当前位置:文档之家› 大学地基基础设计计算书

大学地基基础设计计算书

大学地基基础设计计算书
大学地基基础设计计算书

目录

一、设计资料: (1)

二、确定基础地面尺寸: (1)

1、确定合理的基础长度:. (1)

2、确定基础底板宽度b: (2)

三、基础底板设计: (3)

四、基础内力计算(弯矩图以上部受拉为负,下部受拉为正): (3)

1、计算基底单位净反力:. (3)

2、求弯矩分配系数:. (4)

3、用力矩分配法计算弯矩:. (4)

4、肋梁剪力计算:. (5)

5、肋梁跨内最大弯矩计算:. (7)

6、考虑不平衡力的调整:. (8)

四、基础配筋计算 (13)

1、基础梁配筋准备工作: . (13)

2、正截面受弯承载力计算:. (13)

3、斜截面受剪承载力计算:. (15)

五、相关构造措施: (16)

一、设计资料:

1本设计的任务是设计一多层办公楼的钢筋混凝土柱下条形基础,框架柱的截面尺寸均为b x h=500mr H 600mm柱的平面布置如下图所示:

X~X X~X X~~s- x—x

1 2 3 4 5

C T ------- H ------ ? ---- -H ---- 巴——

J,I I I I I

B ?嵐 --- H ------ ------- ” ------ H------ —L B Array

1 2 3 4 5 6

2

注:表中轴力的单位为KN弯矩的单位为KN.m;所有1、2、3轴号上的弯矩方向为逆时针、4、5、6轴号上的弯矩为顺时针,弯矩均作用在h方向上。

3、该建筑场地地表为一厚度为1.5m的杂填土层(容重为17kN/m3),其下为粘土层,粘土层承载力特征值为F ak=110kPa,地下水位很深,钢筋和混凝土的强度等级自定请设计此柱下条形基础并绘制施工图。

二、确定基础地面尺寸:

1、确定合理的基础长度:设荷载合力到支座A的距离为X,如图1:贝

、F j X j ' M j

x=

(0 700 3.5 700 7 700 B5 700 14300 亿5)Jg^m

350 700 700 700 700 300

a2

图i

1

因为x=8.62m a=0.5 17.5=8.75m,

2

所以,由《建筑地基基础设计规范》(GB50007-2002 8.3.1第2条规定条形基础端部

应沿纵向从两端边柱外伸,外伸长度宜为边跨跨距的0.25 0.30倍取a2=0.8m(与

1

11=0.25 3.5=0.875m 相近)。

4

为使荷载形心与基底形心重合,使基底压力分布较为均匀,并使各柱下弯矩与跨中弯矩趋于均衡以利配筋,得条形基础总长为:

L=2(a+a 2 -x)=2 (17.5+0.8-8.62)=19.36m : 19.4m a 1 =L-a-a 2=19.4-17.5-

0.8=1.1m

2、确定基础底板宽度b:

竖向力合力标准值:

'、F Ki =350+700+700+700+700+300=3450kN

选择基础埋深为1.8m,则

m

=( 17 1.5+0.3 19)亠1.8=17.33 kN/m3

深度修正后的地基承载力特征值为:

f a 二f ak d m d -0.5 =110+1.0 17.33 (1.8-0.5)=132.529kN

由地基承载力得到条形基础b为:

取b=2m由于b《3m不需要修正承载力和基础宽度。

al

L(f a -20d)

= ________ 3450

=1.842m

19.4 (132.529 -20 1.8)

x

三、基础底板设计:

基础底板采用混凝土强度等级为 C30, f t =1.43N/mmf ,钢筋用HPB235级, 2

f y =210 N/mm 。

竖向力设计值分别为:

F ,=1.35F K1=1.35 350=472.5kN F 2 =F 3=F 4 =F 5 =1.35 700=945kN F 6=1.35 300=405kN 竖向力合力设计值为:

' F =472.5+945 4+405=4657.5kN 地基净反力:

P

=汗=第=120

.

039?

基础边缘至柱边计算截面的距离:

1

b 产丄(b-b 柱)=0.5

(2-0.5)=0.75m

2

沿条形基础纵向取1m 长度计算则底板有效高度为:

结合《建筑地基基础设计规范》(GB50007-2002取底板高度h=250mm 作10mm 的

C10混凝土垫层则:

h 0 =250-40-5=205mm 89mm

M=1P i b 1 2=0.5 120.039 0.75 2=33.761 kN-m

2 j

6

二 33.761 ^10

0.9 210 205

配钢筋 14@170 A s =906mm ,可以。

以上受力筋沿条形基础横向配置,纵向分部筋取

8@250

四、基础内力计算(弯矩图以上部受拉为负,下部受拉为正):

1、计算基底单位净反力:

P j b 1 -0.7f t

= 120.039 汉

0.75

0.7 1430 =0.089m=89mm

0.9f y h o

=871.364mm

4657.5

=240.077kN/m

19.4

3、用力矩分配法计算弯矩:

首先计算个支座处的不平衡力矩:

' M B 二' M E =-367.618+245.079=-122.539 kN ?m

先进行第一轮的力矩分配法及传递(从 B 和E 开始),然后进行C 和D 的力矩分配 及传递,再回到B 和E,如此循环直到误差允许为止,详细过程如表 1:

计算简图如图 2:

求固端弯矩:

P j =240.077kN/m

图2计算简图

AH

=-M AB =- 1 P i a 1 2 =-0.5

240.077 1.1 2 =-145.247 kN ?m

2

BA

=

-M EF

=-

1 P i 1

2 =-

8

1

BC =^C D =M)E = P

i 1

12

1 CB

=% =

M

I E D =-

P i 1

12

-

1 c

FG

=

-M FE

=匚 P i a

2

2

1 2 240.077 3.5 2 =-367.618 kN ?m

8

2

1

2

2

=

240.077 3.5 2

=245.079kN ?m 12 2

1 2

2

=-

240.077 3.5 2 =-245.079 kN ?m

12

2

=0.5 240.077 0.8 2 =76.825 kN ?m

2、求弯矩分配系数:

设i=旦,贝U:

1

EF = 31

=0.429 3i 4i

一一. 4i

BC ED

=0.571

3i 4i

怙=怙=% = %

41

=0.5

4i 4i

J5Q Q

3500

弯矩分配系数0. 4290.571 6 5Q.50.50.50.&710. 4浙

-145.247-367, 62245.03-245. 0S245.08-245. 0E245. 08-245. 03367,6276. S3

52. 5轲69. 973乳

985

-34. 99-的.97-52.57

-0. 746-17. 493-17. 4917. 4931L4938.746

3, 752 4. 9942, 497-2. 497994-3, 752

-0. 624-1.249-L249 1.2491.2490. 624

0. 2S80. 356Q. 17S-0.178-0.356-0. 268

7的5-0.089-0. 0890.0890.0390.045

0- 0190.0260-013-0,013-0. 026-0. 019

-0. 003-0. 0060.0060. 0060.0060.003

0.0010. 002-0. 002-0. 001

-145.247-311.01311. 01-226.24226. 24-226. 24226.

