当前位置:文档之家› 第3章 飞机结构分析与设计基础

第3章 飞机结构分析与设计基础

飞机结构设计

一、飞机研制技术要求(1)战术技术要求军用飞机(2)使用技术要求(民用飞机) 它包括飞机最大速度、升限、航程、起飞着陆滑跑距离、载重量、机动性(对战斗机)等指标和能否全天候飞行,对机场以及对飞机本身的维修性、保障性等方面的要求。 二、飞机的研制过程四个阶段:1.拟订技术要求2.飞机设计过程3.飞机制造 过程4.飞机的试飞、定型过程 三、飞机的技术要求是飞机设计的基本依据 四、飞机设计一般分为两大部分:总体设计结构设计 五、飞机结构设计是飞机设计的主要阶段 “结构”是指“能承受和传递载荷的系统”——即“受力结构”。 六、安全系数:安全系数定义为设计载荷与使用载荷之比也就是设计载荷系数与使用载 荷系数之比。其物理意义就是实际使用载荷要增大到多少倍结构才破坏,这个倍数就是安全系数。 八、飞机结构设计的基本要求1.空气动力要求和设计一体化的要求2.结构完整性及 最小重量要求3.使用维修要求4.工艺要求5.经济性要求 九、结构完整性:是指关系到飞机安全使用、使用费用和功能的机体结构的强度、刚度、 损伤容限及耐久性(或疲劳安全寿命)等飞机所要求的结构特性的总称。 十、全寿命周期费用(LCC) (也称全寿命成本) 主要是指飞机的概念设计、方案论证、 全面研制、生产、使用与保障五个阶段直到退役或报废期间所付出的一切费用之和。 十一、现代军机和旅客机的新机设计,规范规定都必须按损伤容限/耐久性或 按损伤容限/疲劳安全寿命设计。 十二、结构完整性及最小重量要求就是指:结构设计应保证结构在承受各种规定的 载荷和环境条件下,具有足够的强度,不产生不能容许的残余变形;具有足够的刚度,或采取其他措施以避免出现不能容许的气动弹性问题与振动问题;具有足够的寿命和损伤容限,以及高的可靠性。在保证上述条件得到满足的前提下,使结构的重量尽可能轻,因此也可简称为最小重量要求。 十三、使用维修要求飞机的各部分(包括主要结构和装在飞机内的电子设备、燃油 系统等各个重要设备、系统),须分别按规定的周期进行检查、维护和修理。良好的维修性可以提高飞机在使用中的安全可靠性和保障性,并可以有效地降低保障、使用成本。对军用飞机,尽量缩短飞机每飞行小时的维修时间和再次出动的准备时间,还可保证飞机及时处于临战状态,提高战备完好性。为了使飞机有良好的维修性,在结构上需要布置合理的分离面与各种舱口,在结构内部安排必要的检查、维修通道,增加结构的开敞性和可达性。 十四、飞机设计思想的发展过程大致可划分为五个阶段(1)静强度设计阶段

飞行器结构强度分析复习提纲正式

飞行器结构强度分析复习提纲 一、基本常识 1、飞行器分类 2、飞行器工作环境 3、飞行器结构分类(按受力传力形式、加工成型工艺、部件形状) 4、飞行器结构设计应保证结构在各种规定载荷状态下满足的条件 5、飞行器结构强度分析包括哪几个主要方面 6、作用在飞行器上的主要载荷 7、框桁加筋圆柱壳在受轴、外压、扭矩等载荷作用下的失稳形式 8、框桁加筋圆柱壳的破坏形式 9、疲劳破坏的过程 10、影响疲劳强度的主要因素 11、裂纹的三种基本类型 12、确定扯裂性能的方法 13、实现破损安全的方法 二、基本概念 1、比强度 2、剩余强度系数 3、静载荷 4、动载荷 5、疲劳载荷 6、过载系数 7、使用载荷 8、设计载荷 9、安全系数10、减缩系数11、疲劳破坏12、疲劳强度13、疲劳应力14、疲劳极限15、疲劳寿命 16、应力强度因子17、断裂韧性。 三、基本原理 1、结构设计中的等强度原则

2、结构损伤容限设计原则 3、用于结构传力分析的刚度分配法 4、大开口补强原则 5、克希霍夫假设 6、Miner线性累积损伤理论的主要假设 7、脆性断裂的K准则 8、能量释放率G的含义 四、基本构件的受力特性 1、细长杆的受力特性 2、薄板的受力特性 3、平面板杆结构的受力特性 4、壳的受力特性 5、疲劳破坏的5个主要特征 五、基本条件 1、结构静强度设计时需要满足的三个条件 2、破坏载荷法的强度条件。 3、简述板或曲板同时受压应力、弯曲应力、剪应力作用不发生失稳时所满足的判别式,并说明各参量的物理意义 六、基本分析 1、分析垂直突风对飞行器产生的附加过载。 2、分析薄板的稳定性 3、分析壳与曲板的稳定性

民用飞机气弹簧计分析

民用飞机气弹簧设计分析-机械制造论文 民用飞机气弹簧设计分析 唐行微 (上海飞机设计研究院结构部,中国上海201210) 【摘要】气弹簧是性能可靠和安装方便的定制结构件,相对于民机上使用的传统机械弹簧单元在重量上具备优势。本文介绍了气弹簧的组成结构和工作方式,通过民用飞机舱门设计中的工程实例简要描述了在民机舱门上气弹簧设计的方法,通过CATIA仿真来模拟气弹簧的安装及运行来优化气弹簧的各项基本参数,并且给出了民机气弹簧的可靠性计算标准。 关键词气弹簧;民机舱门;可靠性 0 前言 气弹簧是一种可以实现支撑、缓冲、制动、高度及角度调节等功能的零件,在工程机械中,主要应用于雷达罩、口盖、舱门等部位。气弹簧主要由活塞杆、活塞、密封导向套、填充物、压力缸和接头等部分组成,在密闭的缸体内充入和外界大气压有一定压差的惰性气体或者油气混合物,进而利用在活塞杆横截面上的压力差完成气弹簧自由运动。工作时,惰性气体、油液通过活塞上的阻尼孔时产生阻尼作用,控制气弹簧的运行速度,其运行速度相对缓慢、动态力变化不大。在飞机结构舱门设计中经常使用弹簧作为机构功能实现的一部分单元,通常用于提供手柄回弹的回复力,机构运作的助力以及防止机构意外运动的过中心阻力。其中用于提供助力和阻力的弹簧通常为压缩弹簧,舱门设计中通常采用传统机械弹簧,这种设计存在两方面的劣势:一是传统机械弹簧其材料通常为321固溶钢或者15-5PH不锈钢,在重量上需要付出一定代价,二是目前航空领域弹

