突然解除锁定(解除锁定没有机械能损失),两滑块仍沿水平面做直线运动,两滑块在水平面分离后,小滑块B 冲上斜面的高度为 1.5h m =.斜面倾角 o 37θ=,小滑块与斜面间的动摩擦因数为0.15μ=,水平面与斜面圆滑连接.重力加速度 g 取210/m s .求:(提示:o sin 370.6=,o cos370.8=) (1)A 、B 滑块分离时,B 滑块的速度大小. (2)解除锁定前弹簧的弹性势能. 【答案】(1)6/B v m s = (2)0.6P E J = 【解析】 试题分析:(1)设分离时A 、B 的速度分别为A v 、B v , 小滑块B 冲上斜面轨道过程中,由动能定理有:2 cos 1sin 2 B B B B m gh m gh m v θμθ+?= ① (3分) 代入已知数据解得:6/B v m s = ② (2分) (2)由动量守恒定律得:0()A B A A B B m m v m v m v +=+ ③ (3分) 解得:2/A v m s = (2分) 由能量守恒得: 222 0111()222 A B P A A B B m m v E m v m v ++=+ ④ (4分) 解得:0.6P E J = ⑤ (2分) 考点:本题考查了动能定理、动量守恒定律、能量守恒定律. 2.如图所示,质量M=1kg 的半圆弧形绝缘凹槽放置在光滑的水平面上,凹槽部分嵌有cd 和ef 两个光滑半圆形导轨,c 与e 端由导线连接,一质量m=lkg 的导体棒自ce 端的正上方h=2m 处平行ce 由静止下落,并恰好从ce 端进入凹槽,整个装置处于范围足够大的竖直方向的匀强磁场中,导体棒在槽内运动过程中与导轨接触良好。已知磁场的磁感应强度B=0.5T ,导轨的间距与导体棒的长度均为L=0.5m ,导轨的半径r=0.5m ,导体棒的电阻R=1Ω,其余电阻均不计,重力加速度g=10m/s 2,不计空气阻力。

动量与动量守恒定律练习题(含参考答案)

高二物理3-5:动量与动量守恒定律 1.如图所示,跳水运动员从某一峭壁上水平跳出,跳入湖水中,已知 运动员的质量m =70kg ,初速度v 0=5m/s 。若经过1s 时,速度为v = 5m/s ,则在此过程中,运动员动量的变化量为(g =10m/s 2 ,不计空气阻力): ( ) A. 700 kg·m/s B. 350 kg·m/s B. C. 350(-1) kg·m/s D. 350(+1) kg·m/s 2.质量相等的A 、B 两球在光滑水平面上,沿同一直线,同一方向运动,A 球的动量p A =9kg?m/s ,B 球的动量p B =3kg?m/s .当A 追上B 时发生碰撞,则碰后A 、B 两球的动量可能值是( ) A .p A ′=6 kg?m/s ,p B ′=6 kg?m/s B .p A ′=8 kg?m/s ,p B ′=4 kg?m/s C .p A ′=﹣2 kg?m/s ,p B ′=14 kg?m/s D .p A ′=﹣4 kg?m/s ,p B ′=17 kg?m/s 3.A 、B 两物体发生正碰,碰撞前后物体A 、B 都在同一直线上运动,其位移—时间图象如图所示。由图可知,物体A 、B 的质量之比为: ( ) A. 1∶1 B. 1∶2 C. 1∶3 D. 3∶1 4.在光滑水平地面上匀速运动的装有砂子的小车,小车和砂子总质量为M ,速度为v 0,在行驶途中有质量为m 的砂子从车上漏掉,砂子漏掉后小车的速度应为: ( ) A. v 0 B. 0Mv M m - C. 0mv M m - D. ()0M m v M - 5.在光滑水平面上,质量为m 的小球A 正以速度v 0匀速运动.某时刻小球A 与质量为3m 的静止 小球B 发生正碰,两球相碰后,A 球的动能恰好变为原来的14.则碰后B 球的速度大小是( ) A.v 02 B.v 06 C.v 02或v 06 D .无法确定

