当前位置:文档之家› 纳米与界面催化研究组(502) - 大连化物所

纳米与界面催化研究组(502) - 大连化物所

纳米与界面催化研究组(502) - 大连化物所

中科院大连化物所2014年度冠名奖公示材料(集体)

中国科学院大连化学物理研究所简介-研究生部

中国科学院大连化学物理研究所简介 中国科学院大连化学物理研究所(以下简称大连化物所)创建于1949年3月,当时定名为大连大学科学研究所,后几经更名,1962年正式命名为中国科学院大连化学物理研究所。 大连化物所是一个基础研究与应用研究并重、应用研究和技术转化相结合,以任务带学科为主要特色的综合性研究所。六十多年来,大连化物所通过不断积累和调整,逐步形成了自己的科研特色。1998年,大连化物所成为中国科学院知识创新工程首批试点单位之一。2007年经国家批准筹建洁净能源国家实验室。2010年8月,大连化物所在“创新2020”发展战略研讨会中将所发展战略修订为“发挥学科综合优势,加强技术集成创新,以可持续发展的能源研究为主导,坚持资源环境优化、生物技术和先进材料创新协调发展,在国民经济和国家安全中发挥不可替代的作用,创建世界一流研究所。” 大连化物所重点学科领域为:催化化学、工程化学、化学激光和分子反应动力学以及近代分析化学和生物技术。

大连化物所围绕国家能源发展战略于2011年10月启动了洁净能源国家实验室(DNL)的筹建工作,DNL是我国能源领域筹建的第一个国家实验室,共规划筹建化石能源与应用催化、低碳催化与工程、节能与环境、燃料电池、储能、氢能与先进材料、生物能源、太阳能、海洋能、能源基础和战略、能源研究技术平台等11个研究部。大连化物所还拥有催化基础国家重点实验室和分子反应动力学国家重点实验室两个国家重点实验室、以及甲醇制烯烃国家工程实验室、国家催化工程技术研究中心、膜技术国家工程研究中心、燃料电池及氢源技术国家工程中心、国家能源低碳催化与工程研发中心等多个国家级科技创新平台。大连化物所围绕国防安全、分析化学、精细化工和生物技术广泛开展基础性、战略性、前瞻性研究工作,设立化学激光研究室、航天催化与新材料研究室、仪器分析化学研究室、精细化工研究室和生物技术研究部等五个研究室。另外,大连化物所还与国外著名大学、公司和研究机构联合设立了中法催化联合实验室、中法可持续能源联合实验室、中德催化纳米技术伙伴小组、中韩燃料电池联合实验室和DICP-BP能源创新实验室等十几个国际合作研究机构。

第六章金属催化剂催化作用

第六章金属催化剂催化作用 章节分配 一、金属催化剂重要类型及重要催化反应示例 二、乙烯环氧化催化作用 1.乙烯环氧化工业催化剂 2.乙烯环氧化反应机理 3.乙烯环氧化中助催剂、促进剂的作用及新型催化剂 三、氨合成催化剂催化作用 1.合成氨催化剂简况 2.熔铁催化剂的结构 3.各种助剂的作用及含量的最佳值范围 4.氨合成铁催化剂活性中心模型及其作用机理 四、烃类催化重整催化剂作用原理 1.催化重整反应及重整催化剂 2.烃类在过渡金属上的吸附态及烃类脱氢 3.催化重整作用机理 五、其他重要类型金属催化剂简介 1.镍系催化剂 2.裂解气中炔烃选择加氢催化剂 六、金属催化剂的电子迁移、d 空穴与催化活性 七、多位理论的几何因素与能量因素 八、对多位理论及电子理论的评价 金属催化剂是固体催化剂中研究得最早、最深入,同时也是获得最广泛应用的一类催化剂,例如,氨的合成(Fe)和氧化(Pt),有机化合物的加氢(Ni, Pd, Pt, 等)、氢解(Os, Ru, Ni,等)和异构(Ir, Pt,等),乙烯的氧化(Ag), CO的加氢(Fe, Co, Ni, Ru,等)以及汽车尾气的净化(Pt, Pd,等)等等。其主要特点是具有很高的催化活性和可以使多种键发生开裂。 (1)自从上世纪P. Sabatier发现金属镍可催化苯加氢生成环己烷以来,迄今

除金属催化剂以外,尚未发现过能催化这一反应的其它类型催化剂. 又如,乙烷氢解对金属催化剂来说并非难事.然而除金属催化剂之外,也末发现可使乙烷加氢分解的别种催化剂,另外,如众所周知,F—T合成也只有在金属催化剂上才 能进行等等?那么,金属催化剂之所以具有这种高的活性,其内在因素是什么? (2)所有金属催化剂几乎都是过渡金属,而且,金属催化剂的功能又都和 d 轨道有关,这是为什么? (3)当过渡金属催化剂按其活性排列时,对每个反应都有自己独有的序列,即使对每类反应,至今也未发现它们有相同的序列,什么是决定这种序列的内在因素? (4)对一个反应来说,为什么同类金属又常常有明显不同的选择性? (5)对某些反应来说,单位表面积的催化活性决定于金属的晶面、金属晶粒 的大小(如果金属是负载着的),载体以及制法,为什么对活性有这种差别?又怎样和反应相联系? (6)由两种金属制成的合金催化剂,其催化功能随组分有强大变化,而且又 明显地取决于所研究的反应,产生这些效果的原因是什么? 表金属催化剂类型按制备方法划分

