当前位置:文档之家› 永磁同步电机弱磁调速

永磁同步电机弱磁调速

永磁同步电机弱磁调速
永磁同步电机弱磁调速

永磁同步电机弱磁调速控制文献阅读报告

专业:电气工程及其自动化

学生姓名:

学生学号:

学生班号:

本篇论文是从阅读文献报告的角度来解读论文的。

稀土永磁同步电机早在上世纪七十年代就开始出现,现在已被广泛使用,其具有重量轻、体积小、效率高、弱磁扩速能力强等一系列优点,成为航空、航天、武器装备、电动汽车等领域重要发展方向。由于永磁同步电机磁场结构复杂,使得计算准确度差,磁极形状与尺寸的优化,调速性能等都是永磁电机设计的难点。这些年来,如何提高永磁同步电机恒功率调速比的问题是研究的重点,永磁电机及其驱动器的设计成了电机领域研究的热点课题。

本文主要研究内容是对内置式永磁同步电机设计及弱磁性能的研究。

分析永磁同步电机(PMSM)数学模型的基础上,通过阐述弱磁调速的控制原理,提出了一种基于电流调节的PMSM定子磁链弱磁控制算法,有效地拓宽了恒功率调速比。并在Matlab/Simulink环境下,构建了永磁同步电机弱磁控制系统的速度和电流双闭环仿真模型。仿真结果证明了该控制系统模型的有效性,恒功率调速比达到了4: 1,为永磁同步电机弱磁调速控制系统的设计和调试提供了理论基础,有一定的实际工程价值。

关键词:内置式;永磁电机;弱磁控制;电流跟踪算法;仿真建模

目录

永磁同步电机弱磁调速控制文献阅读报告 (1)

一、研究的问题 (4)

二、研究方法 (5)

2.1 永磁电机的数学模型 (5)

2.2弱磁调速原理 (6)

2.3 基于Matlab的PMSM弱磁控制系统仿真模型建立 (7)

2.4 仿真结果 (11)

三、解决效果 (12)

3.1 结论 (12)

3.2感悟与体会 (12)

本次阅读文献报告的主要课题是研究对内置式永磁同步电机弱磁调速控制的研究,报告内容主要来自等,在写作过程中也参考了一些关于永磁同步电机弱磁调速控制方法设计以及弱磁性能研究等方面的资料现在从关注的问题、所用的研究方法及关注问题解决的效果三个方面来阐述报告内容。

一、研究的问题

近年来,随着稀土永磁材料和电子功率器件的发展,永磁同步电机获得了广泛研究。永磁同步电机较异步电机具有功率密度大、转子发热量小、结构紧凑等优点,用永磁同步电机做主轴传动正在成为一个新的研究方向。

普通永磁同步电机为了实现力矩随电流线性可控,一般将励磁电流设为零,这种控制策略将导致电机的最高转速不能超过额定转速,转矩输出能力也不能满足主轴电机的要求。

为了充分挖掘永磁同步电机的潜能,总是需要并希望在额定功率下输出的转速尽可能高些,然而,在基速(注意:在直流母线电压达到最大值,也就是电机输入电压最大且在额定转矩的情况下,对应的转速被称为基速)以上时,如果磁通保持不变,电机的反电动势必将大于电机的最大输入电压,造成电机绕组电流的反向流动,这在电机实际运行时是不允许的,而弱磁时,磁通反比于定子频率,使感应电动势保持常值而不随转速上升而增加,所以采用弱磁控制方可解决此类问题,且永磁调速系统具有体积小、节能、控制性能好,系统运行噪低、平滑度和舒适性好等优点。

所以,此背景下,研究永磁同步电动机的弱磁调速系统具有重大意义。

二、研究方法

2.1 永磁电机的数学模型

以二相导通星形三相状态为例,分析PMSM的数学模型及转矩特性。为建立永磁同步电动机的转子轴(dq轴)数学模型,作如下假定:

(1)三相绕组完全对称,气隙磁场为正弦分布,定子电流、转子磁场分布对称;(2)忽略齿槽、换相过程和电枢反应等影响;

(3)电枢绕组在定子内表面均匀连续分布;

(4)磁路不饱和,不计涡流和磁滞损耗。

则三相绕组的电压平衡方程式可表示为

式中,,,a b c u u u 为定子绕组的相电压;

R s 为定子每相绕组电阻;

,,a b c

i i i 为定子绕组相电流; s L 为定子每相绕组的自感;

M 为定子每相绕组的互感;

p 为微分算子p=d/dt ;

f 为转子永磁体磁链;

θ为转子位置角,即转子q 轴与a 相轴线的夹角。

因为三相绕组为星型连接,有 ++=0a b c i i i ,则式(1)可简化为:

式(2)为永磁同步电机在abc 静止坐标系下电压方程。利用坐标变换,把abc 静止坐标系变换到dq 转子坐标系,得到相应的动态电压方程:

式中,r ω为转子电角速度;d q L L 、为直、交轴同步电感。在d 、q 坐标系下电机的电磁转矩为:

式中,n P 表示电机极对数。

2.2弱磁调速原理

永磁同步电机中,感应电势随着转速的增加而增加,当电机的端电压达到控制器直流侧电压时, PWM 控制器将失去追踪电流的能力。因此定子端电压Us 和相电流Is ,受到逆变器输出电压和输出电流极限(Usmax 和Ismax )的限制。由此可得电流极限圆

电压极限椭圆

又因为

0f d d q q E x L x L ωψωω===,,,所以电压极限椭圆方程可以改

写为

永磁同步电动机的运行范围是受以满足电流极限圆和电压极限椭圆为条

件限制的,即电机的电流矢量 Is (其分量为 Id 与 Iq )应处于两曲线共同包围的面积内,如图 1 中阴影部分所示。由图 1可以看出,电机转速 ω 升高, Id 分量趋于增大,相应的 Iq 分量必须减小,因此,电机的电磁转矩也随转速升高而下降,显示出恒功率的特性。

图1 PMSM电压电流限制曲线

2.3 基于Matlab的PMSM弱磁控制系统仿真模型建立

在 Matlab6. 5的Simulink环境,利用SimPower2 System Toolbox2. 3丰富的模块库,在分析PMSM数学模型的基础上提出了建立PMSM弱磁控制控制系统仿真模型的方法,弱磁控制系统总体设计框图见图2。

PMSM 弱磁控制建模仿真系统采用双闭环控制方案:速度环为控制外环,它使电机的实际转速与给定的转速值保持一致,实现电机的加速、减速和匀速运行,并且及时消除负载转矩扰动等因素对电机转速的影响。电流环为控制内环,它的作用是控制逆变器在定子绕组上产生准确的电流。根据模块化建模的思想,将图2 中的控制系统分割为各个功能独立的子模块,其中主要包括:

PMSM 本体模块、矢量控制模块、电流滞环控制模块、速度控制模块、弱磁控制模块等,通过这些功能模块的有机整合,就可在 Matlab/Simulink中搭建出PMSM 控制系统的仿真模型,并实现双闭环的控制算法。

