当前位置:文档之家› 晶体管推挽功率放大器的交越失真

晶体管推挽功率放大器的交越失真

晶体管推挽功率放大器的交越失真
晶体管推挽功率放大器的交越失真

晶体管推挽功率放大器的交越失真

本文的测量与分析,以输入及输出均为变压器耦合的经典电路为原型。

另一种也被广泛使用的单端推挽电路,仅仅是输入信号的激励方式,以及输出信号的合成方式不同,下述的基本原理依然适用。电子管推挽放大器也会产生相同性质的失真,故本文中关于失真机理的描述也适用于理解电子管放大器。

本文仅单独研讨交越失真的成因及消除方法,至于推挽放大器的其它特性,不在研讨范围。

众所周知,推挽放大器,是一种需要由两个(或两组)晶体管来共同完成放大作用的放大器,电路中的两个晶体管,分别负责放大信号的正半周和负半周,再由输出变压器把两个半周的输出信号合成为一个完整的输出信号。

图1为推挽放大器的原理电路,输入信号由输入变压器分相后,分别馈送到两个晶体管的基极,馈送给两个晶体管基极的都是一个完整的信号,只是它们的相位是相反的,相差了180度;我们知道,结型为NPN的晶体管,只有当输入信号电压为正极性时,晶体管才会导通,输入信号电压为负极性时,晶体管处于截止状态,所以在推挽电路两个晶体管的集电极,我们只能分别得到半个周期的输出信号;两个晶体管把各自放大后的信号电压加载到输出变压器,变压器又把这两个半周的信号电压相继馈送给同一个负载,于是负载上实际得到的,是一个完整的输出信号电压。

图1:原理电路及输出信号的合成

如果我们完全依照原理电路搭建一个推挽放大器,那么我们所得到的放大信号将是这样的:显然,这不是我们期待得到的放大信号,这个输出信号没有一个完整的周期,产生了明显的失真;从图3中输出信号的周期范围可以看到,当上面那个晶体管已经脱离放大区域,停止工作,而下面那个晶体管却尚未进入工作状态;同样,当下面那个晶体管已经脱离放大区域,停止工作,上面那个晶体管也是未有进入工作状态;

这个失真发生在两个晶体管各自负责的半个周期之交接区域中,放大器理论把这种发生在信号上下半周交接区域所产生的失真称为“交越失真”。

图2:输出信号波形

图3:输入信号波形与输出信号波形作叠加对比

交越失真的成因

要知道这个交越失真是怎样产生的,首先要知道的是令晶体管工作所需的电压条件;大多数涉及晶体管电路原理的书籍中都会提到,在晶体管的PN结上,要加上一定的正向电

压才能使其进入导通状态,半导体物理学把这个令晶体管进入正向导通状态的电压,称为晶体管的“特征电压”;不同材质的晶体管其导通电压并不相同,电路理论中,锗材料晶体管的“特征电压”被定为0.2V,硅材料晶体管的“特征电压”被定为0.7V。实际应用中需要留意的是:即使材质相同的晶体管,其导通电压也会略有不同,并且,这个“特征电压”也不是一个固定的值,而是在这个值附近的一个范围。

我们再来看看原理电路中,两个晶体管到底工作在半周期中的哪个范围

图4:上晶体管的输出波形与输入信号波形的叠加对比

图4、图5中两个晶体管的输出波形与输入信号波形的叠加对比,都反映了同样的问题:在信号的两个半周,上下晶体管都没有完整地工作在其负责放大的半周期内,只是在信号电压超过其“特征电压”时才开始工作,当信号电压低于其“特征电压”,但尚未回到0的时候,就已经脱离了工作状态,工作周期的滞后开始和提前结束,致使两管在工作交替期间的信号被丢失,这就是导致推挽放大器产生“交越失真”的成因。

消除交越失真的方法

面对所出现的问题,首先是要找出问题的成因,才能据此探求解决问题的办法。

上面的测量中,我们找到了造成“交越失真”是因为晶体管的“特征电压”在作怪,那么我们就可以这样做:预先为晶体管基极设置一个导通电压,令其在尚未有输入信号的时候,已经提前进入工作区域,这样,晶体管就可以在信号到来时马上进入工作状态,两个晶体管的信号交接过程就会变得畅顺,交越失真就可以消除。

这个为晶体管基极预置的电压,在晶体管放大器理论中称为“偏置电压”;也因为晶体管是电流控制器件,预置这个电压的实际目的是为晶体管基极注入一个小电流,令晶体管进入工作区域,所以这个注入的小电流也被称为晶体管的“偏置电流”。

