当前位置:文档之家› 磁共振成像序列及参数选择

磁共振成像序列及参数选择

缺血性脑卒中诊疗常规

内二科急性缺血性脑卒中诊疗指南急性缺血性脑卒中(脑梗死)是最常见的脑卒中类型,占全部脑卒中的60%-80%其急性期的时间划分尚不统一,一般指发病后2周内。急性缺血性脑卒中的处理应强调早期诊断、早期治疗、早期康复和早期预防再发。 缺血性脑卒中是指由于脑的供血动脉(颈动脉和椎动脉)狭窄或闭塞、脑供血不足导致的脑组织坏死的总称。有四种类型的脑缺血:短暂性脑缺血发作(TIA);可逆性神经功能障碍(RIND );进展性卒中(SIE);完全性卒中(CS )。TIA无脑梗死存在,而 RIND、 SIE和CS有不同程度的脑梗死存在。 急性期诊断与治疗 一、评估和诊断 脑卒中的评估和诊断包括:病史和体征、影像学检查、实验室检查、疾病诊断和病因分型等。 (一)病史和体征 1. 病史采集:询问症状出现的时间最为重要。其他包括神经症状 发生及进展特征,心脑血管病危险因素,用药史、药物滥用、偏头痛、痫性发作、感染、创伤及妊娠史等。 2. 一般体格检查与神经系统体检:评估气道、呼吸和循环功能后,立即进行一般体格检查和神经系统体检。 (二)脑病变与血管病变检查 1. 脑病变检查:(1)平扫CT:急诊平扫CT可准确识别绝大多数颅内出血,并帮助鉴别非血管性病变(如脑肿瘤),是疑似脑卒中患者首选的影像学检查方法。(2)多模式CT:灌注CT可区别可逆性与不可逆性缺血,因此可识别缺血半暗带。但其在指导急性脑梗死治疗方面的作用尚未肯定。(3)标准MRI:标准MRI (T1加权、T2加权及质子相)在识别急性小梗死灶及后颅窝梗死方面明显优于平扫CT可识别亚 临床梗死灶,无电离辐射,不需碘造影剂。但有费用较高、检查时间

高血压诊疗常规

老年病/高血压科常见疾病规范化诊疗 高血压 一、详细询问病史 性别、年龄、病程、既往史、家族史、心理社会因素、生活方式、特殊药物史二、实验室检查与体格检查 常规检查: 血常规,尿常规,尿微量白蛋白 血生化:空腹血糖,血脂分析,肝肾功,血钾,C-反应蛋白,同型半胱氨酸 器械检查:心电图/动态心电图,动态血压监测,超声心动图,颈动脉/股动脉超声,胸片,眼底检查 进一步检查: 化验:餐后血糖;甲状腺功能测定;24小时尿蛋白定量;血浆肾素活性;血和尿醛固酮;血和尿皮质醇;血和尿儿茶酚胺; 器械检查:脉搏波传导速度/踝臂指数;肾和肾上腺超声;CT;头颅磁共振成像;动脉造影;多导睡眠呼吸监测; 继发性高血压体征: Cushing综合征面容 甲亢:触诊甲状腺大小,突眼,下肢胫前水肿 嗜铬细胞瘤:可见神经纤维瘤性皮肤斑 多囊肾:触诊肾脏增大 肾血管性高血压:腹部闻及血管杂音 主动脉缩窄或主动脉病:主动脉听诊区或胸部杂音,股动脉搏动消失或下肢动脉压降低 器官损害体征: 脑:颈动脉杂音;运动或感觉功能缺失; 眼底:视网膜动脉病变2级~4级 心脏:心尖搏动位置及性质;心律失常;心室奔马律;肺部啰音;重力性水肿 外周血管:肢体动脉搏动减弱、消失、不对称;肢端发凉;皮肤缺血性改变 三、评估 I 高血压分级及心血管危险因素 II 判断高血压原因(原发还是继发) III 靶器官损害及相关临床状况 IV 进行危险分层,决定是否给予药物治疗,评估10年心血管事件发生率

老年病/高血压科常见疾病规范化诊疗 表1. 血压水平分类 分类收缩压(mmHg)舒张压(mmHg)正常血压≤120 和≤80 正常高值120~139 和/或80~89 高血压:(未用药,3次非同日)≥140 和/或≥90 1级高血压(轻度)140~159 和/或90~99 2级高血压(中度)160~179 和/或100~109 3级高血压(重度)≥180 和/或≥110 单纯收缩期高血压≥140 和<90 表2. 影响预后的因素 心血管危险因素靶器官的损害(TOD)相关临床情况(ACC)·高血压(1~3级)·左心室肥厚·脑血管病 ·男性>55;女性>65 心电图缺血性卒中 ·吸烟超声心动图:LVMI 脑出血 ·糖耐量受损或空腹血糖异常男≥125,女≥120 g/m2短暂性脑缺血发作 ·血脂异常:·颈动脉超声IMT≥0.9mm·心脏疾病TC ≥ 5.7mmol/L或动脉粥样硬化斑块心肌梗死史 或LDL-C>3.3mmol/L ·脉搏波速度(颈-股)≥12 m/s 心绞痛 或HDL-C<1.0mmol/L ·踝/臂指数<0.9 冠状动脉血运重建 ·早发心血管病家族史·血清肌酐轻度升高慢性心力衰竭 (一级亲属,发病年龄<50岁)男性115~133μmol/L ·肾脏疾病 ·腹型肥胖或肥胖女性107~124μmol/L 糖尿病肾病腰围:男性≥90 cm;·估算GFR 降低肾功能受损(血肌酐)女性≥85cm;<60ml /min /1.73 m2男性>133μmol/L 肥胖:BMI ≥ 28kg/m2·微量白蛋白尿:女性>124μmol/L ·血清高同型半胱氨酸:尿白蛋白30~300mg/24h 蛋白尿(>300mg/24h)≥ 10μmol/L白蛋白/肌酐比:≥30mg/g ·外周血管疾病 ·视网膜病变:出血或渗出, 视乳头水肿 ·糖尿病 空腹血糖≥7.0mmol/L 餐后血糖≥11.1mmol/L 糖化血红蛋白≥6.5%