24-311,01311. 0176. 83

表1弯矩分配法计算过程

由上可得:

M D1=226.243kN?

m

M E1=311.009kN-m

M F1=76.825kN -m

4、肋梁剪力计算:

根据支座弯矩及外荷载,以每跨梁为隔离体求支座剪力:A截面左边

的剪力为:

V I II III IV V A1=p i a1=240.077 1.1=264.085kN

取HB段作脱离体,计算A截面的支座反力(如图3):

1 1 2

R A1」[ *@1+1) 2-M B]

l 2

I 2

= [0.5 240.077 (1.1+3.5) 2-311.009]

3.5

=636.859kN

A截面右边的剪力:

V A1=P i a1-R A =240.077 1.1-636.859=-372.774kN

R B=^ (a 1+l)- R A =240.077 (1.1+3.5)-636.859=467.495kN B截面左边的剪力为:

l '

V B1=R B=467.495kN

M A i=145.247kN ?m, M B1=311.009kN?m, C1 =226.243kN?

m,

图3 HB段

R D1 = R D + R D =420.135+395.916=816.051kN R E =P i l- R ; =240.077 3.5-395.916=444.354kN 图 6 DE 段

D 截面右边的剪力为:

取BC 段为脱离体(如图4): … 1 1 2 R B =f (2PJ 2

+ 叫-M e )

1 2 = (0.5 240.077 3.52

+311.009-226.243)

3.5

=444.354kN

R B 1 = R B +R B =467.495+444.354=911.849kN B 截面右边的剪力为: 图4 BC 段

V B1二 R B =-444.354kN

R C =P i l- R B =240.077 3.5-444.354=395.916kN C 截面左边的剪力为: V C 1 = R C =395.916kN 取CD 段为脱离体(如图5): R D = R C = l P i l=0.5

240.077 3.5=420.135kN

C1 =R C +R C =395.916+420.135=816.051kN

C 截面右边的剪力为: V

C 1

=- R C =-420.135kN 图5 CD 段

D 截面左边的剪力为:

l

'

= .243K\r

■-

I-. I

35CC

取DE 段为脱离体(如图 R D =丄(丄Rl 2+M D -M E )

l 2 1

=

(0.5 240.077

3.5

=395.916kN

桩基础设计计算书

课程设计(论文) 题目名称钢筋混凝土预制桩基础设计 课程名称基础工程 学生姓名李宇康 学号124100161 系、专业城市建设系土木工程 指导教师周卫 2015年5 月

桩基础设计计算书 一:设计资料 1、建筑场地土层按其成因土的特征和力学性质的不同自上而下划分为四层,物理力学指标见下表。勘查期间测得地下水混合水位深为2.0m,地下水水质分析结果表明,本场地下水无腐蚀性。 建筑安全等级为2级,已知上部框架结构由柱子传来的荷载: V=1765, M=169KN·m,H = 50kN; 柱的截面尺寸为:800×600mm; 承台底面埋深:D = 2.0m。 2、根据地质资料,以黄土粉质粘土为桩尖持力层, 钢筋混凝土预制桩断面尺寸为300×300,桩长为10.0m 3、桩身资料:混凝土为C30,轴心抗压强度设计值f c =15MPa,弯曲强度设计值为 f m =16.5MPa,主筋采用:4Φ16,强度设计值:f y =310MPa 4、承台设计资料:混凝土为C30,轴心抗压强度设计值为f c =15MPa,弯曲抗压强度设 计值为f m =1.5MPa。 、附:1):土层主要物理力学指标; 2):桩静载荷试验曲线。 附表一: 土层的主要物理力学指标表1-1 土 层代号名称 厚 度 m 含水 量w (%) 天然 重度 (kN/m3 ) 孔 隙 比 e 侧模 阻力 桩端 阻力液性 指数 I L 直剪试验 (直快) 压缩 模量 E s (MPa) 承载力 特征值 f k(kPa) q sk kPa q pk kPa 内摩 擦角 ?? 粘聚 力c (kPa) 1 杂填土 2.0 20 18.8 2 2 6.0 90 2 淤泥质土9 38.2 18.9 1.02 22 1.0 21 12 4.8 80 3 灰黄色粉 质粘土 5 26.7 19. 6 0.75 60 2000 0.60 20 16 7.0 220 4 粉砂夹粉 质粘土 >10 21.6 20.1 0.54 70 2200 0.4 25 15 8.2 260 附表二:

工程桩基础设计计算书

基 础 工 程 课 程 设 计 计 算 书 系别:土木工程系 姓名:盛懋 目录 1 .设计资料 (3) 1.1 建筑物场地资料 (3) 2 .选择桩型、桩端持力层、承台埋深 (3)

2.1 选择桩型 (3) 2.2 选择桩的几何尺寸以及承台埋深 (3) 3 .确定单桩极限承载力标准值 (4) 3.1 确定单桩极限承载力标准值 (4) 4 .确定桩数和承台底面尺寸 (4) 5 .确定复合基桩竖向承载力设计值及群桩承载力和 (5) 5.1 四桩承台承载力计算 (5) 6 .桩顶作用验算 (6) 6.1 四桩承台验算 (6) 7 .桩基础沉降验算 (6) 7.1 桩基沉降验算 (6) 8 .桩身结构设计计算 (9) 8.1 桩身结构设计计算 (9) 9 .承台设计 (10) 9.1 承台弯矩计算及配筋计算 (10) 9.2 承台冲切计算 (11) 9.3承台抗剪验算 (12) 9.4 承台局部受压验算 (12) 1. 工程地质资料及设计资料 1) 地质资料 某建筑物的地质剖面及土性指标表1-1所示。场地地层条件:粉质粘土土层取q sk=60kpa,q ck=430kpa;饱和软粘土层q sk=26kpa;硬塑粘土层q sk=80kpa,q pk=2500kpa;设上部结构传至桩基顶面的最大荷载设计值为:V=2050kn,M=300kn?m,H=60kn。选择钢筋混凝土打入桩基础。柱的截面尺寸为400mm?600mm。已确定基础顶面高程为地表以下0.8m,承

