当前位置:文档之家› 数列求和专项练习高考题

数列求和专项练习高考题

数列求和专项练习高考题
数列求和专项练习高考题

数列的前n 项和的求法

1.公式法:①等差数列求和公式;②等比数列求和公式,

特别声明:运用等比数列求和公式,务必检查其公比与1的关系,必要时需分类讨论.;③常用公式:

1123(1)2n n n ++++=+L ,222112(1)(21)6

n n n n +++=++L ,

33332

(1)123[]2n n n +++++=L .

例1、已知3log 1log 23-=x ,求???++???+++n

x x x x 32的前n 项和.

解:由2

1

2log log 3log 1log 3323=?-=?-=

x x x 由等比数列求和公式得 n

n x x x x S +???+++=3

2

(利用常用公式)

=x x x n

--1)1(=

2

11)

21

1(21--n =1-n 21 2.分组求和法:在直接运用公式法求和有困难时,常将“和式”中“同类项”先合并在一起,再运用公式

法求和.

例2、 求数列的前n 项和:231

,,71,41,

1112-+???+++-n a

a a n ,… 解:设)231

()71()41()11(12-++???++++++=-n a

a a S n n

将其每一项拆开再重新组合得

)23741()1

111(12-+???+++++???+++

=-n a

a a S n n (分组) 当a =1时,2)13(n n n S n -+==2)13(n

n + (分组求和)

当1≠a 时,2)13(1111n n a

a S n

n -+--==2)13(11n n a a a n -+--- 3.倒序相加法:若和式中到首尾距离相等的两项和有其共性或数列的通项与组合数相关联,则常可考虑选用倒序相加法,发挥其共性的作用求和(这也是等差数列前n 和公式的推导方法). 例3、求οοοοο89sin 88sin 3sin 2sin 1sin 22222++???+++的值

解:设οοοοο89sin 88sin 3sin 2sin 1sin 22222++???+++=S …………. ①

将①式右边反序得

οοοοο1sin 2sin 3sin 88sin 89sin 22222+++???++=S …………..② (反序)

又因为 1cos sin ),90cos(sin 2

2=+-=x x x x ο

①+②得 (反序相加)

)89cos 89(sin )2cos 2(sin )1cos 1(sin 2222222οοοοοο++???++++=S =89

∴ S =

4.错位相减法:如果数列的通项是由一个等差数列的通项与一个等比数列的通项相乘构成,那么常选用错位相减法(这也是等比数列前n 和公式的推导方法).

例4、 求和:132)12(7531--+???++++=n n x n x x x S ………………………①

解:由题可知,{1)12(--n x n }的通项是等差数列{2n -1}的通项与等比数列{1-n x }的通项之积

设n

n x n x x x x xS )12(7531432-+???++++=………………………. ② (设制错位)

①-②得 n n n x n x

x x x x S x )12(222221)1(1

432--+???+++++=-- (错位相减)

再利用等比数列的求和公式得:n n n x n x

x x S x )12(1121)1(1

----?

+=-- ∴ 2

1)

1()

1()12()12(x x x n x n S n n n -+++--=+ 例5、求数列??????,22,,26,24,2232n n

前n 项的和.

解:由题可知,{n n 22}的通项是等差数列{2n}的通项与等比数列{n 21

}的通项之积

设n n n

S 2226242232+???+++=…………………………………①

14322

226242221++???+++=n n n

S ………………………………② (设制错位) ①-②得14322

22222222222)211(+-+???++++=-n n n n

S (错位相减)

∴ 12

2

4-+-=n n n S

5.裂项相消法:如果数列的通项可“分裂成两项差”的形式,且相邻项分裂后相关联,那么常选用裂项相

消法求和.常用裂项形式有:

111(1)1n n n n =-++;②1111()()n n k k n n k

=-++; ③2211111

()1211

k k k k <=---+,211111111(1)(1)1k k k k k k k k k -

=<<=-++--; ④1111

[](1)(2)2(1)(1)(2)n n n n n n n =-+++++ ;⑤11(1)!!(1)!

n n n n =-++;

⑥=<<=. 例6、 求数列

???++???++,11

,,321,211n n 的前n 项和. 解:设n n n n a n -+=++=

111

(裂项) 则 1

1

321211+++???++++=n n S n (裂项求和)

=)1()23()12(n n -++???+-+-

=11-+n

例7、 在数列{a n }中,1

1211++???++++=

n n

n n a n ,又12+?=n n n a a b ,求数列{b n }的前n 项的和.

解: ∵ 211211n n n n n a n =++???++++=

∴ )11

1(82

122+-=+?=n n n n b n (裂项)

∴ 数列{b n }的前n 项和

)]1

1

1()4131()3121()211[(8+-+???+-+-+-=n n S n (裂项求和)

=)111(8+-

n =

1

8+n n

6.通项转换法:先对通项进行变形,发现其内在特征,再运用分组求和法求和。

例8 、求3

211

1111111111个n ???+???+++之和. 解:由于)110(91

99999111111

1

-=????=

???k k k 43421321个个 (找通项及特征) ∴

3

211

1111111111个n ???+???+++ =

)110(91

)110(91)110(91)110(91321-+???+-+-+-n (分组求和) =)1111(91)10101010(911

3214434421个n n

+???+++-+???+++ =9110)110(1091n

n ---?

=)91010(81

11n n --+ 7、合并法求和

针对一些特殊的数列,将某些项合并在一起就具有某种特殊的性质,因此,在求数列的和时,可将这些项放在一起先求和,然后再求S n .

例9、 求cos1°+ cos2°+ cos3°+···+ cos178°+ cos179°的值.

2014年全国高考数学试题分类汇编(数列)

1.【2014·全国卷Ⅱ(文5)】等差数列{}n a 的公差为2,若2a ,4a ,8a 成等比数列,则{}n a 的前n 项和n S =

(A ) ()1n n + (B )()1n n - (C )()12

n n + (D) ()

12

n n -

【答案】A

2.【2014·全国大纲卷(理10)】等比数列{}n a 中,452,5a a ==,则数列{lg }n a 的前8项和等于 ( )

A .6

B .5

C .4

D .3 【答案】C .

3.【2014·全国大纲卷(文8)】设等比数列{a n }的前n 项和为S n ,若S 2=3,S 4=15,则S 6=( ) A. 31 B. 32 C. 63 D. 64 【答案】C

4.【2014·北京卷(理5)】设{}n a 是公比为q 的等比数列,则"1"q >是"{}"n a 为递增数列的( )

.A 充分且不必要条件 .B 必要且不充分条件 .C 充分必要条件 .D 既不充分也不必要条件 【答案】D

5.【2014·天津卷(文5)】设{}n a 是首项为1a ,公差为-1的等差数列,n S 为其前n 项和.若124,,S S S 成等比

数列,则1a =( )

(A )2 (B )-2 (C )

12 (D )12

-

【答案】D .