纳米载体的限域效应对催化性能影响机制的研究进展

纳米载体的限域效应对催化性能影响机制的研 究进展 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

纳米载体的限域效应对催化性能影响机制的研究进展自上世纪末以来, 纳米科学和技术有了长足的进展,其中纳米材料的一个重要特性是,将体系的尺寸减小到一个特定的范围(如 1~100 nm)时,在不添加任何其他组分的情况下,纳米体系的电子结构会发生变化。量子力学已经证明,大量原子组成的固体材料的价电子为连续的“能带”,当这类体相材料在某一方向上被缩小,特别是缩小到纳米尺度时,电子在该方向的运动就受到空间的束缚和限域,这种限域效应将会改变电子运动特性、导致体系电子结构特别是价电子结构的改变,从而可能会产生量子突变。这种体系尺寸对电子特性的调变为催化剂的催化特性进行调控提供了一种很好的途径[1]。. 近几年,部分研究团队在利用纳米材料的限域效应对催化剂的改性以及催化过程的研究等方面开展了创新性的研究工作,并且大量具有影响力的研究报道和文章被发表出来,其中中国科学院大连化学物理所包信和院士团队在这方面的工作开展的较早也很突出。该团队在铂金属颗粒表面加载了过渡金属氧化物,制备出了具有界面限域效应的TMO/Pt非均相逆催化剂(Oxide-on-Metal Inverse Catalysts),利用界面限域效应对催化体系结构和电子特性的影响作用,改善了在催化过程(特别是在催化氧化反应)中传统非均相催化剂容易出现的催化活性中心的失活以及催化功能的失效等问题[2]。 图1两种金属催化体系的结构示意图 (A)传统的氧化物作为载体的金属催化体系(Oxide supported metal system) 和 (B)过渡金属纳米氧化物倒载型催化体系(oxide-on-metal system)

催化剂常用制备方法

催化剂常用制备方法 固体催化剂的构成 ●载体(Al2O3 ) ●主催化剂(合成NH3中的Fe) ●助催化剂(合成NH3中的K2O) ●共催化剂(石油裂解SiO2-Al2O3 催化剂制备的要点 ●多种化学组成的匹配 –各组分一起协调作用的多功能催化剂 ●一定物理结构的控制 –粒度、比表面、孔体积 基本制备方法: ?浸渍法(impregnating) ?沉淀法(depositing) ?沥滤法(leaching) ?热熔融法(melting) ?电解法(electrolyzing) ?离子交换法(ion exchanging) ?其它方法 固体催化剂的孔结构 (1)比表面积Sg 比表面积:每克催化剂或吸附剂的总面积。 测定方法:根据多层吸附理论和BET方程进行测定和计算 注意:测定的是总表面积,而具有催化活性的表面积(活性中心)只占总表面的很少一部分。 内表面积越大,活性位越多,反应面越大。 (2)催化剂的孔结构参数 密度:堆密度、真密度、颗粒密度、视密度 比孔容(Vg):1克催化剂中颗粒内部细孔的总体积. 孔隙率(θ):颗粒内细孔的体积占颗粒总体积的分数. (一) 浸渍法 ?通常是将载体浸入可溶性而又易热分解的盐溶液(如硝酸盐、醋酸盐或铵盐等)中进 行浸渍,然后干燥和焙烧。 ?由于盐类的分解和还原,沉积在载体上的就是催化剂的活性组分。 浸渍法的原理 ●活性组份在载体表面上的吸附

●毛细管压力使液体渗透到载体空隙内部 ●提高浸渍量(可抽真空或提高浸渍液温度) ●活性组份在载体上的不均匀分布 浸渍法的优点 ?第一,可使用现成的有一定外型和尺寸的载体材料,省去成型过程。(如氧化铝,氧 化硅,活性炭,浮石,活性白土等) ?第二,可选择合适的载体以提供催化剂所需的物理结构待性.如比表面、孔径和强 度等。 ?第三,由于所浸渍的组分全部分布在载体表面,用量可减小,利用率较高,这对贵 稀材料尤为重要。 ?第四,所负载的量可直接由制备条件计算而得。 浸渍的方法 ?过量浸渍法 ?等量浸渍法 ?喷涂浸渍法 ?流动浸渍法 1.1、过量浸渍法 ?即将载体泡入过量的浸渍液中,待吸附平衡后,过滤、干燥及焙烧后即成。 ?通常借调节浸渍液浓度和体积来控制负载量。 1.2、等量浸渍法 ?将载体与它可吸收体积相应的浸渍液相混合,达到恰如其分的湿润状态。只要混合 均匀和干燥后,活性组分即可均匀地分布在载体表面上,可省却过滤和母液回收之累。但浸渍液的体积多少,必须事先经过试验确定。 ?对于负载量较大的催化剂,由于溶解度所限,一次不能满足要求;或者多组分催化 剂,为了防止竞争吸附所引起的不均匀,都可以来用分步多次浸渍来达到目的。 1.3.多次浸渍法 ●重复多次的浸渍、干燥、焙烧可制得活性物质含量较高的催化剂 ●可避免多组分浸渍化合物各组分竞争吸附 1.4浸渍沉淀法 将浸渍溶液渗透到载体的空隙,然后加入沉淀剂使活性组分沉淀于载体的内孔和表面 (二) 沉淀法 ?借助于沉淀反应。用沉淀剂将可溶性的催化剂组分转变为难溶化合物。经过分离、 洗涤、干燥和焙烧成型或还原等步骤制成催化剂。这也是常用于制备高含量非贵金属、金属氧化物、金属盐催化剂的一种方法。 ?共沉淀、均匀沉淀和分步沉淀 2.1、共沉淀方法 将催化剂所需的两个或两个以上的组分同时沉淀的一个方法,可以一次同时获得几个活性组分且分布较为均匀。为了避免各个组分的分步沉淀,各金属盐的浓度、沉淀剂的浓度、介质