簧制造主要通过辅助工具手工弯制,其实际力学性能通常与设计目标存在一定差异且不稳定。气弹簧由于其安装方便,工作平稳,使用安全,成为汽车和机械制造等领域的标准配件。相对于传统机械弹簧,定制气弹簧在确保满足设计需求和重量上具备明显的优势,舱门机构中使用的多处弹簧单元均可使用气弹簧来替代。 本文根据实际舱门的结构特点及气弹簧在舱门上的具体应用,对安装在舱门上的气弹簧的运动状态进行了分析和研究,给出了具体舱门气弹簧的设计步骤,同时对于民机舱门在使用条件及可靠性方面做了基本的分析。 1 工程实例 某型民用飞机设计舱门重量为8.39kg。舱门重心与铰链臂中心转轴的距离为:360.367mm。由于门体、铰链臂(门体进行开关运动的中心) 和气弹簧构成一个杠杆系统。在门打开过程中,通过门体本身重力和气弹簧阻力的双重作用,控制门下降速度门在完全打开位置时,伸展到极限程度。 根据周边结构的实际可安装空间情况确定使用两个气弹簧,并将气弹簧的完全压缩力初步设计为门体重量的3 倍左右,考虑摩擦力等影响,将气弹簧的完全压缩力初步确定为300N。 下图为飞机航截面投影面,两侧气弹簧的安装相对于门体对称面为对称结构。

哈工大飞行器结构设计大作业指导书_最终版

《飞行器结构设计》课程大作业指导书 哈尔滨工业大学航空宇航制造系 2015年4月16日

一、要求与说明 1. 学生必须按照相关规范,在规定的时间内完成两个备选题目之一的大作业,并提交纸质和电子版文件。 2. 要求每名学生独立完成作业内容,如有抄袭、伪造等作弊行为则取消成绩,大作业的分数计入期末考核成绩。 二、题目 三、内容要求及规范 (二)分离机构连接计算与结构设计 1、设计的目的与意义 连接于分离机构的计算与设计是飞行器结构与机构分系统设计的重要部分,连接分离机构直接影响分离面处的连接刚度,而连接分离面又是飞行器载荷较为严重的部位。因此,为保证连接的可靠性,必须对分离机构中的关重件进行计算与校核,特别是起到连接与分离作用的爆炸螺栓组件。本设计作业的主要目的是通过对典型连接分离机构的计算与设计,使学生掌握此类结构设计的基本原理和方法,同时加深对飞行器结构设计的具体认识,为开展相关技术领域的研究与设计奠定基础。 2、设计输入条件 假设某型号导弹在发射阶段,由于横向载荷的作用,在连接面A1-A2会产生M=1500Nm的弯矩,同时已知气动过载的等效轴向载荷为F=800N,以压力形式作用于一二级分离面上,分离舱段对接框为环形接触面,被连接件间均采用石棉垫片。图2所示为轴向连接式对接框结构尺寸,图3所示为卡环式对接框尺寸,

两个舱段的平均壁度为6mm。假设舱段承力结构材料均为TC4,在设计过程中不考虑横向载荷产生的剪力,为使分离面紧密贴合,取安全系数f=1.5。此外,假定轴向连接分离机构由6个爆炸螺栓连接,卡环式连接分离机构由2个爆炸螺栓连接,爆炸螺栓螺杆材料为45号钢,且尺寸、规格同C级六角头螺栓。 图1 导弹一二级分离面受力示意图 3、设计任务 1)根据设计的输入条件,选择轴向连接或外置卡环式连接分离方式中的一种进行计算分析与结构设计。要求详细计算用于连接和分离的爆炸螺栓所受的工作总拉力,以及螺栓最大预紧力,并根据爆炸螺栓材料的屈服极限条件确定螺栓尺寸和规格。 2)按照计算分析的结果以及选择的爆炸螺栓结构尺寸,设计连接分离装置的具体结构,画出装配草图。 2 a) 轴向连接式分离面结构尺寸

民用飞机设计参考机种之一波音787_8双发宽体中远程客机_图(精)

机种介绍 ji z hong jie shao 民用飞机设计参考机种之一波音 787-8双发宽体中远程客机波音 787梦想飞机 (D rea m li n er 是波音民用飞机集团研制生产的中型双发宽体中远程运输机 , 是波音公司 1990年启动波音 777计划后的 14年来推出的首款全新机型。波音 787系列属于 200座至 300座级飞机 , 根据具体型号不同其航程可覆盖 6500~16000km 。 里程碑 2004 项目启动 2005. 1. 28 宣布设计研制 2005年第 2季度 构型设计冻结 2005. 9. 23 完成联合发展阶段初步设计 2009. 12. 15 首飞预计于 2010 年第 4季度