6.【2014·福建卷(理3)】等差数列{}n a 的前n 项和n S ,若132,12a S ==,则6a =( ) 【答案】C

7.【2014·辽宁卷(文9)】设等差数列{}n a 的公差为d ,若数列1{2}n

a a 为递减数列,则( )

A .0d

> B .0d < C .10a d > D .10a d <

【答案】D

8.【2014·陕西卷(理文4)】根据右边框图,对大于2的整数N , 得出数列的通项公式是( ) 【答案】C

9.【2014·重庆卷(理2)】对任意等比数列{}n a ,下列说法一定正确的是( )

139.,,A a a a 成等比数列 236.,,B a a a 成等比数列 248.,,C a a a 成等比数列 369.,,D a a a 成等比数列

【答案】D

10.【2014·重庆卷(文2)】在等差数列{}n a 中,1352,10a a a =+=,则7a =( )

【答案】B

11.【2014·全国卷Ⅱ(文16)】数列{}n a 满足1+n a =

n a -11

,2

a =2,则

1a =_________.

【答案】

2

1 12.【2014·安徽卷(理12)】数列{}a n 是等差数列,若1a 1+,3a 3+,5a 5+构成公比为q 的等比数列,

则q =________. 【答案】1q =。

13.【2014·北京卷(理12)】若等差数列{}n a 满足7890a a a ++>,7100a a +<,则当n =________时{}n a 的前n 项和最大. 【答案】8

14.【2014·天津卷(理11)】设{}n a 是首项为1a ,公差为-1的等差数列,n S 为其前n 项和.若124,,S S S 成等比数列,则1a 的值为__________. 【答案】1

2

-

15.【2014·江西卷(文13)】在等差数列{}n a 中,17a =,公差为d ,前n 项和为n S ,当且仅当8n =时n

S 取最大值,则d 的取值范围_________. 【答案】718

d

-<<-

16.【2014·广东卷(理13)】若等比数列{}n a 的各项均为正数,且5

12911102e a a a a =+,则

1220ln ln ln a a a +++=L 。

【答案】50

17.【2014·广东卷(文13)】等比数列{}n a 的各项均为正数且154a a =,则

2122232425log log log log log a a a a a ++++ = .

【答案】5

18.【2014·全国卷Ⅰ(理17)】已知数列{n a }的前n 项和为n S ,1a =1,0n a ≠,11n n n a a S λ+=-,其中λ为常数.

(Ⅰ)证明:2n n a a λ+-=;

(Ⅱ)是否存在λ,使得{n a }为等差数列?并说明理由.

【解析】:(Ⅰ)由题设11n n n a a S λ+=-,1211n n n a a S λ+++=-,两式相减

()121n n n n a a a a λ+++-=,由于0n a ≠,所以2n n a a λ+-= …………6分

(Ⅱ)由题设1a =1,1211a a S λ=-,可得211a λ=-,由(Ⅰ)知31a λ=+ 假设{n a }为等差数列,则123,,a a a 成等差数列,∴1322a a a +=,解得4λ=;

证明4λ

=时,{n a }为等差数列:由24n n a a +-=知

数列奇数项构成的数列{}21m a -是首项为1,公差为4的等差数列2143m a m -=-

令21,n m =-则1

2

n m +=

,∴21n a n =-(21)n m =- 数列偶数项构成的数列{}2m a 是首项为3,公差为4的等差数列241m a m =-

令2,n m =则2

n

m =

,∴21n a n =-(2)n m = ∴21n a n =-(*

n N ∈),12n n a a +-= 因此,存在存在4λ

=,使得{n a }为等差数列. ………12分

19.【2014·全国卷Ⅰ(文17)】已知{}n a 是递增的等差数列,2a ,4a 是方程2560x x -+=的根。

(I )求

{}n a 的通项公式;

(II )求数列2n n a ??

?

???

的前n 项和. 【解析】:(I )方程2

560x x -+=的两根为2,3,由题意得22a =,43a =,设数列{}n a 的公差为 d ,,则

422a a d -=,故d=12

,从而13

2a =, 所以{}n a 的通项公式为:1

12

n a n =+ …………6 分

(Ⅱ)设求数列2n n a ??

????

的前n 项和为S n ,由(Ⅰ)知1222n n

n a n ++=, 则:234134512

22222n n n n n S +++=+++++L

34512134512

222222

n n n n n S ++++=+++++L 两式相减得 所以14

22

n n n S ++=- ………12分

20.【2014·全国卷Ⅱ(理17)】已知数列{}n a 满足1a =1,131n n a a +=+.

(Ⅰ)证明

{}

12n

a +是等比数列,并求

{}n a 的通项公式;

(Ⅱ)证明:1231112

n a a a ++<…+. 【解析】

(1)

(2)由(1)知1322n n a +=,故3-112

23-1

n n n n a a ==,,

1

11a =,当1n >时,-11213-13n n n a =<;

所以12-11231

1-1111111313311-13332321-3

n n n n a a a a ++++<++++==

123111132

n a a a a ++++

(I )求{}n a 的通项公式; (II )设1

1

n n n b a a +=

,求数列{}n b 的前n 项和n T .

【解析】(I )由110a =,2a 为整数知,等差数列{}n a 的公差d 为整数.又4n S S ≤,故450,0,a a ≥≤于是1030,1040d

d +≥+≤,解得105

3

2

d -

#-

,因此3d =-,故数列{}n a 的通项公式为133n a n =-.(II )()()1

1111331033103133n

b n n n n ??

=

=-

?----??

,于是()

12111111

111137104710313331031010103n n n T b b b n n n n L L ??????????=+++=-+-++-=-= ? ? ? ?

??----??????????22.【2014·全国大纲卷(文17)】数列{a n }满足a 1=1,a 2=2,a n+2=2a n+1-a n +2.

(1)设b n =a n+1-a n ,证明{b n }是等差数列; (2)求数列{a n }的通项公式.

【解析】(1)由a n+2=2a n+1-a n +2得a n+2- a n+1=a n+1-a n +2,即b n+1=b n +2,又b 1=a 2-a 1=1. 所以{b n }是首项为1,公差为2的等差数列;

(1) 由(1)得b n =1+2(n-1),即a n+1-a n =2n-1.于是

1

1

1

()(21)n

n

k k k k a

a k +==-=-∑∑

于是a n -a 1=n 2-2n ,即a n =n 2-2n +1+a 1.又a 1=1,所以{a n }的通项公式为a n =n 2-2n +2.

23.【2014·山东卷(理19)】已知等差数列}{n a 的公差为2,前n 项和为n S ,且1S ,2S ,4S 成等比数列。 (I )求数列}{n a 的通项公式; (II )令n b =,4)1(1

1

+--n n n a a n

求数列}{n b 的前n 项和n T 。

【解析】(I ),64,2,,2141211d a S d a S a S d

+=+===

123+1

+1

+1

2333333(13)

313

(12)332

n n n n n n S n n n -=++++-??-=-?--?-=L 解得12,11-=∴=n a a n (II ))1

21

121()1(4)

1(111

++--=-=-+-n n a a n b n n n n n

24.【2014·安徽卷(文18)】数列{}n a 满足*111,(1)(1),n n a na n a n n n N +==+++∈.