纳米催化剂

纳米催化剂

纳米催化剂进展 中国地质大学,材化学院,武汉430000 摘要:简要介绍了纳米催化剂的基本性质、其相对于其他催化剂的优势,并较详细地介绍了纳米催化剂类型、部分应用以及相对应类型催化剂例子的介绍,以及常见的制备方法及其表征手段,最后介绍了部分国内和国外纳米催化剂的应用,并对其发展方向进行一定的预测。 关键词:纳米催化剂应用制备催化活性进展 近年来, 纳米科学与技术的发展已广泛地渗透到催化研究领域, 其中最典型的 实例就是纳米催化剂(nanocatalysts—NCs)的出现及与其相关研究的蓬勃发展。NCs具有比表面积大、表面活性高等特点, 显示出许多传统催化剂无法比拟的优异特性;此外, NCs还表现出优良的电催化、磁催化等性能,已被广泛地应用于石油、化工、能源、涂料、生物以及环境保护等许多领域。本文主要就近年来NCs 的研究进展进行了综述。 1.纳米催化剂的性质 1.1表面效应 通常所用的参数是颗粒尺寸、比表面积、孔径尺寸及其分布等,有研究表明,当微粒粒径由10nm减小到1nm时, 表面原子数将从20%增加到90%。这不仅使得表面原子的配位数严重不足、出现不饱和键以及表面缺陷增加, 同时还会引起表面张力增大, 使表面原子稳定性降低, 极易结合其它原子来降低表面张力。此外,Perez等认为NCs的表面效应取决于其特殊的16种表面位置, 这些位置对外来吸附质的作用不同, 从而产生不同的吸附态, 显示出不同的催化活性。 1.2体积效应 体积效应是指当纳米颗粒的尺寸与传导电子的德布罗意波长相当或比其更小时, 晶态材 料周期性的边界条件被破坏, 非晶态纳米颗粒的表面附近原子密度减小, 使得其在光、电、声、力、热、磁、内压、化学活性和催化活性等方面都较普通颗粒相发生很大变化,如纳米级胶态金属的催化速率就比常规金属的催化速率提高了100倍。 1.3量子尺寸效应 当纳米颗粒尺寸下降到一定值时, 费米能级附近的电子能级将由准连续态分裂为分立能级, 此时处于分立能级中的电子的波动性可使纳米颗粒具有较突出的光学非线性、特异催化

中国科学院大连化学物理研究所情况介绍

中国科学院大连化学物理研 究所情况介绍 大连化物所是一个基础研究与应用研究并重、应用研究和技术转化相结合,以任务带学科为主要特色的综合性研究所。六十多年来,大连化物所通过不断积累和调整,逐步形成了自己的科研特色。1998年,大连化物所成为中国科学院知识创新工程首批试点单位之一。2007年经国家批准筹建洁净能源国家实验室。2010年8月,大连化物所在“创新2020”发展战略研讨会中将所发展战略修订为“发挥学科综合优势,加强技术集成创新,以可持续发展的能源研究为主导,坚持资源环境优化、生物技术和先进材料创新协调发展,在国民经济和国家安全中发挥不可替代的作用,创建世界一流研究所。” 大连化物所重点学科领域为:催化化学、工程化学、化学激光和分子反应动力学以及近代分析化学和生物技术。 大连化物所围绕国家能源发展战略于2011年10月启动了洁净能源国家实验室(DNL)的筹建工作,DNL是我国能源领域筹建的第一个国家实验室,共规划筹建化石能源与应用催化、低碳催化与工程、节能与环境、燃料电池、储能、氢能与先进材料、生物能源、太阳能、海洋能、能源基础和战略、能源研究技术平台等11个研究部。大连化物所还拥有催化基础国家重点实验室和分子反应动力学国家重点实验室两个国家重点实验室、以及甲醇制烯烃国家工程实验室、国家

催化工程技术研究中心、膜技术国家工程研究中心、燃料电池及氢源技术国家工程中心、国家能源低碳催化与工程研发中心等多个国家级科技创新平台。大连化物所围绕国防安全、分析化学、精细化工和生物技术广泛开展基础性、战略性、前瞻性研究工作,设立化学激光研究室、航天催化与新材料研究室、仪器分析化学研究室、精细化工研究室和生物技术研究部等五个研究室。另外,大连化物所还与国外著名大学、公司和研究机构联合设立了中法催化联合实验室、中法可持续能源联合实验室、中德催化纳米技术伙伴小组、中韩燃料电池联合实验室和DICP-BP能源创新实验室等十几个国际合作研究机构。 自建所以来,大连化物所造就了若干享誉国内外的科学家及一大批高素质研究和技术人才,先后有16位科学家当选为中国科学院和中国工程院院士,3位当选为发展中国家科学院院士,1位当选为欧洲人文和自然科学院院士,国家杰出青年基金获得者15人,引进百人计划39名。截止2011年底,全所共有职工1029人,其中专业技术人员918人,正高级专业技术人员135人,副高级专业技术人员305人。大连化物所是国务院学位委员会授权培养博士、硕士学位的单位,具有化学和化工一级学科博士学位授予权,具有博士生导师资格的审批权,截止2011年底,共有博士生导师88人,硕士生导师172人,在读研究生741人,其中博士研究生486人,硕士研究生255人。已培养研究生1823名,其中博士1076名。设博士后流动站,在站博士后89人。