图2 PMSM弱磁控制系统总体设计框图

2.3.1 PMSM 本体模块

在整个控制系统的仿真模型,PMSM 本体模块是最重要的部分。Matlab/ Simulink 的工具箱提供了按交直轴磁链理论建立的定子绕组按 Y 型连接的 PMSM 模块。 PMSM 模块共有四个输入端,其中前三个输入端,分别为 A 相、 B 相、 C 相输入端, 第四个输入端为转矩输入端 T 1 (N·m)。当 T 1 >0 时,为电动机模式;当 T 1 < 0 时为发电机模式。PMSM 的主要设置参数包括:定子电阻R (?);交直轴定子电感 d q L L 、(H)转子磁场磁Ф(W b );转动惯量 J (kg·m2) ; 粘 滞 摩 擦 系 数B (N·m·s);电机的极对数 p 等。

2.3.2 矢量控制模块

dq 向abc 转换模块主要是根据转子的位置即图2中的θ,按照dq 变换的反变换公式产生三路基准信号,dq 变换的反变换公式如下:

式(8)中包含了零序分量,在对称三相条件下,没有零序分量dq 向abc 转换结构框图如图3所示。dq 向abc 转换模块输出三路基准信号,该曲线的横坐标按转子位置标注, 纵坐标按电流标注。三根曲线分别代表对应与转子的某一位置的三个绕组各自驱动电流瞬时值,通过矢量合成可知此刻的旋转磁场矢量的角度。

图3 dq 到abc 转换结构框图

2.3.3 电流滞环控制模块

三相电流源型逆变器模块是按照矢量控制理论,利用滞环电流控制方法,实现电流逆变控制。输入为三相参考电流和三相实际电流,输出为变器电压信号,模块结构框图如图4所示。当实际电流is 经过惯性环节1)S T +1/(低于参考电流sr i 且

偏差大于滞环比较器的环宽时,电机对应相正向导通,负向关断;当实际电流s

i 经过惯性环节1)S T +1/(超过参考电流sr i 且偏差大于滞比较器的环宽时,对应相正向关断,负向导通选择适当的滞环环宽,即可以实际电流不断跟踪参考电流的波形,实现电流闭环控制。

图4 三相电流源型逆变器模块结构框图

2.3.4 速度控制模块

速度控制模块的结构较为简单,如图5所示,参考转速和实际转速的差值为单输入项,三相考相电流的幅值

qref i 为单输出项。其中, Ki 为PI 控制器中P(比例)的参数,1/K T 为PI 控制器中I(积分的参数,饱和限幅模块将输出的三相参考相电流的幅值限定在要求范围内。

图5 速度控制模块

2.3.5 弱磁控制模块

电机在恒转矩区运行时, 直轴电流q i *的计算公式如下

电动机转速超过基速时,恒功率运行,d i * 切换为下面公式计算

式中,d L 为永磁同步电机直轴电感;q L 为永磁同步电机交轴电感;

R s 为定子

绕组的电阻; ω为感应电动势的电角度。 2.4 仿真结果

在前面理论分析的前提下,本文基于Matlab/Simulink 建立PMSM 弱磁控制系统的仿真模型,并对该模型进行了PMSM 双闭环控制系统的仿真。 PMSM 电机仿真参数设置:相绕组电阻R 为2.87 ?,极限电压值

max s U 为240 V ,d 轴电感分量d L 为388.5 mH ,极限电流值max s I 为1.6 A ,q 轴电感分量q L 为475.5 mH ,起始机械转矩i T 为5 N?m,永磁磁链m ψ

为447, 机械转矩变化时刻t 为0.015 s ,极对数p 为4,最终机械转矩Tend 为3 N ?m。通过仿真试验表明,转速达到基本转速以后,若不加该电流弱磁控制算法,继续升速的空间很小。采取了本文提出的电流调节算法以后,永磁同步电机的弱磁调速区域明显扩大,恒功率运行

区域调速比达到了4: 1;最高转速达到2200 rad/s,转速为1600 rad/s时的仿真波形如图6到图8所示。

图6 转矩响应曲线

图7 转速响应曲线

图8 三相电流仿真波形

由仿真波形可以看出:在转速为1600 rad/s时,系统转矩响应快速且平稳,三相电流波形较为理想,转速响应快且稳态运行时无静差,具有较好的静态和动态特性。

三、解决效果

3.1 结论

本文在分析 PMSM 数学模型的基础上,提出了一种基于电流调节的 PMSM 定子磁链弱磁控制算法。仿真实验结果表明,本文提出的方拓宽了电动机弱磁调速范围,有效地提高了恒功率运行区域的调速比,转速响应迅速,转矩变平稳,系统具有良好的动态和稳态性能,达到预期的设计指标要求。采用该 PMSM 仿真模型, 以便捷地实现、验证电流调节的弱磁控制算法也可对其进行简单修改或替换,完成控制策略的改进,通用性较强。

3.2感悟与体会

从这次阅读文献的过程中,我扩宽自己的视野,基于课本基础知识,然后上网阅读资料,了解永磁同步电机的研究课题以及发展趋势,增强自己的能力。

此外,在本次阅读永磁同步电机文献的过程之中,我体会到了任何一个新的仿真思路或者一种算法都要建立在实际问题上去考虑、去探讨解决办法,再在合理的实际情况的前提下进行仿真实验,最终验证研究报告结论的有效性和准确性。通过此次文献阅读,增强了自己查找资料筛选有效信息的能力,了解了本专业课程的相关知识,解决的实际的问题,开拓了自己的视野,收获颇丰。

参考文献

[1]白玉成,唐小琦,吴功平.内置式永磁同步电机弱磁调速控制.电工技术学

报.2011(09)

[2]张树团,李伟林,鲁芳,张海鹰.永磁同步电机弱磁调速系统建模及仿真研究 .船电技术.2010(06)

[3]马翠玲.永磁同步电机弱磁控制方法研究.长安大学.2014(4)

[4]杜鹏程.永磁同步电机弱磁调速技术研究.哈尔滨工业大学.2012(09)

[5]Speed Measurement Algorithm for Low Speed Permanent Magnet Synchronous Motor Based on Overlapped Measurement Regions . IEEE Transactions on Power Electronics.2016(04)

(注:专业文档是经验性极强的领域,无法思考和涵盖全面,素材和资料部分来自网络,供参考。可复制、编制,期待你的好评与关注)

永磁同步电机弱磁调速

永磁同步电机弱磁调速控制文献阅读报告 专业:电气工程及其自动化 学生: 学生学号: 学生班号:

本篇论文是从阅读文献报告的角度来解读论文的。 稀土永磁同步电机早在上世纪七十年代就开始出现,现在已被广泛使用,其具有重量轻、体积小、效率高、弱磁扩速能力强等一系列优点,成为航空、航天、武器装备、电动汽车等领域重要发展方向。由于永磁同步电机磁场结构复杂,使得计算准确度差,磁极形状与尺寸的优化,调速性能等都是永磁电机设计的难点。这些年来,如何提高永磁同步电机恒功率调速比的问题是研究的重点,永磁电机及其驱动器的设计成了电机领域研究的热点课题。 本文主要研究容是对置式永磁同步电机设计及弱磁性能的研究。 分析永磁同步电机(PMSM)数学模型的基础上,通过阐述弱磁调速的控制原理,提出了一种基于电流调节的PMSM定子磁链弱磁控制算法,有效地拓宽了恒功率调速比。并在Matlab/Simulink环境下,构建了永磁同步电机弱磁控制系统的速度和电流双闭环仿真模型。仿真结果证明了该控制系统模型的有效性,恒功率调速比达到了4: 1,为永磁同步电机弱磁调速控制系统的设计和调试提供了理论基础,有一定的实际工程价值。 关键词:置式;永磁电机;弱磁控制;电流跟踪算法;仿真建模

目录 永磁同步电机弱磁调速控制文献阅读报告 (1) 一、研究的问题 (4) 二、研究方法 (5) 2.1 永磁电机的数学模型 (5) 2.2弱磁调速原理 (6) 2.3 基于Matlab的PMSM弱磁控制系统仿真模型建立 (7) 2.4 仿真结果 (11) 三、解决效果 (12) 3.1 结论 (12) 3.2感悟与体会 (12)

永磁同步电机弱磁控制的控制策略研究

永磁同步电机弱磁控制的控制策略研究 摘要 永磁同步电机是数控机床、机器人控制等的主要执行元件,随着稀土永磁材料、永磁电机设计制造技术、电力电子技术、微处理器技术的不断发展和进步,永磁同步电机控制技术成为了交流电机控制技术的一个新的发展方向。基于它的优越性,永磁同步电机获得了广泛的研究和应用。本文对永磁同步电机的弱磁控制策略进行了综述,并着重对电压极限椭圆梯度下降法弱磁控制、采用改进的超前角控制弱磁增速、内置式永磁同步电动机弱磁控制方面进行了调查、研究。 关键词:永磁同步电机、弱磁控制、电压极限椭圆梯度下降法、超前角控制、内置式永磁同步电动机 一、永磁同步电机弱磁控制研究现状 1.永磁同步电机及其控制技术的发展 任何电机的电磁转矩都是由主磁场和电枢磁场相互作用产生的。直流电机的主磁场和电枢磁场在空间互差90°电角度,因此可以独立调节;而交流电机的主磁场和电枢磁场互不垂直,互相影响。因此,交流电机的转矩控制性能不佳。经过长期的研究,目前交流电机的控制方案有:矢量控制、恒压频比控制、直接转矩控制等[1]。 1.1 矢量控制 1971年德国西门子公司F.Blaschke等与美国P.C.Custman等几乎同时提出了交流电机磁场定向控制的原理,经过不断的研究与实践,形成了现在获得广泛应用的矢量控制系统。矢量控制系统是通过坐标变换,把交流电机在按照磁链定向的旋转坐标系上等效成直流电机,从而模仿直流电机进行控制,使交流电机的调速性能达到或超过直流电机的性能。 1.2 恒压频比控制 恒压频比控制是一种开环控制,它根据系统的给定,利用空间矢量脉宽调制转化为期望的输出进行控制,使电机以一定的转速运转。但是它依据电机的稳态模型,从而得不到理想的动态控制性能。要获得很高的动态性能,必须依据电机的动态数学模型,永磁同步电机的动态数学模型是非线性、多变量,它含有角速度与电流或的乘积项,因此要得到精确控制性能必须对角速度和电流进行解耦。近年来,研究了各种非线性控制器,来解决永磁同步电机非线性的特性。 1.3 直接转矩控制 矢量控制方案是一种很有效的交流伺服电机控制方案,但是由于该方案需要进行矢量旋转变换,坐标变换比较复杂。此外,由于电机的机械常数慢于电磁常数,矢量控制中转矩响应的速度不够迅速。针对矢量控制的上述缺点,德国学者

永磁同步电机弱磁调速

永磁同步电机弱磁调速控制文献阅读报告

专业:电气工程及其自动化 学生姓名: 学生学号: 学生班号:

本篇论文是从阅读文献报告的角度来解读论文的。 稀土永磁同步电机早在上世纪七十年代就开始出现,现在已被广泛使用,其具有重量轻、体积小、效率高、弱磁扩速能力强等一系列优点,成为航空、航天、武器装备、电动汽车等领域重要发展方向。由于永磁同步电机磁场结构复杂,使得计算准确度差,磁极形状与尺寸的优化,调速性能等都是永磁电机设计的难点。这些年来,如何提高永磁同步电机恒功率调速比的问题是研究的重点,永磁电机及其驱动器的设计成了电机领域研究的热点课题。 本文主要研究内容是对内置式永磁同步电机设计及弱磁性能的研究。 分析永磁同步电机(PMSM)数学模型的基础上,通过阐述弱磁调速的控制原理,提出了一种基于电流调节的PMSM定子磁链弱磁控制算法,有效地拓宽了恒功率调速比。并在Matlab/Simulink环境下,构建了永磁同步电机弱磁控制系统的速度和电流双闭环仿真模型。仿真结果证明了该控制系统模型的有效性,恒功率调速比达到了4: 1,为永磁同步电机弱磁调速控制系统的设计和调试提供了理论基础,有一定的实际工程价值。 关键词:内置式;永磁电机;弱磁控制;电流跟踪算法;仿真建模

目录 永磁同步电机弱磁调速控制文献阅读报告 (1) 一、研究的问题 (5) 二、研究方法 (5) 2.1 永磁电机的数学模型 (5) 2.2弱磁调速原理 (7) 2.3 基于Matlab的PMSM弱磁控制系统仿真模型建立 (8) 2.4 仿真结果 (11) 三、解决效果 (13) 3.1 结论 (13) 3.2感悟与体会 (13)

maxwell软件- 调速永磁同步电机

13调速永磁同步电机 在用户已经掌握RMxprt 基本使用的前提下,我们将一些过程简化,以便介绍一些更高级的使用。有关RMxprt 的详细介绍请参考第一部分的章节。 13.1基本原理 调速永磁同步电机的转子转速是通过调节输入电压的频率来控制的。与标准的直流无刷电机不同,这种电机不需要位置传感器。 永磁同步电机的转子上安装永磁体(有内转子与外转子之分),定子上嵌有多相电枢绕组,其极数与转子相同。永磁同步电机既可用作发电机,也可用作电动机。当电机工作在电动状态时,定子多相绕组可由正弦交流电源供电或由直流电源经DC/AC 变换来供电。当电机工作在发电状态时,定子多相绕组为负载提供交流电源。 13.1.1 定子绕组正弦交流电源供电 永磁同步电机分析方法与三相凸极同步电机相同,电机既可工作在发电状态也可工作在电动状态,通常采用频域矢量图来分析电机的特性。电机发电状态矢量图如图13.1a ,电机电动状态矢量图如图13.1b 。 发电机 b. 电动机 图13.1 同步电机相量图 图13.1中,R 1、X d 、X q 分别为定子电枢的电阻、d 轴同步电抗和q 轴同步电抗。 aq 1q ad 1d X X X X X X +=+= (13.1) 上式中,X 1为电枢绕组漏电抗,X ad 和X aq 分别为d 轴电枢反应电抗和q 轴电枢反应电抗。 以输入电压U 为参考矢量, I 滞后U 的角度为φ, 称φ为功率因数角, 则电流矢量为: ?-∠=I I (13.2) 令I 滞后E 0的角度为ψ。则可得d 轴和q 轴的电流为:

? ?????=?? ????=ψψcos sin I I I q d I (13.3) 所以: q d 1 I I -=tan ψ (13.4) 13.1.1.1 发电机模型 在图13.1a ,OM 所代表的矢量可表示为: ) j j (aq 11X X R OM +++=I U (13.5) OM 所代表的矢量可用来确定E 0的位置。 令U 滞后E 0的角度为θ,对于发电机称θ为功角,则角度ψ为 θ?ψ+= (13.6) 对于给定的功角θ,我们有; ??? ???--=????????????-θ θsin cos U U E I I X R R X 0q d q 1 1d (13.7) 求得I d 和I q 为: ? ?????--+-+=??????θθθθsin )cos (sin )cos (U X U E R U R U E X X X R 1 I I d 0110q q d 2 1q d (17.8) 功率角φ: θψ?-= (13.9) 输出电功率: ?cos UI 3P 2= (13.10) 输入机械功率: ) (Fe Cua fw 21P P P P P +++= (13.11) 式中P fw 、P Cua 、P Fe 分别为风摩损耗、电枢铜损和铁心损耗 输入机械转矩: ω1 1P T = (13.12) ω为同步角速度rad/s 13.1.1.2 电动机模型 在图13.1, OM 所代表的矢量可表示为: ) j j (aq 11X X R OM ++-=I U (13.5’)

调速永磁同步电动机的电磁设计与磁场分析

调速永磁同步电动机的电磁设计与磁场分析 1 引言 与传统的电励磁电机相比,永磁同步电动机具有结构简单,运行稳定;功率 密度大;损耗小,效率高;电机形状和尺寸灵活多变等显著优点,因此在航空航 天、国防、工农业生产和日常生活等各个领域得到了越来越广泛的应用。 随着电力电子技术的迅速发展以及器件价格的不断下降,越来越多的直流电 动机调速系统被由变频电源和交流电动机组成的交流调速系统所取代,变频调速 永磁同步电动机也应运而生。变频调速永磁同步电动机可分为两类,一类是反电 动势波形和供电电流波形都是理想矩形波(实际为梯形波)的无刷直流电动机,另 一类是两种波形都是正弦波的一般意义上的永磁同步电动机。这类电机通常由变 频器频率的逐步升高来起动,在转子上可以不用设置起动绕组。 本文使用Ansoft Maxwell 软件中的RMxprt 模块进行了一种调速永磁同步电 动机的电磁设计,并对电机进行了性能和参数的计算,然后将其导入到Maxwell 2D 中建立了二维有限元仿真模型,并在此模型的基础上对电机的基本特性进行 了瞬态特性分析。 2 调速永磁同步电动机的电磁设计 2.1 额定数据和技术要求 调速永磁同步电动机的电磁设计主要包括主要尺寸和气隙长度的确定、定子 冲片设计、定子绕组的设计、永磁体的设计等。通过改变电机的各个参数来提高 永磁同步电动机的效率η、功率因数cos ?、起动转矩st T 和最大转矩max T 。本例所设计永磁同步电动机的额定数据及其性能指标如下: 额定数据 数值 额定功率 N 30kw P = 相数 =3m 额定线电压 N1=380V U 额定频率 =50Hz f 极对数 =3p 额定效率 N =0.94η 额定功率因数 N cos =0.95? 绝缘等级 B 级 计算额定数据:

永磁同步电动机调速控制系统仿真研究

111111111 0 前言 永磁同步电机调速技术的发展得于微电子技术、电力电子技术、传感器技术、永磁材料技术、自动控制技术、微机应用技术的最新发展成就。电动机的驱动部分所采用的功率器件经历了几次的更新换代以后,速度更快、控制更容易的全控型功率器件MOSFET和IGBT逐渐成为主流。脉宽调制方法(PWM和SPWM)、变频技术在直流调速和交流调速系统中得到了广泛应用。永磁同步电动机调速系统是一个多变量、强耦合的复杂系统,其动态特性极其复杂,它是由一组高阶的非线性微分方程决定的,由于控制系统控制方式的复杂性,使动态特性的变化十分繁琐。所以,对调速系统特性的分析研究,最好好在着手实际系统之前,先利用计算机仿真,由仿真的各方面结果给实际系统的设计、调试等方面提供借鉴和参考。利用仿真实验对永磁同步电动机调速系统进行研究,从而为实际系统的设计提供可靠的参数。本文在仿真过程中,采用MATLAB/SIMULINK软件。

1 永磁同步电动机的数学模型 1.1 永磁同步电动机的结构和工作原理 永磁同步电动机本体是由定子和转子两大部分组成。永磁同步电动机的定子指的是电动机在运行时的不动部分,主要是由硅钢冲片、三相对称同分布在它们槽中的绕组、固定铁心用的机壳以及端盖等部分组成。其定子和异步电动机的定子结构基本相同。空间上三相对称绕组通入时间上对称的三相电流就会产生一个空间旋转磁场,旋转磁场的同步转速 0n 为060f n p ,f 为定子电流频率,p 为电动机极对数。 永磁同步电动机的转子是指电动机在运行时可以转动的部分,通常由磁极铁心、永磁磁钢及磁辘等部分组成.永磁体转子产生恒定的电磁场。当定子通以三相对称的正弦波交流电时,则产生旋转的磁场。两种磁场相互作用产生电磁力,推动转子旋转。如果能改变定子三相电源的频率和相位,就可以改变转子的转速和位置。永磁同步电动机的定子与绕线式的定子基本相同。但可根据转子结构可分为凸极式和嵌入式两类。凸极式转子是将永磁铁安装在转子轴的表面,如图1(a )。因为永磁材料的磁导率十分接近空气的磁导率,所以在交轴(q 轴)、直轴(d 轴)上的电感基本相同。嵌入式转子则是将永磁铁嵌入在转子轴的内部,如图2-1(b ),因此交轴的电感大于直轴的电感。并且,除了电磁转矩外,还有磁阻转矩存在。 图2-1 永磁转子结构(两对磁极) Fig.2-1 Permanent magnetism rotor structure 为了使永磁同步电动机具有正弦波感应电动势波形,其转子磁钢形状呈抛物线状,使其气隙中产生的磁通密度尽量呈正弦分布;定子电枢绕组采用短距分布式绕组,能最大限度地消除谐波磁动势。