交付给启动客户全日空三面图波音公司研制 787使用了声速巡航者所提出的技术以及机体设计 , 并决定在 787的主体结构 (包括机翼和机身上大量采用先进的复合材料。这将使波音 787成为有史以来第一款在主体结构上采用先进复合材料的民用飞机。其重量比例将达到空前的 50%。在发动机方面 , 波音 787可选装通用电气 (GE 公司的 G enX 系列或罗 -罗遄达 1000系列。此外 , 波音 787作为在民用飞机上首次配备两种发动机提供标准的发动机接口界面 , 从而使波音 787飞机能够随时配备任一款制造商的发动机。由于采用了大量复合材料 , 同时采用新型的发动机和创新的流线型机翼设计 , 将使波音 787比目 前同类飞机节省 20%的燃油消耗 , 此外波音 787采用中型飞机的尺寸实现了大型飞机远程的结果 , 并以 0. 85倍声速飞行 , 更好地体现了其点对点远程不经停直飞航线的能力。波音 787将增大客舱湿度 , 降低客舱气压高度 , 乘客会感到更舒适。机上娱乐、因特网接入等设施将更为完善 , 机身截面形状采用双圆弧形 , 顶部空间也进行了优化设计 , 可为乘客提供更宽敞的空间。研制过程 2001~02年波音公司开始研制效率高 , 可以获得高额利润的客机 , 于是向市场推出声速巡航者 , 但

民用飞机气动设计原理

民用飞机气动设计原理民用飞机可以随时转为军用。海湾战争期间,美国曾动员民用飞机用于军事运输。预警机、加油机等军事用途飞机也往往由民用飞机改型而成。下面是为大家分享民用飞机气动设计原理知识,欢迎大家阅读浏览。 宽体飞机相对于窄体飞机,超临界机翼气动设计的难点主要体现在哪里?(Dan) 超临界翼型设计的本质是弱激波翼型的设计。超临界翼型相较于普通翼型,其头部比较丰满,降低了前缘的负压峰值使气流较晚达到声速。即提高了临界马赫数。同时超临界翼型上表面中部比较平坦,有效控制了上翼面气流的进一步加速,降低了激波的强度和影响范围,并且推迟了上表面的激波诱导边界层的分离。因此超临界翼型有着更高的临界马赫数和更高的阻力发散马赫数。 超临界翼型与传统翼型对比 对于窄体飞机,其巡航马赫数范围在0.78-0.80 之间,通常巡航时间占全航程比例不高,因此翼型设计需要多考虑起降、爬升等非巡航性能。而宽体飞机的巡航马赫数则通常在0.85-0.90 之间,并常用于长航程飞机,应此翼型设计需要多考虑巡航性能。更高的巡航马赫数使得机翼表面有很大的超声区,使得通过翼型设计来削弱、推迟激波的设计难度大大加大。 控制律载荷一体化技术能改善飞机什么性能?有何效 益?(Zhijie) 放宽静稳定性使飞机阻力减小,减轻飞机的质量,增加有用升

力,使飞机的机动能力提高; 边界控制技术减轻了驾驶员的工作负担并保证飞机安全; 阵风载荷减缓技术减小阵风干扰下可能引起的过载,从而达到减轻机翼弯曲力矩和结构疲劳的目的,并提高乘坐舒适性; 机动载荷控制改变飞机机动飞行时机翼的载荷分布,降低翼根处的弯曲力矩,从而减轻机翼的结构重量和机动时的疲劳载荷,最终可以提高商载能力和增加飞行航程; 颤振模态控制技术通过改变翼面的非定常的气动力分部,从而降低或改善机翼的气动弹性耦合效应,最终达到提高颤振速度的目的。 A320 阵风载荷减缓控制系统说说风洞试验中,风洞的问题和缩比模型的问题、试验结果的一致性问题(Shaoyun) 风洞试验是指在风洞中安装试验模型,研究气体流动及其与模型的相互作用,以了解实际飞行器的空气动力学特性的一种空气动力试验方法。 F22 飞机风洞模型风洞的基本参数一是风洞几何参数,包括风洞截面积、风洞试验段长度等,二是风洞的试验风速,一般地,0~0.3M 范围为低速风洞,0.3M~1M为高速风洞,大于1M为超音速风洞。 由于模型缩比等原因,风洞试验模型不能完全保留真实飞行器的气动特性。风洞试验通过采用相似准则来尽可能地使试验特性同真 实特性一致,通常根据试验的目的不同会选择不同的相似准则,但一般都会满足的重要准则包括: 几何相似性,模型几何特征同真实飞行器尽可能等比例的放大或缩小; M 数相似,风洞试验M数和飞行器实际使用M数保持一致;