(Ⅰ)证明:数列n a n ??

?

???

是等差数列; (Ⅱ)

设3n n b ={}n b 的前n 项和n S .

【解析】(Ⅰ)证:由已知可得

111n n a a n n +=++,即111n n a a

n n

+-=+ 所以{

}n a n 是以111

a

=为首项,1为公差的等差数列。 (Ⅱ)解:由(Ⅰ)得1(1)1n

a n n n

=+-?=,所以2n a n =,从而3n n b n =? ①-②得:

所以+1(21)334n n n S -?+= 25.【2014·北京卷(文15)】已知{}

n a 是等差数列,满足13a =,412a =,数列{}n b 满足14b =,420b =,

{}n n b a -是等比数列.

(1)求数列{}n a 和{}n b 的通项公式; (2)求数列{}n b 的前n 项和.

【解析】(I )设等差数列

{}n a 的公差为d ,由题意得:41123

333

a a d --=

==, 所以1(1)3(1,2,)n a a n d n n =+-==L , 设等比数列

{}n n b a -的公比为q ,由题意得:344

1

1

2012

843

b a

q b a --==

=--,解得2q =.

所以1

111()2n n n n b a b a q

---=-=,从而132(1,2,)n n b n n -=+=L .

(II )由(1)知,1

32

(1,2,)n n b n n -=+=L ,

数列{}3n 的前n 项和为3(1)2

n n +,数列{}1

2n -的前n 项和为1212112n n -?

=--, 所以数列

{}n b 的前n 项和为

3

(1)212

n n n ++-. 26.【2014·福建卷(文17)】在等比数列{}n a 中,253,81a a ==.

(Ⅰ)求n a ; (Ⅱ)设3log n

n b a =,求数列{}n b 的前n 项和n S .

【解析】(1)设{}n a 的公比为q ,依题意得

141381a q a q =??=?,解得11

3

a q =??

=?, 因此,1

3

n n a -=.

(2)因为3log 1n n b a n ==-,

所以数列{}n b 的前n 项和21()22

n n n b b n n

S +-==. 27.【2014·江西卷(理文17)】已知首项都是1的两个数列(

),满足

.

(1) 令,求数列的通项公式; (2) 若

,求数列

的前n 项和.

【解析】(1)因为,

所以

1112,2n n

n n n n

a a c c

b b +++-=-= 所以数列{}n

c 是以首项11c =,公差2

d =的等差数列,故2 1.n c n =- (2)由13n n b -=知1(21)3n n n n a c b n -==- 于是数列

前n 项和0111333(21)3n n S n -=?+?++-?L

相减得121212(333)(21)32(22)3n n n n S n n --=+?++--?=--?L 所以(1)3 1.n n S n =-?+

28.【2014·江西卷(文16)】已知数列

{}n a 的前n 项和*∈-=N

n n n S

n

,2

32.

(1)求数列{}n a 的通项公式;

(2)证明:对任意1>n ,都有*

∈N m ,使得m n a a a ,

,1成等比数列. 【解析】(1)当1n =时111a S == 当2n ≥时 ()2

21

311

33222

n n n n n n n a S S n ---+-=-=-=-

检验 当1n =时11a =,32n a n ∴=-

(2)使m n a a a ,

,1成等比数列. 则21n m a a a =,()2

3232n m ∴--=, 即满足()2

233229126m n n n =-+=-+,所以2342m n n =-+ 则对任意1>n ,都有2342n n N *-+∈

所以对任意1>n ,都有*

∈N m ,使得m n a a a ,

,1成等比数列.

2019年高考数学高频考点专题43数列数列的求和4分组求和倒序相加法 文数(含解析)

专题43 数列 数列的求和4 ( 分组求和、倒序相加法) 【考点讲解】 一、具本目标:1.掌握等差、等比数列的求和方法; 2. 掌握等非差、等比数列求和的几种常见方法. 考纲解读:会用公式法、倒序相加法、错位相减法、裂项相消法、分组转化法求解不同类型数列的和,非等差、等比数列的求和是高考的热点,特别是错位相减法和裂项相消法求和. 二、知识概述: 求数列前n 项和的基本方法 (1)直接用等差、等比数列的求和公式求和; 等差:; 等比: 公比是字母时需要讨论. (理)无穷递缩等比数列时,q a S -= 11 (2)掌握一些常见的数列的前n 项和公式: ; ; ; ; (3)倒序相加法求和:如果一个数列 {}n a ,与首末两端等“距离”的两项的和相等或等于同一个常数, 那么求这个数列的前n 项和即可用倒序相加法. (4)错位相减法求和:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么

这个数列的前n 项和即可用此法来求.q 倍错位相减法:若数列{}n c 的通项公式n n n c a b =?,其中{}n a 、 {}n b 中一个是等差数列,另一个是等比数列,求和时一般可在已知和式的两边都乘以组成这个数列的等比数列的公比,然后再将所得新和式与原和式相减,转化为同倍数的等比数列求和.这种方法叫q 倍错位相减法. 温馨提示:1.两个特殊数列等差与等比的乘积或商的组合. 2.关注相减的项数及没有参与相减的项的保留. (5)分组求和:有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,把数列的每一项分成若干项,使其转化为等差或等比数列,先分别求和,再合并.通项公式为a n = 的数列,其中数列{b n },{c n }是等比数列或等差数列,可采用分组求和法求和. 形如: n n b a +其中, (6)并项求和法 一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如类 型,可采用两项合并求解. 合并求和:如求 的和. (7)裂项相消法求和:把数列的通项拆成两项之差,正负相消剩下首尾若干项. 常见拆项: ; . 【真题分析】

数列求和的教学反思

数列求和的教学反思 数列求和的教学反思 由于数列的求和在求解的方法中比较多,学生难以一次性熟练掌握全部的方法并灵活运用,所以在《数列求和》的专题课的教学重点放在了数列求和的前三种重要方法: 1、公式法求和(即直接利用等差数列和等比数列的求和公式进行求和); 2、利用叠加法、叠乘法将已知数列转化为等差数列或等比数列再行求和; 3、对于数列的通项是由等差乘以等比数列构成的,用乘公比错位相减求和法。 从实际教学效果看教学内容安排得符合学生实际,由浅入深,比较合理,基本达到了这节课预期的教学目标及要求。结合自我感觉、工作室评课、学生反馈,这节课比较突出的有以下几个优点。 1、注重“三基”的训练与落实 数列部分中两种最基本最重要的数列就是等差数列和等比数列,很多数列问题包括数列求和都是围绕这两种特殊数列展开的,即使不能直接利用等差数列和等比数列公式求和,也可根据所给数列的