图5:下晶体管的输出波形与输入信号波形的叠加对比

图6:设置有“偏置电压”的实际工作电路

测试一下加入偏置电压后,晶体管的工作区域发生了什么改变;

图7为上晶体管的输出波形,从0V基线的位置可以看到,上晶体管已经工作在一个完整的半周期范围,它的截止区已经逾越了这个范围,落在下晶体管的工作区域。

图7:上晶体管工作区域

图8为下晶体管的输出波形,同样可以看到,此时下晶体管也已经工作在一个完整的半周期范围,它的截止区也逾越了这个范围,落在上晶体管的工作区域。

图8:下晶体管工作区域

综合测试

我们调整图6偏置电路中的R1,使基极电压从0开始逐步增加,再看看原有的交越失

真发生了什么变化。

图9:偏置电压略为增加后,对比图3中原来交越区域的不工作范围变窄,交越失真得到改善。

图10:当偏置电压增加到令晶体管已经完全进入工作状态,此时的交越失真也同时被消除。(图10中有意把输入、输出两个信号略作移位,以方便对比两个波形)

以上测试过程,我们解决了晶体管推挽放大器的交越失真问题,两个晶体管已经可以分别工作在各自的半个周期范围,负载得到了一个完整周期的不失真信号;

放大器理论中,把担负放大作用的器件(晶体管或电子管),在无输入信号时处于不工作状态的这种放大器,称为“乙类(B类)放大器”;把放大器件预先进入工作状态,但其依然主要是承担信号半个周期放大任务的这种放大器,称为“甲乙类(AB类)放大器”。在音频放大器中,为避免出现这种非线性失真,不使用乙类(B类)放大器,只使用甲乙类(AB 类)放大器。如果我们继续增加偏置电压,令晶体管产生更大的基极电流,则其截止区还会继续向对方晶体管的工作区域延伸,直到最后完全覆盖对方的整个工作区域,两个晶体管都会工作在完整的信号周期范围,此时,放大器的属性也随之发生了改变,它脱离了甲乙类(AB 类)放大器,变成为纯甲类(A类)推挽放大器。

放大电路的失真研究 模电实验报告

模拟电子技术 实验报告 实验题目:放大电路的失真研究 2013年12月1日

目录 1、实验题目及要求 (1) 2、实验目的及知识背景 (1) 2.1实验目的 2.2知识点 2.2.1饱和失真与截止失真 3、实验过程 (5) 3.1 选取的实验电路及输入输出波形 3.1.1饱和失真与截止失真 3.2 每个电路的讨论和方案比较 3.2.1饱和失真与截止失真 3.3 分析研究实验数据 3.3.1饱和失真与截止失真 4、总结与体会 (11) 4.1 通过本次实验那些能力得到提高,那些解决的问题印象深刻,有那些创新点。 4.2 对本课程的意见与建议

1、实验题目及要求 1.1实验题目 放大电路的失真研究 1.2实验要求 1.2.1基本要求 输入一标准正弦波,频率2KHz,幅度50mV,输出正弦波频率2KHz,幅度1V。 2、实验目的与知识背景 2.1 实验目的 (1)掌握失真放大电路的设计和解决电路的失真问题——提高系统地构思问题和解决问题的能力。 (2)掌握消除放大电路各种失真技术——系统地归纳模拟电子技术中失真现象。 (3)具备通过现象分析电路结构特点——提高改善电路的能力。 2.2 知识点 2.2.1.1饱和失真与截止失真 如图1所示的电路,对于NPN 管放大电路。在发生饱和失真时,输出波形的负半周产生失真,即为削底真,在发生截止失真时,输出波形的正半周产生失真,即为削顶失真。而对于PNP管放大电路来说,波形失真情况恰恰相反,在发生饱和失真时,输出波形的正半周产生失真,即为削顶失真,在发生截止失真时,输出波形的负半周产生失真,即为削底失真

图 1 图 2 图 3 饱和失真的观察:当将放大电路基极偏置电阻Rb的阻值设置成较小值时,两放大电路工作点变高,接近饱和区。适当增大输入信号幅度时,则出现饱和失真,输出波形如图4所示。其中上边波形为PNP管放大电路的输出波形,出现削顶失真。下边为NPN 管放大电路的输出波形,出现削底失真。 图 4 截止失真的观察:当将放大电路基极偏置电阻Rb的阻值设置成较大值时.两放大电路工作点变低,按近截止区。当适当增大输入信号幅度时,则出现截止失真,输出波形如图5所示。其中上边波形为PNP管放大电路的输出波形,出现削底失真。下边为NPN 管放大电路的输出波形,出现削顶失真。

