当前位置:文档之家› 电子技术课程设计 基于ICL8038的函数发生器

电子技术课程设计 基于ICL8038的函数发生器

电子技术课程设计 基于ICL8038的函数发生器
电子技术课程设计 基于ICL8038的函数发生器

基于ICL8038的函数发生器

摘要:函数发生器根据用途不同,有产生三种或多种波形的函数发生器,其电路中使用的器件可以是分离器件,也可以是集成器件,产生方波、正弦波、三角波的方案也有多种。本设计是以ICL8038集成块为核心器件,制作的一种函数发生器。ICL8038是一种具有多种波形输出的精密震荡集成电路,只需要少量的外部元件就能产生方波、正弦波和三角波。其输出波形的频率和占空比可以由电流或电阻控制。

关键词:ICL8038,方波,三角波,正弦波。

Abstract:Function generator according to different purposes, a function generator to produce three or more kinds of waveforms, devices used in circuit can be a separation device, and can also be integrated device, generates a square wave, sine wave, triangle wave scheme also has a variety of. The design is based on ICL8038 chip as the core device, a function generator produced. ICL8038 is a precision oscillation integrated circuit with a variety of waveform output, only external components can be produced small amounts of square wave, sine wave and triangular wave. The frequency of the output waveform and the duty ratio can control by current or resistance.

Keywords:ICL8038,Square wave,Triangular wave,Sine wave.

目录

1 前言 (1)

2 总体方案 (2)

2.1 方案比较 (2)

2.1.1 方案一 (2)

2.1.2 方案二 (2)

2.2 方案选择 (3)

3 单元模块设计 (4)

3.1 ICL8038 (4)

3.1.1 ICL8038 管脚功能 (4)

3.1.2 ICL8038的性能特点 (5)

3.1.3 ICL8038内部结构 (5)

3.2 控制电路 (6)

4 系统调试 (8)

5 系统功能、指标参数 (9)

6 设计总结 (10)

7 谢辞 (11)

8 参考文献 (12)

9 附录 (13)

1前言

信号发生器是科研及工程实践中重要的仪器之一,在电子工程、通信工程、自动控制、遥测控制、测量仪器、仪表和计算机等技术领域系统设计及调试过程中,用不同频率的正弦波、三角波和方波常作为信号源,应用十分方便。过去常由分立元件及集成运放构成振荡器,分立元件体积大、相对耗能高、故障频率也高。随着集成电路的迅速发展,用集成电路可以很快、很方便的构成各种信号波形发生器。用集成电路实现的信号波形发生器与其它信号波形发生器相比,其波形质量、幅度和频率稳定性等性能指标,都有很大的提高。

信号发生器根据用途不同,有产生三种或多种波形的发生器,其电路中使用的器件可以是分离器件,也可以是集成器件,产生方波,正弦波,三角波的方案有多种,如先产生正弦波,根据周期性的非正弦波与正弦波所呈的某种确定的函数关系,再通过整形电路将正弦波转化为方波,经过积分电路后将其变为三角波。也可以先产生三角波-方波,再将三角波或方波转化为正弦波。随着电子技术的快速发展,新材料新器件层出不穷,器件的可选择性大幅增加,例如ICL8038就是一种技术上很成熟的可以产生正弦波,方波,三角波的主芯片。ICL8038精密函数发生器是采用肖特基势垒二极管等先进工艺制成的单片集成电路芯片,电源电压范围宽、稳定度高、精度高、易于用等优点,外部只需接入很少的元件即可工作,可同时产生方波、三角波和正弦波,其函数波形的频率受内部或外电压控制,可被应用于压控振荡等波形。

2 总体方案

通过查阅大量相关技术资料,并结合自己的实际知识,我主要提出了两种技术方案来实现系统功能。下面我将首先对这两种方案的组成框图和实现原理分别进行说明,并分析比较它们的特点,然后阐述我最终选择方案的原因。

2.1 方案比较

2.1.1 方案一

方案一的结构框图如下图2.1所示。

图2.1 函数发生器电路组成框图

方案一采用由集成运算放大器与晶体管差分放大器共同组成的方波—三角波—正弦波函数发生器的设计方法。由比较器和积分器组成方波—三角波产生电路,比较器输出的方波经积分器得到三角波,三角波到正弦波的变换电路主要由差分放大器来完成。差分放大器具有工作点稳定,输入阻抗高,抗干扰能力较强等优点。特别是作为直流放大器时,可以有效地抑制零点漂移,因此可将频率很低的三角波变换成正弦波。波形变换的原理是利用差分放大器传输特性曲线的非线性。 2.1.2 方案二

方案二的结构框图如下图2.2所示。

图2.2 由8038构成的函数发生器电路组成框图

方案二中,利用单片集成函数信号发生器ICL8038、集成振荡器、电位器等外围电路灵活的组成,使通过电源来产生产生正弦波、方波、三角波等波形电路。

2.2 方案选择

经过分析比较,由于方案一函数发生器所采用电路复杂,不易理解,更不容易掌握,所以本设计采用方案二利用单片集成函数信号发生器ICL8038、集成振荡器、集成定时器等灵活的组成来产生产生正弦波、方波、三角波等波形电路,具有线路简单,调试方便,功能完备,输出波形稳定清晰,信号质量好,精度高,系统输出频率范围较宽且经济实用,而且具有较高的温度稳定性和频率稳定性。特别适合用于工控和电子实验室,当输出缓冲电路独立设置多路时,可同时多路输出三种信号,比较容易满足设计需要。

3单元模块设计

本节主要介绍系统各单元模块的具体功能、电路结构、工作原理、以及各个单元模块之间的联接关系;同时本节也会对相关电路中的参数计算、元器件选择、以及核心器件进行必要说明。

3.1 I CL8038

3.1.1 ICL8038管脚功能

图3.1 ICL8038管脚功能图

脚1、12 (Sine Wave Adjust):正弦波失真度调节;

脚2(Sine Wave Out):正弦波输出;

脚3(Triangle Out):三角波输出;

脚4、5(Duty Cycle Frequency):方波的占空比调节、正弦波和三角波的对称调节;

脚6(V+):正电源±10V~±18V;

脚7(FM Bias):内部频率调节偏置电压输;

脚8(FM Sweep):外部扫描频率电压输入;

脚9(Square Wave Out)方波输出,为开路结构;

脚10(Timing Capacitor):外接振荡电容;

脚11(V- or GND):负电原或地;

脚13、14(NC):空脚。

3.1.2 ICL8038的性能特点

(1)具有在发生温度变化时产生低的频率漂移,最大不超过50ppm/℃;

(2)正弦波输出具有低于1%的失真度;

(3)三角波输出具有0.1%高线性度;

(4)具有0.001Hz~1MHz的频率输出范围;工作变化周期宽;

(5)2%~98%之间任意可调;高的电平输出范围;

(6)从TTL电平至28V;

(7)具有正弦波、三角波和方波等多种函数信号输出;