不同特点,合理恰当地选择不同方法转化为等差数列或等比数列再行求和。因此上课伊始做为本节课的知识必备,就要求学生强化等差数列和等比数列求和公式的记忆。其次本节课充分渗透了转化的数学思想方法,并且通过典型例题使学生体会并掌握根据所给求和数列的不同特点,分别采用叠加法或叠乘法将所给数列转化为等差数列或等比数列再行求和的基本技能。 2、例、习题的选配典型,有层次 一方面精选近年典型的高考试题、模拟题做为例、习题,使学生通过体会和掌握,达到举一反三的目的;另一方面结合学生实际,自行编纂或改编了一些题目,或在原题基础上降低了难度,设计出了层次,或在学生易错的地方设置了陷阱,提醒学生留意。同时所配的课堂练习也充分注意了题目的难易梯度,把握了层次性,由具体数字运算到字母运算,由直接给出数列各项到用分段函数形式抽象表述数列,由单一方法适用到能够一题多解等等。 3、对学生可能出现的问题有预见性,并能有针对性地对症下药进行设计 对于直接利用公式求和的等差数列或等比数列求和问题,预见到学生的关键问题应该出在搞不清

历年数列高考题汇编精选

历年数列高考题汇编 1、(全国新课标卷理) 等比数列{}n a 的各项均为正数,且212326231,9.a a a a a +== (1)求数列{}n a 的通项公式. (2)设 31323log log ......log ,n n b a a a =+++求数列1n b ?? ?? ??的前项和. 解:(Ⅰ)设数列{a n }的公比为q ,由 2 3 26 9a a a =得 3234 9a a =所以 21 9q = .有条件可知a>0,故 13q = . 由 12231 a a +=得 12231 a a q +=,所以 113a = .故数列{a n }的通项式为a n =13n . (Ⅱ ) 111111 log log ...log n b a a a =+++ (12...)(1)2 n n n =-++++=- 故12112()(1)1n b n n n n =-=--++ 12111111112...2((1)()...())22311n n b b b n n n +++=--+-++-=-++ 所以数列1{}n b 的前n 项和为21n n - + 2、(全国新课标卷理)设数列{}n a 满足21112,32n n n a a a -+=-=g (1) 求数列{}n a 的通项公式;

(2) 令n n b na =,求数列的前n 项和n S 解(Ⅰ)由已知,当n ≥1时, 111211 [()()()]n n n n n a a a a a a a a ++-=-+-++-+L 21233(222)2n n --=++++L 2(1)12n +-=. 而 12, a =所以数列{ n a }的通项公式为 21 2n n a -=. (Ⅱ)由 21 2n n n b na n -==?知 3521 1222322n n S n -=?+?+?++?L ① 从而 235721 21222322n n S n +?=?+?+?++?L ② ①-②得 2352121 (12)22222n n n S n -+-?=++++-?L . 即 211 [(31)22] 9n n S n +=-+ 3.设}{n a 是公比大于1的等比数列,S n 为数列}{n a 的前n 项和.已知S 3=7,且 a 1+3,3a 2,a 3+4构成等差数列.(1)求数列}{n a 的通项公式;(2)令Λ2,1,ln 13==+n a b n n ,求数列}{n b 的前n 项和T n . . 4、(辽宁卷)已知等差数列{a n }满足a 2=0,a 6+a 8=-10

四年级奥数思维训练专题-巧妙求和

四年级奥数思维训练专题-巧妙求和(一) 专题简析:若干个数排成一列称为数列.数列中的每一个数称为一项.其中第一项称为首项,最后一项称为末项,数列中项的个数称为项数. 相邻两项的差都相等的数列称为等差数列,后项与前项的差称为公差. 通项公式:第n项=首项+(项数-1)×公差 项数公式:项数=(末项-首项)÷公差+1 例1:有一个数列:4,10,16,22,…,52,这个数列共有多少项?分析:容易看出这是一个等差数列,公差为6,首项是4,末项是52,要求项数,可直接带入项数公式进行计算. 项数=(52-4)÷6+1=9 答:这个数列共有9项. 试一试1:有一个等差数列:2,5,8,11,…,101,这个等差数列共有多少项? 例2:有一等差数列:3,7,11,15,……,这个等差数列的第100项是多少? 分析:这个等差数列的首项是3,公差是4,项数是100.要求第100项,可根据“末项=首项+公差×(项数-1)”进行计算. 第100项=3+4×(100-1)=399

试一试2:求1,4,7,10……这个等差数列的第30项. 例3:有这样一个数列:1,2,3,4,…,99,100.请求出这个数列所有项的和. 分析:等差数列总和=(首项+末项)×项数÷2 1+2+3+…+99+100=(1+100)×100÷2=5050 试一试3:6+7+8+…+74+75 例4:求等差数列2,4,6,…,48,50的和. 分析:项数=(末项-首项)÷公差+1 =(50-2)÷2+1=25 首项=2,末项=50,项数=25 等差数列的和=(2+50)×25÷2=650 试一试4:9+18+27+36+…+261+270 巧妙求和(二) 专题简析:

文科数学2010-2018高考真题分类专题六 数列 第十七讲 递推数列与数列求和答案

专题六数列 第十七讲 递推数列与数列求和 答案部分 1.C 【解析】∵113 n n a a +=-,∴{}n a 是等比数列 又243a =-,∴14a =,∴()1010101413313113 S -????-- ? ? ?????==-+ ,故选C . 2.D 【解析】【法1】有题设知 21a a -=1,① 32a a +=3 ② 43a a -=5 ③ 54a a +=7,65a a -=9, 76a a +=11,87a a -=13,98a a +=15,109a a -=17,1110a a +=19,121121a a -=, …… ∴②-①得13a a +=2,③+②得42a a +=8,同理可得57a a +=2,68a a +=24,911a a +=2,1012a a +=40,…, ∴13a a +,57a a +,911a a +,…,是各项均为2的常数列,24a a +,68a a +,1012a a +,… 是首项为8,公差为16的等差数列, ∴{n a }的前60项和为1 1521581615142 ?+?+???=1830. 【法2】可证明: 14142434443424241616n n n n n n n n n n b a a a a a a a a b +++++---=+++=++++=+ 11234151514 1010151618302 b a a a a S ?=+++=?=?+ ?= 【法3】不妨设11a =,得23572,1a a a a ====???=,466,10a a ==,所以当n 为奇数时,1n a =,当n 为偶数时,构成以2a 为首项,以4为公差的等差数列,所以得 601830S = 3.A 【解析】法一:分别求出前10项相加即可得出结论; 法二:12349103a a a a a a +=+=???=+=,故1210a a a ++???+=3515?=.故选A. 4.6【解析】∵112,2n n a a a +==,∴数列{}n a 是首项为2,公比为2的等比数列,

数列求和专项训练题(学生)

数列求和的常用方法 第一类:公式法求和 利用下列常用求和公式求和是数列求和的最基本最重要的. 1、等差数列前n 和公式:()() 11122 n n n a a n n S na d +-= =+ 2、等比数列前n 和公式:1 11(1)(1)(1) 11n n n na q S a a q a q q q q =?? =--?=≠?--? 自然数方幂和公式: 3、11(1)2n n k S k n n ===+∑ 4、211 (1)(21) 6n n k S k n n n ===++∑ 5、32 1 1[(1)]2 n n k S k n n ===+∑ 【例】已知数列{}n a 满足*111,4,n n a a a n N +==+∈,求数列{}n a 的前n 项和 n S . 【练习】已知321 log log 3 x -= ,求23n x x x x +++???++???的前n 项和.