乙类互补推挽功率放大器

科信学院CDIO项目设计说明书(2010 /2011学年第二学期) CDIO项目名称:电子应用系统一级项目 专业班级:电子信息工程 学生姓名: 学号: 指导老师: 设计成绩: 2011年6月28日

1、互补对称OTL 功放电路装调 1.1 CDIO 设计目的 通过设计乙类互补推挽功率放大器,掌握利用分离原件组成OTL 功放电路的原理,提高电路原理图读图技能,熟练掌握较复杂电路的装调操作方法 1.2 CDIO 设计正文 1. 2.1设计要求 电压增益:10倍(20分贝) 输出功率:0.5W 以上(负载R L =8?) 频率特性:20Hz ~20KHz 1.2.2 设计原理 乙类工作时,为了在负载上合成完整的正弦波,必须采用两管轮流导通的推挽电路。通常使用T1和T2两个特性配对的互补功率管(NPN 型和PNP 型),若忽略功率管发射结导通电压,则当输入信号正半周期时,两功率管分别导通和截止,输出为正半周的半个正弦波;当输出信号负半周期时,两功率功率管分别截止和导通,输出为负半周的半个正弦波,通过负载的电流通过合成形成完整的正弦波。 1.2.3设计过程 负载R1=8Ω V o= Po R *1=2V ,输出功率Po=0.5W 峰值为Vp=22V ,峰峰值为Vp-p=4≈V 2 5.7V 若要实现输出功率为Po=0.5W ,则直流电源电压Vc c > 5.7V 所以取Vcc=15V 输出电流Io= 2 1 Vcc/RL ≈350mA 取β=100,Ib1=Io/β=3.5mA 取I5=30mA ,所以R5=(15V-8.5V)/30mA=220Ω 取VE=0.2Vcc=3V RE=3V/30mA=100Ω 因为Av=R5/RE=2.2<10,所以RE 取值不合适 令RE=R4+R6,R4=15Ω,R5=85Ω 当交流分析时,R6被短路,Av=15符合要求

放大电路的失真研究

国家电工电子实验教学中心 模拟电子技术 实验报告 实验题目:放大电路的失真研究 学院:电信学院 专业:通信工程 学生姓名:蓝天云 学号:12211082 任课教师:马庆龙 2014 年 5 月27 日

目录 《模拟电路实验》课程实验设计................................................................. 错误!未定义书签。目录................................................................................................................. 错误!未定义书签。 1.实验要求 (3) 2.实验目的与知识背景 (3) 2.1实验目的........................................................................................... 错误!未定义书签。 2.2知识点 (4) 截止失真 (4) 饱和失真 (5) 双向失真 (5) 交越失真 (6) 不对称失真 (7) 增益带宽积 (7) 容性负载 (8) 3实验过程 (9) 3.1实验电路及输入输出波形 (9) 截止、饱和、双向失真电路及仿真 (9) 交越失真电路及仿真结果 (12) 不对称失真电路及仿真结果 (14) 运放之增益带宽积........................................................................... 错误!未定义书签。 运放之容性负载............................................................................... 错误!未定义书签。 语音放大........................................................................................... 错误!未定义书签。 3.2每个电路的讨论和方案比较 (19) 3.3分析研究实验数据 (20) 4.总结与体会 (21) 5参考文献 (21)

OCL功率放大器的设计报告解析

课程设计报告 题目:由集成运放和晶体管组成的OCL 功率放大器的设计 学生姓名:郭二珍 学生学号: 07 系别:电气学院 专业:自动化 届别: 2015年 指导教师:廖晓纬 电气信息工程学院制 2014年3月

OCL功率放大器的设计 学生:郭二珍 指导老师:廖晓纬 电气学院10级自动化 1、绪论 功率放大器(简称功放)的作用是给音频放大器的负载R L(扬声器)提供一定的输出功率。当负载一定时,希望输出的功率尽可能大,输出信号的非线性失真尽可能地小,效率尽可能高。 OCL是英文Output Capacitor Less的缩写,意为无输出电容的功率放大器。采用了两组电源供电,使用了正负电源。在输入电压不太高的情况下,也能获得较大的输出频率。省去了输出端的耦合电容,使放大器的频率特性得到扩展。OCL 功率放大器是一种直接耦合的功率放大器,它具有频响宽、保真度高、动态特性好及易于集成化等特点。性能优良的集成功率放大器给电子电路功放级的调试带来了极大的方便。集成功率放大电路还具有输出功率大、外围元件少、使用方便等优点,因此在收音机、电视机、扩音器、伺服放大电路中也得到了广泛的应用。 功率放大器可分为三种工作状态:(1)甲类工作状态Q点在交流负载的中点,输出的是一种没有削波失真的完整信号,但效率较低。(2)乙类工作状态Q点在交流负载线和IB=0输出特性曲线的交界处,放大器只有半波输出,存在严重的失真。 (3)甲乙类工作状态Q点在交流负载线上略高于乙类工作点处,克服了乙类互补电路产生交越失真,提高了效率。 因此,本设计可采用甲乙类互补电路。