电动汽车用永磁同步电机直接转矩弱磁控制

电动汽车用永磁同步电机直接 转矩弱磁控制 许峻峰1 冯江华2 许建平1 1.西南交通大学 2.株洲电力机车研究所 摘要:通过对电流限定轨迹、转速限定轨迹和负载角限定轨迹的介绍,阐述了电动汽车用埋入式永磁同步电机的弱磁控制过程,有效拓宽了永磁同步电机直接转矩控制系统的调速范围。由于永磁同步电机弱磁是通过电枢反应达到弱磁运行目的的,电枢反应对永磁同步电机的参数有着重要的影响,并且弱磁程度越高,电枢反应越大。因此考虑了永磁同步电机的电枢反应对于电机转子磁链和交直轴电感等参数的影响,对比了不考虑电枢反应时各控制轨迹及弱磁性能。通过M AT LAB/SIM ULINK实现了考虑电枢反应和不考虑电枢的永磁同步电机直接转矩控制的弱磁控制。仿真结果验证了理论分析的正确性。 关键词:电动汽车 永磁同步电机 直接转矩 弱磁控制 Flux-weakening C ontrol of Direct Torque C ontrol of Permanent Magnet Synchronous Motor for Electrical Vehicle Xu Junfeng Feng Jiang hua Xu Jianping Abstract:Flux-w eakening control of interior permanen t magnet s ynchr on ou s motor(PM SM)is elaborated by th e pres entation of current limit trajectory,speed limit trajectory and load angel limit tr ajectory.Flux-w eaken ing control extends th e timin g range of the mach ine.For PM SM,flux-w eakening is realized by armatur e reaction.In flux-w eak enin g range,ar mature reaction w ill serious ly affect th e parameters of PM S M s uch as rotor flux,direct ax is inductance and quadrature axis ind uctan ce.T he control trajectories mention ed above and flux-w eakening contr ol performance of w ith and w ithout cons idering arm ature reaction are compared us ing M AT LAB/SIM U LINK.T he ration ality of theory analysis h as b een proved b y s imulation r esu lts. Keywords:electrical vehicle perman ent magnet synchronous motor(PM S M) direct torqu e control flux-w eakening control 1 引言 电动汽车对于驱动系统的基本要求是:低速时能输出恒定转矩,以适应快速起动、加速、负荷爬坡等要求,高速时能输出恒定功率,能有较宽的调速范围,适应高速行驶,超车等要求。较强的弱磁性能能够在逆变器容量不变的情况下提高电动汽车的起动、加速能力及低速爬坡能力;或者说在保持电动汽车起动加速及低速爬坡能力不变的前提下降低电机的最大功率,从而降低逆变器的容量。因此对电动汽车驱动用永磁同步电动机进行弱磁控制,并且拓宽弱磁范围有着重要的意义。另外对永磁同步电动机进行弱磁控制可以拓宽电动汽车的运行范围,满足电动汽车高速运行的要求。 因为永磁同步电机的转子励磁磁场由永磁体产生,不能像异步电机一样直接减弱转子磁场,所以弱磁控制便成了永磁同步电机的研究热点。其弱磁控制原理是通过增加定子直轴电流利用直轴电枢反应使电机气隙磁场减弱,达到等效于减弱磁场的效果,从而达到弱磁增速的目的。针对这一 国家自然科学基金项目(50077018),国家教育部博士学科点专项科研基金项目(20020613010)

调速永磁同步电动机的电磁设计与磁场分析

调速永磁同步电动机的电磁设计与磁场分析 1 引言 与传统的电励磁电机相比,永磁同步电动机具有结构简单,运行稳定;功率密度大;损耗小,效率高;电机形状和尺寸灵活多变等显著优点,因此在航空航天、国防、工农业生产和日常生活等各个领域得到了越来越广泛的应用。 随着电力电子技术的迅速发展以及器件价格的不断下降,越来越多的直流电动机调速系统被由变频电源和交流电动机组成的交流调速系统所取代,变频调速永磁同步电动机也应运而生。变频调速永磁同步电动机可分为两类,一类是反电动势波形和供电电流波形都是理想矩形波(实际为梯形波)的无刷直流电动机,另一类是两种波形都是正弦波的一般意义上的永磁同步电动机。这类电机通常由变频器频率的逐步升高来起动,在转子上可以不用设置起动绕组。 本文使用Ansoft Maxwell软件中的RMxprt模块进行了一种调速永磁同步电动机的电磁设计,并对电机进行了性能和参数的计算,然后将其导入到Maxwell 2D中建立了二维有限元仿真模型,并在此模型的基础上对电机的基本特性进行了瞬态特性分析。 2 调速永磁同步电动机的电磁设计 2.1 额定数据和技术要求 调速永磁同步电动机的电磁设计主要包括主要尺寸和气隙长度的确定、定子冲片设计、定子绕组的设计、永磁体的设计等。通过改变电机的各个参数来提高 T。本例所永磁同步电动机的效率η、功率因数cos?、起动转矩st T和最大转矩max 设计永磁同步电动机的额定数据及其性能指标如下: 计算额定数据:

(1) 额定相电压:N 220V U U == (2) 额定相电流:3 N N N N N 1050.9A cos P I mU η??== (3) 同步转速:160=1000r /min f n p = (4) 额定转矩:3 N N 1 9.5510286.5N m P T n ?==g 2.2 主要尺寸和气隙长度的确定 永磁电机的主要尺寸包括定子内径和定子铁心有效长度,它们可由如下公式 估算得到: 2 i11P D L C n '= N N N cos E K P P η?'=, 6.1p Nm dp C K K AB δ α=' 式中,i1D 为定子内径,L 为定子铁心长度,P '为计算功率,C 为电机常数。 E K 为额定负载时感应电势与端电压的比值,本例取0.96;p α'为计算极弧系数, 初选0.8;Nm K 为气隙磁场的波形系数,当气隙磁场为正弦分布时等于1.11;dp K 为电枢的绕组系数,初选0.92。A 为电机的线负荷,B δ为气隙磁密,A 和B δ的 选择非常重要,直接影响电机的参数和性能,应从电机的综合技术经济指标出发 来选取最合适的A 和B δ值,本例初选为200A/cm,0.7T A B δ==。 由上式可初步确定电机的2i1D L ,但要想进一步确定i1D 和L 各自的值,还应选择主要尺寸比i1i122L L pL D D p λπτπ===,其中τ为极距。通常,中小型同步电动机的0.6~2.5λ=,一般级数越多,λ也越大,本例初选1.4。 永磁同步电动机的气隙长度δ一般要比同规格的感应电动机的气隙大,主要 是因为适当的增加气隙长度可以在一定的程度上减小永磁同步电动机过大的杂 散损耗,减低电动机的振动与噪声和便于电动机的装配。所以设计永磁同步电动 机的气隙长度时,可以参照相近的感应电动机的气隙长度并加以适当的修改。本 例取=0.7mm δ。 确定电动机定子外径时,一般是在保证电动机足够散热能力的前提下,视具 体情况为提高电动机效率而加大定子外径还是为降低成本而减小定子外径。