磁共振成像系统原理和功能结构

磁共振基本原理 第一章 主要讲述电荷、电流、电磁、磁感应方面的基本概念。这里将介绍余下章节中将提到的大量的词汇。你可以快速复习这些概念,但是要注意关键定义和一些重要的概念,因为这些概念有可能在考试中出现。同时也包括一些对向量和复数关系的解释。如果你有工程师的背景就请略过这些章节,否则请多花些时间研究2D、3D向量,振幅和相位、矢量和复数方面的知识。矢量在MRI中有极其重要的作用,因此现在多花些时间学习是值得的。 静电学研究的是静止的电荷,在MRI中几乎没有太大意义。我们以此作为开场白主要是因为电学和磁学之间有密切的关系。静电学与静磁场非常相似。最小的电荷存在于质子(正)和电子(负)中,集中在很小的一团或以量子形式存在。虽然质子比电子重1840倍,但是他们有同样幅度的电荷。电荷的单位是库仑,是6.24*1018个电子的总和,这是一个非常大的数量。一道闪电包含10到50个库仑。一个电子或质子的电荷为±1.6*10-19库仑。 与一个粒子所拥有的分离的电荷不同,电场是连续的。关键的概念是相同的电荷相互排斥,不同的电荷相互吸引。同时,你应该知道电场强度与电荷呈线形变化,和电荷的距离的平方成反比。换句话说,如果总的电荷数增加,电场的强度也会增加,与电荷的距离越远,电场强度越弱。 将相同的电荷拉近,或将不同的电荷分开都需要能量。当出现这种情况时,粒子就有做功的势能。就象拉开或压缩一个弹簧一样。这种做功的势能叫电动力(emf)。当一个电荷被移动,并做功时,势能可以转化成动能。每单位电荷的势能称电势能,它是电荷相对于电场的位置的函数(1/d2)。 电荷位于周边,它尽量要处于一个舒服的位置,但这也不是一件容易做到的事。它不断地运动、做功。运动的电荷越多,每个电荷做功越多,总功越大。运动的电荷叫做电流。电流的测量单位为安培(A)。第一个电流图描绘的是电池产生直流电(DC)。电厂里的发电机产生的是变化的电压,也称为交流电(AC)。 在通常情况下,电子在电流中的运动并不是没有阻力的。它们遇到各种类型的阻力。电路中阻碍电流流动的特点叫做阻抗。共有三种类型的阻抗,即电阻、电感、电容。如果电流的做功产生热量,阻抗就叫电阻;如果能量能产生磁场,阻抗即电感;如果能形成电场即电容。这三种阻抗在MRI中均有不同的作用,后面的章节将详细讨论。电流在电路中流动会做功,在单位时间内电流的总做功量称为功率。 磁学是物质的基本特性,就象电荷与质量一样。物质的磁性特点很大一部分是由电子的结构和运动决定的。非磁性的物质有非常小的排列方向紊乱的、结构紊乱的磁区,它们相互抵消。永磁体有大量的几乎排列方向一致磁区。排列越一致,磁场越强。 *备注:现在被称为土耳其的国家曾经认为天然磁体有磁性是很神秘的。几千年前,土耳其被称为Magnesia,这就是磁性这一词的由来。 当一种物质放在磁场中变的有磁性的程度被称为磁敏感性。真空的磁敏感性定义为0。如内

磁共振成像术语中英文对照

磁共振成像术语中英文对照 脉冲序列简称飞利浦西门子GE 快速自旋回波TSE TSE TSE FSE 快速场回波FFE FFE FISP GRASS 快速反转恢复TIR TIR TIR IR 自旋-平面回波成像SE-EPI SE-EPI SE-EPI SE-EPI 自旋回波SE SE SE SE 梯度-平面回波成像GRE-EPI FFE-EPI FISP-EPI GRASS-EPI 三维-相干梯度回波3D-FFE 3D-FFE 3D-FISP 3D-GRASS 扰相梯度回波SPGR T1-FFE FLASH SPGR/FSPGR 三维-快速自旋回波3D-TSE 3D-TSE 3D-TSE 3D-FSE 反转恢复-平面回波成像IR-EPI IR-EPI IR-EPI IR-EPI 重度T2加权梯度回波SSFP T2-FFE PSIF SSFP 平衡式梯度回波B-FFE Balanced FFE TrueFISP/CISS FIESTA/FIESTA-C 快速梯度回波TFE TFE Turbo FLASH Fast GRE/ Fast- SPGR T1高分辨各向同性容积激发THRIVE THRIVE VIBE LAV A/FAME 三维快速梯度回波3D-TFE 3D TFE MPRAGE 3DFGRE/3D Fast SPGR 短TI反转恢复STIR STIR STIR STIR 长TI反转恢复FLAIR FLAIR Turbo Dark Fluid FLAIR 单激发快速自旋回波SS-FSE Single-shot TSE HASTE Single-shot FSE 快速反转自旋回波FRFSE DRIVE RESTORE FRFSE 平面回波成像EPI EPI EPI EPI 梯度加自旋GRASE GRASE TGSE 并行采集iPAT SENSE iPAT ASSET 回波时间TE TE TE TE 重复时间TR TR TR TR 反转时间TI TI TI TI 反转角FA Flip Angle Flip Angle Flip Angle 视野FOV FOV FOV FOV 矩形视野RFOV RFOV FOV Phase PFOV 层厚Thi slice thickness slice thickness slice thickness 层间距Gap Gap Distance Factor Gap 平均次数NSA NSA ACQ NEX 方位Ori Slice orientation Slice orientation Slice orientation 矩阵Matrix Base resolution Matrix 脂肪饱和SPAIR SPIR/SPAIR Fat Sat Fat Sat 近线圈效应校正CLEAR CLEAR Prescan Normalize PURE 时间飞跃TOF TOF TOF TOF 相位对比PC Phase contrast Phase contrast Phase contrast 对比增强MRA CE-MRA CE-MRA CE-MRA CE-MRA 横断位TRA transverse transverse transverse 冠状位COR coronal coronal coronal 矢状位SAG sagittal sagittal sagittal 磁敏感成像SWI V enous BOLD SWI SWI