(8)易于使用,只需要很少的外部条件。

3.1.3 ICL8038内部结构

ICL8038是单片集成函数发生器,其内部原理电路框图如图3.2。在图3.2中,ICL8038由恒流源I1、I2,电压比较器C1、C2和触发器等组成。电压比较器C1、C2的门限电压分别为2VR/3和VR/(VR=VCC+VEE),电流源I1和I2的大小可通过外接电阻调节,且I2必须大于I1。当触发器的Q端输出为低电平时,它控制开关S使电流源I2断开。而电流源I1则向外接电容C充电,使电容两端电压VC随时间线性上升,当VC上升到VC=2VR/3时,比较器C1输出发生跳变,使触发器输出端Q由低电平变为高电平,控制开关S使电流源I2接通。由于I2>I1,因此电容C放电,vc随时间线性下降。当vc下降到vc≤VR/3时,比较器C2输出发生跳变,使触发器输出端Q又由高电平变为低电平,I2再次断开,I1再次向C充电,vc又随时间线性上升。如此周而复始,产生振荡,若I2=2I1,vc上升时间与下降时间相等,就产生三角波输出到脚3。而触发器输出的方波经缓冲器输出到脚9。三角波经正弦波变换器变成正弦波后由脚2输出。因此,ICL8038能输出方波、三角波和正弦波等三种不同的波形。

图3.2 内部原理电路框图

3.2 控制电路

ICL8038单片函数发生器有两种工作方式,即输出函数信号的频率调节电压可以由内部供给,也可以由外部供给。用以下由内部供给偏置电压调节的接线图对芯片进行测试,观察其特性,图3.3为基本接法。

图3.3 ICL8038的一种接法

在以上应用中,由于第7脚频率调节电压偏置一定,所以函数信号的频率和占空比由RA、RB和C决定,其频率为F,周期T,t1为振荡电容充电时间,t2为放电时间。

T=t1+t2 (3.1)

f=1/T (3.2)

由于三角函数信号在电容充电时,电容电压上升到比较器规定输入电压的1/3倍,分得的时间为

t1=CV/I=(C·1/3·Vcc·R

A )/(1/5·Vcc)=5R

A

C /3 (3.3)

在电容放电时,电压降到比较器输入电压的1/3时,分得的时间为

t 2=CV/I=(C·1/3·V

CC

)/(2/5·V

CC

/R

B

-1/5·V

CC

/R

A

=(3/5·R

A

·R

B

·C)/(2R

A

-R

B

)(3.4)

f=1/(t

1+t

2

)=3/{5R

A

C[1+R

B

/(2R

A

-R

B

)]}(3.5)

对图中,如果RA=RB,就可以获得占空比为50%的方波信号。其频率f=3/(10R

A

C)(3.6)

4系统调试

函数发生器的电路是在Proteus中画出原理电路图并进行的仿真实验。因为设计要求是产生方波、三角波、正弦波,所以ICL8038的4管脚5管脚的外接电阻一定要相等才能产生占空比为50%的矩形波即方波,才可以产生三角波。如果占空比不为50%,产生的波形就为锯齿波。通过计算将4脚5脚的外接电阻都设为4.7KHz,电容设为

6380pF~63800pF之间的可变电容器,外接电源为正负6V的直流电源,7脚8脚短接。调节可变电容器的容值就可以产生频率范围为1KHz-10kHz的方波、三角波和正弦波。

5系统功能、指标参数

由ICL8038为核心所组成的函数发生器的主要功能为输出方波、三角波和正弦波等波形。振荡频率范围宽,频率稳定性好。本设计的频率范围是1KHz-10kHz,输出波形的失真小。正弦波失真度<5%,经过仔细调整后,失真度还可降低到0.5%。三角波的线性度高达0.1%。矩形波占空比的调节范围很宽,D=1%-99%,由此可获得窄脉冲、宽脉冲或方波。

本设计的函数发生器所产生的波形的峰峰值可以由直流电源来直接控制,比较简单,只需要将直流电源设置为正负6V,即可在误差允许范围内得到Vp-p=12V的方波、Vp-p=4V 的三角波以及Vp-p>1V的正弦波。

6设计总结

通过近两周的函数发生器的设计,知道了课程设计的一般步骤:首先要对所选课题做认真的分析,明确了解任务和功能指标,然后作总体原理框图的设计。在设计的过程中,要根据具体情况,反复对设计方案进行论证与比较,以求得到最佳方案。在整体方案确定后,合理选择和独立设计单元模块电路选择元器件,画电路图,进行仿真和功能测试,撰写实验报告。

在本次课题设计中使用了ICL8038单片函数波形发生器,使我对ICL8038的工作原理有了更多的理解,较深入的学习了ICL8038的引脚功能、工作波形等内部构造及其工作原理。利用ICL8038制作出来的函数发生器具有线路简单,调试方便,功能完备,可输出正弦波、方波、三角波,输出波形稳定清晰,信号质量好,精度高,系统输出频率范围较宽且经济实用,而且具有较高的温度稳定性和频率稳定性。特别适合用于工控和电子实验室,当输出缓冲电路独立设置多路时,可同时多路输出三种信号,比较容易满足实验需要。

虽然这次课程设计只有短短的两周时间,我想对于我今后的学习和工作都有着非常深远的意义。因为它让我明白经过实践掌握的知识才是最牢固的,在以后的学习中要注重实践的重要性。

7谢辞

通过此次的课程设计,我学到了很多知识,培养了自学能力和动手能力。并且由原先的被动的接受知识转换为主动的寻求知识,这可以说是学习方法上的一个很大的突破。在以往的传统的学习模式下,我们可能会记住很多的书本知识,但是通过这次实习,我们学会了如何将学到的知识转化为自己的东西,学会了怎么更好的处理知识和实践相结合的问题。

在此过程中也学到了做任何事情所要有的态度和心态,首先做学问要一丝不苟,对于发展过程中出现的任何问题和偏差都不要轻视,要通过正确的途径去解决,在做事情的过程中要有耐心和毅力,不要一遇到困难就达退堂鼓,只要坚持下去就可以找到思路去解决问题的。而且要学会与人合作,这样做起事情来就可以事倍功半。

从我们开始这个课程设计,到这个课程设计的结束,老师一直陪伴我们,给我们细心的指导,给我们讲解各种注意事项和各个部分应该注意的问题,有了XX老师的指导,我们才能顺利的完成这次课程设计,所以,我对XX老师表示深深的谢意,感谢她陪伴我们的这两周,让我们在这短短的两周中,学到了许许多多的知识。

另外,我要感谢我们小组的成员们,因为有大家的共同努力,相互帮助,一起探讨,才有今天的成就。在这次课程设计中,每个人都扮演着必不可少的角色,大家分工合作、虽然在刚刚开始的时候大家都有些不知从何开始,但是,通过大量的查阅资料和大家一起讨论,终于克服重重困难,完成了我们的课题。所以,现在的成绩是大家共同努力的结果。