台底面埋深1.8m 。桩长8.0m 。 土层的主要物理力学指标 表1-1 编号 名称 H m W % ? kn/m 3 ? ° S r e I p I L G s E s mpa f ak kpa a 1-2 mpa -1 1 杂填土 1.8 16.0 2 粉质粘土 2.0 26.5 19.0 20 0.9 0.8 12 0.6 2.7 8.5 190 3 饱和软粘土 4.4 42 18.3 16.5 1.0 1.1 18.5 0.98 2.71 110 0.96 4 硬塑粘土 >10 17.6 21.8 28 0.98 0.51 20.1 0.25 2.78 13 257 2)设计内容及要求 需提交的报告:计算说明书和桩基础施工图: (1)单桩竖向承载力计算 (2)确定桩数和桩的平面布置 (3)群桩中基桩受力验算 (4)群桩承载力和 (5)基础中心点沉降验算(桩基沉降计算经验系数为1.5) (6)承台结构设计及验算 2 .选择桩型、桩端持力层 、承台埋深 1)、根据地质勘察资料,确定第4层硬塑粘土为桩端持力层。采用钢筋混凝土预制桩,桩截面为方桩,为400mm ×400mm ,桩长为8米。桩顶嵌入承台50cm ,则桩端进持力层1.55米。承台底面埋深1.8m ,承台厚1m 。 2)、构造尺寸:桩长L =8m ,截面尺寸:400×400mm 3)、桩身:混凝土强度 C30、 c f =14.3MPa 4φ16 y f =210MPa 4)、承台材料:混凝土强度C20、 c f =9.6MPa 、 t f =1.1MPa 3.确定单桩竖向承载力标准值 (1)单桩竖向承载力标准值Quk

施工课程设计计算书讲解

多层砖混结构办公楼施工组织课程设计

目录 任务与指导书 (3) 第一章总则 (12) 第二章工程概况 (13) 第三章施工方案制定 (17) 第四章施工进度计划的编制 (35) 第五章施工准备与资源配置计划 (40) 第六章施工平面图设计 (45) 第七章施工组织措施 (46) 第八章其他管理措施 (49)

多层砖混结构办公楼 施工组织设计任务书及指导书 一、目的 本课程设计为单位工程施工组织设计,是《建筑工程施工组织设计》课程的主要教学环节之一,它是对已学过的建筑施工知识进行综合性的演练运用过程。 通过本课程设计,初步掌握单位工程施工组织设计的内容,设计步骤和方法,巩固所学的理论知识;并运用所学知识,分析和解决施工组织和管理及实施过程中的各种问题。 二、设计条件(即:工程概况) 1.建筑物概况 本工程为某省××公司的办公楼(兼单身职工宿舍),位于××市郊××公路边,总建筑面积为6262m2,平面形式为L型,南北方向长61.77m,东西方向总长为39.44m。该建筑物主体为五层,高18.95m;局部六层,高22.45m,附楼(F~M轴)带地下室,在11轴线处有一道伸缩缝,在F轴线处有一道沉降缝,其总平面、底层平面、立面示意图见附图。 本工程承重结构除门庭部分为现浇钢筋混凝土框架外,皆采用砖混结构,基础埋深 1.9m,在c15素混凝土垫层上砌条形砖基础,基础中设有钢筋混凝土地圈梁;多孔砖墙承重,层层设现浇钢筋混凝土圈梁;内外墙交接处和外墙转角处设抗震构造柱;除厕所、盥洗室采用现浇楼板外,其余楼盖和屋面均采用预制预应力混凝土多孔板,大梁、楼梯及挑檐均为现浇钢筋混凝土构件。 室内地面除门厅、走廊、实验室、厕所、楼梯踏步为水磨石面层外,其它皆采用水泥砂浆地面。室内装修主要采用白灰砂浆外喷乳胶漆涂料;室外装饰以马赛克为主,腰线、窗套为贴面砖。散水为无筋混凝土一次抹光。 屋面保温层为炉渣混凝土。上做两毡三油防水层上铺绿豆砂。上人屋面部分铺设预制混凝土板。 设备安装及水,暖,电工程配合土建施工。 2.地质及环境条件、 根据勘测报告:天然地基承载力为150KN/m2,地下水位在地表下7~8m。本地土壤最大冻结深度为0.5米。 建筑场地南侧为已建成建筑物;北侧和西侧为本公司地界的围墙,东面为XX公路,距道牙3米内的人行道不得占用,沿街树木不得损伤。人行道一侧上方尚有高压输电线及电话线通过(见总平面图)。 3.施工工期 本工程定于三月二十日开工,要求在本年十二月三十日竣工。限定总工期九个月,日历工期为286天。 4.气象条件 施工期间主导风向偏东,雨季为九月份,冬季为十二月到第二年的二月份。 5.施工技术经济条件 施工任务由市建某公司承担,由该公司某项目经理部承包建设,可提供的施工工人有瓦工20人,木工16人以及其它辅助工种工人如钢筋工、机工、电工及普工等,根据施工需要可以调入。装修阶段可从其他工地调入抹灰工,最多调入70人。 施工中需要的水、电均从城市供水供电网中接引。 建筑材料及予制品件均可用汽车运入工地。多孔板由市建总公司予制厂制作(运距7公

桩基础设计实例计算书说课材料

桩基础设计实例 某城市中心区旧城改造工程中,拟建一幢18层框剪结构住宅楼。场地地层稳定,典型地质剖面图及桩基计算指标见表8-5。柱的矩形截面边长为400mm ×500mm ,相应于荷载效应标准组合时作用于柱底的荷载为:5840=k F kN ,180=xk M kN ·m , 550=yk M kN ·m ,120=xk H kN 。承台混凝土强度等级取C30,配置HRB400级钢筋, 试设计柱下独立承台桩基础。 表8-5 地质剖面与桩基计算指标 解:(1)桩型的选择与桩长的确定 人工挖孔桩:卵石以上无合适的持力层。以卵石为持力层时,开挖深度达26m 以上,当地缺少施工经验,且地下水丰富,故不予采用。 沉管灌注桩:卵石层埋深超过26m ,现有施工机械难以沉管。以粉质粘土作为持力层,单桩承载力仅240~340 kN ,对16层建筑物而言,必然布桩密度过大,无法采用。 对钻(冲)孔灌注桩,按当地经验,单位承载力的造价必然很高,且质量控制困难,场地污染严重,故不予采用。 经论证,决定采用PHC400-95-A (直径400mm 、壁厚95mm 、A 型预应力高强混凝土管桩),十字型桩尖。由于该工程位于城市中心区,故采用静力法压桩。 初选承台埋深d =2m 。桩顶嵌入承台0.05m ,桩底进入卵石层≥1.0m ,则总桩长