磁共振成像系统

(一)分类磁共振按照不同的分类方法有不同的分类。按照场强大小分为高场、中场、低场磁共振;高场一般为场强高于1. OT的磁共振;巾场为场强高于0. ST而低于1.OT的磁共振;低场一般为低于0. ST的磁共振。按照磁体类型一般分为:永磁型磁共振、常寻型磁共振和超导型磁共振。永磁型磁共振维护费用小;逸散磁场小,对周围环境影响小;造价低;安装费用也较少; 一般只能产生垂直磁场;场强范围一般在0. 15~0. 35T;磁场随温度漂移严重,磁体需要很好的恒温;磁场不能关断,对安装检修带来困难;磁体沉重;且随着场强增大,磁体厚度增大,更加沉重。常导型磁共振生产制造较简单,造价低;可产生水平或垂直磁场;重量轻;检修方便,磁场均匀度也很高;场强一般在0. 1~0. 4T;运行耗费较大,通电线圈耗电达60kW以上;还需配用专门的供电设备和水冷系统。超导型磁共振场强范围0. 3~9T;磁场均匀性高;稳定性好;图像质量好;运行耗费很高,制冷剂主要是液氦的费用很高;运输、安装、维护费用也很高。目前主要市场上的磁共振以高场和低场为主,高场一般为超导型,低场一般为永磁型;且低场永磁型磁共振往往做成开放式,有C形式或立柱式;高场超导磁共振往往做成圆形孔腔式或站立式的磁共振。常导磁共振一般也做成圆形孔腔式。还有些公司推出了某些部位如头颅、四肢或关节专用检查的磁共振设备,其形态变化较灵活。一般来讲,低场永磁型以出诊断图像为主要目的,图像质量已经能够满足诊断要求;高场超寻型主要以功能磁共振为主,图像质量是其基础。 (二)MRI系统结构 磁共振系统的典型结构如图6-10所示,主要包括磁体子系统、梯度场子系统、射频子系统、数据采集和图像重建子系统、主计算机和图像显示子系统、射频屏蔽与磁屏蔽、MRI软件等,分述如下。

脑胶质瘤诊疗规范(完整版)

脑胶质瘤诊疗规范(完整版) 一、概述 脑胶质瘤是指起源于脑神经胶质细胞的肿瘤,是最常见的原发性颅内肿瘤,世界卫生组织(WHO)中枢神经系统肿瘤分类将脑胶质瘤分为Ⅰ-Ⅳ级,Ⅰ、Ⅱ级为低级别脑胶质瘤,Ⅲ、Ⅳ级为高级别脑胶质瘤。本规范主要涉及星形细胞、少突胶质细胞和室管膜细胞来源的高、低级别脑胶质瘤的诊治。 我国脑胶质瘤年发病率为5-8/10万,5年病死率在全身肿瘤中仅次于胰腺癌和肺癌。脑胶质瘤发病机制尚不明了,目前确定的两个危险因素是:暴露于高剂量电离辐射和与罕见综合征相关的高外显率基因遗传突变。此外,亚硝酸盐食品、病毒或细菌感染等致癌因素也可能参与脑胶质瘤的发生。 脑胶质瘤临床表现主要包括颅内压增高、神经功能及认知功能障碍和癫痫发作三大类。目前,临床诊断主要依靠计算机断层扫描(CT)及磁共振成像(MRI)检查等影像学诊断,磁共振弥散加权成像(DWI)、磁共振弥散张量成像(DTI)、磁共振灌注成像(PWI)、磁共振波谱成像(MRS)、功能磁共振成像(fMRI)、正电子发射计算机断层显像(PET)等对脑胶质瘤的鉴别诊断及治疗效果评价有重要意义。 脑胶质瘤确诊需要通过肿瘤切除或活检获取标本,进行组织和分子病理学检查,确定病理分级和分子亚型。目前主要的分子病理标记物包括:异柠檬酸脱氢酶(IDH)突变、染色体1p/19q联合缺失状态

(co-deletion)、O6-甲基鸟嘌呤-DNA甲基转移酶(MGMT)启动子区甲基化、α地中海贫血伴智力低下综合征X连锁基因(ATRX)突变、端粒酶逆转录酶(TERT)启动子突变、人组蛋白H3.3(H3F3A)K27M突变、BRAF基因突变、PTPRZ1-MET基因融合、miR-181d、室管膜瘤RELA 基因融合等1,2。这些分子标志物对脑胶质瘤的个体化治疗及临床预后判断具有重要意义。 脑胶质瘤治疗以手术切除为主,结合放疗、化疗等综合治疗方法。手术可以缓解临床症状,延长生存期,并获得足够肿瘤标本用以明确病理学诊断和进行分子遗传学检测。手术治疗原则是最大范围安全切除肿瘤,而常规神经导航、功能神经导航、术中神经电生理监测和术中MRI实时影像等新技术有助于实现最大范围安全切除肿瘤。放疗可杀灭或抑制肿瘤细胞,延长患者生存期,常规分割外照射是脑胶质瘤放疗的标准治疗。胶质母细胞瘤(GBM)术后放疗联合替莫唑胺(TMZ)同步并辅助化疗,已成为成人新诊断GBM的标准治疗方案。 脑胶质瘤治疗需要神经外科、神经影像科、放射治疗科、神经肿瘤科、病理科和神经康复科等多学科合作,遵循循证医学原则,采取个体化综合治疗,优化和规范治疗方案,以期达到最大治疗效益,尽可能延长患者的无进展生存期(PFS)和总生存期(OS),提高生存质量。为使患者获得最优化的综合治疗,医师需要对患者进行密切随访观察,定期影像学复查,兼顾考虑患者的日常生活、社会和家庭活动、营养支持、疼痛控制、康复治疗和心理调控等诸多问题。 二、影像学诊断