关于民用飞机重量设计的相关探讨

摘要:民用飞机是用于非军事目的的飞机,它主要是作为一种载人交通工具存在。在民用飞机的设计过程中,飞机的重量重心设计非常重要。民用飞机的重量有着独特的要求,民机重量的分类也有着特殊的标准。因此,民机设计时,需要对整个机身的部件进行重量估计。首先阐释了民用飞机重量设计的重要性,进而对民用飞机各部件的重量预测和控制进行了系统的分析,进而为民用飞机的安全运行奠定了重要的基础。 关键词:民用飞机重量设计 中图分类号:v241文献标识码:a文章编号:1007-3973(2012)004-034-02 1前言 安全是航空工程的第一要务,一般情况下,民用飞机的重量设计要比军用飞机复杂。在民用飞机的设计中,对重量和重心的设计有着独特的要求。在飞行过程中,民用飞机重心的变化要比军用飞机更加系统和复杂。民用飞机的重量设计指的是技术人员通过对飞机部件的设计,既要保证飞机重量的轻便,同时也要飞机具有良好的灵活性和平衡性。民用飞机的重量设计贯穿于飞机设计、制作以及营运的全部过程,对民用飞机的运行安全有着至关重要的作用。 2民用飞机重量设计的重要性 2.1有利于节约研发成本 随着当前经济的发展,现代民用飞机的研发和制作成本日益增长,研制的成本也越来越高。根据相关调查资料显示:在当前民用飞机的研制过程中,每1千克结构制作需要的人力大约为20人左右。所以说,如果相关的设计人员能够减少民用飞机制造的重量,这就能够节省大量的成本,提高民用飞机的经济效益。 2.2有利于飞机的整体协调性 民用飞机重量的各种使用性能指标与重量之间是紧密相连的,并且总是随着民用飞机空机重量的增大而下降。也就是说,在民用飞机运行的过程中,如果民用飞机的自重减轻,飞机的运行性能就会提高,如果自重增加,性能就会随之降低。所以说,民用飞机的重量设计对飞机的整体性能有着重要作用。 2.3有利于民机运营的经济效益 在民用飞机的设计研制过程中,其重量与飞机制造和运营的经济成本有着直接的关系。采取各种措施降低民用飞机的制作成本,保持其销售价格的逐步下降,进而提高民用飞机的经济性已经逐步成为当前民用飞机制造商的最终目的。因此,从民用飞机的重量设计入手,减轻飞机的重量就是从侧面提高飞机运营的经济型,进而提高在市场中的整体竞争能力。 3民用飞机设计的重量控制 民用飞机的重量控制指的是为了更好的能够保证民机在设计阶段所设计的性能指标的实现,而根据实际情况提出的确保实现目标重量的一种管理和技术相互结合的工程方法。在民用飞机的设计过程中,总体方案结束之后,民机的特征重量就已经确定,此时,民机相关部件及运行系统的目标重量也确定好了。因此,相关技术人员必须对起进行严格的控制,保证重量的合理性。要做好民用飞机的重量控制,就要做到以下几个重要的方面: (1)在民用飞机设计的过程中,要积极确立正确的目标重量值。一般情况下,民机的重量值是在设计方案的过程中逐渐形成的,与飞机的设计技术目标相适应。同时,相关设计人员要按照飞机重量设计的相应标准进行重量分类。在民用飞机重量设计中,重量分类是一个十分重要的概念,是重量工程的一个重要标准。通过有效掌握重量分类,能够为飞机重量设计提供重要的依据,保证设计工作的顺利运行。 (2)认真确定民机重量设计余值。民机的重量设计余值指的是在民用飞机设计的过程中,重量和平衡报告中还没有预料到的重量增量。一般情况下,在民机设计中,重量设计余值应

飞行器结构设计总复习

静强度设计:安全系数d e P f P d p 设计载荷 e p 使用载荷 u p 极限载荷 静强度设计准则:结构材料的极限载荷大于或等于设计载荷,即认为结构安全u p ≥d p 载荷系数定义:除重力外,作用在飞机某方向上的所有外力的合力与当时飞机重量的比值, 称为该方向上的载荷系数。 载荷系数的物理意义:1、表示了作用于飞机重心处除重力外的外力与飞机重力的比值关系; 2、表示了飞机质量力与重力的比率。 载荷系数实用意义:1、载荷系数确定了,则飞机上的载荷大小也就确定了; 2、载荷系数还表明飞机机动性的好坏。 着陆载荷系数的定义:起落架的实际着陆载荷lg P 与飞机停放地面时起落架的停机载荷lg o P 之 41.杆只能承受(或传递)沿杆轴向的分布力或集中力。 2.薄平板适宜承受在板平面内的分布载荷,包括剪流和拉压应力,不能传弯。没有加强件加 强时,承压的能力比承拉的能力小得多,不适宜受集中力。厚板能承受一定集中力等。 3.三角形薄板不能受剪。 刚度分配原则:在一定条件下(如机翼变形符合平剖面假设),结构间各个原件可直接按照 本身刚度的大小比例来分配它们共同承担的载荷,这种正比关系称为“刚度分配原则” P1l1/E1F1=P2l2/e2f2 K=EF/l p1/p2=k1/k2 p1=k1p/(k1+k2) (翼面结构的典型受力形式及其构造特点: 1.薄蒙皮梁式:蒙皮很薄,纵向翼梁很强,纵向长桁较少且弱,梁缘条的剖面与长桁相比要 大得多,当布置有一根纵梁时同时还要布置有一根以上的枞墙。常分左右机翼-----用几个集 中接头相连。 2.多梁单块式:蒙皮较厚,与长桁、翼梁缘条组成可受轴向力的壁板承受总体弯矩;纵向长 桁布置较密,长桁截面积与梁的截面积比较接近或略小;梁或墙与壁板形成封闭的盒段,增 强了翼面结构的抗扭刚度。为充分发挥多梁单块式机翼的受力特征,左右机翼一般连成整体 贯穿过机身,但机翼本身可能分成几段。 3.多墙厚蒙皮式:布置了较多的枞墙,厚蒙皮,无长桁,有少肋、多肋两种,但结合受集中 力的需要,至少每侧机翼上要布置3~5个加强翼肋。可以没有普通肋。) 大型高亚音速运输机或有些超音速战斗机采用多梁单块式翼面结构,Ma 较大的的超音速飞 机多采用多墙(或多梁)或机翼结构。 局部失稳问题:翼梁缘条受轴向压力时,由于在蒙皮平面内有蒙皮支持,在翼梁平面有腹板 支持,因此一般不会产生总体失稳,但需考虑其局部失稳问题。 翼梁的主要功用承受或传递机翼的剪力Q 和弯矩M 。 (各典型形式(梁式、单块式、多墙式)受力特点的比较: 机翼结构受力形式的发展主要与飞行速度的发展有关。速度的增加促使机翼外形改变并提高 了对结构强度、刚度、外形的要求。比较三者的受力特点可以发现,单纯的梁式、薄蒙皮和 弱长桁均不参加机翼总体弯矩的传递,只有梁的缘条承受弯矩引起的轴力。对于高速飞机, 由于气动载荷增大,而相对厚度减小又导致了机翼结构高度变小,只靠梁来承弯将使承弯构 件的有效高度减小;加之对蒙皮局部刚度和机翼扭转刚度要求的提高,促使蒙皮增厚,长桁 增多、增强。因此,在单块式、多墙式机翼中,蒙皮、长桁,乃至主要是蒙皮发展成主要的 承弯构件。由于蒙皮、长桁等受轴向力的面积较之梁缘条更为分散、更靠近外表面,故承弯 构件有效高度较大,因此厚蒙皮翼盒不仅承扭能力较高,抗弯特性也较好,因此,此种机翼