L=0.05+1.0+10.4+3.5+9.3+1.0≈25.3m 。 (2)确定单桩竖向承载力 ①按地质报告参数预估 ∑+=i sia P p pa a L q u A q R ()4596910.1803.9105.3304.1061254.044.055002+=?+?+?+?+???+??? ? ????=ππ =1150kN ②按当地相同条件静载试验成果 u Q 的范围值为2600 ~3000kN 之间,则 1500~13002/==u a Q R kN , 经分析比较,确定采用13502/==u a Q R kN 。 (2)估算桩数与平面布桩 ①初选桩的根数 3.41350 5840==a k R F n > 根,暂取5根。 ②初选承台尺寸 桩距2.14.00.30.3=?==d s m ,并考虑到xk yk >M M ,故布桩如图8-29所示: (a) 平面 (b) 立面 图8-29 承台尺寸及荷载图

桩基础设计计算书

基础工程桩基础设计资料 ⑴上部结构资料某教学实验楼,上部结构为十层框架,其框架主梁、次梁、楼板均为现浇整体式,混凝土强度等级为C30,上部结构传至柱底的相应于荷载效应标准组合的荷载如下︰ 竖向力:4800 kN , 弯距:70 kN·m, 水平力:40 kN 拟采用预制桩基础,预制桩截面尺寸为 350mm * 350mm。 ⑵建筑物场地资料拟建建筑物场地位于市区内,地势平坦,建筑物场地位于非地震地区,不考虑地震影响.场地地下水类型为潜水,地下水位离地表 2.1 米,根据已有资料,该场地地下水对混凝土没有腐蚀性。建筑地基的土层分布情况及各土层物理,力学指标见下表: 表1 地基各土层物理、力学指标

基础工程桩基础设计计算 1. 选择桩端持力层 、承台埋深 ⑴.选择桩型 由资料给出,拟采用预制桩基础。 还根据资料知,建筑物拟建场地位于市区内,为避免对周围产生噪声污染和扰动地层,宜采用静压法沉桩,这样不仅可以不影响周围环境,还能较好地保证桩身质量和沉桩精度。 ⑵.确定桩的长度、埋深以及承台埋深 依据地基土的分布,第3层是粘土,压缩性较高,承载力中等,且比较厚,而第4层是粉土夹粉质粘土,不仅压缩性低,承载力也高,所以第4层是比较适合的桩端持力层。桩端全断面进入持力层1.0m (>2d ),工程桩入土深度为h ,h=1.5+8.3+12+1=22.8m 。 由于第1层厚1.5m ,地下水位离地表2.1m ,为使地下水对承台没有影响,所以选择承台底进入第2层土0.3m ,即承台埋深为1.8m 。 桩基的有效桩长即为22.8-1.8=21m 。 桩截面尺寸由资料已给出,取350mm ×350mm ,预制桩在工厂制作,桩分两节,每节长11m ,(不包括桩尖长度在内),实际桩长比有效桩长长1m ,是考虑持力层可能有一定起伏及桩需要嵌入承台一定长度而留有的余地。 桩基以及土层分布示意图如图1。 2.确定单桩竖向承载力标准值 按经验参数法确定单桩竖向极限承载力特征值公式为: uk sk pk sik i pk p Q Q Q u q l q A =+=+∑ 按照土层物理指标,查桩基规范JGJ94-2008表5.3.5-1和表5.3.5-2估算的极限桩侧,桩端阻力特征值列于下表:

桩基础工程计算实例详解

桩基础工程 1.某工程用打桩机,打如图4-1所示钢筋混凝土预制方桩,共50根,求其工程量,确定定额项目。 钢筋混凝土预制方桩 【解】工程量=0.5×0.5×(24+0.6)×50=307.50m3 钢筋混凝土预制方桩套2-6 定额基价=114.59元/m3 2.打桩机打孔钢筋混凝土灌注桩,桩长14m,钢管外径0.5m,桩根数为50根,求现场灌注桩工程量,确定定额项目。 【解】工程量=3.14÷4×0.52×(14+0.5)×50=142.28m3 打孔钢筋混凝土灌注桩(15m以内)套2-41 定额基价=508.3元/m3 3.如图所示,已知共有20根预制桩,二级土质。求用打桩机打桩工程量。 【解】工程量=0.45×0.45×(15+0.8)×20m3=63.99m3 4.如图所示,求履带式柴油打桩机打桩工程量。已知土质为二级土,混凝土预制桩28根。 【解】工程量=[×(0.32-0.22)×21.2+×0.32×O.8]×28m3=99.57m3 5.如图所示,求送桩工程量,并求综合基价。 【解】工程量=0.4×0.4×(0.8+0.5)×4=0.832m3 查定额,套(2-5)子目, 综合基价=0.832×(96.18+21×0.63×0.25+1033.82×0.060×0.25)=115.625元

6.打预制钢筋混凝土离心管桩,桩全长为12.50m,外径30cm,其截面面积如图所示, 求单桩体积。 【解】离心管桩V1=×3.1416×12m3 =0.0125×3.1416×12m3 =0.471m3 预制桩尖V2=0.32××3.1416×0.5m3=0.0255×3.1416×0.5m3=0.035m3 总体积∑V=(0.471+0.035)m3=0.506m3 7.求图示钢筋混凝土预制桩的打桩工程量,共有120根桩。 【解】V=[(L一h)×(A×B)+×(A×B)×h]×n =[(7-0.23)×(0.25×0.25)+ ×(0.25×0.25×0.23)]×120m3=51.35m3 8.图为预制钢筋混凝土桩,现浇承台基础示意图,计算桩基的制作、运输、打桩、打送桩以及承台的工程量。(30个) 【解】(1)预制桩图示工程量: V图=(8.0+0.3)×0.3×0.3m3×4根×30个=89.64m3 (2)制桩工程量:V制= V图×1.02=89.64m3×1.02=91.43m3 (3)运输工程量:V运= V图×1.019=89.64m3×1.019=91.34m3 (4)打桩工程量:V打= V图=89.64m3 (5)送桩工程量:V送=(1.8-0.3-0.15+0.5)×0.3×0.3×4×30m3=19.98m3

桩基础课程设计计算书范本

桩基础课程设计计 算书

土 力 学 课 程 设 计 姓名: 学号: 班级: 二级学院: 指导老师:

地基基础课程设计任务书 [工程概况] 某城市新区拟建一栋10层钢筋混凝土框架结构的办公楼,长24.0m ,宽9.6m ,其1-5轴的柱底荷载效应标准组合值如下所示。建筑场地位于临街地块部·位,地势平坦,室外地坪标高同自然地面,室内外高差450mm 。柱截面尺寸均为500mm ×500mm ,横向承重,柱网布置图如图1所示。场地内地层层位稳定,场地地质剖面及桩基计算指标详见工程地质资料,如表1所示。勘察期间测得地下水水位埋深为 2.5m 。地下水水质分析结果表明,本场地地下水无腐蚀性。试按乙级条件设计柱下独立承台桩基础。 柱底荷载效应标准组合值 1轴荷载:5417;85.m;60k k k F kN M kN V kN ===。 2轴荷载:5411;160.m;53k k k F kN M kN V kN ===。 3轴荷载:5120;88.m;63k k k F kN M kN V kN ===。 4轴荷载:5300;198.m;82k k k F kN M KN V kN ===。 5轴荷载:5268;140.m;60k k k F kN M kN V kN ===。

图1 框架结构柱网布置图 (预制桩基础)--12土木1班 工程概况 某市新区钢筋混凝土框架结构的办公楼,长24.0米,柱距6米,宽9.6米,室内外地面高差0.45米。柱截面500×500mm 。建筑场地地质条件见表1。 表1 建筑场地地质条件

注:地下水位在天然地面下2.5米处 目录 地基基础课程设计任务书............................................................................ - 0 -工程概况....................................................................................................... - 1 - 1.设计资料.................................................................................................... - 4 - 2.选择桩型与桩端持力层、确定桩长和承台埋深...................................... - 4 - 3.确定单桩极限承载力标准值..................................................................... - 5 - 4.确定桩数和承台尺寸 ................................................................................ - 6 - 5.桩顶作用效应验算 .................................................................................... - 7 - 6.桩基础沉降验算 ........................................................................................ - 8 - 6.1 求基底压力和基底附加压力 ........................................................... - 8 - 6.2 确定沉降计算深度 ........................................................................... - 8 - 6.3 沉降计算........................................................................................... - 8 -

厌氧塔计算手册

1. 厌氧塔的设计计算 1.1 反应器结构尺寸设计计算 (1) 反应器的有效容积 设计容积负荷为 5.0 /( 3 / ) N v kgCOD m d 进出水 COD 浓度 C 0 2000( mg / L) , E=0.70 QC 0 E 3000 20 0.70 8400m 3 3 V= 5.0 ,取为 8400 m N v 式中 Q ——设计处理流量 m 3 / d C 0——进出水 CO D 浓度 kgCOD/ 3 m E ——去除率 N V ——容积负荷 (2) 反应器的形状和尺寸。 工程设计反应器 3 座,横截面积为圆形。 1) 反应器有效高为 h 17.0m 则 横截面积: S V 有效 8400 =495(m 2 ) h 17.0 单池面积: S i S 495 165(m 2 ) n 3 2) 单池从布水均匀性和经济性考虑,高、直径比在 1.2 : 1 以下较合适。 设直径 D 15 m ,则高 h D*1.2 15 * 1.2m 18 ,设计中取 h 18m 单池截面积: S i ' 3.14 * ( D )2 h 3.14 7.52 176.6( m 2 ) 2 设计反应器总高 H 18m ,其中超高 1.0 m 单池总容积: V i S i ' H ' 176.6 (18.0 1.0) 3000( m 3 ) 单个反应器实际尺寸: D H φ15m 18m 反应器总池面积: S S i ' n 176.6 3 529.8(m 2 ) 反应器总容积: V V 'i n 3000 3 9000(m 3 )

设备基础计算书

设备基础计算书 1.计算依据 《动力机器基础设计规范》 (GB50040-96) 《建筑地基基础设计规范》 (GB50007-2002) 《混凝土结构设计规范》 (GB50010-2010) 《重载地面、轨道及特殊楼地面》(06J305) 《动力机器基础设计手册》 (中国建筑工业出版社) 2.工程概况 设备静载按G1=10t/m2=100KN/m2; 地基承载力特征值fa=180kPa; 采用C30混凝土,设备基础高度250mm,钢筋采用I级钢(HPB300) 根据所提资料计算160T冲床设备基础的承载力计算,设备基础根据设备脚架尺寸每边向外扩300mm进行计算。160T冲床设备基础示意图如下图所示 设备基础示意图 3.计算过程 设备基础正截面受压承载力计算() *fc*A=**1000000*A=*106A N=*G1*A =*105*A<*fcA 即设备基础正截面受压满足要求 3.2设备基础正截面受弯承载力计算 (仅计算长度方向,取土重度gma=20kN/m3,混凝土保护层厚度取30mm) pk=G1+G2=*105 +25*1000*= 单位宽度基地净反力 p=*( G1+G2-gma*h)=**103-20*103*=m 计算可得最大正弯矩为M=,支座最大负弯矩为M=根据()计算可得 基础底面计算配筋面积As1=565mm2 基础顶面计算配筋面积As2=258mm2 根据(GB50010-2010)取最小配筋率ρmin= 0. 2% 最小配筋面积为Asmin=%*1000*250=500 mm2 基础顶部和底部可配12200(As=565mm2) 3.3地脚螺栓抗倾覆验算(每个设备基础共四个地脚螺栓孔) 取每个地脚的上拔力设计值 q1=* *(G1+G2)* A=****= 倾覆力矩MS=q1*=有设备基础的大小可知抗倾覆力矩

厌氧塔设计计算书

1.厌氧塔的设计计算 1.1反应器结构尺寸设计计算 (1) 反应器的有效容积 设计容积负荷为)//(0.53 d m kgCOD N v = 进出水COD 浓度)/(20000L mg C = ,E=0.70 V= 3 084000 .570 .0203000m N E QC v =??= ,取为84003 m 式中Q ——设计处理流量d m /3 C 0——进出水CO D 浓度kgCOD/3 m E ——去除率 N V ——容积负荷 (2) 反应器的形状和尺寸。 工程设计反应器3座,横截面积为圆形。 1) 反应器有效高为m h 0.17=则 横截面积:)(4950 .1784002 m h V S =有效 == 单池面积:)(1653 4952 m n S S i == = 2) 单池从布水均匀性和经济性考虑,高、直径比在1.2:1以下较合适。 设直径m D 15=,则高182.1*152.1*===m D h ,设计中取m h 18= 单池截面积:)(6.1765 .714.3)2 ( *14.32 2 2' m h D S i =?== 设计反应器总高m H 18=,其中超高1.0m 单池总容积:)(3000)0.10.18(6.176'3 ' m H S V i i =-?=?= 单个反应器实际尺寸:m m H D 1815?=?φ 反应器总池面积:)(8.52936.1762 ' m n S S i =?=?= 反应器总容积:)(900033000'3 m n V V i =?=?=

