当前位置:文档之家› 张兴柱-反激变换器中的高频变压器设计公式

张兴柱-反激变换器中的高频变压器设计公式

张兴柱-反激变换器中的高频变压器设计公式
张兴柱-反激变换器中的高频变压器设计公式

反激变换器中的高频变压器设计公式

张兴柱博士

1

EE型变压器参数及高频变压器计算Word版

我们知道,与一般的电流电压测量不同,磁场强度和磁感应强度的测量都是间接测量。磁场强度通过测量励磁电流后计算得到,磁感应强度是通过测量感应磁通后计算得到,参与计算的样品有效参数Le和Ae将直接与测量结果相关。 磁场强度的计算公式:H = N xI / Le 式中:H为磁场强度,单位为A/m;N为励磁线圈的匝数;I为励磁电流(测量值),单位位A;Le为测试样品的有效磁路长度,单位为m。 磁感应强度计算公式:B = Φ / (N xAe) 式中:B为磁感应强度,单位为Wb/m^2;Φ为感应磁通(测量值),单位为Wb;N为感应线圈的匝数;Ae为测试样品的有效截面积,单位为m^2。 根据样品尺寸计算样品的有效参数Le和Ae,在不同的行业中,计算方法往往不统一,这可能使测试结果缺乏可比性。 在SMTest软磁测量软件中,样品有效参数的计算依照行业标准SJ/T10281。下面以环形样品为例,讲述样品有效磁路长度Le和有效截面积Ae的计算方法。 第一种情况:指定叠片系数Sx,指定样品的外径A、内径B和高度C。 根据SJ/T10281标准,先计算样品的磁芯常数C1和C2,然后根据磁芯常数计算Le和 Ae,这是严格按照标准执行的计算方法。

第二种情况:指定材料密度De和样品质量W,指定样品的外径A、内径B和高度C。 根据SJ/T10281标准,先计算样品的磁芯常数C1和C2,然后根据磁芯常数计算Le和 Ae,并可推算叠片系数Sx,这是另外一种计算方法,与标准有点差别,但计算结果与标准比较接近。 第三种情况:指定材料密度De和样品质量W,指定样品的外径A和内径B,不指定样品的高度。 不按SJ/T10281标准求磁芯常数,而是按平常的数学公式来求Le和Ae。这种计算方法与标准相差较大,只有环形样品才有这种计算方法。

反激式开关电源设计的思考六-变压器设计实例

反激式开关电源设计的思考六 -变压器设计实例 已知条件: 输入电压:DC:380V~700V 输出电压:1) 5V/0.5A 2) 12V/0.5A 3) 24V/0.3A PWM控制论芯片选用UC2842, 开关频率:50KHz 效率η:80% 取样电压用12V,5V用7-8V电压通过低压差三端稳压块得到; 算得Po=5×0.5+12×0.5+24×0.3=15.7 W 计算步骤: 1、确定变比N N=Np/Ns VoR = N(VO+VD) N=VoR/(VO+VD) VoR取210V N=210/(12+1)=16.1 取16 2.计算最大占空比Dmax 3、选择磁芯 计划选择EE型磁芯,因此ΔB为0.2T,电流密度J取4A/mm2 Ap = AwAe = 6500×P0 / (△B×J×f) =2.51×103 (mm4) 通过查南通华兴磁性材料有限公司EE型磁芯参数知

通过上面计算,考虑到还有反馈绕组,要留有一定余量,最终选择EE25磁芯 EE25磁芯的Ae=42.2mm2=4.22X10-3m2 4、计算初级匝数Np

5、初级峰值电流:Ip 6、初级电感量L

7、次级匝数 1) 、12V取样绕组Ns: Ns=Np/N =250/16 =15.625 取16匝 2)、计算每匝电压数Te: Te=(Uo+Ud)/Ns =(12+1)/16 =0.8125 3)、7.5V匝数: N7.5V=U/Te =(7.5+0.5)/0.8125 =9.84取10匝 4)、24V匝数 N24V=U/Te =(24+1)/0.8125 =30.7取31匝 5)、辅助绕组15V N15V=U/Te =(15+1)/0.8125 =19.7取20匝 8、计算初级线径: 1)、计算电流有效值I

反激变压器设计实例(二)