浅谈民用飞机短舱进气道结构设计

浅谈民用飞机短舱进气道结构设计 摘要:本文主要介绍安装先进涡轮风扇发动机的民用飞机进气道结构设计,包括进气道消声结构的设计。 关键词:进气道结构设计消声设计 0.概述 高涵道比、高效率的先进的动力装置是民用大型客机的心脏。作为动力装置重要组成部分的短舱进气道,对于整个动力装置的性能起着重要的作用。 1.进气道设计要求 进气道的内部通道设计必须保证在发动机各种工作状态下能供给发动机所需要的空气流量,并为发动机风扇进气面提供均匀流场和高总压恢复系数。进气道结构设计中,应运用声学处理技术,以最大程度减小发动机外传噪声,使飞机符合FAR-36部适航标准的要求。短舱进气道应当与风扇叶片一样具有抵抗飞行中鸟撞的能力。进气道必须采取防冰措施,在各种气候条件下,发动机及其进气系统上,都不产生不利于发动机运行或会引起推力严重下降的冰积聚。 2.进气道结构设计 进气道主要由唇口蒙皮、前隔板、后隔板、内壁板、外壁板和连接法兰组成。 进气道唇口蒙皮通常采用铝合金材料,表面阳极化处理,外表面打磨光滑,能够承受雨砂的侵蚀和冰雹的冲击,并且是防鸟撞的第一道防线。进气道唇口蒙皮通过角材与进气道后隔板与外壁板相连接,角材之间通过接头连接。进气道前隔板组件由腹板、径向肋、加强件、开口和管路支架组成。腹板由钛合金退火材料成形,以承受防冰管路的高温,由左右两块拼接而成。腹板上通常布置有径向肋,主要对结构起到加强作用。进气道前隔板组件通过角材与唇口蒙皮、内壁板和外壁板相连接。进气道前隔板组件主要承受的载荷为鸟撞冲击载荷,是防鸟撞设计的主要结构件。 进气道后隔板组件由腹板、径向肋、开口组成。腹板通常采用钛合金退火材料成形,由左右两块拼接或者整体成型,主要吸收FBO工况时风扇打出能量。腹板通常有径向肋,材料为钛合金,主要对结构起到加强作用。进气道后隔板组件在外侧通过角材与外壁板相连接,并且通过角材提供风扇罩罩体搭接区域;后隔板组件在内侧通过角材与内壁板相连接。进气道后隔板组件是防鸟撞结构设计的最后一道防线,要保证鸟的撞击不会穿透后隔板打到风扇舱段,后隔板的变形不能引起燃油管路以及其它系统的损坏以危及到飞行的安全。同时,尽管FADEC 位于风扇舱段区而不在进气道内,但是不能允许鸟撞击后隔板变形而接触到FADEC。因此后隔板需要布置一定数量的钛合金材料径向加强肋。后隔板通常也是风扇舱段火区的前向边,因此后隔板需要采用钛合金退火材料且必须布置防

民用飞机气动设计原理

民用飞机气动设计原理 民用飞机可以随时转为军用。海湾战争期间,美国曾动员民用 飞机用于军事运输。预警机、加油机等军事用途飞机也往往由民用飞机改型而成。下面是为大家分享民用飞机气动设计原理知识,欢迎大家阅读浏览。 宽体飞机相对于窄体飞机,超临界机翼气动设计的难点主要体 现在哪里?(Dan) 超临界翼型设计的本质是弱激波翼型的设计。超临界翼型相较 于普通翼型,其头部比较丰满,降低了前缘的负压峰值使气流较晚达到声速。即提高了临界马赫数。同时超临界翼型上表面中部比较平坦,有效控制了上翼面气流的进一步加速,降低了激波的强度和影响范围,并且推迟了上表面的激波诱导边界层的分离。因此超临界翼型有着更高的临界马赫数和更高的阻力发散马赫数。 超临界翼型与传统翼型对比 对于窄体飞机,其巡航马赫数范围在0.78-0.80之间,通常巡 航时间占全航程比例不高,因此翼型设计需要多考虑起降、爬升等非巡航性能。而宽体飞机的巡航马赫数则通常在0.85-0.90之间,并常用于长航程飞机,应此翼型设计需要多考虑巡航性能。更高的巡航马赫数使得机翼表面有很大的超声区,使得通过翼型设计来削弱、推迟激波的设计难度大大加大。 控制律载荷一体化技术能改善飞机什么性能?有何效 益?(Zhijie)

放宽静稳定性使飞机阻力减小,减轻飞机的质量,增加有用升力,使飞机的机动能力提高; 边界控制技术减轻了驾驶员的工作负担并保证飞机安全; 阵风载荷减缓技术减小阵风干扰下可能引起的过载,从而达到 减轻机翼弯曲力矩和结构疲劳的目的,并提高乘坐舒适性; 机动载荷控制改变飞机机动飞行时机翼的载荷分布,降低翼根 处的弯曲力矩,从而减轻机翼的结构重量和机动时的疲劳载荷,最终可以提高商载能力和增加飞行航程; 颤振模态控制技术通过改变翼面的非定常的气动力分部,从而 降低或改善机翼的气动弹性耦合效应,最终达到提高颤振速度的目的。 A320阵风载荷减缓控制系统 说说风洞试验中,风洞的问题和缩比模型的问题、试验结果的 一致性问题(Shaoyun) 风洞试验是指在风洞中安装试验模型,研究气体流动及其与模 型的相互作用,以了解实际飞行器的空气动力学特性的一种空气动力试验方法。 F22飞机风洞模型 风洞的基本参数一是风洞几何参数,包括风洞截面积、风洞试 验段长度等,二是风洞的试验风速,一般地,0~0.3M范围为低速风洞,0.3M~1M为高速风洞,大于1M为超音速风洞。 由于模型缩比等原因,风洞试验模型不能完全保留真实飞行器 的气动特性。风洞试验通过采用相似准则来尽可能地使试验特性同真