5T磁共振成像系统技术参数.doc

1.5T 磁共振成像系统技术参数 * 总体要求:投标时提供进口品牌产品、技术白皮书(DATA SHEET) ,投标方应提供设备技术要求中的全套配置。 序号项目要求 一磁体 1.1 磁场强度 1.5T 1.2 磁体类型超导磁体 1.3 磁体屏蔽方式主动屏蔽 1.4 抗外界电磁干扰屏蔽具备 1.5 匀场方式主动匀场 + 被动匀场 1.6 磁场稳定度<0.1ppm/hour 1.7 主动匀场技术具备 1.8 匀场线圈组数≥18 组 1.9 10cm DSV ( 20 点 24 平面 VRMS 测量法)≤ 0.014ppm 1.10 20cm DSV ( 20 点 24 平面 VRMS 测量法)≤ 0.044ppm 1.11 30cm DSV ( 20 点 24 平面 VRMS 测量法)≤ 0.1ppm 1.12 40cm DSV ( 20 点 24 平面 VRMS 测量法)≤ 0.22ppm 1.13 磁体长度(不含外壳)≤160cm * 1.14 磁体长度(包含外壳)≤170cm 1.15 病人检查孔道孔径≥ 60cm * 1.16 液氦消耗率(以datasheet 公布的数据为准)≤0.01 升 /年 1.17 理论液氦填充周期(以datasheet 公布的数据为 ≥5 年准) 1.18 五高斯磁力线X,Y 轴≤ 2.5m 1.19 五高斯磁力线Z 轴≤ 4.0m 1.20 磁体重量 (连液氦 ) ≥3.2 吨 1.21 冷头保用时间≥2 年 二梯度系统 2.1 梯度系统具备源屏蔽2.2 梯度场强( X,Y,Z 轴,非有效值)≥ 33mT/m 2.3 梯度切换率( X,Y,Z 轴,非有效值)≥ 120mT/m/s 2.4 梯度爬升时间≤ 0.275ms 2.5 最高梯度性能时X 轴扫描野≥ 50cm 2.6 最高梯度性能时Y 轴扫描野≥ 50cm

脑胶质瘤诊疗规范(完整版)

脑胶质瘤诊疗规范(完整版) 12月21日,国家卫健委发布《关于印发原发性肺癌等18个肿瘤诊疗规范的通知》,其中的《脑胶质瘤诊疗规范》的全文如下: 一、概述 脑胶质瘤是指起源于脑神经胶质细胞的肿瘤,是最常见的原发性颅内肿瘤,世界卫生组织(WHO)中枢神经系统肿瘤分类将脑胶质瘤分为Ⅰ-Ⅳ级,Ⅰ、Ⅱ级为低级别脑胶质瘤,Ⅲ、Ⅳ级为高级别脑胶质瘤。本规范主要涉及星形细胞、少突胶质细胞和室管膜细胞来源的高、低级别脑胶质瘤的诊治。 我国脑胶质瘤年发病率为5-8/10万,5年病死率在全身肿瘤中仅次于胰腺癌和肺癌。脑胶质瘤发病机制尚不明了,目前确定的两个危险因素是:暴露于高剂量电离辐射和与罕见综合征相关的高外显率基因遗传突变。此外,亚硝酸盐食品、病毒或细菌感染等致癌因素也可能参与脑胶质瘤的发生。 脑胶质瘤临床表现主要包括颅内压增高、神经功能及认知功能障碍和

癫痫发作三大类。目前,临床诊断主要依靠计算机断层扫描(CT)及磁共振成像(MRI)检查等影像学诊断,磁共振弥散加权成像(DWI)、磁共振弥散张量成像(DTI)、磁共振灌注成像(PWI)、磁共振波谱成像(MRS)、功能磁共振成像(fMRI)、正电子发射计算机断层显像(PET)等对脑胶质瘤的鉴别诊断及治疗效果评价有重要意义。 脑胶质瘤确诊需要通过肿瘤切除或活检获取标本,进行组织和分子病理学检查,确定病理分级和分子亚型。目前主要的分子病理标记物包括:异柠檬酸脱氢酶(IDH)突变、染色体1p/19q联合缺失状态(co-deletion)、O6-甲基鸟嘌呤-DNA甲基转移酶(MGMT)启动子区甲基化、α地中海贫血伴智力低下综合征X连锁基因(ATRX)突变、端粒酶逆转录酶(TERT)启动子突变、人组蛋白H3.3(H3F3A)K27M突变、BRAF基因突变、PTPRZ1-MET 基因融合、miR-181d、室管膜瘤RELA基因融合等。这些分子标志物对脑胶质瘤的个体化治疗及临床预后判断具有重要意义。 脑胶质瘤治疗以手术切除为主,结合放疗、化疗等综合治疗方法。手术可以缓解临床症状,延长生存期,并获得足够肿瘤标本用以明确病理学诊断和进行分子遗传学检测。手术治疗原则是最大范围安全切除肿瘤,而常规神经导航、功能神经导航、术中神经电生理监测和术中MRI实时影像等新技术有助于实现最大范围安全切除肿瘤。放疗可杀灭或抑制肿瘤细胞,延长患者生存期,常规分割外照射是脑胶质瘤放疗的标准治疗。胶质

磁共振成像的原理和临床应用

磁共振成像原理与临床应用 一、授课提纲:内容分四个部分:磁共振的发展背景和历史;磁共振的基本原理;磁共振的 安全性和优缺点;磁共振临床应用。 1、背景和发展历史:1946年由美国斯坦福大学的Felix Bloch和哈佛大学的Edward Purcell发现核磁共振现象,为此获得1952年诺贝尔奖。磁共振的发展史中共有16 位诺贝尔获奖者,分别在物理学、化学和生理医学奖项中夺魁。尤其近几年磁共振 在医学领域中的应用越来越广泛,从单纯的形态解剖学显示向功能和分子影像发 展,从而显示出磁共振的强大潜能。 2、磁共振基本原理:分物理学基础、磁共振的基本序列和图像特点三个方面概述。介 绍了磁化、进动、Larmor公式、静磁场(主磁场)和射频脉冲、驰豫和横向、纵向 驰豫,重复和回波时间、梯度磁场及两个主要基本序列(SE和GRE) 3、高磁场下的安全性:禁忌症和注意事项 4、磁共振的临床应用:包括三个方面,分别是形态解剖学的显示:尤其在细微解剖结 构、动态器官和血管解剖的形态显示上具有独特优势。其次是特殊序列的结构显示,如水成像、磁敏感加权显示,对于胆道、泌尿系和椎管等富有液性成分的结构能清 晰显示管腔内情况,对于梗阻的判断非常直接。最有优势体现在功能解剖学的显示,如脑功能成像,分别从弥散、灌注、波谱和神经网络及分子影像方面加以展示。 二、常用术语 1、共振、自旋磁矩、磁化、进动、Larmor公式 2、T1WI和T2WI、横向和纵向驰豫、重复和回波时间(TR、TE) 3、SE序列和GRE序列 三、磁共振成像过程 ?把病人放进磁场→人体被磁化产生纵向磁化矢量 ?发射射频脉冲(同时进行空间定位编码)→人体内氢质子发生共振从而产生横向 磁化矢量 ?关掉射频脉冲→质子发生T1、T2弛豫(同时进行空间定位编码) ?线圈采集人体发出的MR信号→计算机处理(付立叶转换)→显示图像