(3) 水力停留时间(HRT )及水力负荷(r V )v N h Q V t HRT 72243000 9000=?== )]./([24.03 6.1762430002 3h m m S Q V r =??= = 根据参考文献,对于颗粒污泥,水力负荷)./(9.01.02 3 h m m V r -=故符合要求。 1.7.2 三相分离器构造设计计算 (1) 沉淀区设计 根据一般设计要求,水流在沉淀室内表面负荷率)./(7.02 3 ' h m m q <沉淀室底部进水口表面负荷一般小于2.0)./(2 3 h m m 。 本工程设计中,与短边平行,沿长边每池布置8个集气罩,构成7个分离单元,则每池设置7个三项分离器。 三项分离器长度:)(16' m b l == 每个单元宽度:)(57.27 187 ' m l b == = 沉淀区的沉淀面积即为反应器的水平面积即2882m 沉淀区表面负荷率:)./(0.20.1)./(39.0288 58.1142 323h m m h m m S Q i -<== (2) 回流缝设计 设上下三角形集气罩斜面水平夹角α为55°,取m h 4.13= )(98.055 tan 4.1tan . 31m h b === α )(04.198.020.32 12m b b b =?-=-= 式中:b —单元三项分离器宽度,m ; 1b —下三角形集气罩底的宽度,m ; 2b —相邻两个下三角形集气罩之间的水平距离(即污泥回流缝之 一),m ; 3h —下三角形集气罩的垂直高度,m ;

(完整版)桩基础设计计算书

目录 1设计任务 (2) 1.1设计资料 (2) 1.2设计要求 (3) 2 桩基持力层,桩型,桩长的确定 (3) 3 单桩承载力确定 (3) 3.1单桩竖向承载力的确定 (3) 4 桩数布置及承台设计 (4) 5 复合桩基荷载验算 (6) 6 桩身和承台设计 (9) 7 沉降计算 (14) 8 构造要求及施工要求 (20) 8.1预制桩的施工 (20) 8.2混凝土预制桩的接桩 (21) 8.3凝土预制桩的沉桩 (22) 8.4预制桩沉桩对环境的影响分析及防治措施 (23) 8.5结论与建议 (25) 9 参考文献 (25)

一、设计任务书 (一)、设计资料 1、某地方建筑场地土层按其成因土的特征和力学性质的不同自上而下划分为5层,物理力学指标见下表。勘查期间测得地下水混合水位深为2.1m,本场地下水无腐蚀性。建筑安全等级为2级,已知上部框架结构由柱子传来的荷载。承台底面埋深:D =2.1m。

(二)、设计要求: 1、桩基持力层、桩型、承台埋深选择 2、确定单桩承载力 3、桩数布置及承台设计 4、群桩承载力验算 5、桩身结构设计和计算 6、承台设计计算 7、群桩沉降计算 8、绘制桩承台施工图 二、桩基持力层,桩型,桩长的确定 根据设计任务书所提供的资料,分析表明,在柱下荷载作用下,天然地基基础难以满足设计要求,故考虑选用桩基础。由地基勘查资料,确定选用第四土层黄褐色粉质粘土为桩端持力层。 根据工程请况承台埋深 2.1m,预选钢筋混凝土预制桩断面尺寸为450㎜×450㎜。桩长21.1m。 三、单桩承载力确定 (一)、单桩竖向承载力的确定: 1、根据地质条件选择持力层,确定桩的断面尺寸和长度。 根据地质条件以第四层黄褐色粉土夹粉质粘土为持力层, 采用截面为450×450mm的预置钢筋混凝土方桩,桩尖进入持力层 1.0m;镶入承台0.1m,桩长21.1 m。承台底部埋深 2.1 m。 2、确定单桩竖向承载力标准值Quk可根据经验公式估算: Quk= Qsk+ Qpk=μ∑qsikli+qpkAp Q——单桩极限摩阻力标准值(kN) sk Q——单桩极限端阻力标准值(kN) pk u——桩的横断面周长(m) A——桩的横断面底面积(2m) p L——桩周各层土的厚度(m) i q——桩周第i层土的单位极限摩阻力标准值(a kP)sik q——桩底土的单位极限端阻力标准值(a kP) pk 桩周长:μ=450×4=1800mm=1.8m

桩基础实例设计计算书

桩基础设计计算书 一:建筑设计资料 1、建筑场地土层按其成因土的特征与力学性质的不同自上而下划分为四层,物理力学指标见下表。勘查期间测得地下水混合水位深为 2、0m,地下水水质分析结果表明,本场地下水无腐蚀性。 建筑安全等级为2级,已知上部框架结构由柱子传来的荷载: V = 3200kN, M=400kN m g,H = 50kN; 柱的截面尺寸为:400×400mm; 承台底面埋深:D =2、0m。 2、根据地质资料,以黄土粉质粘土为桩尖持力层, 钢筋混凝土预制桩断面尺寸为300×300,桩长为10、0m 3、桩身资料: 混凝土为C30,轴心抗压强度设计值f c =15MPa,弯曲强度设计值为 f m =16、5MPa,主筋采用:4Φ16,强度设计值:f y =310MPa 4、承台设计资料:混凝土为C30,轴心抗压强度设计值为f c =15MPa,弯曲抗压强度设计值 为f m =1、5MPa。 、附:1):土层主要物理力学指标; 2):桩静载荷试验曲线。

桩静载荷试验曲线 二:设计要求: 1、单桩竖向承载力标准值与设计值的计算; 2、确定桩数与桩的平面布置图; 3、群桩中基桩的受力验算 4、承台结构设计及验算; 5、桩及承台的施工图设计:包括桩的平面布置图,桩身配筋图, 承台配筋与必要的施工说明; 6、需要提交的报告:计算说明书与桩基础施工图。 三:桩基础设计 (一):必要资料准备 1、建筑物的类型机规模:住宅楼 2、岩土工程勘察报告:见上页附表 3、环境及检测条件:地下水无腐蚀性,Q —S 曲线见附表 (二):外部荷载及桩型确定 1、柱传来荷载:V = 3200kN 、M = 400kN ?m 、H = 50kN 2、桩型确定:1)、由题意选桩为钢筋混凝土预制桩; 2)、构造尺寸:桩长L =10、0m,截面尺寸:300×300mm 3)、桩身:混凝土强度 C30、 c f =15MPa 、 m f =16、5MPa 4φ16 y f =310MPa