验证动量守恒定律实验

物理一轮复习学案 第六周(10.8—10.14)第四课时 验证动量守恒定律实验 【考纲解读】 1.会用实验装置测速度或用其他物理量表示物体的速度大小. 2.验证在系统不受外力的作用下,系统内物体相互作用时总动量守恒. 【重点难点】 验证动量守恒定律 【知识结构】 一、验证动量守恒定律实验方案 1.方案一 实验器材:滑块(带遮光片,2个)、游标卡尺、气垫导轨、光电门、天平、弹簧片、细绳、弹性碰撞架、胶布、撞针、橡皮泥等。 实验情境:弹性碰撞(弹簧片、弹性碰撞架);完全非弹性碰撞(撞针、橡皮泥)。 2.方案二 实验器材:带细线的摆球(摆球相同,两套)、铁架台、天平、量角器、坐标纸、胶布等。实验情境:弹性碰撞,等质量两球对心正碰发生速度交换。 3.方案三 实验器材:小车(2个)、长木板(含垫木)、打点计时器、纸带、天平、撞针、橡皮泥、刻度尺等。 实验情境:完全非弹性碰撞(撞针、橡皮泥)。 4.方案四 实验器材:小球(2个)、斜槽、天平、重垂线、复写纸、白纸、刻度尺等。 实验情境:一般碰撞或近似的弹性碰撞。 5.不同方案的主要区别在于测速度的方法不同:①光电门(或速度传感器);②测摆角(机械能守恒);③打点计时器和纸带;④平抛法。还可用频闪法得到等时间间隔的物体位置,从而分析速度。 二、验证动量守恒定律实验(方案四)注意事项 1.入射球质量m1应大于被碰球质量m2。否则入射球撞击被碰球后会被弹回。 2.入射球和被碰球应半径相等,或可通过调节放被碰球的立柱高度使碰撞时球心等高。否则两球的碰撞位置不在球心所在的水平线上,碰后瞬间的速度不水平。 3.斜槽末端的切线应水平。否则小球不能水平射出斜槽做平抛运动。 4.入射球每次必须从斜槽上同一位置由静止释放。否则入射球撞击被碰球的速度不相等。5.落点位置确定:围绕10次落点画一个最小的圆将有效落点围在里面,圆心即所求落点。6.水平射程:被碰球放在斜槽末端,则从斜槽末端由重垂线确定水平射程的起点,到落地点的距离为水平射程。

高考物理——动能与动量

动量与能量 测试时间:90分钟 满分:110分 第Ⅰ卷 (选择题,共48分) 一、选择题(本题共12小题,共48分。在每小题给出的四个选项中,第1~8小题只有一个选项正确,第9~12小题有多个选项正确,全部选对的得4分,选对但不全的得2分,有选错或不答的得0分) 1.[2017·河北冀州月考]在光滑的水平桌面上有两个在同一直线上运动的小球a 和b ,正碰前后两小球的位移随时间变化的关系如图所示,则小球a 和b 的质量之比为 ( ) A .2∶7 B .1∶4 C .3∶8 D .4∶1 答案 B 解析 由位移—时间图象的斜率表示速度可得,正碰前,小球a 的速度v 1= 1-41-0 m/s =-3 m/s ,小球b 的速度v 2=1-01-0 m/s =1 m/s ;正碰后,小球a 、b 的共同速度v =2-16-1 m/s =0.2 m/s 。设小球a 、b 的质量分别为m 1、m 2,正碰过程,根据动量守恒定律有m 1v 1+m 2v 2=(m 1+m 2)v ,得m 1m 2=v -v 2v 1-v =14 ,选项B 正确。 2.[2017·江西检测]如图所示,左端固定着轻弹簧的物块A 静止在光滑的水平面上,物块B 以速度v 向右运动,通过弹簧与物块A 发生正碰。已知物块A 、B 的质量相等。当弹簧压缩到最短时,下列说法正确的是( )