第二类:分组法求和 有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可. 若数列{}n c 的通项公式为n n n c a b =+,其中数列{}n a ,{}n b 分别是等差数列和等比数列,求和时一般用分组结合法。 【例】数列111111,2,3,4 ,,,24816 2n n 求数列的前n 项和. 【练习】数列{}n a 的通项公式221n n a n =+- 第三类:裂项法求和 这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 常用的通项分解(裂项)如:

数列求和高考专题

数列求和高考专题 1.【2017天津,理18】已知{}n a 为等差数列,前n 项和为()n S n *∈N ,{}n b 是首项为2的等比数列,且公比大于0,2312b b +=,3412b a a =-,11411S b =. (Ⅰ)求{}n a 和{}n b 的通项公式; (Ⅱ)求数列221{}n n a b -的前n 项和()n *∈N . 【答案】 (1)32n a n =-.2n n b =.(2)1328 433 n n n T +-=?+. 【解析】 (II )解:设数列221{}n n a b -的前n 项和为n T , 由262n a n =-, 12124n n b --=?,有()221314n n n a b n -=-?, 故()23 245484314n n T n =?+?+?+ +-?, ()()23414245484344314n n n T n n +=?+?+?+ +-?+-?, 上述两式相减,得()2 3 1324343434314n n n T n +-=?+?+?+ +?--?

( )()()1 112144314 14 3248.n n n n n ++?-= ---?-=--?- 得1328 433 n n n T +-= ?+. 所以,数列221{}n n a b -的前n 项和为 1328 433 n n +-?+. 2.【2017江苏,19】 对于给定的正整数k ,若数列{}n a 满足1111n k n k n n n k n k a a a a a a --+-++-++++++ ++ 2n ka =对任意正整数()n n k >总成立,则称数列{}n a 是“()P k 数列”. (1)证明:等差数列{}n a 是“(3)P 数列”; (2)若数列{}n a 既是“(2)P 数列”,又是“(3)P 数列”,证明:{}n a 是等差数列. 【答案】(1)见解析(2)见解析 (2)数列{}n a 既是“()2P 数列”,又是“()3P 数列”,因此, 当3n ≥时, 21124n n n n n a a a a a --+++++=,① 当4n ≥时, 3211236n n n n n n n a a a a a a a ---++++++++=.② 由①知, 3214n n n a a a ---+=- ()1n n a a ++,③ 2314n n n a a a ++++=- ()1n n a a -+,④ 将③④代入②,得112n n n a a a -++=,其中4n ≥, 所以345,,, a a a 是等差数列,设其公差为'd .

数列高考题汇编

高考数学经典试题分类汇编一一数列 、选择题 1. (2009福建卷理)等差数列{a n }的前n 项和为S n ,且S 3 =6,印=4,则公差d 等于 5 A . 1 B - 3 【答案】:C 2.(2009年广东卷文)已知等比数列{a n }的公比为正数,且 a 3 1 2 c A. B. C. . 2 D.2 2 2 【答案】B 【解析】设公比为 q ,由已知得 2 8 4 2 2 2 ag 4 ,即q 2,又因为等比数列{a .}的公 比为正数,所以q 2,故 a 1 02 q 1 J 2 2,选B 2 3. ( 2009 广: 东卷理)已 知等 比 数 列{a n } 满足 a n 0,n 1,2,L ,且 a s a 2n 5 ?2 n (n 3),则当n 1 时, log 2 a 1 log 2 a 3 L log 2 a 2n 1 v A. n (2 n 1) B. (n 1)2 C. 2 n D. (n 1)2 【 解 析】 由 2n a 5 a 2n 5 2 (n 3) 得 2 a n 22n , a n 0 ,则 a n 2n , log 2 a 】1 log 2 a 3 log 2 a 2n 1 1 3 (2n 1) 2 n , 选C C.- 2 6 2佝 a 3) 且a 3 a ! 2d 印=4 d=2 .故选C 2 a 9 =2 a s , a 2 =1,则 a i = 4. (2009安徽卷文)已知’妆'为等差数列, 曲]+^3 +门上=105, +说斗+ 口总=99 a ,则 等于 A. -1 B. 1 C. 3 D.7

【解析】???a i a3 a5 105即3a3 105 /?a3 35同理可得a4 33 :丿公差d a4 & 2 /? a20 a4 (20 4) d 1 .选B。 【答案】B 5. (2009江西卷文)公差不为零的等差数列{a n}的前n项和为S n.若a4是a?与a?的等比中项,S832,则S|0等于 A. 18 B. 24 C. 60 D.90 答案:C 【解析】由a:a3a7得佝3d)2佝2d)(a16d)得2a1 3d0 ,再由S8 856d 32 得2a17d8则d2,ai3,所以S10 10a1叫60,. 2 2 故选C 6.(2009湖南卷文)设S n是等差数列a n的前n项和,已知a2 3,a6 11,则S?等于【C】 A . 13 B . 35C. 49D. 63 解:S y 7(a1a?)7(a2a6)7(3 11) 49.故选C. 222 或由a2a1 d 3a 1 1 ,a7 6 2 a6a15d 11d2 所以缶哼49.故选C. 7. (2009辽宁卷文)已知a n为等差数列,且a z — 2 a4 = —1, a3 = 0,则公差d= 1 1 (A)—2 (B)——(C) - (D) 2 2 2 1 【解析】a7 —2a4= a3 + 4d—2(a 3+ d) = 2d=—1 d = -------- 2 【答案】B 8. (2009辽宁卷理)设等比数列{ a n }的前n项和为S n,若 t=3,则

(完整word版)数列求和方法(带例题和练习题)

数列的求和 数列求和主要思路: 1.求数列的和注意方法的选取:关键是看数列的通项公式; 2.求和过程中注意分类讨论思想的运用; 3.转化思想的运用; 数列求和的常用方法 一、利用常用求和公式求和 利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2 ) 1(2)(11-+=+= 2、等比数列求和公式:?????≠--=--==) 1(11)1()1(111 q q q a a q q a q na S n n n 3、 11123(1) 2 n n k S k n n n == =+++++=+∑L … 4、 222221 1 123(1)(21)6n n k S k n n n n ===++++=++∑L 5、 2 3 3 3 3 3 1 (1)1232n n k n n S k n =+?? ===++++=????∑L 公式法求和注意事项 (1)弄准求和项数n 的值; (2)等比数列公比q 未知时,运用前n 项和公式要分类。 例1.求和2 2 1-++++n x x x Λ(0,2≠≥x n ) 二、错位相减法求和 这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列. 例2.求和:1 32)12(7531--+???++++=n n x n x x x S 例3.求数列 ??????,2 2,,26,24,2232n n 前n 项的和. 三、倒序相加法 如果一个数列与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列前n 项和即可用倒序相加发,如等差数列的前n 项和就是此法推导的 例4.求ο ο ο ο ο 89sin 88sin 3sin 2sin 1sin 2 2 2 2 2++???+++的值 例4变式训练1:求cos1°+ cos2°+ cos3°+···+ cos178°+ cos179°的值. 例4变式训练2: 数列{a n }:n n n a a a a a a -====++12321,2,3,1,求S 2002. 例4变式训练3:在各项均为正数的等比数列中,若103231365log log log ,9a a a a a +???++=求的值.