纳米光催化剂研究现状与展望

年月纳米光催化剂研究现状与展望 马成乡 太原学院山西太原030032 摘要:随着水污染环境问题的日益严重,纳米光催化剂的研究也逐渐的开展起来。本文在分析影响纳米光催化剂性能因素的基础上,探讨了纳米光催化剂的研究现状,并对该材料的发展进行了相关探讨。 关键词:纳米光催化剂;影响因素;研究现状 随着我们国家经济的不断发展,生态环境的污染呈现出不断恶化的趋势,各种环境污染事件开始被社会媒体广泛的暴露出来。在种类比较多的环境污染物中,有机物的比例占到了50%以上。其中天然有机物对环境水体的污染比较小,大多数人工有机物对水体环境的污染程度较大。光催化技术与其他治理环境污染的技术相比,并不需要进行二次净化处理,而且这种纳米光催化剂可以循环使用。 一、影响纳米光催化剂的因素研究 影响纳米光催化剂的性能的因素主要体现在以下几个方面:1.催化剂的晶体结构:通常用作光催化剂的TiO 2具有两种晶体结构,分别为锐钦矿型和金红石型。有的研究结构表明,如果在锐钦矿型的晶体上进行金红石型晶体的生产,能够有效的促进锐钦矿型晶体多污染物的吸收。2.纳米催化剂粒径的影响:催化剂粒径的大小对其催化性能具有着比较重要的影响。很多研究结果表明,随着催化剂粒径的降低,光谱能够响应的范围也就越来越广。尤其当光催化剂离子达到纳米级别时,将会具有更高的氧化还原能力。但是随着纳米粒径的进一步减小,光的载流子在表面符合的概率会进一步增加,也就意味着光催化剂性能的下降。3.比表面积的影响:在反应物质比较充足的情况下,表面积越大,催化剂的活性也就越高;另外催化剂表面的活性中心是并不稳定的。 在反应体系与催化剂的反应条件方面主要影响因素表现在以下几个方面:1.反应的温度:一般来说温度对于光子的表面迁移和吸附以及解吸并不会产生比较明显的影响,所以在某种程度上问对对光催化反应的影响比较小。光催化剂在光的作用下进行各类有机物的催化反应过程时,反应速率与温度比较符合阿伦尼乌斯方程的描述。2.溶液PH 值得影响:溶液的PH 值对半导体的能带分布和表面的性质具有较高的影响。徐成杰等人在研究TiO2在降解有机物的过程中发现,当溶液的PH 值为7时,其降解的效率达到最低。3.光强度的影响:当环境中光的强度较低时,降解速率与光照强度程线性关系;中等光照强度,两者呈现平方根线性关系;当进一步增加光照强度时,催化速率的增加并不明显。 二、纳米光催化的掺杂改性以及复合半导体纳米催化剂的研究 当前纳米的光催化性能研究主要集中在TiO 2的光催化剂掺杂改性研究。在很多学者的研究之中,为了进一步减少自由电子与空穴相互复合的概率,可以在二氧化钛中掺杂少量的稀土离子。非金属离子的掺杂可以使得辐射光谱的范围进一步增强,进而可以提高可见光的利用效率。最近十年以来,双组份甚至是多组分掺杂已经成为纳米光催化剂TiO 2改性研究的热点。美国华盛顿大学的S AKATania 等学者采用溶胶凝胶法制备了La-N-TiO 2光催化剂,ES R 实验研究表明,这种经过掺杂改性的催化剂在500-678nm 光源的照耀下,对于乙醛的降解具有优异的效果。 最近几年以来半导体复合光催化剂的研究引起了学者的广泛注意。从本质上来说,半导体复合就是指一种物质粒子对另外一种物质粒子的修饰。目前的研究结果表明复合半导体比单一半导体具有更好的光催化效果。Tang 等人制备了CaIn 2O 4复合半导体,在亚甲基蓝120min 的脱色实验内,其脱色率可以达到96%。T ony 等人研制除了Fe 2O 3-S nO 2、CuO-SnO 2等类型的复合纳米半导体光催化剂。 三、展望 纳米光催化剂对当前环境问题的解决提供了比较合理的方案,但是目前环境中的光催化剂研究还停留在实验室阶段,并没有得到广泛的应用。目前影响纳米光催化性能的因素主要包括了催化剂的晶体结构、比表面积、反应温度、PH 值等因素;其次对纳米光催化的掺杂改性以及复合半导体纳米催化剂的研究现状进行了一定的分析,指出在以后的污水处理方面,应该设计比较简单的工艺组合反应来处理废水中的污染物,使得纳米光催化剂能够真正的从实验室走向社会。 参考文献: [1]GuoX.,Yang J.,Deng Y.et.al Hydrothermal synthesis and photoluminescence of hierarchic al lead tungstate superstructures re f f ects of reaction temperature and surf actanats[J].European Journalof Inorganic Chemistry,2013,2010(11):1736-1742. [2]SeguraPA,Frane oisM,Ga gnonC,etal.Reviewof theoeeurreneeo f anti-inf eetivesin contaminatedwastew atersandnatUr alanddrinkingw a ters[J].EnvironHealthpersP,2012,117(5):675-684. 管理创新 2014129