A.两物块的速度不同 B.两物块的动量变化等值反向 C.物块B的速度方向与原方向相反 D.物块A的动量不为零,物块B的动量为零 答案 B 解析物块B接触弹簧时的速度大于物块A的速度,弹簧逐渐被压缩,当两物块的速度相同时,弹簧压缩到最短,选项A、D均错误;根据动量守恒定律有Δp A+Δp B =0,得Δp A=-Δp B,选项B正确;当弹簧压缩到最短时,物块B的速度方向与原方向相同,选项C错误。 3.[2017·黑龙江模拟] 如图所示,将质量为M1、半径为R且内壁光滑的半圆槽置于光滑水平面上,左侧靠墙角,右侧靠一质量为M2的物块。今让一质量为m的小球自左侧槽口A的正上方h 高处从静止开始落下,与圆弧槽相切自A点进入槽内,则以下结论中正确的是() A.小球在槽内运动的全过程中,小球与半圆槽在水平方向动量守恒 B.小球在槽内运动的全过程中,小球与半圆槽在水平方向动量不守恒 C.小球在槽内运动的全过程中,小球、半圆槽和物块组成的系统动量守恒 D.若小球能从C点离开半圆槽,则其一定会做竖直上抛运动 答案 B 解析当小球在槽内由A到B的过程中,墙壁对槽有力的作用,小球与半圆槽组成的系统水平方向动量不守恒,故A、C错误,B正确。当小球运动到C点时,它的两个分运动的合速度方向是右上方,所以此后小球将做斜上抛运动,即C错误。 4.[2017·辽师大附中质检]质量相同的子弹a、橡皮泥b和钢球c以相同的初速度水平射向竖直墙,结果子弹穿墙而过,橡皮泥粘在墙上,钢球被以原速率反向弹回。关于它们对墙的水平冲量的大小,下列说法中正确的是() A.子弹、橡皮泥和钢球对墙的冲量大小相等 B.子弹对墙的冲量最小 C.橡皮泥对墙的冲量最小 D.钢球对墙的冲量最小 答案 B

动量定理及动量守恒定律专题复习附参考答案

动量定理及动量守恒定律专题复习 一、知识梳理 1、深刻理解动量的概念 (1)定义:物体的质量和速度的乘积叫做动量:p =mv (2)动量是描述物体运动状态的一个状态量,它与时刻相对应。 (3)动量是矢量,它的方向和速度的方向相同。 (4)动量的相对性:由于物体的速度与参考系的选取有关,所以物体的动量也与参考系选取有关,因而动量具有相对性。题中没有特别说明的,一般取地面或相对地面静止的物体为参考系。 (5)动量的变化:0p p p t -=?.由于动量为矢量,则求解动量的 变化时,其运算遵循平行四边形定则。 A 、若初末动量在同一直线上,则在选定正方向的前提下,可化矢量运算为代数运算。 B 、若初末动量不在同一直线上,则运算遵循平行四边形定则。 (6)动量与动能的关系:k mE P 2=,注意动量是矢量,动能是标 量,动量改变,动能不一定改变,但动能改变动量是一定要变的。 2、深刻理解冲量的概念 (1)定义:力和力的作用时间的乘积叫做冲量:I =Ft

(2)冲量是描述力的时间积累效应的物理量,是过程量,它与时间相对应。 (3)冲量是矢量,它的方向由力的方向决定(不能说和力的方向相同)。如果力的方向在作用时间内保持不变,那么冲量的方向就和力的方向相同。如果力的方向在不断变化,如绳子拉物体做圆周运动,则绳的拉力在时间t 内的冲量,就不能说是力的方向就是冲量的方向。对于方向不断变化的力的冲量,其方向可以通过动量变化的方向间接得出。 (4)高中阶段只要求会用I=Ft 计算恒力的冲量。对于变力的冲量,高中阶段只能利用动量定理通过物体的动量变化来求。 (5)要注意的是:冲量和功不同。恒力在一段时间内可能不作功,但一定有冲量。特别是力作用在静止的物体上也有冲量。 3、深刻理解动量定理 (1).动量定理:物体所受合外力的冲量等于物体的动量变化。既I =Δp (2)动量定理表明冲量是使物体动量发生变化的原因,冲量是物体动量变化的量度。这里所说的冲量必须是物体所受的合外力的冲量(或者说是物体所受各外力冲量的矢量和)。 (3)动量定理给出了冲量(过程量)和动量变化(状态量)间的互求关系。 (4)现代物理学把力定义为物体动量的变化率:t P F ??=(牛顿第