2、内容摘要 本设计中要求设计一个由集成运放和晶体管组成的OCL功率放大器。在输入正弦波幅度Ui等于200mV,负载电阻R L等于8Ω的条件下最大输出不失真功率P ≥2W,功率放大器的频带宽度BW≥80Hz~10KHZ o 功率放大电路实质上是能量转换电路,它主要要求输出功率尽可能大,效率尽可能的高,非线性失真尽可能要小,功率器件的散热较好。 本设计选用的是双电源供电的OCL互补推挽对称功放电路。 此推挽功率放大器的工作状态为甲乙类,其目的是为了减少“交越失真”。 由于两管的工作点稍高于截止点,因而均有一很小的静态工作电流I CQ。这样,便可克服管子的死区电压,使两管交替工作处的负载中电流能按正弦规律变化,从而克服了交越失真。 OCL互补推挽对称功放电路一般包括驱动级和功率输出级,前者为后者提供一定的电压幅度,后者则向负载提供足够的信号频率,以驱动负载工作。 因此,需要设计两部分,即驱动级和功率输出级。

推挽式功率放大电路的设计

第一部分课程设计

桥式推挽功率放大器是一种在较低的电源电压下能得到较大输出功率的功放,它由前置放大电路、BTL功率放大电路、电源电路三部分所构成。前置放大电路采用了集成运放NE5532将小信号电压放大,使其能够驱动功率放大器;功率放大电路由倒相电路和BTL 电路两部分组成,前者负责为后者转换两个大小相等、方向相反的激励信号,后者则是在信号不失真的前提下,尽可能地放大电流,从而提高输出功率;电源电路通过降压、整流、滤波、稳压产生±12V直流电压。运用Protel软件对所设计的电路图进行建库、绘图、制板;再借助Multisim仿真软件对各个单元电路进行了性能与功能仿真,通过仿真分析验证了设计的正确性,整体电路也基本达到了设计的预期目的。 关键词:推挽功放;集成运放;前置放大;倒相

The push-pull circuit occupies an important position in the amplifier circuit and switching power supply areas. Bridge push-pull amplifier circuit is constituted by three parts of the power supply circuit, the preamplifier circuit, BTL power amplifier circuit. The preamplifier circuit uses the integrated operational amplifier NE5532 small signal voltage amplification, so that the power amplifier input sensitivity to match. The power amplifier circuit consists of two parts of the inverting circuit and BTL circuit. The former is responsible for the conversion for the latter two of equal size, in the opposite direction of the excitation signal. The latter is the signal undistorted under the premise, as far as possible to enlarge the current, increasing the output power. ± 12V DC voltage power circuit through the buck, rectifier, filter and regulator.With of Multisim simulation software on each unit circuit performance and functional simulation. Verify the correctness of the design through simulation analysis, the results are to achieve the intended purpose of the design. Then use Protel software for building a database, drawing and board schematic design. Keywords:Push-pull amplifier, Integrated operational amplifier, Preamplifier , Inverting

放大电路的失真研究

放大电路的失真研究 ——模拟电子技术实验教学案例参赛作品 黄亮、佟毅、李赵红 导师:侯建军 北京交通大学电子信息工程学院国家电工电子实验教学示范中心 2013年5月28日

目录 1.放大电路的失真研究 (3) 1.1电路背景 (3) 1.2实验目的 (3) 1.3技术指标及设计要求 (3) 1.4评分标准 (5) 1.5实验特点 (6) 1.6实验原理 (6) 1.7方案比较 (11) 1.8实验数据分析 (12) 1.9实践能力 (13) 参考文献: (13)