深基础课程设计计算书 (1)

深基础课程设计计算书 学校:福建工程学院 层次:专升本 专业:土木工程____姓名:林飞____ 2016年09 月16 日

目录 一、外部荷载及桩型确定 (1) 二、单桩承载力确定 (1) 三、单桩受力验算 (4) 四、群桩承载力验算 (5) 五、承台设计 (6) 六桩的强度验算 (9)

一、 外部荷载及桩型确定 1、柱传来荷载:F= 3000kN 、M = 600kN ·m 、H = 60kN 2、桩型确定:1)、由题意选桩为钢筋混凝土预制桩; 2)、构造尺寸:桩长L =10.0m ,截面尺寸:400mm ×400mm 3)、桩身:混凝土强度等级 C30、c f =14.3 N/mm 2 、 4Φ16 y f =300 N/mm 2 4)、承台材料:混凝土强度等级C30、c f =14.3 N/mm 2 、 t f =1.43 N/mm 2 二、单桩承载力确定 1、单桩竖向承载力的确定: 1)、根据桩身材料强度(?=1.0,配筋Φ16) ()() kN A f A f R S y p c 1.25298.8033004003.140.12=?+??=''+=? 2)、根据地基基础规范公式计算: ①、桩尖土端承载力计算: 粉质粘土,L I =0.60,入土深度为12.0m 由书105页表4-4知,当h 在9和16之间时,当L I =0.75时,1500=pk q kPa,当L I =0.5时,2100=pa q ,由线性内插法: 75 .06.01500 75.05.015002100--=--pk q 1860=pk q k P a ②、桩侧土摩擦力: 粉质粘土层1: 1.0L I = ,由表4-3,sik q =36~50kPa ,由线性内插法,取36kPa 粉质粘土层2: 0.60L I = ,由表4-3,sik q =50~66kPa ,由线性内插法可知,

UASB的设计计算书

两相厌氧工艺的研究进展 摘要:传统的厌氧消化工艺中,产酸菌和产甲烷菌在单相反应器内完成厌氧消化的全过程,由于二菌种的特性有较大的差异,对环境条件的要求不同,无法使二者都处于最佳的生理状态,影响了反应器的效率。1971年Ghosh和Poland提出了两相厌氧生物处理工艺[1],它的本质特征是实现了生物相的分离,即通过调控产酸相和产甲烷相反应器的运行控制参数,使产酸相和产甲烷相成为两个独立的处理单元,各自形成产酸发酵微生物和产甲烷发酵微生物的最佳生态条件,实现完整的厌氧发酵过程,从而大幅度提高废水处理能力和反应器的运行稳定性。 (1) 两相厌氧消化工艺将产酸菌和产甲烷菌分别置于两个反应器内,并为它们提供了最佳的生长和代谢条件,使它们能够发挥各自最大的活性,较单相厌氧消化工艺的处理能力和效率大大提高。Yeoh对两相厌氧消化工艺和单相厌氧消化工艺进行了对比实验研究。结果表明:两相厌氧消化系统的产甲烷率为0.168m3CH4/(KgCOD Cr?d)明显高于单相厌氧消化系统的产甲烷率0.055m3CH4/(KgCOD cr?d)。 (2) 反应器的分工明确,产酸反应器对污水进行预处理,不仅为产甲烷反应器提供 了更适宜的基质,还能够解除或降低水中的有毒物质如硫酸根、重金属离子的毒性,改变难降解有机物的结构,减少对产甲烷菌的毒害作用和影响,增强了系统运行的稳定性。 (3) 产酸相的有机负荷率高,缓冲能力较强,因而冲击负荷造成的酸积累不会对产 酸相有明显的影响,也不会对后续的产甲烷相造成危害,提高了系统的抗冲击能 力。 (4) 产酸菌的世代时间远远短于产甲烷菌,产酸菌的产酸速度高于产甲烷菌降解酸的速率[4,5],产酸反应器的体积总是小于产甲烷反应器的体积。 (5) 两相厌氧工艺适于处理高浓度有机污水、悬浮物浓度很高的污水、含有毒物质及难降解物质的工业废水和污泥。 2两相厌氧工艺的研究现状 2. 1反应器类型 从国内外的两相厌氧系统研究所采用的工艺形式看,主要有两种:第一种是两相均采用同一类型的反应器,如UASB反应器,UBF反应器,ASBR反应器,其中UASB 反应器较常用。第二种是称作Anodek的工艺,其特点是产酸相为接触式反应器 (即完全式反应器后设沉淀池,同时进行污泥回流),产甲烷相则采用其它类型的反应器⑹。 王子波、封克、张键采用两相UASB反应器处理含高浓度硫酸盐黑液,酸化相为8.87L的普通升流式反应器,甲烷相为28.75L的UASB反应器,系统温度 (35 ±)C。当酸化相进水COD 为(6.771 ?11.057)g/ L ,SO42-为(5.648?8.669) g/

桩基础实例设计计算书

桩基础设计计算书 一:建筑设计资料 1、建筑场地土层按其成因土的特征和力学性质的不同自上而下划分为四层,物理力学指标见下表。勘查期间测得地下水混合水位深为2.0m,地下水水质分析结果表明,本场地下水无腐蚀性。 建筑安全等级为2级,已知上部框架结构由柱子传来的荷载: V = 3200kN, M=400kN m,H = 50kN; 柱的截面尺寸为:400×400mm; 承台底面埋深:D =2.0m。 2、根据地质资料,以黄土粉质粘土为桩尖持力层, 钢筋混凝土预制桩断面尺寸为300×300,桩长为10.0m 3、桩身资料:混凝土为C30,轴心抗压强度设计值f c =15MPa,弯曲强度设计值为 f m =16.5MPa,主筋采用:4Φ16,强度设计值:f y =310MPa 4、承台设计资料:混凝土为C30,轴心抗压强度设计值为f c =15MPa,弯曲抗压强度 设计值为f m =1.5MPa。 、附:1):土层主要物理力学指标; 2):桩静载荷试验曲线。 附表二:

桩静载荷试验曲线 二:设计要求: 1、单桩竖向承载力标准值和设计值的计算; 2、确定桩数和桩的平面布置图; 3、群桩中基桩的受力验算 4、承台结构设计及验算; 5、桩及承台的施工图设计:包括桩的平面布置图,桩身配筋图, 承台配筋和必要的施工说明; 6、需要提交的报告:计算说明书和桩基础施工图。 三:桩基础设计 (一):必要资料准备 1、建筑物的类型机规模:住宅楼 2、岩土工程勘察报告:见上页附表 3、环境及检测条件:地下水无腐蚀性,Q—S曲线见附表(二):外部荷载及桩型确定