动量守恒实验

动量守恒实验 1.某物理兴趣小组利用如图1所示的装置进行实验.在足够大的水平平台上的A点放 置一个光电门,水平平台上A点右侧摩擦很小可忽略不计,左侧为粗糙水平面,当地重力加速度大小为g.采用的实验步骤如下: ①在小滑块a上固定一个宽度为d的窄挡光片; ②用天平分别测出小滑块a(含挡光片)和小球b的质量m a、m b; ③在a和b间用细线连接,中间夹一被压缩了的轻弹簧,静止放置在平台上; ④细线烧断后,a、b瞬间被弹开,向相反方向运动; ⑤记录滑块a通过光电门时挡光片的遮光时间t; ⑥滑块a最终停在C点(图中未画出),用刻度尺测出AC之间的距离S a; ⑦小球b从平台边缘飞出后,落在水平地面的B点,用刻度尺测出平台距水平地面 的高度h及平台边缘铅垂线与B点之间的水平距离S b; ⑧改变弹簧压缩量,进行多次测量. (1)该实验要验证“动量守恒定律”,则只需验证______ = ______ 即可.(用上述实验数据字母表示) (2)改变弹簧压缩量,多次测量后,该实验小组得到S a与的关系图象如图2所 示,图线的斜率为k,则平台上A点左侧与滑块a之间的动摩擦因数大小为 ______ .(用上述实验数据字母表示) 2.如图,用“碰撞试验器”可以验证动量守恒定律,即研究两个小球在轨道水平部分 碰撞前后的动量关系. ①试验中,直接测定小球碰撞前后的速度是不容易的.但是,可以通过仅测量______ (填选项前的序号)来间接地解决这个问题 A.小球开始释放高度h B.小球抛出点距地面的高度H C.小球做平抛运动的射程 ②图中O点是小球抛出点在地面上的垂直投影,实验时,先让入射球m1多次从斜 轨上S位置静止释放,找到其平均落地点的位置P,测量平抛射程OP,然后,把被碰小球m2静止于轨道的水平部分,再将入射小球m1从斜轨上S位置静止释放,与小球m2相撞,并多次重复.椐图可得两小球质量的关系为______ ,接下来要完成的必要步骤是______ (填选项的符号) A.用天平测量两个小球的质量m1、m2 B.测量小球m1开始释放高度h C.测量抛出点距地面的高度h D.分别找到m1、m2相碰后平均落地点的位置M、N E.测量平抛射程OM,ON ③若两球相碰前后的动量守恒,其表达式可表示为______ 用②中测量的量表示) 若碰撞是弹性碰撞.那么还应满足的表达式为______ (用②中测量的量表示). 3.如图所示,气垫导轨是常用的一种实验仪器。 它是利用气泵使带孔的导轨与滑块之间形成气垫,使滑 块悬浮在导轨上,滑块在导轨上的运动可视为没有摩擦。

高三物理动量(附答案)