永磁同步电机弱磁控制方法综述

永磁同步电机弱磁控制方法 摘要:永磁同步电机(Permanent magnet synchronous machine,PMSM)由于其高功率密度、高可靠性和高效率等特点,在电动汽车等要求较高的调速驱动系统中得到了广泛的应用。永磁同步电机必须采用弱磁控制技术以满足宽转速范围的调速需求,对其进行弱磁控制并拓宽调速范围有着重要意义。本文针对现在常用的几种永磁同步电机弱磁控制方法进行综述。基于控制对象的不同,对弱磁控制方法进行分类,并详细介绍了目前比较常见的负id 补偿法、查表法、梯度下降法、电流角度法、单电流调节器法等方法,分析了各方法的原理及特点,得出以电压为控制对象的弱磁方法具有一定发展前景的结论。 关键词:永磁同步电机;弱磁控制;内置式永磁同步电机;矢量控制 The Field Weakening Control Strategy of Permanent Magnet Synchronous Motor Abstract: PMSM because of its high power density, high reliability and high efficiency characteristics, at a higher speed requirements of electric vehicle drive system has been widely used. PMSM weakening control technology must be used to meet the needs of a wide speed range . And because of its salient pole effect, it is of great significance to broaden the scope of the weak magnetic field of IPMSM. In this paper, the commonly used weakening control method of PMSM are reviewed.Based on the different control object,we classify the weak magnetic control method, and introduces in detail the negative id compensation method, look-up table method, gradient descent method, current angle method, single current regulator method that is used commonly at present, analyzes the principle and characteristics of each method.Finally, we conclude that voltage control field weeking method has development prospects . Key words: PMSM; the field weaking control; IPMSM;FOC 1引言 永磁同步电机(Permanent magnet synchronous machine,PMSM)由于其高功率密度、高可靠性和高效率等特点,在电动汽车等要求较高的调速驱动系统中得到了广泛的应用[1, 2]。永磁同步电机必须采用弱磁控制技术以满足宽转速范围的调速需求。永磁同步电机弱磁控制的思想来自对他励直流电机的调磁控制,对永磁同步电机弱磁控制的研究始于20 世纪80 年代中期[3, 4]。并于90 年代初形成了完善的弱磁理论[5]。内置式永磁电机结构简单、鲁棒性高、造价低。对内置式永磁电机进行弱磁控制并拓宽弱磁范围有着重要意义[6]。由于永磁同步电机的励磁磁场是由永磁体产生,在转速要求较高需要弱磁运行的场合难以实现,在某些应用场合受到限制。因而研究永磁电机的弱磁扩速问题,无论是从控制角度还是本体结构的合理设计选取的角度,一直是国内外学者研究解决的热点[7]。所以有必要对现有的永磁同步电机弱磁控制方式进行综合分析研究。本文将针对现在常用的几种永磁同步电机弱磁控制方法进行综述。文中基于控制对象的不同,对弱磁控制方法进行分类,并详细介绍了目前比较常见的负i d补偿法、查表法、梯度下降法、电流角度法、单电流调节器法等方法。 2 永磁同步电机弱磁控制研究现状 2.1永磁同步电机控制技术的研究现状 近二十年多年来电动机矢量控制、直接转矩控制等控制技术的问世和计算机人工智能技术的进步,使得电动机的控制理论和实际控制技术上升到了一个新的高度。目前,永磁同步电机调速传动系统仍以采用矢量控制的为多。 矢量控制实际上是对电动机定子电流矢量相位和幅值的控制。从式(1)可以看出,当永磁体的励

永磁同步电动机PWM变频调速系统的建模与仿真

永磁同步电动机PW M变频调速系统 的建模与仿真 夏玲(黄石建筑设计研究院第4所,湖北黄石435001) 摘 要:介绍了PW M控制技术的特点,并在MAT LAB环境下,构造永磁同步电动机PW M控制的仿真模型。通过对永磁同步电动机的动态过程进行仿真,分析永磁同步电动机采用PW M控制技术的瞬态运行特征以及瞬态过程中各电磁量的变化规律。同时,也验证了仿真模型的正确性。 关键词:永磁同步电动机;仿真;PW M Modeling and Simulating of PWM Frequency I nverter System for I nterior Permanent Magnet Synchronous Motor XI A Ling(Huangshi Institute of Architectural Design&Research,Huangshi Huibei,435001,China) Abstract:T his paper introduces the characteristics of PW M control technology,and it found the simulating m od2 el for interior permanent magnet synchron ous m otor PW M control in M A T LA B environment.Via the simulation of dynamic process for interior permanent magnet synchronous m otor,it analyzes the instan2 taneous characteristics and change law of PW M control technology for interior permanent magnet syn2 chron ous m otor.And the validity of the simulation m odel is tested and verified via the simulations. K ey w ords:interior permanent magnet synchronous m otor;simulation;PW M 1 前言 永磁同步电动机转子使用永磁材料励磁,使电动机的体积和重量大大减小,电机结构简单、维护方便、运行可靠、损耗较小,效率和功率因数都比较高。然而,永磁同步电机存在启动困难、失步等缺点,变频调速技术的应用能很好地解决这些问题。同步电机控制系统常见有如下几种: (1)无换向器电机控制系统 采用交-直-交电流型逆变器给普通同步电机供电,整流及逆变部分均由晶闸管构成,利用同步电机电流可以超前电压的特点,使逆变器的晶闸管工作在自然换相状态。同时检测转子磁极的位置,用以选通逆变器的晶闸管,使电机工作在自同步状态,故又称自控式同步电机控制系统。其特点是直接采用普通同步电机和普通晶闸管构成的系统,容量可以做得很大,电机转速也可做得很高,如法国地中海高速列车即采用此方案,技术比较成熟。其缺点是由于电流采用方波供电,而电机绕组为正弦分布,低速时转矩脉动较大。 (2)交—交变频供电同步电机控制系统 逆变器采用交—交循环变流电路,由普通晶闸管组成,提供三相正弦电流给普通同步电机。采用矢量控制后可对励磁电流进行瞬态补偿,因此系统动态性能优良,已广泛应用在轧机主传动控制系统中。其特点是容量可以很大,但调速范围有一定限制,只能从同步速往下调。 (3)正弦波永磁同步电机控制系统 电机转子采用永磁材料,定子绕组仍为正弦分布绕组。如通以三相正弦交流电,可获得较理想的旋转磁场,并产生平稳的电磁转矩。采用矢量控制技术使d轴电流分量为零,用q轴电流直接控制转矩,系统控制性能可以达到很高水平。缺点是需要使用昂贵的绝对位置编码器,采用普通增量式码盘实现上述要求虽有一些限制,但采取一定措施后仍是可能的。目前研究的重点放在如何消除齿谐波及PW M控制等造成的转矩脉动。 (4)方波永磁同步电机控制系统 又称为无刷 74 2004年第4期 电机电器技术 计算机与自动控制