高三数学总复习综合专题数列求和(学生版)

数列求和 概述:先分析数列通项的结构特征,再利用数列通项揭示的规律来求数列的前n 项和,即求和抓通项。 1、直接(或转化)由等差数列、等比数列的求和公式求和 思路:利用下列常用求和公式求和是数列求和的最基本最重要的方法。 ①等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=; ②等比数列求和公式:?????≠--=--==)1(11)1()1(111q q q a a q q a q na S n n n ; ③)1(211+==∑=n n k S n k n ; ④)12)(1(6112++==∑=n n n k S n k n ; ⑤21 3)]1(21[+==∑=n n k S n k n 。 2、逆序相加法 思路:把数列正着写和倒着写再相加。(即等差数列求和公式的推导过程的推广) 例1:设函数2 22)(+=x x x f 的图象上有两点),(),,(211121y x P y x P ,若)(2121OP OP OP +=,且点P 的横坐标为2 1。 (1)求证:P 点的纵坐标为定值,并求出这个定值; (2)若; 求,),()3()2()1(*n n S N n n n f n f n f n f S ∈+?+++= 3、错位相减法

思路:设数列{}n a 是等差数列,{}n b 是等比数列,则求{}n n b a 的前n 项和n S 可用错位相减法。 例2:在数列{}n a 中,1112(2)2()n n n n a a a n λλλ+*+==++-∈N ,,其中0λ>。 (1)求数列{}n a 的通项公式; (2)求数列{}n a 的前n 项和n S 。 4、裂项相消法 思路:这是分解与组合思想在数列求和中的具体应用。裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的。一般地,数列{}n a 为等差数列,且公差不为 0,首项也不为0,∑∑∑=++==+-?=-=n i i i i i n i n i i i a a d a a d a a 111111)11(1)11(11。 常见的通项分解(裂项)如下: ①)11(1)(1k n n k k n n a n +-?=+=,(当1≠k 时,通项裂项后求和是隔项相消的,注意观察剩余项) 1 11)1(1+-=+=n n n n a n ;(通项裂项后求和是逐项相消的,剩余的是所裂项的首项和末项) ②)1 21121(211)12)(12()2(2+--+=+-=n n n n n a n ; ③]) 2)(1(1)1(1[21)2)(1(1++-+=++=n n n n n n n a n 等。 例3:求数列 ???++???++,11 ,,321 ,211 n n 的前n 项和。 补充练习:已知二次函数()y f x =的图象经过坐标原点,其导函数为26)('-=x x f ,数列{}n a 的前n 项

备战高考技巧大全之高中数学黄金解题模板:专题26 数列求和方法答案解析

【高考地位】 数列是高中数学的重要内容,又是高中数学与高等数学的重要衔接点,其涉及的基础知识、数学思想与方法,在高等数学的学习中起着重要作用,因而成为历年高考久考不衰的热点题型,在历年的高考中都占有重要地位。数列求和的常用方法是我们在高中数学学习中必须掌握的基本方法,是高考的必考热点之一。此类问题中除了利用等差数列和等比数列求和公式外,大部分数列的求和都需要一定的技巧。下面,就近几年高考数学中的几个例子来谈谈数列求和的基本方法和技巧。 【方法点评】 方法一 公式法 解题模板:第一步 结合所求结论,寻找已知与未知的关系; 第二步 根据已知条件列方程求出未知量; 第三步 利用前n 项和公式求和结果 例1.设}{n a 为等差数列,n S 为数列}{n a 的前n 项和,已知77=S ,7515=S ,n T 为数列}{n S n 的前n 项和,求n T . 【评析】直接应用公式求和时,要注意公式的应用范围,如当等比数列公比为参数(字母)时,应对其公比是否为1进行讨论.常用的数列求和公式有:

等差数列前n 项和公式: 11()(1)22 n n n a a n n S na d +-==+. 等比数列前n 项和公式:111(1)(1)(1)11n n n na q S a q a a q q q q =??=--?=≠?--? . 自然数方幂和公式:1123(1)2 n n n +++???+=+ 22221123(1)(21)6 n n n n +++???+=++ 333321123[(1)]2 n n n +++???+=+ 【变式演练1】已知{a n }是等差数列,a 1+a 2=4,a 7+a 8=28,则该数列前10项和S 10等于( ) A.64 B.100 C.110 D.120 【答案】B 【解析】 试题分析:a 1+a 2=4,a 7+a 8=28,解方程组可得11,2a d == 101109101002 S a d ?∴=+ = 考点:等差数列通项公式及求和 方法二 分组法 解题模板:第一步 定通项公式:即根据已知条件求出数列的通项公式; 第二步 巧拆分:即根据通项公式特征,将其分解为几个可以直接求和的数列; 第三步 分别求和:即分别求出各个数列的和; 第四步 组合:即把拆分后每个数列的求和进行组合,可求得原数列的和. 例2. 已知数列{a n }是3+2-1,6+22-1,9+23-1,12+24-1,…,写出数列{a n }的通项公式并求其前n 项 S n .

高三数学一轮复习 数列求和巩固与练习

高三数学一轮复习 数列求和巩固与练习 A .64 B .100 C .110 D .120 解析:选B.设等差数列公差为d ,则由已知得 ? ???? a 1+a 1+d =4a 1+6d +a 1+7d =28, 即????? 2a 1+d =42a 1+13d =28 , 解得a 1=1,d =2, ∴S 10=10a 1+10×92d =10×1+10×9 2 ×2=100. 2.等差数列{a n }的通项公式为a n =2n +1,其前n 项的和为S n ,则数列{S n n }的前10项的和为( ) A .120 B .70 C .75 D .100 解析:选C.S n =n (a 1+a n )2=n (n +2),∴S n n =n +2. 故S 11+S 22+…+S 10 10 =75. 3.(原创题)设函数f (x )=x m +ax 的导函数f ′(x )=2x +1,则数列{ 1f (n ) }(n ∈N * )的前n 项和是( ) A.n n +1 B.n +2n +1 C.n n -1 D.n +1n 解析:选A.f ′(x )=mx m -1 +a =2x +1,∴a =1,m =2,∴f (x )=x (x +1), 1f (n )= 1 n (n +1) =1n -1n +1,用裂项相消法求和得S n =n n +1 .故选A. 4.若S n =1-2+3-4+…+(-1)n -1 ·n ,S 17+S 33+S 50等于________. 解析:由题意知S n =????? n +12(n 为奇数), -n 2(n 为偶数). ∴S 17=9,S 33=17,S 50=-25, ∴S 17+S 33+S 50=1. 答案:1 5.若数列{a n }是正项数列,且a 1+a 2+…+a n =n 2 +3n (n ∈N * ),则a 12+a 23+…+ a n n +1 =________. 解析:令n =1得a 1=4,即a 1=16,当n ≥2时,a n =(n 2+3n )-[(n -1)2 +3(n -1)]=2n +2,所以a n =4(n +1)2 ,当n =1时,也适合,所以a n =4(n +1)2 (n ∈N * ).于是 a n n +1 =