飞行器结构优化设计课程总结

《飞行器结构优化设计》 ——课程总结 专业航天工程 学号GS0915207 姓名

《飞行器结构优化设计》课程总结报告 通过这门课程的学习,大致了解无论是飞行器、船舶还是桥梁等工程项目的传统结构设计流程:首先是根据技术参数、经验和一些简单的分析方法进行初始的结构设计,然后用较为精确的分析方法对初始设计进行核验,根据核验结果,逐步调整设计参数,直到得到满意的设计方案。但是这种传统设计方法的产品性能优劣主要就取决于设计人员的水平,而且设计周期长,并要耗费大量的人力和物力。随着高速、大容量电子计算机的广泛使用和一些精度高的力学分析数值方法的建立和应用,使得复杂的结构分析过程变得更加高效、精确。 本课程重点就在于介绍结构优化的各种分析方法。这些分析方法都是以计算机为工具,将非线性数学规划的理论和力学分析方法相结合,使用于受各种条件限制的承载结构设计情况。 优化问题的数学意义是在不等式约束条件下,求使目标函数为最小或最大值的一组设计变量值,在实际工程应用中,优化问题所包含的函数通常是非线性的和隐式的。建立在数学规划基础上的优化算法,是依据当前设计方案所对应的函数值与导数值等信息,按照某种规则在多维设计变量空间中进行搜索,一步一步逼近优化解。随着计算机的发展和数学计算方法不断进步,结构分析。优化的方法也是随之水涨船高。 一、有限元素法 这是基于在结构力学、材料力学和弹性力学基础上的一种分析方法。研究杆、梁,经简化薄板组成的结构的应力、变形等问题。其方法是首先通过力学分析将结构离散化成单一元素,然后对单一元素进行分析,算出各单元刚度矩阵后,进行整体分析,根据方程组K·u=P求解。这种方法求解的问题受限于结构的规模、形式和效率。 二、敏度分析 结构敏度是指结构性状函数,如位移、应力、振动频率等对设计变量的导数。近似函数的构成,以及许多有效的结构优化算法,皆要利用这些参数的一阶导数,以至二阶导数信息。 结构敏度分析的基础是结构分析,对于复杂的结构,精确的结构分析工作是

民用飞机机头外形设计与研究

民用飞机机头外形设计与研究 摘要本文结合机头外形设计的相关约束条件,分析了机头外形定义的关键参数,提出了一种流线型机头外形设计的方法和思路。 关键词参数化建模;机头外形;民用飞机 1 概述 飞机机头外形为飞机等直段之前部分的外形,包括驾驶舱视窗(主风挡、侧窗)、前起落架舱门、雷达罩和前登机门等部件的外形。机头外形设计其主要目的是为驾驶员提供足够的工作空间,保证驾驶员有良好的视野,满足机载设备的安装空间要求,在满足使用要求的情况下使气动性能最优。 2 机头外形设计相关约束 机头外形设计需要面对多方面的约束,是在矛盾中寻求一种平衡的过程,以下内容对相关约束条件进行了研究。 2.1 内部布置约束 内部布置要求的约束,包括雷达天线的包络面,侧显区域,侧壁区域,平显区域、顶部空间等。与驾驶舱内部布置密切相关的主要有两个因素,即设计眼位和座椅参考点。设计眼位(Design Eye Position)是当驾驶员处于正常驾驶状态,两眼之间连线的中点所在位置,是飞机承制方用于确定驾驶舱内部和外部视野以及驾驶舱几何尺寸而选择的一个设计基点,该点坐标为:(XE,YE,ZE)。座椅参考点(Seat Reference Point)是当座椅受到一个第50百分位数的人体载荷,其坐垫和背垫成压缩状态时,坐垫表面的一条切线与背垫表面的一条切线之间的交点,该点与眼位点位于同一展向站位平面内并通过Les、Hes两个参数确定,地板到座椅参考点的距离由Hsf参数确定。设计眼位处的上、下视线分别由Au,Ad两个参数确定,设计眼位到风挡的距离由Lwe参数确定,风挡的倾斜角度由Aw参数确定,风挡的长度则由风挡与上下视线的交点确定。如图1所示: 《民用飞机驾驶舱视野要求》(HB 7496-97):标准左驾驶员视野如图2所示,右驾驶员视野对称。《民用飞机驾驶舱座椅设计要求》(HB 7046-94)对驾驶员设计眼位和座椅参考点的相对位置关系要求如图3所示。 2.2 结构设计约束 结构的设计约束主要体现在结构实现方面,需要能法向向内偏置offset >0.02D+25.4mm(D-机身横截面当量直径),再考虑内装饰高度25.4mm,满足结构和内装饰设计基准要求;光滑过渡、没有0厚度部位,便于结构设计制造;为机头框、地板、壁板、雷达罩、风挡、通风窗、观察窗骨架、内装饰设计

飞行器结构设计总结

第一章 1 1.1-1.3节 1、名词解释蠕变:材料的塑形变形量随时间增大而增大 2、填空属于航天器的是人造地球卫星、载人飞船、空间站等 3、简答飞行器结构设计的基本准则:最小质量准则、气动力准则、使用维护准则、可靠性准则、结构工艺性准则、最小成本准则 2 1.4-1.6节 1、静电陀螺仪为什么选用铍合金?密度小、强度硬度高、线膨胀系数小 2、断裂韧性:表征材料阻止裂纹扩展的能力 剩余强度系数:破坏载荷/设计载荷=破坏应力/设计应力 3、给出部件设计内容的排序:调查研究-方案设计-技术设计-强度校核-绘制零件图-编制技术文件-试验 第二章 3 2.1-2.2节 1、画图说明过载系数的由来: 2、以攻角为例解释导弹采用刚体假设的原因: 3、过载系数:作用在物体上的所有表面力的合力与该物体的重量之比