8参考文献

[1] 康华光主编《电子技术基础模拟部分》(第五版) 高等教育出版社 2006年

[2] 康华光主编《电子技术基础数字部分》(第五版) 高等教育出版社 2006年

[3] 陈明义主编《电子技术课程设计实用教程》(第三版)中南大学出版社 2010年

[4] 罗杰谢资美主编《电子线路设计·实验·测试》(第四版)电子工业出版社 2008年

[5] 朱定华陈林吴建新主编《电子电路测试与实验》清华大学出版社 2004年

[6] 王建新姜萍主编《电子线路实践教程》科学出版社 2003年

[7] 陈大钦《电子技术基础实验》(第二版) 北京高等教育出版社 2000年

[8] 葛汝明主编《电子技术实验与课程设计》山东大学出版社 2004年

[9] 高平《电子线路设计基础》北京化学工业出版社 2007年

[10] 张文涛主编《PROTEUS仿真软件应用》武汉华中科技大学出版社 2010年

9附录

附录1 基于ICL8038的函数发生器仿真电路图

附录2 仿真波形

函数发生器的设计

函数发生器的设计

目录 一、设计任务与要求 二、方案与论证 1.正弦波产生电路: 1. 1RC桥式正弦波振荡电路: 2.正弦波变换为方波的电路: 2.1 电压比较器电路: 3.方波变换为三角波的电路: 3.1 积分运算电路: 三、仿真 四、元器件清单 五、调式与性能分析:

一、 设计任务与要求: 掌握方波——三角波——正弦波函数发生器的设计方法与测试技术。了解集成运算放大器与晶体管差分放大器组成的函数发生器的工作原理与设计方法。学会安装与调试由分离器件与集成电路组成的多级电子电路小系统。 设计并制作一个简易函数发生器,要求如下: 1. 输出波形:正弦波、方波、三角波等 2. 频率范围:1Hz~10Hz, 10Hz~100Hz 3. 输出电压:方波Vp-p<=24V , 三角波Vp-p<=8V , 正弦波Vp-p>1V . 二、方案与论证 方案总体分为三部分,先设计一个正弦波发生电路,再将正弦波信号经迟滞比较器转化为方波,再将方波经积分运算转变为三角波。 正弦波 方波 三角波 1. 正弦波产生电路: RC 桥式振荡电路原理图如下: RC 桥式振荡电路 迟滞比较器 积分电路

3 2 6 7 415 U1 UA741 C C R R RF R1 0R1 由选频网络和放大电路两部分组成。选频网络兼作放大电路的正反馈,反馈系数Fv = Vf / V o ,当f =1 / (2πRC) 时,幅频响应的幅值为最大Fmax = 1/3 ,相频响应的相位角为零。也就是说,只有当f =1 / (2πRC) 时,输出电压的幅值最大,为输入电压的1/3,且输出电压与输入电压同相。 噪声中有f =1 / (2πRC) 这个频率,直流电源提供能源,选频网络的正反馈使输出频率越来越大,最后受电路中非线性元件的限制,振荡幅度自动稳定下来。适当调整负反馈的强弱,使Av

利用Labview实现任意波形发生器的设计

沈阳理工大学课程设计专用纸No I

1 引言 波形发生器是一种常用的信号源,广泛应用于通信、雷达、测控、电子对抗以及现代化仪器仪表等领域,是一种为电子测量工作提供符合严格技术要求的电信号设备。随着现代电子技术的飞速发展,现代电子测量工作对波形发生器的性能提出了更高的要求,不仅要求能产生正弦波、方波等标准波形,还能根据需要产生任意波形,且操作方便,输出波形质量好,输出频率范围宽,输出频率稳定度、准确度及分辨率高,频率转换速度快且频率转换时输出波形相位连续等。可见,为适应现代电子技术的不断发展和市场需求,研究制作高性能的任意波形发生器十分有必要,而且意义重大。 波形发生器的核心技术是频率合成技术,主要方法有:直接模拟频率合成、锁相环频率合成(PLL),直接数字合成技术(DDS)。 传统的波形发生器一般基于模拟技术。它首先生成一定频率的正弦信号,然后再对这个正弦信号进行处理,从而输出其他波形信号。早期的信号发生器大都采用谐振法,后来出现采用锁相环等频率合成技术的波形发生器。但基于模拟技术的传统波形发生器能生成的信号类型比较有限,一般只能生成正弦波、方波、三角波等少数的规则波形信号。随着待测设备的种类越来越丰富,测试用的激励信号也越来越复杂,传统波形发生器已经不能满足这些测试需要,任意波形发生器(AWG)就是在这种情况下,为满足众多领域对于复杂的、可由用户自定义波形的测试信号的日益增长的需要而诞生的。随着微处理器性能的提高,出现了由微处理器、D/A以及相关硬件、软件构成的波形发生器。它扩展了波形发生器的功能,产生的波形也比以往复杂。实质上它采用了软件控制,利用微处理器控制D/A,就可以得到各种简单波形。但由于微处理器的速度限制,这种方式的波形发生器输出频率较低。目前的任意波形发生器普遍采用DDS(直接数字频率合成)技术。基于DDS技术的任意波形发生器(AWG)利用高速存储器作为查找表,通过高速D/A转换器对存储器的波形进行合成。它不仅可以产生正弦波、方波、三角波和锯齿波等规则波形,而且还可以通过上位机编辑,产生真正意义上的任意波形。

函数信号发生器设计方案

函数信号发生器的设 计与制作 目录 一.设计任务概述 二.方案论证与比较 三.系统工作原理与分析 四.函数信号发生器各组成部分的工作原理 五.元器件清单 六.总结 七.参考文献

函数信号发生器的设计与制 一.设计任务概述 (1)该发生器能自动产生正弦波、三角波、方波。 (2)函数发生器以集成运放和晶体管为核心进行设计 (3)指标: 输出波形:正弦波、三角波、方波 频率范围:1Hz~10Hz,10Hz~100Hz 输出电压:方波VP-P≤24V,三角波VP-P=8V,正弦波VP-P>1V; 二、方案论证与比较 2.1·系统功能分析 本设计的核心问题是信号的控制问题,其中包括信号频率、信号种类以及信号强度的控制。在设计的过程中,我们综合考虑了以下三种实现方案: 2.2·方案论证 方案一∶采用传统的直接频率合成器。这种方法能实现快速频率变换,具有低相位噪声以及所有方法中最高的工作频率。但由于采用大量的倍频、分频、混频和滤波环节,导致直接频率合成器的结构复杂、体积庞大、成本高,而且容易产生过多的杂散分量,难以达到较高的频谱纯度。 方案二∶采用锁相环式频率合成器。利用锁相环,将压控振荡器(VCO)的输出频率锁定在所需要频率上。这种频率合成器具有很好的窄带跟踪特性,可以很好地选择所需要频率信号,抑制杂散分量,并且避免了量的滤波器,有利于集成化和小型化。但由于锁相环本身是一个惰性环节,锁定时间较长,故频率转换时间较长。而且,由模拟方法合成的正弦波的参数,如幅度、频率相信都很难控制。 方案三:采用8038单片压控函数发生器,8038可同时产生正弦波、方波和三角波。改变8038的调制电压,可以实现数控调节,其振荡范围为0.001Hz~300K 方案四:采用分立元件设计出能够产生3种常用实验波形的信号发生器,并确定了各元件的参数,通过调整和模拟输出,该电路可产生频率低于1-10Hz的3种信号输出,具有原理简单、结构清晰、费用低廉的优点。该电路已经用于实际电路的实验操作。 三、系统工作原理与分析 采用由集成运算放大器与场效应管共同组成的方波—三角波—正弦波函数发生器的设计方法,先通过比较器产生方波,再通过积分器产生三角波,最后通过场效应管正弦波转换电路形成正弦波,波形转换原理图如下:

模拟电路课程设计-函数信号发生器

模拟电路课程设计——函数信号发生器 一、设计任务和要求 1 在给定的±12V直流电源电压条件下,使用运算放大器设计并制作一个函 数信号发生器。 2 信号频率:1kHz~10kHz 3 输出电压:方波:Vp-p≤24V 三角波:Vp-p≤6V 正弦波: Vp-p>1V 4 方波:上升和下降时间:≤10ms 5 三角波失真度:≤2% 6 正弦波失真度:≤5% 二、设计方案论证 1.信号产生电路 〖方案一〗 由文氏电桥产生正弦振荡,然后通过比较器得到方波,方波积分可得三角波。三角波 这一方案为一开环电路,结构简单,产生的正弦波和方波的波形失真较小。但是对于三角波的产生则有一定的麻烦,因为题目要求有10倍的频率覆盖系数,然而对于积分器的输入输出关系为: 显然对于10倍的频率变化会有积分时间dt的10倍变化从而导致输出电压振幅的10倍变化。而这是电路所不希望的。幅度稳定性难以达到要求。而且通过仿真实验会发现积分器极易产生失调。 〖方案二〗 由积分器和比较器同时产生三角波和方波。其中比较器起电子开关的作用,将恒定的正、负极性的 方波 三角波 电位交替地反馈积分器去积分而得到三角波。该电路的优点是十分明显的: 1 线性良好、稳定性好;

2 频率易调,在几个数量级的频带范围内,可以方便地连续地改变频率, 而且频率改变时,幅度恒定不变; 3 不存在如文氏电桥那样的过渡过程,接通电源后会立即产生稳定的波 形; 4 三角波和方波在半周期内是时间的线性函数,易于变换其他波形。 综合上述分析,我们采用了第二种方案来产生信号。下面将分析讨论对生成的三角波和方波变换为正弦波的方法。 2.信号变换电路 三角波变为正弦波的方法有多种,但总的看来可以分为两类:一种是通过滤波器进行“频域”处理,另一种则是通过非线性元件或电路作折线近似变换“时域”处理。具体有以下几种方案: 〖方案一〗 采用米勒积分法。设三角波的峰值为,三角波的傅立叶级数展开: 通过线性积分后: 显见滤波式的优点是不太受输入三角波电平变动的影响,其缺点是输出正弦波幅度会随频率一起变化(随频率的升高而衰减),这对于我们要求的10倍的频率覆盖系数是不合适的。另外我们在仿真时还发现,这种积分滤波电路存在这较明显的失调,这种失调使输出信号的直流电平不断向某一方向变化。 积分滤波法的失调图(Protel 99 SE SIM99仿真) 而且输出存在直流分量。 〖方案二〗 才用二极管-电阻转换网络折线逼近法。十分明显,用折线逼近正弦波时,如果增多折线的段数,则逼近的精度会增高,但是实际的二极管不是理想开关,存在导通阈值问题,故不可盲目的增加分段数;在所选的折线段数一定的情况下,转折电的位置的选择也影响逼近的精度。凭直观可以判知,在正弦波变化较快的区段,转折点应选择的密一些;而变化缓慢的区段应选的稀疏一些。 二极管-电阻网络折线逼近电路对于集成化来说是比较简单,但要采用分立元件打接则会用到数十个器件,而且为了达到较高的精度所有处于对称位置的电阻和

基于51单片机的函数信号发生器的设计

龙源期刊网 https://www.doczj.com/doc/af12113638.html, 基于51单片机的函数信号发生器的设计 作者:朱兆旭 来源:《数字技术与应用》2017年第02期 摘要:本文所设计的系统是采用AT89C51单片机和D/A转换器件DAC0832产生所需不 同信号的低频信号源,AT89C51 单片机作为主体,采用D/A转换电路、运放电路、按键和LCD液晶显示电路等,按下按键控制生成方波、三角波、正弦波,同时用LCD显示相应的波形,输出波形的周期可以用程序改变,具有线路简单、结构紧凑、性能优越等特点。 关键词:51单片机;模数转换器;信号发生器 中图分类号:TP391 文献标识码:A 文章编号:1007-9416(2017)02-0011-01 1 前言 波形发生器,是一种作为测试用的信号源,是当下很多电子设计要用到的仪器。现如今是科学技术和设备高速智能化发展的科技信息社会,集成电路发展迅猛,集成电路能简单地生成各式各样的波形发生器,将其他信号波形发生器于用集成电路实现的信号波形发生器进行对比,波形质量、幅度和频率稳定性等性能指标,集成电路实现的信号波形发生器都胜过一筹,随着单片机应用技术的不断成长和完善,导致传统控制与检测技术更加快捷方便。 2 系统设计思路 文章基于单片机信号发生器设计,产生正弦波、方波、三角波,连接示波器,将生成的波形显示在示波器上。按照对作品的设计研究,编写程序,来实现各种波形的频率和幅值数值与要求相匹配,然后把该程序导入到程序存储器里面。 当程序运行时,一旦收到外界发出的指令,要求设备输出相应的波形时,设备会调用对应波形发生程序以及中断服务子程序,D/A转换器和运放器随之处理信号,然后设备的端口输出该信号。其中,KEY0为复位键,KEY1的作用是选择频率的步进值,KEY2的作用是增加频 率或增加频率的步进值,KEY3的作用是减小频率或减小频率的步进值,KEY4的作用是选择三种波形。103为可调电阻,用于幅值的调节。自锁开关起到电源开关的作用。启动电源,程序运行的时候,选择正弦波,红色LED灯亮起;选择方波,黄色LED灯亮起;选择三角波,绿色LED灯亮起。函数信号发生器频率最高可达到100Hz,最低可达到10Hz,步进值0.1- 10Hz,幅值最高可到3.5V。系统框图如图1所示。 3 软件设计

模电课程设计-波形发生器

一、设计题目 波形发生电路 二、设计任务和要求 要求:设计并制作用分立元件和集成运算放大器组成的能产生方波、三角波和正弦波的波形发生器。 指标:输出频率分别为:102H Z、103H Z和104Hz;输出电压峰峰值V PP≥20V 三、原理电路设计: (1)方案的提出 方案一: ①先由文氏桥振荡产生一个正弦波信号(右图) ②把文氏桥产生的正弦波通过一个过零比较器 从而把正弦波转换成方波。 ③把方波信号通过一个积分器。转换成三角波。 方案二: ①由比较器和积分器构成方波三角波产生电路。(下图) ②然后通过低通滤波把三角波转换成正弦波信号。 方案三: ①由比较器和积分器构成方波三角波产生电路。(电路图与方案二相同) ②用折线法把三角波转换成正弦波。(下图)

(2)方案的比较与确定 方案一: 文氏桥的振荡原理:正反馈RC网络与反馈支路构成桥式反馈电路。当R1=R2、时,F=1/3、Au=3。然而,起振条件为Au略大于3。实际操作时,C1=C2。即f=f 如果要满足振荡条件R4/R3=2时,起振很慢。如果R4/R3大于2时,正弦波信号顶部失真。调试困难。RC串、并联选频电路的幅频特性不对称,且选择性较差。因此放弃方案一。 方案二: 把滞回比较器和积分比较器首尾相接形成正反馈闭环系统,就构成三角波发生器和方波发生器。比较器输出的风波经积分可得到三角波、三角波又触发比较器自动翻转形成方波,这样即可构成三角波和方波发生器。 通过低通滤波把三角波转换成正弦波是在三角波电压为固定频率或频率变化范围很小的情况下使用。然而,指标要求输出频率分别为102H Z、103H Z和104Hz。因此不满足使用低通滤波的条件。放弃方案二。 方案三: 方波三角波发生器原理如同方案二。 比较三角波和正弦波的波形可以发现,在正弦波从零逐渐增大到峰值的过程中,与三角波的差别越来越大;即零附近的差别最小,峰值附近差别最大。因此,根据正弦波与三角波的差别,将三角波分成若干段,按不同的比例衰减,就可以得到近似与正弦波的折线化波形。而且折线法不受频率范围的限制,便于集成化。 综合以上三种方案的优缺点,最终选择方案三来完成本次课程设计。 (3)单元电路设计