中华医学会肺癌临床诊疗指南(2019版)

肺癌临床诊疗指南(2019版) 原发性支气管肺癌简称肺癌,是我国及世界范围内发病率和死亡率最高的恶性肿瘤之一[1]。在我国,近年来肺癌的发病率和死亡率呈明显上升趋势。我国国家癌症中心统计,2014年我国肺癌发病率和死亡率均居恶性肿瘤首位,其中新发病例约78.1万,死亡病例约62.6万;男性高于女性,城市高于农村;发病率和死亡率亦存在区域差异,由高到低依次为东部、中部和西部[2]。早期肺癌多无明显症状,临床上多数患者出现症状就诊时已属晚期,致晚期肺癌整体5年生存率不高。 制定符合中国国情、多学科共同参与的肺癌临床诊疗指南,对规范防治措施、提高我国肺癌诊治水平起到重要的作用。为进一步提高我国肺癌的诊疗水平、改善患者的预后、给各级临床医师提供专业的循证医学意见,中华医学会组织全国呼吸内科、肿瘤内科、胸外科、放疗科、影像科和病理科专家,整合近年来肺癌病理、基因检测、免疫分子标志物检测和治疗手段等方面的新进展,同时考虑到中国的实际国情及诊治的可及性。结合国际指南和我国的国情,本专家委员会制定了中华医学会肺癌临床诊疗指南,根据循证医学级别进行了分类推荐,分4个级别:(1)1类推荐证据级别最高,为专家组一致推荐;(2)2A类推荐证据级别稍低,专家组一致推荐;(3)2B类推荐证据级别低,部分专家推荐;(4)3类推荐证据为专家分歧较大。本指南旨在针对专业的各级临床医师提供循证、指导性意见。内容覆盖肺癌的筛查、诊断、病理、治疗、随访等。 一、肺癌的筛查 1.高危人群的选择:年龄55~74岁,吸烟量30包/年(如已戒烟,戒烟时间<15年)的个体推荐参加低剂量CT(low-dose computed tomography,LDCT)肺癌筛查,或年龄45~70岁且有一项肺癌高危因素也可作为筛查的条件,包括吸烟史、职业致癌物质暴露(如石棉、电离辐射、二氧化硅等)、个人肿瘤史、直系亲属肺癌家族史、慢性肺部疾病史(如慢

MRI诊疗常规

操作常规 【保养及操作规程】 1. 非工作人员不得进入机房,工作期间不得在机房内喧哗,保持工作环境安静。 2. 机房内严禁吸烟,严禁吃零食,保持机房整洁。 3. 工作人员在工作期间,应注意安全,防止意外情况发生。 4. 维持机房温度和湿度恒定,保证机器处于正常工作环境。 5. 工作人员应爱护公物、 线圈等, MR 室一切附属设备应放在指定位臵, 不得乱放。 6. 日常应定期做好机器保洁、匀场维护等工作,并做好记录。 7. 所有病人资料应及时保存,防止丢失。 8. 为了确保检查的顺利完成和病人的安全: 1 )请勿将磁性物品带入检查室:如手表、假牙、银行卡及各类磁卡、手机、 BP 机、钥 匙、硬币、眼镜等。

2 )检查病人勿穿有金属扣子及拉链的衣服,颅颈检查病人请勿佩带饰物(如:项链、 耳环) 、发夹)及假牙。 3 )下列病人不能行 MRI 检查:装有心脏起搏器的病人、体内有铁磁性物质(如动脉瘤 夹等)的病人。 4) 妊娠头三个月应谨慎。有金属节育器的妇女应取环后检查。 9. 向患者交待清楚过程,取得配合,消除其检查的顾虑及恐惧。 10. 核对并输入患者基本资料: MRI 号、姓名、年龄、检查部位等;根据患者体形、 年龄、检查部位选择合适扫描序列及扫描参数。 11. 平扫完毕后,初步观察结果,决定是否加做增强扫描。如需要增强扫描,肾功 能正常(无明显肾衰)者方可进行。 12. 全部序列扫描完毕后,结束当前检查,患者下扫描床后,机架及扫描床归位。 进行图象后处理并照像、打印。 【适应证】 1.

中枢神经系统疾患。 2. 颅颈移行区病变。 3. 颈部病变。 4. 胸部病变。 5. 心脏大血管病变。 6. 肝、胆病变。 2. 肾及输尿管病变。 3. 胰腺病变。 4. 盆腔病变。 5. 四肢、关节病变。 【禁忌证】 1. 带有心脏起搏器的患者。