4、导弹发射三种过载形式:机动飞行时最大过载系数、限制舵面最大偏转角、阵风载荷及其最大附加过载系数 4 2.3-2.5节 1、导弹的设计情况:空中飞行时、地面使用时的设计情况 2、在进行内力计算时常用方法:初等粱理论、有限元法、平切面法 3、压心:导弹弹翼上所受空气作用力合力的作用中心 4、安全系数:设计载荷与使用载荷之比。在传统设计中,为了保证结构安全可靠,对这些因素都是用大于1的系数来考虑,这个系数即为安全系数f 5 2.6节 1、P37双梁式直弹翼 ①属于静定/静不定结构?为什么? ②受力分析图: ③标出压心和刚心: ④两根翼梁在载荷Q及其引起的弯曲力矩M作用下的传力,翼剖面闭室提供的支反扭矩: 2、P39单梁式翼面中翼肋和蒙皮之间相互支撑互相传力关系: 6 2.7节 1、①加强肋将集中力转化为分布力对

哈工大飞行器结构设计实验报告

飞行器结构设计实验 一、实验目的 通过参观航天馆内的实物及模型结合课堂学习内容,加深对蜂窝夹层结构、陀螺副翼、舱段的结构形式、舱段承力元件等的理解。 二、实验内容 1、蜂窝夹层结构 图1 蜂窝夹层结构图2 蜂窝夹层结构局部放大图 夹芯层形似蜂窝的一种夹层结构,又称蜂窝夹层结构(见图1和图2)。这种结构的夹芯层是由金属材料、玻璃纤维或复合材料制成的一系列六边形,四边形及其他形状的孔格,在夹芯层的上下两面再胶接(或钎焊)上较薄的表板。早期使用的轻质巴萨木夹层不耐潮,抗腐性差,不耐火,人们遂把注意力转向金属蜂窝夹层。1945年试制成最早的蜂窝夹层结构。蜂窝结构比其他夹层结构具有更高的强度和刚度,与铆接结构相比,结构效率可提高15%~30%。夹层的蜂窝孔格大小、高矮及其构成格子的薄片厚度等决定表板局部屈曲、孔格壁板屈曲的临界应力及夹层结构的保温性能。这些尺寸的选择,一般要保证能够承受一定的去取载荷的前途下具有一定的保温性能。蜂窝结构的受力分析与一般夹层结构相同。在航空航天工业中,蜂窝结构常被用于制作各种壁板,用于翼面、舱面、舱盖、地板、发动机护罩、尾喷管、消音板、隔热板、卫星星体外壳、刚性太阳电池翼、抛物面天线、火箭推进剂贮箱箱底等。 2、陀螺副翼

图1 陀螺副翼结构 1— 安定面 2—盖板 3—风轮 4—螺钉 5—副翼 6—锁紧销 7—销套 8—止动件 9—卡箍 10—轴座 11、12— 上下板 13—转轴 图1是陀螺副翼。它位于安定面的翼尖后缘,由上下板、风轮和转轴等组成。 工作原理:风轮轴被嵌在上下板的铜套座中,上下板由螺钉连接成一体。平时锁紧销6插在销套7内,副翼被锁在中立位置。导弹发射后,止动件8尾部的易熔材料被发动机燃气熔化,在弹簧作用下,锁紧销被拔出,陀螺副翼便被开锁。 图2 陀螺副翼工作原理 导弹在飞行过程中,受到气动力作用,风轮在气动力作用下作高速旋转,自转角速度为Ω ,方向如图2所示,相当于一陀螺转子。由二自由度陀螺的进动性知0ω ?Ω=J M 进动。当0ω ,方向为顺时针时,产生的进动力矩进动M 如图2所示。进动M 使两个陀螺副翼反向偏转,从而形成操纵导弹的滚动力矩,使导弹逆时针旋转, 恢复到原来位置,保证导弹具有横向稳定性。 3、舱段的结构形式 常见的舱段结构有:硬壳式结构、半硬壳式结构、整体式结构、波纹板式结构、夹层结构、构架式结构。 根据受力形式不同,半硬壳式结构又可分为下列三种形式 (1) 梁式结构 Ω 进动 M 进动 Ω

飞行器结构设计课后答案第3章

KJ (2) M 的分配 K= L 关系式仍同上 M 1 = =KN m 2 = =3335 KN m 飞机结构设计第二章习题解答 一、 一双粱机翼,外翼传到2#肋剖面处的总体内力分别力剪力 g 100 kN(作 用在刚心上), 弯矩M=5< 10 3 Kn ? m 扭矩M= 30 kN ? m 已知前、后粱的平均剖面抗弯刚度为 EI 前=1010kN- mm EI 后=2X 10 kN - mm ;前、后闭室平均剖面抗扭刚度为 K 前=5X 10 kN ? mg K t 后=109 kN - mrf 。 求: (1) 当L 前=L 后=1500 mm 寸,Q M M 在2肋剖面如何分配(题图3. 2(a))? (2) 当L 前=3000 mm L 后=1500 mn fl 寸,Q M M 在此剖面又如何分配(题图 3.2(b))?(计算扭矩分配时,假设不考虑前、后闭室之间和1#肋对前闭室的影响)。 1. 2EJ 2_ (1) Q 的分配 K= L L 前 =L 后 ??? 只与 2EJ 有关 K 1Q 2EJ j 匸 1 Q 1= K 1 K 2 = L 2 [ 2 ( EJ 1 EJ 2 ) ]Q = =3330kg = EJQ EJ 1 EJ 2 Q 2 = 6670kg = L 前=L 后