函数信号发生器的设计与制作

函数信号发生器的设计、和装配实习 一.设计制作要求: 掌握方波一三角波一正弦波函数发生器的设计方法和测试技术。学会由分立器件和集成电路组成的多级电子电路小系统的布线方法。掌握安装、焊接和调试电路的技能。掌握在装配过程中可能发生的故障进行维修的基本方法。 二.方波一三角波一正弦波函数发生器设计要求 函数发生器能自动产生正弦波、三角波、方波及锯齿波、阶梯波等电压波形。其电路中使用的器件可以是分立器件,也可以是集成电路(如单片集成电路函数发生器ICL8038)。本次电子工艺实习,主要介绍由集成运算放大器和晶体管差分放大器组成的方波一三角波一正弦波函数信号发生器的设计和制作方法。 产生正弦波、方波、三角波的方案有多 种: 1:如先产生正弦波,然后通过整 形电路将正弦波变换成方波,再由积分 电路将方波变成三角波。 2:先产生三角波一方波,再将三 角波变成正弦波或将方波变成正弦波。 3 3:本次电路设计,则采用的图1函数发生器组成框图 是先产生方波一三角波,再将三角波变换成正弦波的电路设计方法。此钟方法的电路组成框图。如图1所示:可见,它主要由:电压比较器、积分器和差分放大器等三部分构成。 为了使大家能较快地进入设计和制做状态,节省时间,在此,重新复习电压比较器、积分器和差分放大器的基本构成和工作原理: ,并判所谓比较器,是一种用来比较输入信号v1和参考电压V REF 断出其中哪个大,在输出端显示出比较结果的电路。 在《电子技术基础》一书的9.4—非正弦波信号产生电路的9.4.1中,专门讲述了: A:单门限电压比较器、B:过零比较器 C:迟滞比较器的电路结构和工作原理。 一、单门限电压比较器 所谓单门限电压比较器,是指比较器的输入端只有一个门限电压。

函数信号发生器课程设计

一绪论 1.1函数信号发生器的应用意义 函数发生器一般是指能自动产生正弦波、三角波、方波及锯齿波、阶梯波等电压波形的电路或仪器。根据用途不同,有产生三种或多种波形的函数发生器,使用的器件可以是分立器件也可以是集成电路。为进一步掌握电路的基本理论及实验调试技术,本课题采用有集成运算放大器与晶体差分放大器共同组成的方波—三角波—正弦波函数发生器的设计方法。具体方法是由比较器和积分器组成方波—三角波产生电路,比较器输出的方波经积分器得到三角波,三角波到正弦波的变换电路主要由差分放大器来完成。差分放大器具有工作点稳定,输入阻抗高,抗干扰能力较强等优点。特别是作为直流放大器时,可以有效地抑制零点漂移,因此可将频率很低的三角波变换成正弦波。波形变换的原理是利用差分放大器传输特性曲线的非线性。 通过此次设计,我们能将理论知识很好的应用于实践,不仅巩固了书本上的理论知识,而且锻炼了我们独立查阅资料、设计电路、独立思考的能力 1.2设计任务 设计能产生方波、三角波、正弦波的函数信号发生器电路 1.3设计要求 1)输出各种波形工作频率范围:10—100Hz,100—1KHz,1K—10KHz。 2) 输出电压:正弦波U=3V , 三角波U=5V , 方波U=14V。 3) 波形特征:幅度连续可调,线性失真小。 4)选择电路方案,完成对确定方案电路的设计;计算电路元件参数与元件选择、并画出各部分原理图,阐述基本原理。 1.4设计方案 函数信号发生器是是由基础的非正弦信号发生电路和正弦波形发生电路组 合而成。由运算放大器单路及分立元件构成,方波——三角波——正弦波函数信号发生器一般基本组成框图如图1所示。 图1 函数信号发生器框图 1、方波—三角波—正弦波信号发生器电路有运算放大器及分立元件构成,其结构如图1所示。他利用比较器产生方波输出,方波通过积分产生三角波输出,三角波通过差分放大电路产生正弦波输出。

函数发生器设计和仿真实现

课程设计 课程名称模拟电子技术基础课程设计题目函数发生器 学院 专业 班级 姓名 指导教师 2015 年01 月20 日

课程设计任务书 学生姓名:专业班级: 指导教师:工作单位: 题目: 函数发生器的设计和仿真实现 初始条件: 具备模拟电子电路的理论知识; 具备模拟电路基本电路的设计能力; 具备模拟电路的基本调试手段; 自选相关电子器件。 要求完成的主要任务: (1)设计任务 根据要求,完成对方波-三角波-正弦波发生器的仿真设计、仿真、装配与调试,并自制直流稳压电源 (2)设计要求 ①正弦波Upp≈3V,幅度连续可调;三角波Upp≈5V,幅度连续可调;方波Upp≈14V,幅度连续可调。 频率范围:三段:10~100Hz,100 Hz~1KHz,1 KHz~10 KHz; 频率控制方式:改变RC时间常数; 正弦波输出电量:电流; ②选择电路方案,完成对确定方案电路的设计。 ③利用Proteus或Multisim仿真设计电路原理图,确定电路元件参数、掌握电路工作原理并仿真实现系统功能。 ④安装调试并按规范要求格式完成课程设计报告书。 ⑤选做:利用仿真软件的PCB设计功能进行PCB设计。 时间安排: 1、 2015 年 1月13日集中,作课设具体实施计划与课程设计报告格式的要求说明,查阅相关资料,学习电路的工作原理。。 2、 2015 年 1月14日至2015年1月16日,方案选择和电路设计。 3、 2015 年 1月 17日至2015年1月18日,电路调试和设计说明书撰写。 4、 2015 年 1月 20日上交课程设计成果及报告,同时进行答辩。 指导教师签名:年月日 系主任(或责任教师)签名:年月日

函数信号发生器设计报告

函数信号发生器设计报告 目录 一、设计要求 .......................................................................................... - 2 - 二、设计的作用、目的 .......................................................................... - 2 - 三、性能指标 .......................................................................................... - 2 - 四、设计方案的选择及论证 .................................................................. - 3 - 五、函数发生器的具体方案 .................................................................. - 4 - 1. 总的原理框图及总方案 ................................................................. - 4 - 2.各组成部分的工作原理 ................................................................... - 5 - 2.1 方波发生电路 .......................................................................... - 5 - 2.2三角波发生电路 .................................................................... - 6 - 2.3正弦波发生电路 .................................................................. - 7 - 2.4方波---三角波转换电路的工作原理 ................................ - 10 - 2.5三角波—正弦波转换电路工作原理 .................................. - 13 - 3. 总电路图 ....................................................................................... - 15 - 六、实验结果分析 ................................................................................ - 16 - 七、实验总结 ........................................................................................ - 17 - 八、参考资料 ........................................................................................ - 18 - 九、附录:元器件列表 ........................................................................ - 19 -