1. 放大电路的失真研究 (模拟电子技术实验) 黄亮 佟毅 李赵红 2013年4月9日 1.1电路背景 电路输出波形失真引起信号不能正确的传输,解决失真问题是电路设计工程师面对的一个重要问题。输出波形失真可发生在基本放大、功率放大和负反馈放大等电路中,输出波形失真有截止失真、饱和失真、双向失真、交越失真,以及输出产生的谐波失真和不对称失真等。 1.2实验目的 掌握失真放大电路的设计和解决电路的失真问题可以提高学生系统地构思问题和解决问题的能力。通过失真放大电路实验可以系统地归纳模拟电子技术中失真现象和掌握消除各种失真技术,培养学生通过现象分析电路结构特点,进而改善电路的能力。 1.3技术指标及设计要求 1.3.1基本要求 (1)输入标准正弦波,如图1.1(a ),频率2kHz ,幅度50mV ,输出正弦波频率2kHz ,幅度1V 。 (2)图1.1(b )是电路输出波形,若达到要求,如何设计电路,并修改。 (3)图1.1(c )是电路输出波形,若达到要求,如何设计电路,并修改。 (a ) (b ) (c ) (d ) (e ) (f ) 图1.1

乙类推挽功率放大器

乙类推挽功率放大器 一.选择题 ( )1.决定功率放大器效率的主要因素是。 A.电路的输入功率 B.电路的工作状态 C.电路的最大输出功率 D.功放管的消耗功率 ( )2.乙类推挽功率放大器设置适当的静态工作点,其目的是。 A.消除饱和失真 B.增大放大倍数 C.消除交越失真 D.改善频率特性 ( )3.一个理想乙类功放电路的最大输出功率为10W,当输入信号为零时,每个功放管的管耗约为。 A.10W B.1.35W C.2W D.0W ( )4.乙类功率放大器的失真一般是。 A.饱和失真 B.截止失真 C.交越失真 D.线性失真 ( )5.甲乙类功放提供一定的偏置电流的目的是为了。 A.消除饱和失真 B.增大放大倍数 C.消除交越失真 D.改善频率特性 ( )6.变压器耦合推挽功放中的输出变压器,其作用是。 A,耦合作用 B.合成波形的作用 C.分解波形的作用 D.A和B两者兼有 ( )7.一个乙类功放的理性输出功率为4W,当输入信号为0时,则功放管的管耗为。 A.4W B.2W C.088W D.0W ( )8.低频功放之所以工作在甲乙类,除了提高效率为,还为了。 A.克服交越失真 B.克服截止失真 C.克服饱和失真 D.克服频率失真 二.判断题 ( )1.乙类功放的效率比甲类功放的效率高。 ( )2.乙类功放的管耗会随着输出功率的增大而增大。 ( )3.在甲乙类推挽功放电路中,当负载由固定负载减小时,输出功率增大。

( )4.乙类功放的效率最高,故乙类功放应用最广泛。 ( )5.在推挽功率放大器电路中,只要两个三极管具有合适的偏置电流,就可以消除交越失真。 ( )6.对于乙类功放,当输入信号为零时,电源提供的功率和管耗均为零,随着输入信号的增大,输出功率增大,同时管耗也随之增大。 ( )7.推挽功率放大器输入交流信号时,总有一个功放三极管是截止的所以输出波形必然失真。 ( )8.晶体管不能放大功率,只能起能量转换作用。 ( )9.功放电路中的非线性失真就是交越失真。 三.填空题 1.由于在功放电路中功放管常常处于 工作状态,因此,在选择功放管时要特别注意 、 和 三个参数。 2.一个乙类推挽功放电路的电源电压24G V V =、负载16L R =Ω,变压器初级线圈匝数为160N =,现要求其输出最大不失真功率om P 达到50W 则输出变压器的匝数比n = ,次级线圈的匝数2N = 。 3.甲乙类推挽功放电路与乙类功放电路比较,前者加了偏置电路向功放管提供少量 ,以减少 失真。 4.推挽功率放大器的最大输出功率om P = ,最高理论效率η= 。 5.为了提高功率效率,低频功率放大器应该工作在 工作状态;但该电路存在交越失真,故实用的低频功率放大器一般工作在 工作状态。 6.乙类功率放大器中每个三极管导通时间为 半个周期;甲乙类功放电路中每个三极管导通时间 半个周期。

乙类互补推挽功率放大器

科信学院 CDIO项目设计说明书(2010 /2011学年第二学期) CDIO项目名称:电子应用系统一级项目 专业班级:电子信息工程 学生姓名: 学号: 指导老师: 设计成绩: 2011年6月28日