永磁同步电机弱磁调速讲课稿

永磁同步电机弱磁调 速

永磁同步电机弱磁调速控制文献阅读报告 专业:电气工程及其自动化 学生姓名: 学生学号: 学生班号:

摘要 本篇论文是从阅读文献报告的角度来解读论文的。 稀土永磁同步电机早在上世纪七十年代就开始出现,现在已被广泛使用,其具有重量轻、体积小、效率高、弱磁扩速能力强等一系列优点,成为航空、航天、武器装备、电动汽车等领域重要发展方向。由于永磁同步电机磁场结构复杂,使得计算准确度差,磁极形状与尺寸的优化,调速性能等都是永磁电机设计的难点。这些年来,如何提高永磁同步电机恒功率调速比的问题是研究的重点,永磁电机及其驱动器的设计成了电机领域研究的热点课题。 本文主要研究内容是对内置式永磁同步电机设计及弱磁性能的研究。 分析永磁同步电机(PMSM)数学模型的基础上,通过阐述弱磁调速的控制原理,提出了一种基于电流调节的PMSM定子磁链弱磁控制算法,有效地拓宽了恒功率调速比。并在Matlab/Simulink环境下,构建了永磁同步电机弱磁控制系统的速度和电流双闭环仿真模型。仿真结果证明了该控制系统模型的有效性,恒功率调速比达到了4: 1,为永磁同步电机弱磁调速控制系统的设计和调试提供了理论基础,有一定的实际工程价值。 关键词:内置式;永磁电机;弱磁控制;电流跟踪算法;仿真建模

目录 目录 永磁同步电机弱磁调速控制文献阅读报告 (2) 一、研究的问题 (5) 二、研究方法 (5) 2.1 永磁电机的数学模型 (5) 2.2弱磁调速原理 (7) 2.3 基于Matlab的PMSM弱磁控制系统仿真模型建 立 (8) 2.4 仿真结果 (11) 三、解决效果 (13) 3.1 结论 (13) 3.2感悟与体会 (13)

永磁同步电机速度控制

实验报告 课程名称电力拖动与运动控制系统 实验项目名称永磁同步电机速度控制实验实验学生班级 实验学生姓名 实验时间 实验地点七号楼3 实验成绩评定 指导教师签字 2011年12 月20 日

永磁同步电机速度控制实验 一.实验目的 1.了解正弦波永磁同步电机的驱动器的接口和常用参数的设定 2.掌握正弦波永磁同步电机调速系统起动过程转速与电流的关系 3.掌握正弦波永磁同步电机调速系统过程中P、I调节的作用。二.实验原理 当给定速度的大小和方向改变时,调速系统和转速也会发生相应变化,而当负载发生变化时,转速应基本保持不变。这是因为速度闭环,通过速度给定信号与速度反馈信号的比较,由此得到的偏差进行PI调节,起到抵抗扰动的作用,从而保证系统的转速基本不变。速度控制希望有足够的调速范围、稳速精度和快且平稳的启动、制动性能。 三.实验步骤 a)熟悉伺服电机与驱动器的型号、接线以及控制接口。 b)启动计算机,打开启动器电源,打开安川伺服驱动串口通信软件(SisMa软 件),在软件中点击search按钮找到驱动器的编号:SGDM-10ADA,在点击connect按钮,这样SigMa软件和交流伺服驱动器就连上了。 c)在SigMa软件里我们可以点击parameters菜单,再点击edit parameters 菜 单,选择Pn000参数的第一位设成“0”,为速度控制(模拟量指令),这时候我们可以打开实验箱上使能的开关,再旋动速度给定的定位器旋钮,这时候伺服电机开始旋转起来,定位器接的是-5V~+5V,当运行在0~-5V的时候电机逆时针旋转,运行在0~+5V的时候电机顺时针旋转。 d)点击SigMa软件的tarce&turning菜单下的trace单,进入setup窗口,在 data1和data2选择需要跟踪的信号,我们选择Feedbak Speed 和Speed Prference两个,在右边的Sampline time 为250*10ms,然后点击Start按钮,在采集信号的时候,实现伺服电机的两次启动,等信号传到软件中,我们可以进行分析。 e)前面第4步是选的默认参数,现在我们改变速度参数,Pn100:速度环增 益和Pn101:速度环积分时间常数,再重复第四步的动作。把系统改变参

基于某SVPWM的永磁同步电机控制系统的仿真

基于SVPWM的永磁同步电机控制系统的仿真随着电动机在社会生产中的广泛应用,由于永磁同步电机具有结构简单、体积小、效率高、转矩电流比高、转动惯量低,易于散热及维护等优点,特别是随着永磁材料价格的下降、材料的磁性能的提高、以及新型的永磁材料的出现,在中小功率、高精度、高可靠性、宽调速围的伺服控制系统中,永磁同步电动机引起了众多研究与开发人员的青睐,其应用领域逐步推广,尤其在航空航天、数控机床、加工中心、机器人等场合已获得广泛的应用。我国制作永磁电机永磁材料的稀土资源丰富,稀土资占全世界的80%以上,发展永磁电机具有广阔的前景。 第一章永磁同步电机的矢量控制原理 1.1 永磁同步电机控制中应用的坐标系 交流电机的数学模型具有高阶次,多变量耦合,非线性等特征,难以直接应用于系统的设计和控制,与直流电机单变量,自然解耦和线性的数学模型相比较,交流电机显得异常复杂。因此需要通过适当的转换,将交流电机的控制变换为类似直流电机的控制将大大简化交流电机控制的复杂程度。 永磁同步电机矢量控制的基本思想是把交流电机当成直流电机来控制,即模拟直流电机的控制特点进行永磁同步电机的控制。为简化感应电机模型,可将电机三相绕组电流产生的磁动势按平面矢量的叠加原理进行合成和分解,使得能够用两相正交绕组来等效实际电动机的三相绕组。由于两相绕组的正交性,变量之间的耦合大大减小。 1.1.1系统中的坐标系 1)三相定子坐标系(U-V-W坐标系) 其中三相交流电机绕组轴线分别为U、V、W,彼此之间互差120度空间

电角度,构成了一个U-V-W三相坐标系。空间任意一矢量在三个坐标上的投影代表了该矢量在三个绕组上的分量。 2)两相定子坐标系(α-β坐标系) 两相对称绕组通以两相对称电流也能产生旋转磁场。对于空间的任意一矢量,数学描述时习惯采用两相直角坐标系来描述,所以定义一个两相静止坐标系,即α-β坐标系。它的轴α和三相定子坐标系的A轴重合,β轴逆时针超前α轴90度空间电角度。由于α轴固定在定子A相绕组轴线上,所以α-β坐标系也是静止坐标系。 3)转子坐标系(d-q坐标系) 转子坐标系d轴位于转子磁链轴线上,q轴逆时针超前d轴90度空间电角度,该坐标系和转子一起在空间上以转子角速度旋转,故为旋转坐标系。对于同步电动机,d轴是转子磁极的轴线。 矢量控制中用到的变换有:将三相平面坐标系向两相平面直角坐标系的转换(Clarke 变换)和将两相静止直角坐标系向两相旋转直角坐标系的变换(Park变换)。 1.1.2 由三项平面坐标系向两相平面坐标系(Clarke变换) 三相同步电动机的集中绕组U、V、W的轴线在与转子垂直的平面分布如上图所示,轴线依次相差120°,可将每相绕组在气隙中产生的磁势分别记为:Fu、Fv、Fw。由于Fu、Fv、Fw不会在轴向上产生分量,所以可以把气隙的磁场简化为一个二维的平面场。简单起见,可以U为α轴,由α起逆时针旋转90°作β轴,建立起二维坐标系,用此两相坐标系(α-β)产生的磁动势来等效三相静止坐标系(U-V-W)产生的磁动势。如图1.1所示。