课程设计——波形发生器

1.概述 波形发生器是一种常用的信号源,广泛地应用于电子电路、自动控制系统和教学实验等领域。函数信号发生器是一种能够产生多种波形,如三角波、锯齿波、矩形波(含方波)、正弦波的电路。函数信号发生器在电路实验和设备检测中具有十分广泛的用途。通过对函数波形发生器的原理以及构成分析,可设计一个能变换出三角波、正弦波、方波的函数波形发生器。本课程采用采用RC正弦波振荡电路、电压比较器、积分电路共同组成的正弦波—方波—三角波函数发生器的设计方法。先通过RC正弦波振荡电路产生正弦波,再通过电压比较器产生方波,最后通过积分电路形成三角波。

2.设计方案 采用RC正弦波振荡电路、电压比较器、积分电路共同组成的正弦波—方波—三角波函数发生器的设计方法。先通过RC正弦波振荡电路产生正弦波,再通过电压比较器产生方波,最后通过积分电路形成三角波。文氏桥振荡器产生正弦波输出,其特点是采用RC串并联网络作为选频和反馈网络,其振荡频率f=1/2πRC.改变RC的值,可得到不同的频率正弦波信号输出。用集成运放构成电压比较器,将正弦波变换成方

3. 设计原理 3.1正弦波产生电路 正弦波由RC 桥式振荡电路(如图3-1所示),即文氏桥振荡电路产生。文氏桥振荡器具有电路简单、易起振、频率可调等特点而大量应用于低频振荡电路。正弦波振荡电路由一个放大器和一个带有选频功能的正反馈网络组成。其振荡平衡的条件是AF =1以及ψa+ψf=2n π。其中A 为放大电路的放大倍数,F 为反馈系数。振荡开始时,信号非常弱,为了使振荡建立起来,应该使AF 略大于1。 放大电路应具有尽可能大的输入电阻和尽可能小的输出电阻以减少放大电路对选频特性的影响,使振荡频率几乎仅决定于选频网络,因此通常选用引入电压串联负反馈的放大电路。正反馈网络的反馈电压U f 是同相比例运算电路的输入电压,因而要把同相比例运算电路作为整体看成电路放大电路,它的比例系数是电压放大倍数,根据起振条件和幅值平衡条件有 31 1≥+ =R Rf Av (Rf=R2+R1//D1//D2) 且振荡产生正弦波频率 Rc f π210= 图中D1、D2的作用是,当Vo1幅值很小时,二极管D1、D2接近开路,近似有Rf =9.1K +2.7K =11.8K ,,Av=1+Rf/R1=3.3>=3,有利于起振;反之当Vo 的幅值较大时,D1或D2导通,Rf 减小,Av 随之下降,Vo1幅值趋于稳定。

函数信号发生器的设计与实现

实验1 函数信号发生器的设计与实现 姓名:_ _____ 学号: 班内序号:____ 课题名称:函数信号发生器的设计 摘要:采用运算放大器组成的积分电路产生比较理想的方波-三角波,根 据所需振荡频率和对方波前后沿陡度、方波和三角波幅度的要求,选择运放、稳压管、限流电阻和电容。三角波-正弦波转换电路利用差分放大器传输特性曲线的非线性实现,选取合适的滑动变阻器来调节三角波的幅度和电路的对称性,同时利用隔直电容、滤波电容来改善输出正弦波的波形。 关键词:方波三角波正弦波 一、设计任务要求 1.基本要求:

设计制作一个函数信号发生器电路,该电路能够输出频率可调的正弦波、三角波和方波信号。 (1) 输出频率能在1-10KHz范围内连续可调,无明显失真。 (2) 方波输出电压Uopp=12V(误差小于20%),上升、下降沿小于10us。 (3) 三角波Uopp=8V(误差小于20%)。 (4) 正弦波Uopp1V,无明显失真。 2.提高要求: (1) 输出方波占空比可调范围30%-70%。 (2) 自拟(三种输出波形的峰峰值Uopp均可在1V-10V内连续可调)。 二、设计思路和总体结构框图 总体结构框图: 设计思路: 由运放构成的比较器和反相积分器组成方波-三角波发生电路,三角波输入差分放大电路,利用其传输特性曲线的非线性实现三角波-正弦波的转换,从而电路可在三个输出端分别输出方波、三角波和正弦波,达到信号发生器实验的基本要求。 将输出端与地之间接入大阻值电位器,电位器的抽头处作为新的输出端,实现输出信号幅度的连续调节。利用二极管的单向导通性,将方波-三角波中间的电阻改为两个反向二极管一端相连,另一端接入电位器,抽头处输出的结构,实现占空比连续可调,达到信号发生器实验的提高要求。 三、分块电路和总体电路的设计过程 1.方波-三角波产生电路 电路图:

函数发生器 课程设计

函数发生器设计 摘要 波形发生器是一种常用的信号源,广泛地应用于电子电路、自动控制系统和教学实验等领域。本函数发生器采用STC89C52单片机作为控制核心,外围采用数字/模拟转换电路(DAC0832)、运放电路(uA741)、按键和LCD显示电路等。电路采用STC89C52单片机和一片DAC0832数模转换器组成数字式低频信号发生器。函数信号发生器,它具有价格低、性能高和在低频范围内稳定性好、操作方便、体积小、耗电少等特点。由于采用uA741运算放大器和滤波电路,使其电路更加具有较高的稳定性能,性能比高。此电路清晰,出现故障容易查找错误,操作简单、方便。 通过按键控制可产生方波、三角波、正弦波,同时用LCD1602显示|幅值和频率。所产生的波形Vp-p范围为0-5V。本系统设计简单、性能优良,具有一定的实用性。 关键词 STC89C52,DAC0832,uA741

目录 摘要 1 系统方案 (2) 1.1 信号发生部分 (2) 1.2 显示部分 (3) 2 系统设计 (3) 2.1 总体设计思路 (3) 2.2 总体框图 (3) 3 硬件电路 (4) 3.1 单片机电路 (4) 3.1.1 功能与基本原理 (4) 3.1.2资源分配 (5) 3.2 波形转换(D/A)电路 (5) 3.3 显示接口电路 (7) 3.4 键盘接口电路 (7) 3.5 电源电路 (8) 4 软件设计及流程 (9) 4.1 主程序流程图 (10) 4.2 幅值频率设定子程序流程图 (11) 4.3 显示子程序流程图 (12) 4.4中断子程序流程图 (12) 5.结束语 (14) 参考文献 (15) 附录 (16)

函数信号发生器设计报告

目录 1设计的目的及任务 1.1 课程设计的目的 1.2 课程设计的任务与要求 2函数信号发生器的总方案及原理图 2.1 电路设计原理框图 2.2 电路设计方案设计 3 各部分电路设计及选择 3.1 方波发生电路的工作原理 3.2 方波、三角波发生电路的选择 3.3三角波---正弦波转换电路的选择 3.4总电路图 4 电路仿真与调试 4.1 方波---三角波发生电路、三角波---正弦波转换电路的仿真与调试 4.2方波---三角波发生电路、三角波---正弦波转换电路的实验结果 5 PCB制版 6 设计总结 7仪器仪表明细清单 8 参考文献