MRI也就是核磁共振成像

MRI也就是核磁共振成像,英文全称是:nuclear magnetic resonance imaging,之所以后来不称为核磁共振而改称磁共振,是因为日本科学家提出其国家备受核武器伤害,为表示尊重,就把核字去掉了。 核磁共振是一种物理现象,作为一种分析手段广泛应用于物理、化学生物等领域,到1973年才将它用于医学临床检测。为了避免与核医学中放射成像混淆,把它称为核磁共振成像术(MR)。 MR是一种生物磁自旋成像技术,它是利用原子核自旋运动的特点,在外加磁场内,经射频脉冲激后产生信号,用探测器检测并输入计算机,经过处理转换在屏幕上显示图像。 MR提供的信息量不但大于医学影像学中的其他许多成像术,而且不同于已有的成像术,因此,它对疾病的诊断具有很大的潜在优越性。它可以直接作出横断面、矢状面、冠状面和各种斜面的体层图像,不会产生CT检测中的伪影;不需注射造影剂;无电离辐射,对机体没有不良影响。MR对检测脑内血肿、脑外血肿、脑肿瘤、颅内动脉瘤、动静脉血管畸形、脑缺血、椎管内肿瘤、脊髓空洞症和脊髓积水等颅脑常见疾病非常有效,同时对腰椎椎间盘后突、原发性肝癌等疾病的诊断也很有效。 MR也存在不足之处。它的空间分辨率不及CT,带有心脏起搏器的患者或有某些金属异物的部位不能作MR的检查,另外价格比较昂贵。 磁共振成像是断层成像的一种,它利用磁共振现象从人体中获得电磁信号,并重建出人体信息。1946年斯坦福大学的Flelix Bloch和哈佛大学的Edward Purcell各自独立的发现了核磁共振现象。磁共振成像技术正是基于这一物理现象。1972年Paul Lauterbur 发展了一套对核磁共振信号进行空间编码的方法,这种方法可以重建出人体图像。 磁共振成像技术与其它断层成像技术(如CT)有一些共同点,比如它们都可以显示某种物理量(如密度)在空间中的分布;同时也有它自身的特色,磁共振成像可以得到任何方向的断层图像,三维体图像,甚至可以得到空间-波谱分布的四维图像。

缺血性脑卒中诊疗常规解读

内二科急性缺血性脑卒中诊疗指南急性缺血性脑卒中(脑梗死)是最常见的脑卒中类型,占全部脑卒中的60%-80%。其急性期的时间划分尚不统一,一般指发病后2周内。急性缺血性脑卒中的处理应强调早期诊断、早期治疗、早期康复和早期预防再发。 缺血性脑卒中是指由于脑的供血动脉(颈动脉和椎动脉)狭窄或闭塞、脑供血不足导致的脑组织坏死的总称。有四种类型的脑缺血:短暂性脑缺血发作(TIA);可逆性神经功能障碍(RIND);进展性卒中(SIE);完全性卒中(CS)。TIA无脑梗死存在,而RIND、SIE和CS有不同程度的脑梗死存在。 急性期诊断与治疗 一、评估和诊断 脑卒中的评估和诊断包括:病史和体征、影像学检查、实验室检查、疾病诊断和病因分型等。 (一)病史和体征 1.病史采集:询问症状出现的时间最为重要。其他包括神经症状发生及进展特征,心脑血管病危险因素,用药史、药物滥用、偏头痛、痫性发作、感染、创伤及妊娠史等。 2.一般体格检查与神经系统体检:评估气道、呼吸和循环功能后,立即进行一般体格检查和神经系统体检。 (二)脑病变与血管病变检查 1.脑病变检查:(1)平扫CT:急诊平扫CT可准确识别绝大多数颅内出血,并帮助鉴别非血管性病变(如脑肿瘤),是疑似脑卒中患者首选的影像学检查方法。(2)多模式CT:灌注CT可区别可逆性与不可逆性缺血,因此可识别缺血半暗带。但其在指导急性脑梗死治疗方面的作用尚未肯定。(3)标准MRI:标准MRI(T1加权、T2加权及质子相)在识别急性小梗死灶及后颅窝梗死方面明显优于平扫CT。可识别亚临床梗死灶,无电离辐射,不需碘造影剂。但有费用较高、检查时间

长及患者本身的禁忌证(如有心脏起搏器、金属植入物或幽闭恐怖症)等局限。 2.血管病变检查:颅内、外血管病变检查有助于了解脑卒中的发病机制及病因,指导选择治疗方案。常用检查包括颈动脉双功超声、经颅多普勒(TCD)、磁共振血管成像(MRA)、CT血管成像(CTA)和数字减影血管造影(DSA)等。 颈动脉双功超声对发现颅外颈部血管病变,特别是狭窄和斑块很有帮助;TCD可检查颅内血流、微栓子及监测治疗效果,但其受操作技术水平和骨窗影响较大。 (三)实验室及影像检查选择 对疑似脑卒中患者应进行常规实验室检查,以便排除类脑卒中或其他病因。 所有患者都应做的检查:①平扫脑CT或MRI;②血糖、血脂肝肾功能和电解质;③心电图和心肌缺血标志物;④全血计数,包括血小板计数;⑤凝血酶原时间(PT)、国际标准化比率(INR)和活化部分凝血活酶时间(APTT);⑥氧饱和度;⑦胸部X线检查。 部分患者必要时可选择的检查:①毒理学筛查;②血液酒精水平;③妊娠试验;④动脉血气分析(若怀疑缺氧);⑤腰穿(怀疑蛛网膜下腔出血而CT未显示或怀疑脑卒中继发于感染性疾病); (四)诊断 急性缺血性脑卒中的诊断可根据:(1)急性起病;(2)局灶性神经功能缺损,少数为全面神经功能缺损;(3)症状和体征持续数小时以上(溶栓可参照适应证选择患者);(4)脑CT或MRI排除脑出血和其他病变;(5)脑CT或MRI有责任梗死病灶。 (五)病因分型 对急性缺血性脑卒中患者进行病因分型有助于判断预后、指导治疗和选择二级预防措施。当前国际广泛使用TOAST病因分型,将缺血

OPER-0.35T-磁共振成像系统(0.35T)配置清单

O P E R-0.35T磁共振成像系统(0.35T)配置清单 一、成像系统 1. 磁体系统 无涡流开放型钕铁硼永磁体(场强0.35T,实用新型专利号:ZL 012 45762.0) 自恒温加热单元 自恒温电源和控制单元 2. 射频发射和接收系统 全数字谱仪 射频功率放大器 平板式射频发射线圈 前置放大器 射频接收线圈:头部、体部(大)、体部(小)、颈部、膝关节、脊柱、腕关节线圈各1 只 3. 梯度系统 梯度放大器及梯度电源 x、y、z梯度线圈 4. 谱仪 全数字谱仪 5. 计算机系统 图像处理工作站(研祥工控机): Intel至强TM (XEON TM) 双处理器