标准答案-综合管理处-大连化物所

大连化物所2008年“安全科研月” 安全知识竞赛试卷(二) 答卷说明: 1、本套试题适用于科研工作者对工作中所接触的危险化学品技术安全、防火防爆技术安全、职业危害控制和国家法规、制度等安全知识的理解和掌握。 2、采取闭卷答题,答题时间为60分钟。 一、单项选择(40道题,每题1分,共40分。要求从选项中选择一个最符合题意的为答案) 1. 2008年安全生产月活动的主题是 A 。 A. 治理隐患防范事故 B. 综合治理保障平安 C. 安全责任重于泰山 D. 关注安全关爱生命 2. 消防工作贯彻 C 的方针,坚持专门机关与群众相结合的原则,实行防火安全责任制。 A、谁主管、谁负责 B、以防为主,以消为辅 C、预防为主,防消结合 3. 安全需要是人最基本的 A 需要。 A. 生存 B. 生活 C. 精神 D. 其他 4. 海因里希统计了55万件事故,其中死亡、重伤事故1666件,轻伤48334件,其余则为无伤害事故,进行了详细调查研究后得出了海因里希法则,事故后果为严重伤害、轻微伤害和无伤害的事故件数之比为 D 。 A. 1:100:500 B. 1:10:300 C. 1:10:100 D. 1:29:300 5. 安全标志分为四类,它们分别是 D 等标志。 A. 通行、禁止通行、提示和警告 B. 禁止、警告、指令和通行 C. 禁止、警告、通行和提示 D. 禁止、警告、指令和提示 6. 氢氰酸的主要危害在于其 A 。 A. 毒性 B. 燃烧爆炸危险性 C. 放射性 D. 腐蚀性 7. 《常用危险化学品分类及标志》将危险化学品分为8类,不属于第4类的是 D 。 A. 遇湿易燃物品 B. 易燃固体 C. 自然物品 D. 压缩气体 8. 物质燃烧必须具备的三个条件是 D 。 A. 可燃物质、助燃物质和闪点 B. 可燃物质、引燃物质和闪点 C. 可燃物质、助燃物质和燃点 D. 可燃物质、助燃物质和火源 9. 对液体可燃物起始燃烧过程的描述正确的是 B 。 A. 着火—燃烧—气化 B. 气化—着火—燃烧 C. 气化—燃烧—着火 D. 燃烧—气化—着火 10. 危险化学品 B 属于遇空气燃烧物质。 A. 甲醇 B. 黄磷 C. 丙酮 E. 硫酸 11. 氢氟酸的主要危害在于其 D 。 A. 毒性 B. 燃烧爆炸危险性 C. 放射性 D. 腐蚀性 12. 过氧化氢与 C 混合将会出现爆炸燃烧的严重后果。 A. 甲醇 B. 乙醇 C. 丙酮 D. 乙醚 13. 化学品泄漏事故,下面哪种做法是错误的 C 。 A. 报告(报警) B. 采取危险部位进出限制 C. 所有人员参加事故救援 14. 下列科研过程中的危害因素,属于化学因素的是 C 。 A. 真菌 B. 病毒 C. 工业毒物 D. 辐射 15. 稀释浓酸时,下列哪种方法比较安全 A 。 A. 将浓硫酸缓缓注入到水中,并慢慢搅拌 B. 将水缓缓注入到浓硫酸中,并慢慢搅拌

金属纳米材料制备技术的研究进展

金属纳米材料制备技术的研究进展 摘要:本文从金属纳米材料这一金属材料重要分支进行了简要的阐述,其中重 点讲述了强行塑性变形及胶束法制备纳米材料,并分析了金属纳米材料的现状及对今后的展望。 关键字:晶粒细化;强烈塑性变形;胶束法;块状纳米材料 引言: 金属材料是指金属元素为主构成的具有金属特性的材料的统称。包括金属、合金、金属间化合物和特种金属材料等。人类文明的发展和社会的进步同金属材料关系十分密切。继石器时代之后出现的铜器时代、铁器时代,均以金属材料的应用为其时代的显著标志。 现代,种类繁多的金属材料已成为人类社会发展的重要物质基础。同时,人类文明的发展和社会的进步对金属材料的服役性能提出了更高的要求,各国科学家积极投身于金属材料领域,向金属材料的性能极限不断逼近,充分利用其为人类服务。 一种崭新的技术的实现,往往需要新材料的支持。例如,人们早就知道喷气式航空发动机比螺旋桨航空发动机有很多优点,但由于没有合适的材料能承受喷射出燃气的高温,是这种理想只能是空中楼阁,直到1942年制成了耐热合金,才使喷气式发动机的制造得以实现。 1金属纳米材料的提出 从目前看,提高金属材料性能的有效途径之一是向着金属结构的极端状态发展:一方面认为金属晶界是薄弱环节,力求减少甚至消除晶界,因此发展出了单晶与非晶态合金;另一方面使多晶体的晶粒细化到纳米级(一般<100 nm,典型为10 nm左右)[1]。细化晶粒是金属材料强韧化的重要手段之一,它可以有效地提高金属材料的综合力学性能,尤其是当金属材料的晶粒尺寸减小到纳米尺度时,金属表现出更加优异的力学性能[2]。因此,金属材料晶粒超细化/纳米化技术的发展备受人们关注,一系列金属纳米材料的制备技术相继提出并进行了探索,包括电沉积法、溅射法、非晶晶化法、强烈塑性变形法(Severe Plastic Deformation, SPD)、粉末冶金法以及热喷涂法等[3]。 金属纳米材料是指三维空间中至少有一维处于纳米尺度或由它们作为基本单元构成的金属材料。若按维数,纳米材料的基本单元可分为( 类:一是零维。指在空间三维尺度均在纳米尺度,如纳米粉体、原子团簇等;二是一维。指在空间有两维处于纳米尺度,如纳米丝、纳米棒、纳米管等;三是二维。指在三维空间中有一维处于纳米尺度,如超薄膜、多层膜及超晶格等。超微颗粒的表面具有很高的活性,在空气中金属颗粒会迅速氧化而燃烧。利用表面活性,金属超微颗粒可望成为新一代的高效催化剂和贮气材料以及低熔点材料[4]。金属纳米颗粒表现出许多块体材料所不具备的优越性质,可用于催化、光催化、燃料电池、化学传感、