1、互补对称OTL 功放电路装调 1.1 CDIO 设计目的 通过设计乙类互补推挽功率放大器,掌握利用分离原件组成OTL 功放电路的原理,提高电路原理图读图技能,熟练掌握较复杂电路的装调操作方法 1.2 CDIO 设计正文 1. 2.1设计要求 电压增益:10倍(20分贝) 输出功率:0.5W 以上(负载R L =8?) 频率特性:20Hz ~20KHz 1.2.2 设计原理 乙类工作时,为了在负载上合成完整的正弦波,必须采用两管轮流导通的推挽电路。通常使用T1和T2两个特性配对的互补功率管(NPN 型和PNP 型),若忽略功率管发射结导通电压,则当输入信号正半周期时,两功率管分别导通和截止,输出为正半周的半个正弦波;当输出信号负半周期时,两功率功率管分别截止和导通,输出为负半周的半个正弦波,通过负载的电流通过合成形成完整的正弦波。 1.2.3设计过程 负载R1=8Ω V o= Po R *1=2V ,输出功率Po=0.5W 峰值为Vp=22V ,峰峰值为Vp-p=4≈V 2 5.7V 若要实现输出功率为Po=0.5W ,则直流电源电压Vc c > 5.7V 所以取Vcc=15V 输出电流Io= 2 1 Vcc/RL ≈350mA 取β=100,Ib1=Io/β=3.5mA 取I5=30mA ,所以R5=(15V-8.5V)/30mA=220Ω 取VE=0.2Vcc=3V RE=3V/30mA=100Ω 因为Av=R5/RE=2.2<10,所以RE 取值不合适 令RE=R4+R6,R4=15Ω,R5=85Ω 当交流分析时,R6被短路,Av=15符合要求

功率放大器(功放)知识

功放基本知识:功放俗称“扩音机”他的作用就是把来自音源或前级放大器的弱信号放大,推动音箱放声。一套良好的音响系统功放的作用功不可没。 功放是音响系统中最基本的设备,它的任务是把来自信号源(专业音响系统中则是来自调音台)的微弱电信号进行放大以驱动扬声器发出声音。 功率放大器简称功放,可以说是各类音响器材中最大的一个家族了,其作用主要是将音源器材输入的较微弱信号进行放大后,产生足够大的电流去推动扬声器进行声音的重放。由于考虑功率、阻抗、失真、动态以及不同的使用范围和控制调节功能,不同的功放在内部的信号处理、线路设计和生产工艺上也各不相同。 分类:按功放中功放管的导电方式不同,可以分为甲类功放(又称A类)、乙类功放(又称B类)、甲乙类功放(又称AB类)和丁类 .功放(又称D类)。 甲类功放是指在信号的整个周期内(正弦波的正负两个半周),放大器的任何功率输出元件都不会出现电流截止(即停止输出)的一类放大器。甲类放大器工作时会产生高热,效率很低,但固有的优点是不存在交越失真。单端放大器都是甲类工作方式,推挽放大器可以是甲类,也可以是乙类或甲乙类。 乙类功放是指正弦信号的正负两个半周分别由推挽输出级的两“臂”轮流放大输出的一类放大器,每一“臂”的导电时间为信号的半个周期。乙类放大器的优点是效率高,缺点是会产生交越失真。 甲乙类功放界于甲类和乙类之间,推挽放大的每一个“臂”导通时间大于信号的半个周期而小于一个周期。甲乙类放大有效解决了乙类放大器的交越失真问题,效率又比甲类放大器高,因此获得了极为广泛的应用。 丁类功放也称数字式放大器,利用极高频率的转换开关电路来放大音频信号,具有效率高,体积小的优点。许多功率高达1000W的丁类放大器,体积只不过像VHS录像带那么大。这类放大器不适宜于用作宽频带的放大器,但在有源超低音音箱中有较多的应用。 按功放输出级放大元件的数量,可以分为单端放大器和推挽放大器。 单端放大器的输出级由一只放大元件(或多只元件但并联成一组)完成对信号正负两个半周的放大。单端放大机器只能采取甲类工作状态。 推挽放大器的输出级有两个“臂”(两组放大元件),一个“臂”的电流增加时,另一个“臂”的电流则减小,二者的状态轮流转换。对负载而言,好像是一个“臂”在推,一个“臂”在拉,共同完成电流输出任务。尽管甲类放大器可以采用推挽式放大,但更常见的是用推挽放大构成乙类或甲乙类放大器。 按功放中功放管的类型不同,可以分为胆机和石机。 胆机是使用电子管的功放。 石机是使用晶体管的功放。 按功能不同,可以前置放大器(又称前级)、功率放大器(又称后级)与合并式放大器。 功率放大器简称功放,用于增强信号功率以驱动音箱发声的一种电子装置。不带信号源选择、音量控制等附属功能的功率放大器称为后级。