电动汽车用永磁同步电机控制系统设计

硕士学位论文 二0一五 年 六 月 作者姓名 指导教师 学科专业 控制工程 电动汽车用永磁同步电机控制系统设计 Design of permanent magnet synchronous motor control system for electric vehicle

摘要 本文在开始先介绍了研究电动汽车的背景及其意义,并介绍了电动汽车在国内外的发展现状,然后从电动汽车的燃油经济性,驱动性,安全性及舒适度,三个方面分析了电动汽车比其他燃料汽车存在的优越性。电动机是电动汽车的核心部件,本文中从其驱动方式把电动机分为四大类,直流有刷电动机,永磁同步电动机,永磁无刷直流电动机和开关磁阻电动机。本章从工作原理与性能方面分析了,这四种电动机各存在的优点和不足。从中得出永磁同步电动机是电动汽车比较理想的选择。本文刚开始介绍了永磁同步电动机PMSM的三种不同的控制方式,恒压频比控制,矢量控制,直接转矩控制,并从三者之间比较得出,PMSM采用直接转矩控制DTC的方式有着比其他两者更好的稳定性。 随后从永磁同步电动机PMSM的结构及其特点,分析了其优越性,并建立数学模型,根据空间矢量坐标关系推导出PMSM的在各坐标系下DTC的原理。本章分析了定子磁链与电磁转矩的估算和滞环控制,通过其原理研究了开关表控制的方式,并对PMSM的直接转矩控制DTC的Matlab/Simulink仿真,最终得出了DTC 较其它控制方式的稳定性。 其次分析了永磁同步电机PMSM的直接转矩控制DTC存在的诸多缺点,并提出基于SVM技术的SVPWM的控制方式,即空间矢量调制DTC控制策略,通过Matlab/Simulink仿真,得出SVPWM比PMSM DTC有着更好的稳定性。 TI公司推出的TMS320F2812 DSP芯片的控制系统设计,从硬件电路的设计和软件的设计,两个方面研究了该芯片。DSP硬件方面包含了智能模块的自保护特性,并设计了检测电路,保护电路,驱动电路和CAN通信等模块,软件系统方面分析了,其初始化流程图,接收流程图等。 关键词:永磁同步电机;直接转矩控制;DSP;SVPWM

永磁同步电动机怎么调速

永磁同步电机调速的问题一直是工业应用中比较棘手的问题,要适用于多个场景和不同的使用环境,务必要对永磁同步电动机进行调速。那么是否能够调速?应该怎么调速? 嘉轩(JASUNG)了解到,永磁同步电动机调速有三种状态: 1、基频以下调速 磁场定向控制:磁场定向,即在d-q坐标系下,电机参数中,如励磁电流,影响力矩的部分,是参数投影到q轴的分量。而投影到d轴上的部分,则不必考虑,即通常所说的id=0方法。此方法下,电机最大输出转速的决定因素是控制器最高供电电压。磁场定向控制策略的局限在于,不能体现励磁电流影响磁场的部分参数变化,因此不能进行弱磁控制。 2、基频以上调速 直接转矩法,出发点是想要通过控制转矩公式中的参数去直接对转矩输出值产生影响。选择矩角作为控制对象。以内置式转子永磁同步电机为例,说明具体方法。在电源电压和定子磁场频率恒定的情况下,电机实时输出转矩,与矩角的正弦值成正比。 可以在离线状态下,计算每个转矩角对应的电磁转矩值,形成一张矢量表,存放在上位机。在电机控制器运行过程中,实时观测转矩和转矩角,并提取表格中的原始值进行比对。

发现与表格的值有出入,则调整电源电压值,进行转矩修正。 直接转矩法,鲁棒性好,算法简单,并且不需要坐标变换,在早期是应用较多的一种控制方法。但这种方法在低转速情况下,控制精度急剧下降。因此可以选择仅在基频以下使用。 3、最大力矩电流比控制策略 将电流在d-q坐标系下解耦,再分别求取每个分量的转矩电流最大比,目的是获得确定励磁电流下的最大转矩。 用求取二阶导数的方式确定极大值的存在性。在调速区间内,对转矩电流比求导,二阶导数小于0,则转矩电流比最大值存在。 好了以上就是永磁同步电机怎么调速的问题,希望可以解决你的疑问。

开题报告:永磁同步电机控制系统仿真

1.课题背景及意义 1.1课题研究背景、目的及意义 近年来,随着电力电子技术、微电子技术、微型计算机技术、传感器技术、稀土永磁材料与电动机控制理论的发展,交流伺服控制技术有了长足的进步,交流伺服系统将逐步取代直流伺服系统,借助于计算机技术、现代控制理论的发展,人们可以构成高精度、快速响应的交流伺服驱动系统。因此,近年来,世界各国在高精度速度和位置控制场合,己经由交流电力传动取代液压和直流传动[1][2]。 二十世纪八十年代以来,随着价格低廉的钕铁硼(REFEB)永磁材料的出现,使永磁同步电机得到了很大的发展,世界各国(以德国和日本为首)掀起了一股研制和生产永磁同步电机及其伺服控制器的热潮,在数控机床、工业机器人等小功率应用场合,永磁同步电机伺服系统是主要的发展趋势。永磁同步电机的控制技术将逐渐走向成熟并日趋完善[3]。以往同步电机的概念和应用范围己被当今的永磁同步电机大大扩展。可以毫不夸张地说,永磁同步电机已在从小到大,从一般控制驱动到高精度的伺服驱动,从人们日常生活到各种高精尖的科技领域作为最主要的驱动电机出现,而且前景会越来越明显。 由于永磁同步电机具有结构简单、体积小、效率高、转矩电流比高、转动惯量低,易于散热及维护等优点,特别是随着永磁材料价格的下降、材料的磁性能的提高、以及新型的永磁材料的出现,在中小功率、高精度、高可靠性、宽调速范围的伺服控制系统中,永磁同步电动机引起了众多研究与开发人员的青睐,其应用领域逐步推广,尤其在航空航天、数控机床、加工中心、机器人等场合获得广泛的应用[4][5]。 尽管永磁同步电动机的控制技术得到了很大的发展,各种控制技术的应用

相关主题
文本预览
相关文档 最新文档