纳米金属材料的进展与挑战

纳米金属材料进展和挑战 1 引言 40多年以前,科学家们就认识到实际材料中的无序结构是不容忽视的。许多新发现的物理效应,诸如某些相转变、量子尺寸效应和有关的传输现象等,只出现在含有缺陷的有序固体中。事实上,如果多晶体中晶体区的特征尺度(晶粒或晶畴直径或薄膜厚度)达到某种特征长度时(如电子波长、平均自由程、共格长度、相关长度等),材料的性能将不仅依赖于晶格原子的交互作用,也受其维数、尺度的减小和高密度缺陷控制。有鉴于此,HGleitCr认为,如果能够合成出晶粒尺寸在纳米量级的多晶体,即主要由非共格界面构成的材料。 例如,由50%(in vol.)的非共植晶界和50%(in vol.)的晶体构成],其结构将与普通多晶体(晶粒大于lmm)或玻璃(有序度小于2nm)明显不同,称之为纳米晶体材料(nanocrystalline materials)。后来,人们又将晶体区域或其它特征长度在纳米量级范围(小于100nn)的材料广义定义为纳米材料或纳米结构材料(nanostructured materials)。由于其独特的微结构和奇异性能,纳米材料引起了科学界的极大关注,成为世界范围内的研究热点,其领域涉及物理、化学、生物、微电子等诸多学科。目前,广义的纳米材料的主要l)清洁或涂层表面的金属、半导体或聚合物薄膜;2)人造超晶格和量子讲结构;功半结晶聚合物和聚合物混和物;3)纳米晶体和纳米玻璃材料;4)金属键、共价键或分子组元构成的纳米复合材料。 经过最近十多年的研究与探索,现已在纳米材料制备方法、结构表征、物理和化学性能、实用化等方面取得显著进展,研究成果日新月异,研究范围不断拓宽。本文主要从材料科学与工程的角度,介绍与评述纳米金属材料的某些研究进展。

大连化学物理研究所公寓入住协议 - 大连化物所

大连化学物理研究所公寓入住协议 本协议双方当事人: 出租方(以下简称甲方):中国科学院大连化学物理研究所 联系电话:84379793 入住方(以下简称乙方):________ 乙方人员类别:□在籍研究生□引进人才□博士后□单身职工 □其他(联合培养研究生、高校到所临时入住学生等) 乙方人员所在部门:______________ (身份证)(护照):________________________ 联系电话:________________ ;E-mail: ____________________ 根据《中华人民共和国合同法》、《中华人民共和国城市房地产管理法》《大连化学物理研究所公寓管理办法》及其他有关法律、法规规定,在平等、自愿、协商一致的基础上,乙方同意甲方将其住址在所内公示情况下,甲、乙双方就下列公寓的入住达成如下协议: 第一条公寓基本情况 甲方公寓(以下简称该公寓)坐落于:__________________________________(公寓包括星海二站园区的研究生教育大厦及所产权住宅),乙方入住该公寓中床位□一□二个。 房屋设施:详情见《中科院大连化学物理研究所公寓入住承诺书》中的物品明细单。 第二条房屋用途 该公寓用途为宿舍,除双方另有约定外,乙方不得任意改变房屋用途。 第三条入住期限 入住期限自______年____月____日至________________________,其中在籍研究生入住期限为其完成论文答辩的日期;引进人才入住期限为二年(其中免费期为十二个月);博士后入住期限为自如站起两年,最长不得超过四年;单身职工入住期限为两年。 其他人员为临时入住,如遇公寓房源紧张或甲方整体调配房源时,乙方必须无条件服从甲方调配或搬离,甲方会提前一个月通知。 第四条公寓收费及付款方式

【CN110124702A】一种双金属磷化物复合还原石墨烯纳米电催化材料的制备方法【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910325365.4 (22)申请日 2019.04.22 (71)申请人 浙江大学 地址 310058 浙江省杭州市西湖区余杭塘 路866号 (72)发明人 刘毅 赵蓉 杨梦雅 王欢  姜永学 王聪  (74)专利代理机构 浙江杭州金通专利事务所有 限公司 33100 代理人 徐关寿 (51)Int.Cl. B01J 27/185(2006.01) B01J 37/28(2006.01) C25B 11/06(2006.01) C25B 1/04(2006.01) (54)发明名称 一种双金属磷化物复合还原石墨烯纳米电 催化材料的制备方法 (57)摘要 本发明公开了一种双金属磷化物复合还原 石墨烯纳米电催化材料的制备方法,包括步骤1) 将氧化石墨烯溶于水,超声至均匀;2)将四水合 醋酸镍和四水合醋酸钴分别加到氧化石墨烯溶 液中,搅拌均匀得溶液A;3)将2,5-二羟基对苯二 甲酸与氢氧化钠溶于去离子水中,搅拌均匀得溶 液B;4)将溶液A与溶液B均匀混合反应后,离心收 集得到沉淀物,将沉淀物洗涤后冷冻干燥,得含 Ni、Co双金属MOF复合氧化石墨烯纳米材料;5)将 步骤4)中得到的材料和次磷酸钠分别置于管式 炉中,在惰性气氛下升温并保温一段时间,冷却 至室温后得到含Ni与Co的双金属磷化物复合还 原石墨烯纳米电催化材料NiCo/P -rGO。本方法操 作简便、成本低廉,得到的材料具有较好的电催 化性能。权利要求书1页 说明书6页 附图2页CN 110124702 A 2019.08.16 C N 110124702 A