1.课程设计的目的和设计的任务 1.1 设计目的 1.掌握用集成运算放大器构成正弦波、方波和三角波函数发生器的设计方法。 2.学会安装、调试与仿真由分立器件、调试与仿真由分立器件与集成电路组成的多级电子电路小系统。 2.2设计任务与要求: 设计一台波形信号发生器,具体要求如下: 1.输出波形:方波、三角波、正弦波。 2.频率范围:在1 Hz-10Hz,10 Hz -100 Hz,100 Hz -1000 Hz等三个波段。 3.频率控制方式:通过改变RC时间常数手控信号频率。 4.输出电压:方波U P-P≤24V,三角波U P-P =8V,正弦波U P-P >1V。 5.合理的设计硬件电路,说明工作原理及设计过程,画出相关的电路原理图。 6.选用常用的电器元件(说明电器元件选择过程和依据)。 7.画出设计的原理电路图,作出电路的仿真。 8.提交课程设计报告书一份,A3图纸两张,完成相应答辩。

2.函数发生器总方案及原理框图 图1-1 整体原理框图 2.2 函数发生器的总方案 函数发生器一般是指能自动产生正弦波、三角波、方波及锯齿波、阶梯波等电压波形的电路或仪器。产生正弦波、方波、三角波的方案有多种,如首先产生正弦波,然后通过整形电路将正弦波变换成方波,再由积分电路将方波变成三角波;也可以首先产生三角波—方波,再将三角波变成正弦波或将方波变成正弦波等等。本课题采用先产生方波—三角波,再将三角波变换成正弦波的电路设计方法。 本课题中函数发生器电路组成框图如下所示: 由比较器和积分器组成方波—三角波产生电路,比较器输出的方波经积分器得到三角波,三角波到正弦波的变换电路的基本结构是比例放大器,对不同区段内比例系数的切换,是通过二级管网络来实现的。如输出信号的正半周内由D1~D3控制切换,负半周由D4~D6控制切换。电阻Rb1~Rb3与Ra1~Ra3分别组成分压器,控制着各二极管的动作电平。

模拟电子函数发生器课程设计报告

大学信息工程学院 题目:函数发生器的设计 课程:《模拟电子技术基础》 专业:电信工程 班级:电信0401 学号:041104101 姓名:鸿彬 完成日期:2006年11月 16 日

目录 1 函数发生器的总方案及原理框图 (1) 1.1 电路设计原理框图 (1) 1.2 电路设计方案设计 (1) 2设计的目的及任务 (2) 2.1 课程设计的目的 (2) 2.2 课程设计的任务与要求 (2) 2.3 课程设计的技术指标 (2) 3 各部分电路设计 (3) 3.1 方波发生电路的工作原理 (3) 3.2 方波---三角波转换电路的工作原理 (3) 3.3 三角波---正弦波转换电路的工作原理 (6) 3.4电路的参数选择及计算 (8) 3.5 总电路图 (10) 4 电路仿真 (11) 4.1 方波---三角波发生电路的仿真 (11) 4.2 三角波---正弦波转换电路的仿真 (12) 5电路的安装与调试 (13) 5.1 方波---三角波发生电路的安装与调试 (13)

5.2 三角波---正弦波转换电路的安装与调试 (13) 5.3 总电路的安装与调试 (13) 5.4 电路安装与调试中遇到的问题及分析解决方法 (13) 6电路的实验结果 (14) 6.1 方波---三角波发生电路的实验结果 (14) 6.2 三角波---正弦波转换电路的实验结果 (14) 6.3 实测电路波形、误差分析及改进方法 (15) 7 实验总结 (17) 8 仪器仪表明细清单 (18) 9 参考文献 (19)

1.函数发生器总方案及原理框图 1.1 原理框图 1.2 函数发生器的总方案 函数发生器一般是指能自动产生正弦波、三角波、方波及锯齿波、阶梯波等电压波形的电路或仪器。根据用途不同,有产生三种或多种波形的函数发生器,使用的器件可以是分立器件 (如低频信号函数发生器S101全部采用晶体管),也可以采用集成电路(如单片函数发生器模块8038)。为进一步掌握电路的基本理论及实验调试技术,本课题采用由集成运算放大器与晶体管差分放大器共同组成的方波—三角波—正弦波函数发生器的设计方法。 产生正弦波、方波、三角波的方案有多种,如首先产生正弦波,然后通过整形电路将正弦波变换成方波,再由积分电路将方波变成三角波;也可以首先产生三角波—方波,再将三角波变成正弦波或将方波变成正弦波等等。本课题采用先产生方波—三角波,再将三角波变换成正弦波的电路设计方法,本课题中函数发生器电路组成框图如下所示:

波形发生器课程设计

1.设计题目:波形发生电路 2.设计任务和要求: 要求:设计并用分立元件和集成运算放大器制作能产生方波和三角波波形的波形发生器。 基本指标:输出频率分别为:102H Z 、103H Z ;输出电压峰峰值V PP ≥20V 3.整体电路设计 1)信号发生器: 信号发生器又称信号源或振荡器。按信号波形可分为正弦信号、函数(波形)信号、脉冲信号和随机信号发生器等四大类。各种波形曲线均可以用三角函数方程式来表示,如三角波、锯齿波、矩形波(含方波)、正弦波。通过模拟电子技术设计的波形发生器是一个不需要外加输入信号,靠自身振荡产生信号的电路。2)电路设计: 整体电路由RC振荡电路,反相输入的滞回比较器和积分电路组成。 理由:a)矩形波电压只有两种状态,不是高电平,就是低电平,所以电压比较器是它的重要组成部分; b)产生振荡,就是要求输出的两种状态自动地相互转换,所以电路中必须引入反馈; c)输出状态应按一定的时间间隔交替变化,即产生周期性变化,所以电路中要有延迟环节来确定每种状态维持的时间。 RC振荡电路:即作为延迟环节,又作为反馈电路,通过RC充放电实现输出状态的自动转换。 反相输入的滞回比较器:矩形波产生的重要组成部分。 积分电路:将方波变为三角波。 3)整体电路框图: 为实现方波,三角波的输出,先通过 RC振荡电路,反相输入的滞回比较器得到方波,方波的输出,是三角波的输入信号。三角波进入积分电路,得出的波形为所求的三角波。其电路的整体电路框图如图1所示:

图1 4)单元电路设计及元器件选择 a ) 方波产生电路 根据本实验的设计电路产生振荡,通过RC 电路和滞回比较器时将产生幅值约为12V 的方波,因为稳压管选择1N4742A (约12V )。电压比较电路用于比较模拟输入电压与设定参考电压的大小关系,比较的结果决定输出是高电平还是低电平。滞回比较器主要用来将信号与零电位进行比较,以决定输出电压。图3为一种滞回电压比较器电路,双稳压管用于输出电压限幅,R 3起限流作用,R 2和R 1构成正反馈,运算放大器当u p >u n 时工作在正饱和区,而当u n >u p 时工作在负饱和区。从电路结构可知,当输入电压u in 小于某一负值电压时,输出电压u o = -U Z ;当输入电压u in 大于某一电压时,u o = +U Z 。运算放大器在两个饱和区翻转时u p =u n =0,由此可确定出翻转时的输入电压。u p 用u in 和u o 表示,有 2 1o 1in 22 1o 2 in 1p 111 1R R u R u R R R u R u R u ++= ++= 根据翻转条件,令上式右方为零,得此时的输入电压 th Z 2 1 o 21in U U R R u R R u ==-= U th 称为阈值电压。滞回电压比较器的直流传递特性如图4所示。设输入电压初始值小于-U th ,此时u o = -U Z ;增大u in ,当u in =U th 时,运放输出状态翻转,进入正饱和区。如果初始时刻运放工作在正饱和区,减小u in ,当u in = -U th 时,运放则开始进入负饱和区。 RC 振荡电路 积分电路 方波 三角波 反相输入的滞回比较 生成 生成 输入 积分电路 输入

函数信号发生器的设计与制作

Xuchang Electric V ocational College 毕业论文(设计) 题目:函数信号发生器的设计与制作 系部:电气工程系_ 班级:12电气自动化技术 姓名:张广超 指导老师:郝琳 完成日期:2014/5/20

毕业论文内容摘要

目录 1引言 (3) 1.1研究背景与意义 (3) 1.2研究思路与主要内容 (3) 2 方案选择 (4) 2.1方案一 (4) 2.2方案二 (4) 3基本原理 (5) 4稳压电源 (6) 4.1直流稳压电源设计思路 (6) 4.2直流稳压电源原理 (6) 4.3集成三端稳压器 (7) 5系统工作原理与分析 (8) 5.1ICL8038芯片性能特点简介 (8) 5.2ICL8038的应用 (8) 5.3ICL8038原理简介 (8) 5.4电路分析 (9) 5.5ICL8038内部原理 (10) 5.6工作原理 (11) 5.7正弦函数信号的失真度调节 (11) 5.8ICL8038的典型应用 (12) 5.9输出驱动部分 (12) 结论 (14) 致谢 (15) 参考文献 (16) 附录 (17)

1引言 信号发生器是一种能提供各种频率、波形和输出电平电信号的设备。在测量各种电信系统或电信设备的振幅特性、频率特性、传输特性及其它电参数时,以及测量元器件的特性与参数时,用作测试的信号源或激励源。信号发生器又称信号源或振荡器,在生产实践和科技领域中有着广泛的应用。各种波形曲线均可以用三角函数方程式来表示。能够产生多种波形,如三角波、锯齿波(含方波)、正弦波的电路被称为函数信号发生器。 1.1研究背景与意义 函数信号发生器是工业生产、产品开发、科学研究等领域必备的工具,它产生的锯齿波和正弦波、矩形波、三角波是常用的基本测试信号。在示波器、电视机等仪器中,为了使电子按照一定规律运动,以利用荧光屏显示图像,常用到锯齿波信号产生器作为时基电路。例如,要在示波器荧光屏上不失真地观察到被测信号波形,要求在水平偏转线圈上加随时间线性变化的电压——锯齿波电压,使电子束沿水平方向匀速搜索荧光屏。对于三角波,方波同样有重要的作用,而函数信号发生器是指一般能自动产生方波正弦波三角波以及锯齿波阶梯波等电压波形的电路或仪器。因此,建议开发一种能产生方波、正弦波、三角波的函数信号发生器。函数信号发生器根据用途不同,有产生三种或多种波形的函数发生器,其电路中使用的器件可以是分离器件,也可以是集成器件,产生方波、正弦波、三角波的方案有多种,如先产生正弦波,根据周期性的非正弦波与正弦波所呈的某种确定的函数关系,再通过整形电路将正弦波转化为方波,经过积分电路后将其变为三角波。也可以先产生三角波-方波,再将三角波或方波转化为正弦波。随着电子技术的快速发展,新材料新器件层出不穷,开发新款式函数信号发生器,器件的可选择性大幅增加,例如 ICL8038就是一种技术上很成熟的可以产生正弦波、方波、三角波的主芯片。所以,可选择的方案多种多样,技术上是可行的[1]。 1.2研究思路与主要内容 本文主要以ICL8038集成块为核心器件,制作一种函数信号发生器,制作成本较低。适合学生学习电子技术实验使用。ICL8038是一种具有多种波形输出的精密振荡集成电路,只需要个别的外部元件就能产生从几赫到几百千赫的低失真正弦波、三角波、矩形波等脉冲信号。基于ICL8038函数信号发生器主要电源供电、波形发生、输出驱动三大部分组成。电源供电部分:主要由集成三端稳压管LM7812和LM7912构成的±12V直流电压作为整个系统的供电。波形发生部分:主要由单片集成函数信号发生器ICL8038构成。通过改变接入电路的电阻或电容的大小,能够得到几赫到几百千赫不同频率的信号。输出驱动部分:主要由运放LF353构成。由于ICL8038的输出信号幅度较小,需要放大输出信号。ICL8038的输出信号经过运放LF353放大后能够得到输出幅度较大的信号[2]。

函数信号发生器课程设计

函数信号发生器课程设计

信号发生器 一、设计目的 1.进一步掌握模拟电子技术的理论知识,培养工程设计能力 和综合分析问题、解决问题的能力。 2.基本掌握常用电子电路的一般设计方法,提高电子电路的 设计和实验能力。 3.学会运用Multisim10仿真软件对所作出的理论设计进行 仿真测试,并能进一步完善设计。 4.掌握常用元器件的识别和测试,熟悉常用仪表,了解电路 调试的基本方法。 二、设计内容与要求 1.设计、组装、调试函数信号发生器 2.输出波形:正弦波、三角波、方波 3.频率范围:10Hz-10KHz范围内可调 4.输出电压:方波V PP<20V, 三角波V PP=6V, 正弦波V PP>1V 三、设计方案仿真结果 1.正弦波—矩形波—三角波电路 原理图:

首先产生正弦波,再由过零比较器产生方波,最后由积分电路产生三角波。正弦波通过RC串并联振荡电路(文氏桥振荡电路)产生,利用集成运放工作在非线性区的特点,由最简单的过零比较器将正弦波转换为方波,然后将方波经过积分运算变换成三角波。 正弦—矩形波—三角波产生电路: R1 Rp2 50% R2 R3 10k|? C1 R17 5.1k|? C3 470uF R10 50k|? Key=A 50% C4 470uF R14 1k|? 9 10 Q1Q2 11 R5 R6 15k|? R7 100|? R13 50% 13 10.6V VCC 1415 Q3 Q4 16 C5 100nF R12 1k|? 17 R8 8k|? 18 R9 19 R11 2k|? 20 VEE VCC 10.6V VEE -10.6V VEE -10.6V VCC 10.6V VEE VCC U1 3 2 4 7 6 5 1 1U2 3 2 4 7 6 5 1 6 2 4 VEE R16 21 D4 1N4467 D1 1N4467 8 XSC1 A B Ext Trig + + _ _+_ VCC XSC2 A B Ext Trig + + _ _+_ C2 100nF 12 7 3 5 总电路中,R5用来使电路起振;R1和R7用来调节振荡的频率,R6、R9、R8分别用来调节正弦波、方波、三角波的幅值。左边第一个 过零 文氏桥积分

相关主题
文本预览
相关文档 最新文档