高三物理动量 (时间:60分钟,总分:100分) 一、单选题每题提供的四个选项中,只有一个是正确的. (每小题4分,共20分) 1.在一条直线上运动的物体,其初动量为8N·s,它在第一秒内受到的冲量为-3N·s,第二秒内受到的冲量为5N·s.它在第二秒末的动量为[ ] A.10kg·m/s B.11kg·m/s C.13kg·m/s D.16kg·m/s 2.质量分别为60kg和70kg的甲、乙二人,分别同时从原来静止的在光滑水平面上的小车两端,以3m/s的水平初速度沿相反方向跳到地面上.若小车的质量为20kg,则当二人跳离小车后,小车的运动速度为 [ ] A. 19.5m/s,方向与甲的初速度方向相同 B. 19.5m/s,方向与乙的初速度方向相同 C. 1.5m/s,方向与甲的初速度方向相同 D. 1.5m/s,方向与乙的初速度方向相同 3.质量为m的物体,以初速度v竖直上抛,然后又回到原抛出点.若不计空气阻力,物体所受的总冲量和平均冲力分别是(以竖直向上方正方向)[ ] C.-2mv0,mg D.2mv0,-mg 4.在光滑的水平面上有两个质量均为m的小球A和B,B球静止,A球以速度V和B球发生碰撞.碰后两球交换速度.则A、B球动量的改变△P A、△P B和A、B系统的总动量的改变△P为[ ] A.△P A=mv,△P B=-mv,△p=2mv B.△P A=mv,△P B=-mv,△P=0 C.△P A=0,△P B=mv,△P=mv D.△P A=-mv,△P B=mv,△P=0 5.在光滑的水平面上,相向运动的P、Q两小球相撞后,一同沿P球原来运动方向运动.这是因为[ ] A. P球的质量大于Q球的质量 B. P球的速度大于Q球的速度 C. P球的动量大于Q球的动量 D. P球的动量等于Q球的动量

实验1 动量守恒定律的研究

实验1 动量守恒定律的研究 ――气垫导轨实验(一) 气垫技术是20世纪60年代发展起来的一种新技术,这一新技术克服了物体与运动表面之间的摩擦阻力,减少了磨损,延长了仪器寿命,提高了机械效率。因此,在机械、电子、纺织、运输等领域中得到了广泛的应用,如激光全息实验台、气垫船、空气轴承、气垫输送带等。 气垫导轨(Air track )是采用气垫技术的一种阻力极小的力学实验装置。利用气源将压缩空气打入导轨腔内,再由导轨表面上的小孔喷出气流,在导轨与滑行器(滑块)之间形成很薄的空气薄膜,浮起滑块,使滑块可以在导轨上作近似无阻力的直线运动,为力学实验创造了较为理想的测量条件。在力学实验中,利用气垫导轨可以观察和研究在近似无阻力情况下物体的各种运动规律,极大地减少了由于摩擦力的存在而出现的较大误差,大大提高了实验的精确度。利用气垫导轨和光电计时系统,许多力学实验可以进行准确的定量分析和研究,使实验结果接近理论值,实验现象更加真实、直观。如速度和加速度的测量,重力加速度的测定,牛顿运动定律的验证,动量守恒定律的研究,谐振运动的研究,等等。 动量守恒定律是自然界的一个普遍规律,不仅适用于宏观物体,也适用于微观粒子,在科学研究和生产技术方面都被广泛应用。本实验通过两个滑块在水平气垫导轨上的完全弹性碰撞和完全非弹性碰撞过程来研究动量守恒定律。 【实验目的】 1.了解气垫导轨的基本构造和功能,熟悉气垫导轨的调节和使用方法。 2.了解光电计时系统的基本组成和原理,掌握电脑通用计数器的使用方法。 3.用观察法研究完全弹性碰撞和完全非弹性碰撞的特点。 4.验证动量守恒定律,学会判断实验是否能够验证理论的基本方法。 【实验原理】 1.碰撞与动量守恒定律 如果某一力学系统不受外力,或外力的矢量和为零,则系统的总动量保持不变,这就是动量守恒定律。 在一直线上运动的两个物体,质量分别为1m 和2m ,在水平方向不受外力的情况下发生碰撞,碰撞前的运动速度为10v 和20v ,碰撞后的运动速度为1v 和2v ,则由动量守恒定律可得 2211202101v m v m v m v m +=+ (1) 实验中利用气垫导轨上两个滑块的碰撞来研究动量守恒定律。 2.完全弹性碰撞 完全弹性碰撞的特点是碰撞前后系统的动量守恒,机械能也守恒。如图1所示,如果在两个滑

相关主题
文本预览
相关文档 最新文档