大连化物所学生管理办法

大连化物所留学生管理办法 Rules for the International Students of DICP 按照涉外活动保密管理规定要求,为做好所内留学生的管理工作,特制定留学生管理办法。 In accordance with the requirements of the regulations on the management of foreign activities, the International students should follow the rules as mentioned. 一、留学生类别 Kinds of International Students 1、与研究所签订合作协议的留学生; Students who has signed a cooperative agreement with DICP 2、来我所攻读学位的留学生。 Students who has come to pursuit degree 二、留学生管理 Management of International Students 1、留学生须经相关部门审核批准,与我所签订协议后来所工作; International students must be approved by the relevant departments and then come to DICP. 2、来我所攻读学位的留学生,需经国科大留学生办公室审核批准后,来所工作; International students who pursuit degree must be approved by UCAS and then come to DICP. 3、重要部门接收外籍人员还应进行背景调查,必要时可委托安全部门进行审查。 Important departments should also carry out a background investigation before they accept international students, and may entrust the security department to conduct a review when necessary. 4、涉密岗位不得招收留学生。 Secret posts are not allowed recruit international students. 三、在所期间安全保密管理 Safety and secrecy management during study at DICP 1、留学生来所后由接收部门制定安全保密管理工作方案,对其进行安全保

纳米材料在金属上的应用

纳米材料在金属上的应用 当今世界,高新技术产业在经济发展中的作用日益突出。我国将高新技术产业作为经济发展的重点,从各方面给予了扶持。如何界定与高技术产业相关的各类概念,客观反映我国高技术产业的发展状况,已成为统计部门面临的重要课题之一。而随着我国科技的进步,纳米材料作为新兴的高科技技术,在中国也渐渐发展起来了。它在各个领域都起着越来越重要的作用了。也让我们得到了许多好的材料。我所讲的是关于它在我所学的专业的应用。当纳米材料应用在金属上时,金属能得到很多我们得不到的优点。 中国墨是由烟炱这种超细微粒作为重要原料,再加上黏结剂和添加剂按适当比例制成的。虽然还算不上现代所说的纯纳米材料,但的确开创了纳米材料的先河。现代的纳米材料是近一二十年才发展起来的。它的起源来自一个科学家在国外旅游中产生的联想。 生产工艺 从此,由德国到美国,一大批科学家都着了迷似地研究起纳米材料来。比如,美国著名的阿贡国家实验室用纳米大小的超细粉末制成的金属材料,其硬度要比普通粗晶粒金属的硬度高2~4倍。在低温下,纳米金属竟然由导电体变成了绝缘体。一般的陶瓷很脆,但如果用只有纳米大小的陶土粉末烧结成陶瓷制品,却有良好的韧性。更有趣的是,纳米材料的熔点会随超细粉末的直径的减小而大大降低。例如,金的熔点本是1064℃,但制成10纳米左右的金粉末后,熔点降到940℃;而5纳米的金粉末熔点降至830℃;2纳米的金粉末熔点只有33℃,你说神不神?这一特点对人们大有用处。例如,许多高熔点陶瓷材料很难用一般的方法生产出用于发动机的零件,但只要事先制成纳米大小的陶土粉末,就可以在较低的温度下烧结成高温发动机的耐热零件。1纳米只有1米的1/109,人们要问,像纳米那么微小的粉末是怎样制造出来的呢?德国的材料科学家在90年代初发明了一种生产金属超细粉末的方法。即在一个封闭室内放进金属,然后充满惰性气体氦,再将金属加热变成蒸气,于是金属原子在氦气中冷却成金属烟雾,并使金属烟雾粘附在一个冷却棒上,再把棒上像碳黑一样的纳米大小的粉末刮到一个容器内。如果要用这些粉末做成零件,就可以将它们模压成零件形状,通过一道烧结工序,即可制成纳米材料零件。 应用领域 纳米材料的用处多得很。如高密度磁性记录带就是用纳米大的粉末制成的;有些新药物制成纳米颗粒,可以注射到血管内顺利进入微血管;纳米大的催化剂分散在汽油中可提高内燃机的效率,把纳米大的铅粉末加入到固体燃料中,可使固体火箭的速度增加,这是因为越细的粉末,表面积越大,能使表面活性增强,加大了燃烧的力度。总之,纳米材料前途无量,

镍系双金属和手性修饰镍系双金属纳米材料的制备及其在苯乙酮电羧化中的应用研究

镍系双金属和手性修饰镍系双金属纳米材料的制备及其在苯乙 酮电羧化中的应用研究 近几十年来,人们在工业生产及生活中排放的CO2越来越多,导致了“温室效应”逐渐加剧。因此,如何减少和利用CO2一直都受到人们的极大关注。 电化学催化合成作为一种固定和利用CO2的方法之一,因其条件简单温和且方便而具有极大的发展潜力。传统不对称催化合成一直以高收率和高选择性等优势成为手性化合物的主要合成方法。 但是,由于传统不对称催化合成是一种均相催化合成,而在均相体系中普遍存在着溶液中的催化剂难以分离、回收以及反应条件苛刻等主要问题,因而使得传统不对称催化合成的成本较高,难以应用于工业生产。这使得电化学不对称催化合成开始受到人们的关注,尤其是在结合固定和利用CO2这一研究后,使得电化学不对称羧化成为绿色化学领域具有很大前景的研究方向。 电化学不对称羧化属于非均相催化合成,在非均相催化合成中最重要的部分则是使用高催化性能的催化剂。所以寻找一种具有优异的催化性能的催化剂是电化学不对称羧化中重要的研究内容。 近些年,因为双金属纳米材料可以利用两种不同金属之间的协同效应(包括电子效应和几何效应)来提高材料的催化性能,所以在催化领域得到了广泛的应用。本论文则通过探索研究一种简单温和的方法制备镍系及其手性修饰双金属纳米材料,并将其用于苯乙酮的不对称电羧化反应中,从而研究其催化性能。 主要研究内容如下:(1)镍银双金属纳米材料的制备及其应用于苯乙酮不对称电羧化的研究探索了一种简单温和的水热法,利用廉价易得的过渡金属盐制备