2.8G以上主频 128MB显存 2048MB内存 160G硬盘 DVD刻录机 高分辨率液晶(TFT)彩色图像显示器(20’) 标准键盘 鼠标 高级图像后处理软件包 二、操作台 磁共振成像专用组合式操作台 三、病人处理系统 诊断床 对讲系统 背景音乐系统 四、系统软件 基于WINDOWS 2000 的中/英文鑫高益磁共振扫描平台OPERView:基本序列软件包 系统控制软件包 数据处理软件包 图像重建软件包 瑞典CONTEXTVITION图像处理软件包

故障分析软件包 质量控制软件包 激光相机接口软件包 血管成像软件包 水成像软件包 扩散成像软件包(EPI/线性) 五、射频屏蔽室 磁体室射频屏蔽体、屏蔽门、屏蔽观察窗、滤波板、波导板及必要的内装修等 六、电源及机房空调系统 15KW 交流稳压电源 磁体室温控空调1台 七、附件 床垫、枕垫、头垫、头线圈座、测试水模、备用保险丝、安全标志等 八、随机文件 使用说明书、技术说明书、维护手册等 九、培训 应用培训(原理、操作、维护和初级诊断):2周 现场培训:1周 十、相机一台 OPER-0.35磁共振成像系统(0.35T)技术参数 磁体

磁共振成像原理

磁共振成像是利用原子核在磁场内共振所产生信号经重建成像的一种成像技术。核磁共振(nuclear magnetic resonance,NMR)是一种核物理现象。早在1946年Block与Purcell 就报道了这种现象并应用于波谱学。Lauterbur1973年发表了MR成像技术,使核磁共振不仅用于物理学和化学。也应用于临床医学领域。近年来,核磁共振成像技术发展十分迅速,已日臻成熟完善。检查范围基本上覆盖了全身各系统,并在世界范围内推广应用。为了准确反映其成像基础,避免与核素成像混淆,现改称为磁共振成像。参与MRI 成像的因素较多,信息量大而且不同于现有各种影像学成像,在诊断疾病中有很大优越性和应用潜力。

一、磁共振现象与MRI 含单数质子的原子核,例如人体内广泛存在的氢原子核,其质子有自旋运动,带正电,产生磁矩,有如一个小磁体。小磁体自旋轴的排列无一定规律。但如在均匀的强磁场中,则小磁体的自旋轴将按磁场磁力线的方向重新排列。在这种状态下,质子带正电荷,它们像地球一样在不停地绕轴旋转,并有自己的磁场. 正常情况下,质子处于杂乱无章的排列状态。当把它们放入一个强外磁场中,就会发生改变。它们仅在平行或反平行于外磁场两个方向上排列 用特定频率的射频脉冲(radionfrequency,RF)进行激发,作为小磁体的氢原子核吸收一定量的能而共振,即发生了磁共振现象。停止发射射频脉冲,则被激发的氢原子核把所吸收的能逐步释放出来,其相位和能级都恢复到激发前的状态。这一恢复过程称为弛豫过程(relaxationprocess),而恢复到原来平衡状态所需的时间则称之为弛豫时间(relaxationtime)。有两种弛豫时间,一种是自旋-晶格弛豫时间(spin-lattice relaxationtime)又称纵向弛豫时间(longitudinal relaxation time)反映自旋核把吸收的能传给周围晶格所需要的时间,也是90°射频脉冲质子由纵向磁化转到横向磁化之后再恢复到纵向磁化激发前状态所需时间,称T1。另一种是自旋-自旋弛豫时间(spin-spin relaxation time),又称横向弛豫时间(transverse relaxation time)反映横向磁化衰减、丧失的过程,也即是横向磁化所维持的时间,称T2。T2衰减是由共振质

磁共振成像的临床应用

磁共振成像的临床应用 (作者:___________单位: ___________邮编: ___________) 【摘要】上世纪七十年代CT的问世是医学影像学的一场革命,她带动了医学事业蓬勃发展,因此,发明者获得了诺贝尔医学奖。至八十年代磁共振成像(magneticresonanceimaging)的兴起,医学影像的成像原理发生了本质变化,从简单的x线能量衰减转化为物理生物学成像。大大拓宽了医学影像的发展道路,各种新的成像技术层出不穷。改变了影像学就是形态学的传统观念,引导影像学向定性、定量诊断方向发展。 【关键词】磁共振原理临床应用技术设备 磁共振成像是利用原子核在磁场内共振所产生信号经重建成像的一种成像技术。 核磁共振(nuclearmagneticresonance,NMR)是一种核物理现象。早在1946年Block与Purcell就报道了这种现象并应用于波谱学。Lauterbur1973年发表了MR成象技术,使核磁共振不仅用于物理学和化学。也应用于临床医学领域。近年来,核磁共振成像技术发展十分迅速,已日臻成熟完善。检查范围基本上覆盖了全身各系统,并在世界范围内推广应用。为了准确反映其成像基础,避免与核素成

像混淆,现改称为磁共振成象。参与MRI成像的因素较多,信息量大而且不同于现有各种影像学成像,在诊断疾病中有很大优越性和应用潜力。 1中枢神经系统 (1)脑血管性疾病由于弥散、灌注及水抑制的应用,使的MRI 诊断脑梗塞的敏感性、特异性均明显高于CT。MRI对脑溢血的价值在于其能对血肿进行准确分期。脑动脉瘤、动静脉畸形均有流空血管影显示。 (2)脑肿瘤脑肿瘤在MRI上有形态学和异常信号改变,三维成像的使用对脑肿瘤的定性、定位诊断更准确。 (3)炎症各种细菌、病毒、霉菌性脑炎、脑膜炎与肉芽肿在MRI 可显示,注射顺磁性造影剂Gd-DTPA对定性诊断更有价值。对弓形体脑炎、脑囊虫、脑包虫病可定性诊断,并能分期分型。 (4)脑退行性病变MR能清楚的显示皮质性、髓质性、弥漫性脑萎缩。MR还能诊断原发性小脑萎缩。协助诊断皮质下动脉硬化性脑病、Alzermer氏病、pick氏病、hunfing氏舞蹈病,wilson氏病、leigh氏病、fahr氏病及CO中毒、霉变干蔗中毒、甲旁减等疾病。 (5)脑白质病变MR对诊断多发性硬化、肾上腺性脑白质病等脱髓鞘和髓鞘形成不良性疾病都有重要价值。 (6)脑室与蛛网膜下腔病变MR能清楚的显示孟氏孔和中脑导水管,即能明确分辨梗阻性和交通性脑积水。MR显示蛛网膜囊肿、室管膜囊肿、脑室内肿瘤、脑室内囊肿等均很敏感。