(完整版)历年数列高考题及答案

1. (福建卷)已知等差数列 }{n a 中,12497,1,16a a a a 则==+的值是( ) A .15 B .30 C .31 D .64 2. (湖南卷)已知数列 }{n a 满足 ) (1 33,0*11N n a a a a n n n ∈+-= =+,则 20a = ( ) A .0 B .3- C .3 D .23 3. (江苏卷)在各项都为正数的等比数列{a n }中,首项a 1=3 ,前三项和为21,则a 3+ a 4+ a 5=( ) ( A ) 33 ( B ) 72 ( C ) 84 ( D )189 4. (全国卷II ) 如果数列{}n a 是等差数列,则( ) (A)1845a a a a +<+ (B) 1845a a a a +=+ (C) 1845a a a a +>+ (D) 1845a a a a = 5. (全国卷II ) 11如果128,,,a a a L 为各项都大于零的等差数列,公差0d ≠,则( ) (A)1845a a a a > (B) 1845a a a a < (C) 1845a a a a +>+ (D) 1845a a a a = 6. (山东卷) {}n a 是首项1a =1,公差为d =3的等差数列,如果n a =2005,则序号n 等于( ) (A )667 (B )668 (C )669 (D )670 7. (重庆卷) 有一塔形几何体由若干个正方体构成,构成方式如图所示,上层正方体下底面的四个 顶点是下层正方体上底面各边的中点。已知最底层正方体的棱长为2,且改塔形的表面积(含最底层正方体的底面面积)超过39,则该塔形中正方体的个数至少是( ) (A) 4; (B) 5; (C) 6; (D) 7。 8. (湖北卷)设等比数列 }{n a 的公比为q ,前n 项和为S n ,若S n+1,S n ,S n+2成等差数列,则q 的值为 . 9. (全国卷II ) 在83和27 2之间插入三个数,使这五个数成等比数列,则插入的三个数的乘积为______ 10. (上海)12、用n 个不同的实数 n a a a ,,,21Λ可得到!n 个不同的排列,每个排列为一行写成一个!n 行的数阵。 对第i 行in i i a a a ,,,21Λ,记in n i i i i na a a a b )1(32321-++-+-=,!,,3,2,1n i Λ=。例如:用1,2,3可得数阵 如图,由于此数阵中每一列各数之和都是12,所以,2412312212621-=?-?+-=+++b b b Λ,那么,在 用1,2,3,4,5形成的数阵中, 12021b b b +++Λ=_______。 11. (天津卷)在数列{a n }中, a 1=1, a 2=2,且 )( )1(12* +∈-+=-N n a a n n n ,

历年数列高考题(汇编)答案

历年高考《数列》真题汇编 1、(2011年新课标卷文) 已知等比数列{}n a 中,113a =,公比13q =. (I )n S 为{}n a 的前n 项和,证明:12n n a S -= (II )设31323log log log n n b a a a =+++L ,求数列{}n b 的通项公式. 解:(Ⅰ)因为.31)31(311n n n a =?=-,23113 11)311(3 1n n n S -=--= 所以,2 1n n a S -- (Ⅱ)n n a a a b 32313log log log +++=Λ ).......21(n +++-= 2)1(+-=n n 所以}{n b 的通项公式为.2 )1(+-=n n b n 2、(2011全国新课标卷理) 等比数列{}n a 的各项均为正数,且212326231,9.a a a a a +== (1)求数列{}n a 的通项公式. (2)设 31323log log ......log ,n n b a a a =+++求数列1n b ?????? 的前项和. 解:(Ⅰ)设数列{a n }的公比为q ,由23269a a a =得32349a a =所以219 q =。有条件可知a>0,故13 q =。 由12231a a +=得12231a a q +=,所以113a = 。故数列{a n }的通项式为a n =13n 。 (Ⅱ )111111log log ...log n b a a a =+++ 故12112()(1)1 n b n n n n =-=--++ 所以数列1{ }n b 的前n 项和为21n n -+ 3、(2010新课标卷理)

2019届高考数学专题12数列求和

培优点十二 数列求和 1.错位相减法 例1:已知{}n a 是等差数列,其前n 项和为n S ,{}n b 是等比数列,且112a b ==,4427a b +=, 4410S b -=. (1)求数列{}n a 与{}n b 的通项公式; (2)记1121n n n n T a b a b a b -=++ +,n *∈N ,求证:12210n n n T a b +=-+. 【答案】(1)31n a n =-,2n n b =;(2)见解析. 【解析】(1)设{}n a 的公差为d ,{}n b 的公比为q , 则3441127327a b a d b q +=?++=,34411104610S b a d b q -=?+-=, 即33 2322786210d q d q ?++=??+-=??,解得:32d q =??=?, 31n a n ∴=-,2n n b =. (2)()()2 31234222n n T n n =-?+-?+ +?,① ()()23+1231234222n n T n n =-?+-?+ +?,② -②①得 ()10223112n n =?---, ∴所证恒等式左边()102231n n =?--,右边()210231102n n n a b n =-+=--+?, 即左边=右边,所以不等式得证. 2.裂项相消法 例2:设数列{}n a ,其前n 项和23n S n =-,{}n b 为单调递增的等比数列,123512b b b =,1133a b a b +=+ . (1)求数列{}n a ,{}n b 的通项公式; (2)若()()21n n n n b c b b = --,求数列{} n c 的前n 项和n T .

数列求和专题训练 方法归纳

数列求和专题 方法归纳 方法1:分组转化法求和 1.已知{a n }的前n 项是3+2-1,6+4-1,9+8-1,12+16-1,…,3n +2n -1,则S n = ________. 2.等差数列{a n }中,a 2=4,a 4+a 7=15.(1)求数列{a n }的通项公式;(2)设b n =2an -2+n ,求 b 1+b 2+b 3+…+b 10的值. 方法2裂项相消法求和 3.设数列{}a n 满足a 1=1,且a n +1-a n =n +1(n ∈N * ),则数列? ???????? ?1a n 前 10项的和为______. 4. S n 为数列{a n }的前n 项和.已知a n >0,a 2n +2a n =4S n +3. ①求{a n }的通项公式; ②设b n = 1 a n a n +1 ,求数列{b n }的前n 项和. 5.若已知数列的前四项是 112 +2,122+4,132+6,1 42+8 ,则数列的前n 项和为________. 6.等差数列{a n }的前n 项和为S n ,已知a 1=10,a 2为整数,且S n ≤S 4. (1)求{a n }的通项 公式; (2)设b n =1 a n a n +1 ,求数列{b n }的前n 项和T n . 7.已知数列{a n }各项均为正数,且a 1=1,a n +1a n +a n +1-a n =0(n ∈N *). (1)设 b n =1 a n ,求证:数列{ b n }是等差数列;(2)求数列?????? ??? ?a n n +1的前n 项和S n . 方法3:错位相减法求和 8.已知{a n }是等差数列,其前n 项和为S n ,{b n }是等比数列(b n >0),且a 1=b 1=2,a 3+b 3=16,S 4+b 3=34.(1)求数列{a n }与{b n }的通项公式;(2)记T n 为数列{a n b n }的前n 项和,求 T n . 9.设等差数列{a n }的公差为d ,点(a n ,b n )在函数f (x )=2x 的图象上(n ∈N *).