1、柱传来荷载:V = 3200kN 、M = 400kN ?m 、H = 50kN 2、桩型确定:1)、由题意选桩为钢筋混凝土预制桩; 2)、构造尺寸:桩长L =10.0m ,截面尺寸:300×300mm 3)、桩身:混凝土强度 C30、c f =15MPa 、m f =16.5MPa 4φ16 y f =310MPa 4)、承台材料:混凝土强度C30、c f =15MPa 、m f =16.5MPa t f =1.5MPa (三):单桩承载力确定 1、 单桩竖向承载力的确定: 1)、根据桩身材料强度(?=1.0按0.25折减,配筋 φ16) 2 ( ) 1.0(150.25300310803.8)586.7p S c y R kN f f A A ?''=+ =???+?= 2)、根据地基基础规公式计算: 1°、桩尖土端承载力计算: 粉质粘土,L I =0.60,入土深度为12.0m 100800(800)8805 pa kPa q -=?= 2°、桩侧土摩擦力: 粉质粘土层1: 1.0L I = , 17~24sa kPa q = 取18kPa 粉质粘土层2: 0.60L I = , 24~31sa kPa q = 取28kPa 2 8800.340.3(189281)307.2p i p pa sia Ra kPa q q l A μ=+=?+???+?=∑ 3)、根据静载荷试验数据计算: 根据静载荷单桩承载力试验Q s -曲线,按明显拐点法得单桩极限承载力 550u kN Q = 单桩承载力标准值: 550 2752 2 u k kN Q R = = = 根据以上各种条件下的计算结果,取单桩竖向承载力标准值

厌氧塔计算手册

1.厌氧塔的设计计算 反应器结构尺寸设计计算 (1)反应器的有效容积 设计容积负荷为)//(0.53d m kgCOD N v = 进出水COD 浓度)/(20000L mg C =,E= V= 3084000 .570 .0203000m N E QC v =??=,取为84003m 式中Q ——设计处理流量d m /3 C 0——进出水CO D 浓度kgCOD/3m E ——去除率 N V ——容积负荷 (2)反应器的形状和尺寸。 工程设计反应器3座,横截面积为圆形。 1)反应器有效高为m h 0.17=则 横截面积:)(4950 .178400 2m h V S =有效= = 单池面积:)(1653 4952m n S S i === 2)单池从布水均匀性和经济性考虑,高、直径比在:1以下较合适。 设直径m D 15=,则高182.1*152.1*===m D h ,设计中取m h 18= 单池截面积:)(6.1765.714.3)2 (*14.3222'm h D S i =?== 设计反应器总高m H 18=,其中超高m 单池总容积:)(3000)0.10.18(6.176'3'm H S V i i =-?=?= 单个反应器实际尺寸:m m H D 1815?=?φ

反应器总池面积:)(8.52936.1762'm n S S i =?=?= 反应器总容积:)(900033000'3m n V V i =?=?= (3)水力停留时间(HRT )及水力负荷(r V )v N 根据参考文献,对于颗粒污泥,水力负荷)./(9.01.023h m m V r -=故符合要求。 三相分离器构造设计计算 (1) 沉淀区设计 根据一般设计要求,水流在沉淀室内表面负荷率)./(7.023'h m m q <沉淀室底部进水口表面负荷一般小于)./(23h m m 。 本工程设计中,与短边平行,沿长边每池布置8个集气罩,构成7个分离单元,则每池设置7个三项分离器。 三项分离器长度:)(16'm b l == 每个单元宽度:)(57.27 18 7'm l b === 沉淀区的沉淀面积即为反应器的水平面积即2882m 沉淀区表面负荷率:)./(0.20.1)./(39.0288 58 .1142323h m m h m m S Q i -<== (2) 回流缝设计 设上下三角形集气罩斜面水平夹角α为55°,取m h 4.13= 式中:b —单元三项分离器宽度,m ; 1b —下三角形集气罩底的宽度,m ; 2b —相邻两个下三角形集气罩之间的水平距离(即污泥回流 缝之一),m ; 3h —下三角形集气罩的垂直高度,m ; 设上下三角形集气罩斜面水平夹角α为55°,取m h 4.13=

建筑地基基础计算

建筑地基基础计算 地基基础计算用表 1.地基基础设计等级(表2-27) 地基基础设计等级表2-27 根据建筑物地基基础设计等级及长期荷载作用下地基变形对上部结构的影响程度,地基基础设计应符合下列规定: (1)所有建筑物的地基计算均应满足承载力计算的有关规定。 (2)设计等级为甲级、乙级的建筑物,均应按地基变形设计。 (3)表2-28所列范围内设计等级为丙级的建筑物可不作变形验算,如有下列情况之一时,仍应作变形验算: 1)地基承载力特征值小于130kPa,且体型复杂的建筑; 2)在基础上及其附近有地面堆载或相邻基础荷载差异较大,可能引起地基产生过大的不均匀沉降时; 3)软弱地基上的建筑物存在偏心荷载时; 4)相邻建筑距离过近,可能发生倾斜时; 5)地基内有厚度较大或厚薄不均的填土,其自重固结未完成时。 (4)对经常受水平荷载作用的高层建筑、高耸结构和挡土墙等,以及建造在斜坡上或边坡附近的建筑物和构筑物,尚应验算其稳定性。 (5)基坑工程应进行稳定性验算。

(6)当地下水埋藏较浅,建筑地下室或地下构筑物存在上浮间题时,尚应进行抗浮验算。 可不作地基变形计算设计等级为丙级的建筑物范围表2-28 注:1.地基主要受力层系指条形基础底面下深度为3b(b为基础底面宽度),独立基础下为1.5b,且厚度均不小于5m的范围(二层以下一般的民用建筑除外); 2.地基主要受力层中如有承载力特征值小于130kPa的土层时,表中砌体承重结构的设计,应符合《建筑地基基础设计规范》(GB 50007-2002)中第7章的有关要求; 3.表中砌体承重结构和框架结构均指民用建筑,对于工业建筑可按厂房高度、荷载情况折合成与其相当的民用建筑层数; 4.表中吊车额定起重量、烟囱高度和水塔容积的数值系指最大值。 2.基础宽度和埋深的地基承载力修正系数(表2-29) 承载力修正系数表2-29 注:1.强风化和全风化的岩石,可参照所风化成的相应土类取值,其他状态下的岩石不修

相关主题
文本预览
相关文档 最新文档