脑胶质瘤诊疗规范(2018年版)

脑胶质瘤诊疗规范(2018年版) 脑胶质瘤诊疗规范(xx年版) 一.概述脑胶质瘤是指起源于脑神经胶质细胞的肿瘤,是最常见的原发性颅内肿瘤,世界卫生组织(WHO)中枢神经系统肿瘤分类将脑胶质瘤分为Ⅰ-Ⅳ级,Ⅰ.Ⅱ级为低级别脑胶质瘤,Ⅲ.Ⅳ级为高级别脑胶质瘤。本规范主要涉及星形细胞.少突胶质细胞和室管膜细胞来源的高.低级别脑胶质瘤的诊治。 我国脑胶质瘤年发病率为5-8/10万,5年病死率在全身肿瘤中仅次于胰腺癌和肺癌。脑胶质瘤发病机制尚不明了,目前确定的两个危险因素是:暴露于高剂量电离辐射和与罕见综合征相关的高外显率基因遗传突变。此外,亚硝酸盐食品.病毒或细菌感染等致癌因素也可能参与脑胶质瘤的发生。 脑胶质瘤临床表现主要包括颅内压增高.神经功能及认知功能障碍和癫痫发作三大类。目前,临床诊断主要依靠计算机断层扫描(CT)及磁共振成像(MRI)检查等影像学诊断,磁共振弥散加权成像(DWI).磁共振弥散张量成像(DTI).磁共振灌注成像(PWI).磁共振波谱成像(MRS).功能磁共振成像(fMRI).正电子发射计算机断层显像(PET)等对脑胶质瘤的鉴别诊断及治疗效果评价有重要意义。 脑胶质瘤确诊需要通过肿瘤切除或活检获取标本,进行组织和分子病理学检查,确定病理分级和分子亚型。目前主要的分子

病理标记物包括:异柠檬酸脱氢酶(IDH)突变.染色体1p/19q联合缺失状态(co-deletion).O6-甲基鸟嘌呤-DNA甲基转移酶(MGMT)启动子区甲基化.α地中海贫血伴智力低下综合征X连锁基因(ATRX)突变.端粒酶逆转录酶(TERT)启动子突变.人组蛋白H 3.3(H3F3A)K27M突变.BRAF基因突变.PTPRZ1-MET基因融合.miR-181d.室管膜瘤RELA基因融合等1,2。这些分子标志物对脑胶质瘤的个体化治疗及临床预后判断具有重要意义。 脑胶质瘤治疗以手术切除为主,结合放疗.化疗等综合治疗方法。手术可以缓解临床症状,延长生存期,并获得足够肿瘤标本用以明确病理学诊断和进行分子遗传学检测。手术治疗原则是最大范围安全切除肿瘤,而常规神经导航.功能神经导航.术中神经电生理监测和术中MRI实时影像等新技术有助于实现最大范围安全切除肿瘤。放疗可杀灭或抑制肿瘤细胞,延长患者生存期,常规分割外照射是脑胶质瘤放疗的标准治疗。胶质母细胞瘤(GBM)术后放疗联合替莫唑胺(TMZ)同步并辅助化疗,已成为成人新诊断GBM的标准治疗方案。 脑胶质瘤治疗需要神经外科.神经影像科.放射治疗科.神经肿瘤科.病理科和神经康复科等多学科合作,遵循循证医学原则,采取个体化综合治疗,优化和规范治疗方案,以期达到最大治疗效益,尽可能延长患者的无进展生存期(PFS)和总生存期(OS),提高生存质量。为使患者获得最优化的综合治疗,医师

医用磁共振成像系统(MRI)编制说明

福建省地方计量检定规程 《医用磁共振成像(MRI)系统》(报批稿)编制说明 一、任务来源 《医用磁共振成像(MRI)系统检定规程》是福建省科技厅2009年省属公益类自主科研项目,下达文件:闽科计〔2009〕46号和闽财〔2009〕584号,任务书编号为:2009R10015-3。目的是研究医用磁共振成像(MRI)系统检定方法,制定出适合我省医用磁共振成像(MRI)系统使用、检定情况的地方计量检定规程,满足我省计量检定机构强制检定工作需要,使计量性能、测量结果的量值具有溯源性、准确可靠,进而为正确诊断疾病提供计量保障。 二、编制本检定规程的必要性 医用磁共振成像(MRI)系统是利用射频(RF)电磁波对置于磁场中的含有自旋不为零的原子核的物质进行激发,产生磁共振,用感应线圈采集磁共振信号,按一定数学方法进行处理而建立的一种数字图像。医用磁共振成像(MRI)系统设备包括磁体、梯度线圈、供电部分、射频发射器及MR信号接收器、计算机成像系统和诊断床等组成。近年来,核磁共振成像技术发展十分迅速,已日臻成熟完善,检查范围基本上覆盖了全身各系统,并在对软组织的检查方面明显优于X射线CT机。医用磁共振成像(MRI)系统在作为大型医疗设备,在医院诊断方面地位日益突出,已在国内、外大、中医院普遍使用。许多医院都有医用磁共振成像(MRI)系统,有国外的厂家,如:西门子、美国GE、东芝、日立等产品,也有国内的厂家,形成种类众多,早期质量不高的局面。在这种情况下,磁共振影像计量参数的检测就显得至关重要了。但目前国家尚无医用磁共振成像(MRI)系统的检定规程或校准规范,为此,我们与厦门市计量检定测试院、南京军区福州总院共同开展本规程的编制工作,使制定出医用磁共振成像(MRI)系统计量检定规程更适合我省实际情况,保证医疗机构医用磁共振成像(MRI)系统安全、合格使用。

相关主题
文本预览
相关文档 最新文档