推挽放大器工作原理介绍

一、功率放大电流的特点 对功放电路的了解或评价,主要从输出功率、效率和失真这三方面考虑。 1、为得到需要的输出功率,电路须选集电极功耗足够大的三极管,功放管的工作电流和集电极电压也较高。电路设计使用中首先要考虑怎样充分地发挥三极管功能而又不损坏三极管。由于电路中功放管工作状态常接近极限值,所以功放电流调整和使用时要小心,不宜超限使用。 2、从能耗方面考虑,功放输出的功率最终是由电源提供的,例如收音机中功放耗电要占整机的2/3,因此要十分注意提高电路效率,即输出功率与耗电功率的比值。 3、功放电路的输入信号已经几级放大,有足够强度,这会使功放管工作点大幅度移动,所以要求功放电路有较大的动态范围。功放管的工作点选择不当,输出会有严重失真。 二、常用功率放大电路的原理 单只三极管输出的功放电路输出小、效率低,日用电器中已很少见。目前常采用的是推挽电路形式。 图1是用耦合变压器的推挽电路原理图。它的特点是三极管静态工作电流接近于零,放大器耗电及少。有信输入时,电路工作电流虽大,但大部分功率都输出到负载上,本身损耗却不大,所以电源利用率较高。这个电路中每只三极管只在信号的半个周期内导通工作,为避免失真,所以采用两只三极管协调工作的方式。图中输入变压器B1的次级有一个接地的中心抽头。在音频信号输入时,B1次级两个大小相等、极性相反的信号分别送到BG1和BG2的发射结。在输入信号的正半周时间里,BG1管因加的是反向偏压而截止,只有BG2能将信号放大,从集电极输出;而在信号负半周,BG1得到正高偏压,能将这半个周期的信号放大输出,而BG2却截止。电路中的两只三极管虽然各自放大了信号的半个同期,但它们的输出电流是分先后通过输出变压器B2的,所以在B2的次级得到的感应电流又能全成一个完整的输出信号。 这个功放电路中,为了解决阻抗匝配和信号相位等问题,输入与输出变压器是不可少的。但是,优质变压器的制作在材料和工艺上都比较困难,它本身总还要消耗一部分能量,降低电路的效率,而且变压器的频率特性不好,使电路对不同频率信号输出很不均匀,会造成失真,所以为了提高功放质量,人们更多地使用无变压器(OTL)功率放大电路。

推挽式甲类功放输出功率及损耗分析

推挽式甲类功放输出功率及损耗分析 甲类功放不存在交越失真,音频信号可以完整地传输。甲类功放是发烧友追求的目标。一部甲类功放,一其输出功率是多少?功率损耗是多少?这些都是甲类功放制作的前期理论计算。甲类功放多采用NPN与PNP配对的推挽式工作方式。 推挽式甲类功放电路,可以看成是由2个单管式甲类射极器组成。 正电源的NPN管与负电源的PNP管分别工作于甲类状态,对整个音频信号进行放大。输出到音箱。 推挽式甲类功放在进行组装调试前一定要知道,做多大的功率?需要多大静态电流?供应电流是多少?损耗是多少?这方面的资料难寻。有些生产厂家在甲类功放上标示的功率是不是真有这么大?购买者都想核实。如何达到以上目标呢? 这就需要对推挽式甲类功放进行理论分析。 图1是甲类推挽式功放输出电路,这个输出电路可以分解成图2。 图1 甲类推挽式功放输出电路

图2 输出电路分解图 从图2可知,喇叭所获得的电流是由NPN和PNP三极管分别提供的。NPN功放管和PNP功放管输入的音频信号极性是相同的。 甲类工作状态就是三极管在工作时任何时候都有电流。不论正值还是负值,末级管都有电流流过。单管甲类工作集电极电流波形见图3。以正弦波为例,静态电流为正弦波峰值即Io=lf,最大电流为2倍波峰值即 Imax=21f=2I.这样的静态电流设置可保证整个信号周期内三极管都有电流流过。要求功放输出功率,必须求出输出电流有效值。电流有效值见图3所示。 输出电流波形阴影部分面积之和等效值: 每个管子甲类输出功率为P甲1=I02Z(Z为输出阻抗)。NPN和PNP两个末级管总输出甲类功率为P甲2=2P甲1=2I02Z.一般音箱阻抗为Z=8Ω。公式简化为P甲2=2I02Z8=16I02z. 通过上式可知计算出某台甲类功放的输出功率。该功放静态电流为1.6A,P甲 2=16I02Z=16X1.62=40.96(W)。文章所说40W/8Ω甲类输出功率是可信的。