高考数学专题复习数列求和

第4讲数列求和 一、选择题 1.设数列{(-1)n}的前n项和为S n,则对任意正整数n,S n=( ) A.n[1n-1] 2 B. 1n-1+1 2 C.1n+1 2 D. 1n-1 2 解析∵数列{(-1)n}是首项与公比均为-1的等比数列, ∴S n=11n1 11 = 1n-1 2 . 答案 D 2.已知数列{a n}的前n项和S n=n2-4n+2,则|a1|+|a2|+…+|a10|=( ) A.66 B.65 C.61 D.56 解析当n=1时,a1=S1=-1,当n≥2时,a n=S n-S n-1=n2-4n+2-[(n -1)2-4(n -1)+2]=2n-5.∴a2=-1,a3=1,a4=3,…,a10=15,∴|a1| +|a2|+…+|a10|=1+1+81+15 2 =2+64=66. 答案 A 3.在数列{a n}中,a n= 1 n n +1 ,若{a n}的前n项和为 2 013 2 014 ,则项数n为( ). A.2 011 B.2 012 C.2 013 D.2 014 解析∵a n=1 n n +1= 1 n - 1 n+1 ,∴S n=1- 1 n+1 = n n+1 = 2 013 2 014 ,解得n=2 013. 答案 C 4.数列{a n}满足a n+1+(-1)n a n=2n-1,则{a n}的前60项和为( ).A.3 690 B.3 660 C.1 845 D.1 830 解析当n=2k时,a2k+1+a2k=4k-1, 当n=2k-1时,a2k-a2k-1=4k-3,

∴a 2k +1+a 2k -1=2,∴a 2k +1+a 2k +3=2, ∴a 2k -1=a 2k +3,∴a 1=a 5=…=a 61. ∴a 1+a 2+a 3+…+a 60=(a 2+a 3)+(a 4+a 5)+…+(a 60+a 61)=3+7+11+…+(4×30-1)=30 3+119 2 =30×61=1 830. 答案 D 5.若把能表示为两个连续偶数的平方差的正整数称为“和平数”,则 1~100 这100个数中,能称为“和平数”的所有数的和是( ) A .130 B .325 C .676 D .1 300 解析 设两个连续偶数为2k +2和2k (k ∈N +),则(2k +2)2-(2k )2=4(2k +1),故和平数 是4的倍数,但不是8的倍数,故在1~100之间,能称为和平数的有4×1,4×3,4×5,4×7,…,4×25,共计13个,其和为4×1+252 ×13=676. 答案 C 6.数列{a n }满足a n +a n +1=1 2(n ∈N *),且a 1=1,S n 是数列{a n }的前n 项和,则S 21 = ( ). A.21 2 B .6 C .10 D .11 解析 依题意得a n +a n +1=a n +1+a n +2=1 2,则a n +2=a n ,即数列{a n }中的奇数项、 偶数项分别相等,则a 21=a 1=1,S 21=(a 1+a 2)+(a 3+a 4)+…+(a 19+a 20)+a 21=10(a 1+a 2)+a 21=10×1 2+1=6,故选B. 答案 B 二、填空题 7.在等比数列{a n }中,若a 1=1 2,a 4=-4,则公比q =________;|a 1|+|a 2|+… +|a n |=________. 解析 设等比数列{a n }的公比为q ,则a 4=a 1q 3,代入数据解得q 3=-8,所以

三种常用的数列求和方法-高考文科数学分类专题突破训练

考查角度2三种常用的数列求和方法 分组转化法求和 已知等差数列{a n}满足a2=2,a1+a4=5. {a n}的通项公式; (2)若数列{b n}满足b1=3,b2=6,{b n-a n}为等比数列,求数列{b n}的前n T n. 利用已知条件求出等差数列{a n}的通项公式;(2)因为{b n n,所以数列{b n}的前n项和T n可以看成数列{b n-a n} {a n}的前n项和的总和. 设等差数列{a n}的公差为d, {a n}满足a2=2,a1+a4=5, ∴解得a1=d=1, ∴a n=1+(n-1)×1=n. (2)设等比数列{b n-a n}的公比为q,∵b1=3,b2=6, ∴b1-a1=3-1=2,b2-a2=6-2=4, ∴q=2. ∴b n-a n=2×2n-1=2n, ∴b n=n+2n, ∴数列{b n}的前n项和 T n=(1+2+3+…+n)+(2+22+…+2n)=+- -=+2n+1-2. 从求和数列的通项入手,将其转化为等差数列与等比 ,再利用等差数列与等比数列的求和公式进行分组求和. 错位相减法求和 已知{a n}的前n项和S n=4n-n2+4. {a n}的通项公式; (2)求数列-的前n项和T n. 由{a n}的前n项和求出数列{a n}的通项公式;(2)利用错 (当n=1时要单独考虑). 当n≥2时,a n=S n-S n-1=4n-n2-[4(n-1)-(n-1)2]=5-2n; 1时,a1=S1=7. ∴a n= - (2)令b n=-,

当n=1时,T1=b1=-=0; 当n≥2时,b n=-= - , ∴T n=0++++…+ -+ - , T n=+++…+ - +, 两式相减得T n=1+++…+ --= - - -=2-, ∴T n=4- - (n≥2 . 当n=1时,满足上式. 综上所述,T n=4- - . 用错位相减法求和时,应注意: ,特别是等比数列的公比为负数的情形; (2)在写出“S n”与“qS n”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“S n-qS n”的表达式; (3)在应用错位相减法求和时,若等比数列的公比未知,应分公比等于1和不等于1两种情况求解. 分类透析三a n=型的裂项相消法求和 已知数列{a n}为单调递增数列,S n为其前n项和,2S n=+n. (1)求{a n}的通项公式. (2)若b n=,T n为数列{b n}的前n项和,证明:T n<. 由递推公式2S n=+n求出{a n}的通项公式;(2)先用裂项相消法求和,再进行适当放缩证明. 当n=1时,2S1=2a1=+1,即(a1-1)2=0,解得a1=1. 又{a n}为单调递增数列,所以a n≥1. 由2S n=+n得2S n+1=+n+1, 所以2S n+1-2S n=-+1, 整理得2a n+1=-+1,所以=(a n+1-1)2. 所以a n=a n+1-1,即a n+1-a n=1, 所以{a n}是以1为首项,1为公差的等差数列,所以a n=n.

相关主题
文本预览
相关文档 最新文档