第六章 金属催化剂催化作用

第六章 金属催化剂催化作用 章节分配 一、金属催化剂重要类型及重要催化反应示例 二、乙烯环氧化催化作用 1. 乙烯环氧化工业催化剂 2. 乙烯环氧化反应机理 3. 乙烯环氧化中助催剂、促进剂的作用及新型催化剂 三、氨合成催化剂催化作用 1. 合成氨催化剂简况 2. 熔铁催化剂的结构 3. 各种助剂的作用及含量的最佳值范围 4. 氨合成铁催化剂活性中心模型及其作用机理 四、烃类催化重整催化剂作用原理 1. 催化重整反应及重整催化剂 2. 烃类在过渡金属上的吸附态及烃类脱氢 3. 催化重整作用机理 五、其他重要类型金属催化剂简介 1. 镍系催化剂 2. 裂解气中炔烃选择加氢催化剂 六、金属催化剂的电子迁移、d空穴与催化活性 七、多位理论的几何因素与能量因素 八、对多位理论及电子理论的评价 金属催化剂是固体催化剂中研究得最早、最深入,同时也是获得最广泛应用的一类催化剂,例如,氨的合成(Fe)和氧化(Pt),有机化合物的

加氢(Ni,Pd,Pt,等)、氢解(Os, Ru,Ni,等)和异构(Ir,Pt,等),乙烯的氧化(Ag),CO的加氢(Fe,Co,Ni,Ru,等)以及汽车尾气的净化(Pt,Pd,等)等等。其主要特点是具有很高的催化活性和可以使多种键发生开裂。 (1) 自从上世纪P.Sabatier发现金属镍可催化苯加氢生成环己烷以来,迄今除金属催化剂以外,尚未发现过能催化这一反应的其它类型催化剂.又如,乙烷氢解对金属催化剂来说并非难事.然而除金属催化剂之外,也末发现可使乙烷加氢分解的别种催化剂,另外,如众所周知,F—T合成也只有在金属催化剂上才能进行等等.那么,金属催化剂之所以具有这种高的活性,其内在因素是什么? (2)所有金属催化剂几乎都是过渡金属,而且,金属催化剂的功能又都和d轨道有关,这是为什么? (3)当过渡金属催化剂按其活性排列时,对每个反应都有自己独有的序列,即使对每类反应,至今也未发现它们有相同的序列,什么是决定这种序列的内在因素? (4)对一个反应来说,为什么同类金属又常常有明显不同的选择性? (5)对某些反应来说,单位表面积的催化活性决定于金属的晶面、金属晶粒的大小(如果金属是负载着的),载体以及制法,为什么对活性有这种差别?又怎样和反应相联系? (6)由两种金属制成的合金催化剂,其催化功能随组分有强大变化,而且又明显地取决于所研究的反应,产生这些效果的原因是什么? 表6-1 金属催化剂类型(按制备方法划分) 催化剂类型催化剂用金属制造方法特点 还原型Ni, Co, Cu, Fe金属氧化物以H2还原 甲酸型Ni, Co金属甲酸盐分解析出金属 Raney型Ni, Co, Cu, Fe金属和铝的合金以NaOH处理,溶提去 铝

新型高效随机激光器材料——金银双金属纳米线

新型高效随机激光器材料——金银双金属纳米线 2016-05-07 12:55来源:内江洛伯尔材料科技有限公司作者:研发部 金银双金属纳米线 在传统激光器中,光在两片反射镜之间来回反射,光被放大,直到光束形成。随机激光器无需反射镜即可工作,它由颗粒状材料组成,在其中光随机散射并形成一些很复杂的路径。光通过这些路径时被放大,激光器材料的内部结构决定光在什么位置离开激光器。它们发出的光如指纹一样独一无二。 随机激光具有容易实现、成本低、低空间相干性和高强度的忧点,在图像显示和医疗等领域具有广阔的应用前景。如何实现低阈值且高效的多波长随机激光辐射是限制随机激光应用的关键问题。近几年来,研究者们利用金属纳米颗粒的等离子体共振实现了随机激光器阈值的降低。但这些等离子体随机激光器还只是基于单一的增益材料和普通纳米粒子作为散射源,利用金属纳米颗粒的表面等离子共振峰与增益介质的荧光峰很好的重叠来实现随机激光阈值的降低。 然而,理想的发光设备的光频应连续可调,而且可以输出多种波长的光。这就需要在两方面做出突破:1)设计一种在整个可见光波段可以实现连续表面等离子共振的金属纳米粒子,2)解决不同染料需要不同波长激光泵浦的问题,实现一种由单一泵浦源激发的可以输出宽范围的随机激光设备。 为了解决这一问题,北京师范大学物理系刘大禾教授、王兆娜副教授领导的课题组利用简单的化学方法实现了具有大量随机分布的微纳米尺寸的多孔的金银双金属纳米线结构,该结构具有可以覆盖整个可见光范围的宽带等离子体共振谱,是用来实现覆盖可见光波段的多波长输出的随机激光器的理想的散射材料,该方法避免了加工具有奇点型金属结构的复杂工艺,利用简单的方法实现了高性能的等离子体散射材料,开辟了宽带表面等离子体谱材料研究的新思路。基于不同增益介质之间的级联能量转移理论,利用染料香豆素1,香豆素1 +香豆素6,香豆素1+香豆素6+罗丹明,或香豆素1+香豆素6+罗丹明+恶嗪四种不同的混合染料体系实现由单一波长的激光泵浦激发得到可以覆盖可见光波段的不同波长的随机激光辐射,而且这种由纳米级微孔散射产生的随机激光具有极窄的线宽(<0.05 nm),对应的Q值

相关主题
文本预览
相关文档 最新文档