5M t 3 M ti = 5 10= = 10 kg = 10 KN m 3 M t2 = = 10 kg = 20 KNm Q 2 = 8890kg = KJ 10 12 (2) M 的分配 K 1 = L = 3000 = 12 Q 10 K 1= 1500 = K 1+ K 2 = M 2 = 4 10 5 kg m = 4000 KN m (3) M t 的分配 5 10 10 10 10 10 K 1= 3000 = K>= 1500 = K 1+ K 2 = 3 10 kg = 6 KN m 3 10 kg = 2 4 KN m 二.题图所示两机翼,(a)为单块式,且双梁通过机身,而长桁在机身侧边切断; (b)为单 块式,整个受力翼箱通过机身。请画出两种情况下a —a 、b —b 段长桁的内力图, 并筒要说明 何以如此分布? 2EJ (1) Q 的分配 K= L 2 10 12 2 1012 2 K 1 = 2 3000 =2 9 106 : =9 106 = 10 12 2 2 2 2 K 2 = 2 1500 =2 9 106 = =2.25 106 = 1 1 K 1+ K 2 = :2 1C )6 ( 9 + 2.25)= :2 106 ( 0.111 + 0.889) = 1 L 后=1500 mm 2 106 Q 1 = 0. = 1110kg = 2. L 前=3000 mm 0.333 M 1= 1.666 5 105 = 0. =10 5 kg m = 1000 KN m 1.667 M = 8.334 6.667 M = 8.334 3 103 = 3 103 =

《飞行器结构设计》课后答案第3章

飞机结构设计第三章习题解答 一、 一双粱机翼,外翼传到2#肋剖面处的总体内力分别力剪力Q =100 kN(作用在刚心上), 弯矩M=5×l03 Kn ·m 、扭矩M t = 30 kN ·m 。已知前、后粱的平均剖面抗弯刚度为EI 前=1010kN ·mm 2、 EI 后=2×1010kN ·mm 2;前、后闭室平均剖面抗扭刚度为K t 前=5×108 kN ·mm 2,K t 后=109 kN ·mm 2。 求: (1)当L 前=L 后=1500 mm 时,Q 、M 、M t 在2#肋剖面如何分配(题图3.2(a))? (2)当L 前=3000 mm 、L 后=1500 mm 时,Q 、M 、M t 在此剖面又如何分配(题图 3.2(b))?(计算扭矩分配时,假设不考虑前、后闭室之间和1#肋对前闭室的影响)。 1. L 前=L 后 (1) Q 的分配 K=2 2EJ L L 前=L 后 ∴ 只与2EJ 有关 Q 1=112K Q K K += 122EJ L [22L (121EJ EJ +)]Q = 112EJ Q EJ EJ + = 1 12Q + = 0.333Q = 3330kg = 33.3KN Q 2= 6670kg = 66.7KN (2) M 的分配 K=KJ L ∴ 关系式仍同上 1M = 0.333?5?105 = 1666.7 KN m M 2= 0.667?5?105 = 3335 KN m

(3) M t 的分配 M t1= 5510t M += 0.333?3?103 = 0.999?103 kg.m = 10 KN m M t2 = 0.667?3?103 = 2.001?103 kg.m = 20 KNm 2. L 前 =3000 mm L 后=1500 mm (1) Q 的分配 K=2 2EJ L K 1= 2? () 12 2 103000= 2?12 6 10910 ?=2 9?106 = 2?106?0.111 K 2= 2?()12 2 101500= 2?29?106 = 22 2.25??106 = 2?106?0.889 K 1+ K 2 = 2?106 ( 19 +1 2.25) = 2?106 ( 0.111 +0.889) = 1?2?106 ∴ Q 1= 0.111?10000 = 1110kg = 11.1KN Q 2= 8890kg = 88.9KN (2) M 的分配 K 1 = KJ L = 12 103000 = 0.333?109 K 1 = 12 101500Q ? = 1.333?109 K 1+ K 2 = 1.666?109 1M = 0.3331.666?5?105 = 0.1999?5?105 = 0.2?5?105 = 105 kg m = 1000 KN m 2M = 4?105 kg m = 4000 KN m (3) M t 的分配 K 1=10 5103000?=1.667?107 K 2=1010101500?=6.667?107 K 1+ K 2 = 8.334?107 M t1 = 1.667 8.334?3?103 = 0.2?3?103 = 0.6?103 kg.m = 6 KN m M t2 = 6.667 8.334?3?103 = 0.8?3?103 = 2.4?103 kg.m = 24 KN m 二. 题图3.3所示两机翼,(a)为单块式,且双梁通过机身,而长桁在机身侧边切断;(b)为单 块式,整个受力翼箱通过机身。请画出两种情况下a —a 、b —b 段长桁的内力图,并筒要说明 何以如此分布?

飞行器结构设计课后答案

第二章 习题答案 2.飞机由垂直俯冲状态退出,沿半径为r 的圆弧进入水平飞行。若开始退出俯冲的高度H 1=2000 m ,开始转入水干飞行的高度H 2=1000 m ,此时飞行速度v =720 km/h ,(题图2.3),求 (1)飞机在2点转入水平飞行时的过载系数n y ; (2) 如果最大允许过载系数为n ymax =8,则 为保证攻击的突然性,可采用何种量级的大速度或大机动飞行状态?(即若r 不变,V max 可达多少? 如果V 不变,r min 可为多大 ? 解答 (1) 08 .5)(8.9) 3600 1000 720(11212 2 =-?? + =+ == H H gr v G Y n y (2) h km r g n v y /2.94310008.9)18(.).1(max =??-= -= m n g v r y 1.583) 18(8.9) 36001000 720() 1(2 2 min -??= -=

3.某飞机的战术、技术要求中规定:该机应能在高度H =1000m 处,以速度V=520 Km/h 和V ’=625km /h(加力状态)作盘旋半径不小于R =690m 和R ’=680m(加力 状态)的正规盘旋(题图2.4)。求 (1) 该机的最大盘旋角和盘旋过载系数n y ; (2) 此时机身下方全机重心处挂有炸弹,重G b =300kg ,求此时作用在炸弹钩上的载荷大小及方向(1kgf =9.8N)。 解答: (1) βcos 1= = G Y n y ∑=0 1 X r v m Y 2 sin =β ① ∑=0 1Y G Y =βcos ② 由 ①与②得 085 .3690 8.9) 3600 1000 520(2 2 =??= = gr v tg β 04.72=β (非加力) 523 .4680 8.9) 36001000 625(2 =?? = βtg 5.77=β (加力) 6 .4cos 1== β y n (2) r v m N X 2 1=

相关主题
文本预览
相关文档 最新文档