乙类推挽功率放大器

1.1 CDIO 设计目的 通过设计乙类互补推挽功率放大器,掌握利用分离原件组成OTL 功放电路的原理,提高电路原理图读图技能,熟练掌握较复杂电路的装调操作方法。 1.2 CDIO 设计正文 1.2.1设计要求 电压增益:20倍 直流输入电压:不大于10V 输出功率:1W 以上(负载RL =8?) 频率特性:20Hz ~50KHz 1.2.2 设计原理 乙类工作时,为了在负载上合成完整的正弦波,必须采用两管轮流导通的推挽电路。通常使用T1和T2两个特性配对的互补功率管(NPN 型和PNP 型),若忽略功率管发射结导通电压,则当输入信号正半周期时,两功率管分别导通和截止,输出为正半周的半个正弦波;当输出信号负半周期时,两功率功率管分别截止和导通,输出为负半周的半个正弦波,通过负载的电流通过合成形成完整的正弦波。 1.2.3设计过程 负载RL =8? Vo= V Po R L 22*=,输出功率Po=1W 峰值为Vp=4V ,峰峰值为Vp-p=8V 若要实现输出功率为Po=1W ,则直流电源电压Vcc >8 所以取Vcc=10V 输出电流Io==L CC R V /2 21 422mA 取β=100, 1b I =Io/β=4.22mA 取5I =20mA ,所以5R =0.5cc V /5I =250Ω 取E V =0.2Vcc=2V E R =2V/20mA=100Ω

因为E 5V R /R A ==2.5<10,所以E R 取值不合适 令64E R R R +=,4R =10Ω,5R =250Ω 当交流分析时,6R 被短路,V A =25符合要求 Q2三极管基极电流' b I = I5/β=20mA/100=0.2mA 2I =5~10倍的'b I ,取2I =2mA E 2V V =b +0.7V=2.7V 6R = 2b V /2mA=1.35k Ω 4R =(Vcc-2V b )/2mA=3.65k Ω 电路中R 、C 电路为高通滤波电路,频率在20Hz ~50KHz 所以计算得2C =40uF ,3C =2mF ,旁路电容1C =100nF 1.3仿真结果 图1 乙类功放原理图

失真放大电路实验报告

国家电工电子实验教学中心 模拟电子技术 实 验 报 告 实验题目:失真放大电路的研究 一、 实验题目及要求 1.基本要求 (a ) (b )

(1)输入一标准正弦波,如图1(a),频率2KHz,幅度50mV,输出正弦波频率2KHz,幅度1V。 (2)图1(b)是电路输出波形,若达到要求,如何设计电路,并修改。 (3)图1(c)是电路输出波形,若达到要求,如何设计电路,并修改。 (4)图1(d)是电路输出波形,若达到要求,如何设计电路,并修改。 (5)输入一标准正弦波,频率2KHz,幅度5V,设计电路使之输出图1(e)输出波形,并改进。 2.发挥部分 (1)图1(f)是电路输出失真波形,设计电路并改进。 (2)任意选择一运算放大器,测出增益带宽积f T。并重新完成前面基本要求和发挥部分的工作。 (3)将运算放大器连接成任意负反馈放大器,要求负载2kΩ,放大器的放大倍数为100,将振荡器频率提高至f T/100的95%,观察输出波形是否失真,若将振荡器频率提高至f T/100的110%,观察输出波形是否失真。 (4)放大器的放大倍数保持100,将振荡器频率提高至f T/100的95%或更高一点,保持不失真放大,将纯阻抗负载2kΩ替换为容抗负载20 F,观察失真的输出波形。 (5)改善发挥部分(4)的输出波形不失真,设计并完成电路。 (6)其他失真研究 二、实验过程 .1.基本要求 (1)输入一标准正弦波,如图1(a),频率2KHz,幅度50mV,输出正弦波频率2KHz,幅度1V。

分析知道,满足要求的电路很多,我们可以采用射级偏置电路: (2)设计电路使电路输出波形为图1(b),(c),(d),并改进。 对于射级偏置电路,当静态工作点太低时,导致输出波形失真,则为截止失真; 当静态工作点太高时,导致输出波形失真,则为饱和失真;当输入信号太大时,可能使被放大的信号同时在饱和区与截止区,这就产生了双向失真。 射级偏置电路原理图 顶部失真双向失真 底部失真正常波形

相关主题
文本预览
相关文档 最新文档