反激变压器设计实例(二) 目录 反激变压器设计实例(二) (1) 导论 (1) 一.自跟踪电压抑制 (2) 2. 反激变换器“缓冲”电路 (4) 3. 选择反击变换器功率元件 (5) 3.1 输入整流器和电容器 (5) 3.2 原边开关晶体管 (5) 3.3 副边整流二极管 (5) 3.4 输出电容 (6) 4. 电路搭接和输出结果 (6) 总结 (7) 导论 前面第一节已经将反激变换器的变压器具体参数计算出来,这里整个反激电路最核心的部件已经确定,我们可以利用saber建立电路拓扑,由saber得出最初的输出参数结果。首先进行开环控制,输出电容随便输出一个值(由于C1作为输出储能单元,其容值估算应考虑到输出的伏秒,也有人用1~2uF/W进行大概估算),这里选取1000uF作为输出电容。初始设计中的输出要求12V/3A,故负载选择4欧姆电阻,对于5V/10A的输出,通过调节负载和占空比可以达到。由实际测量可得,1mm线径的平均电感和电阻值分别为6uH/匝和2.6mΩ/匝,寄生电感通常为5%,由于副边匝数较少,可不考虑寄生电感,所以原边寄生电感为27uH,电阻为11.57mΩ,最终结果如图1所示。

图1.反激电路主拓扑 图2.开关管电压、输出电压、输出电流 首先由输出情况可以看出,变压器的设计还是满足要求的。查看图2中开关管电压曲线可以看出,其开关应力过高,不做处理会导致开关管导通瞬间由于高压而击穿。 在反激变换器中,有两个主要原因会引起高开关应力。这两个原因都与晶体管自带感性负载关断特性有关。最明显的影响是由于变压器漏感的存在,集电极电压在关断边沿会产生过电压。其次,不是很明显的影响是如果没有采用负载线整形技术,开关关断期间会出现很高的二次测击穿应力。 一.自跟踪电压抑制 当警惕管所在电路中带感性或变压器负载,在晶体管关断时,由于有能量存储在电感或变压器漏感的磁场中,在其集电极将会产生高压。 在反激变换器中,储存在变压器中的大部分能量在反激期间将会传递到副边。可是由于漏感的存在,在反激期间开始时,除非采用一定形式的电压抑制,集电极电压会有增加的趋势。在图3中,变压器漏感、输出电容电感和副边电路的回路电感集中为L TL,并折算到变压器原边与原边主电感L p相串联。 考虑在关断后紧接着导通这个动作,在此期间T1原边绕组中已建立电流。当晶体管Q关断

高频变压器的计算

高频变压器参数计算 2009-08-28 11:26 一.电磁学计算公式推导: 1.磁通量与磁通密度相关公式: Ф = B * S⑴ Ф ----- 磁通(韦伯) B ----- 磁通密度(韦伯每平方米或高斯) 1韦伯每平方米=104高斯 S ----- 磁路的截面积(平方米) B = H * μ⑵ μ ----- 磁导率(无单位也叫无量纲) H ----- 磁场强度(伏特每米) H = I*N / l⑶ I ----- 电流强度(安培) N ----- 线圈匝数(圈T) l ----- 磁路长路(米) 2.电感中反感应电动势与电流以及磁通之间相关关系式: EL =⊿Ф / ⊿t * N⑷ EL = ⊿i / ⊿t * L⑸ ⊿Ф ----- 磁通变化量(韦伯) ⊿i ----- 电流变化量(安培) ⊿t ----- 时间变化量(秒) N ----- 线圈匝数(圈T) L ------- 电感的电感量(亨) 由上面两个公式可以推出下面的公式: ⊿Ф / ⊿t * N = ⊿i / ⊿t * L 变形可得: N = ⊿i * L/⊿Ф 再由Ф = B * S 可得下式: N = ⊿i * L / ( B * S )⑹ 且由⑸式直接变形可得: ⊿i = EL * ⊿t / L⑺ 联合⑴⑵⑶⑷同时可以推出如下算式: L =(μ* S )/ l * N2⑻ 这说明在磁芯一定的情况下电感量与匝数的平方成正比(影响电感量的因素) 3.电感中能量与电流的关系: QL = 1/2 * I2 * L⑼ QL -------- 电感中储存的能量(焦耳) I -------- 电感中的电流(安培) L ------- 电感的电感量(亨) 4.根据能量守恒定律及影响电感量的因素和联合⑺⑻⑼式可以得出初次级匝数

高频变压器计算步骤精编版

高频变压器计算 (CCM模式) 反激式DC/DC变换电路 电路基本参数: Vo1=15V Io1=0.4A Vo2=-10V Io2=0.4A Vs=15V(范围10V~20V) Po=10W 设定参数: 1.电路工作频率(根据UC3843的特性,初步确定为50KHz),电路效率为G=75% 2.反激式变换器的工作模式CCM 3.占空比确定(Dmax=0.4) 4.磁芯选型(EE型) 设计步骤 (1)选择磁芯大小 Pin=Po/G=10/0.75=13.3W(查表),选择EE19磁芯 (2)计算导通时间 Dmax=0.4,工作频率fs=50KHz ton=8us (3)选择工作时的磁通密度 根据所选择的磁芯EE19(PC40材料)Ae=22mm2,Bmax=0.22T (4)计算原边匝数 Np=(Vs*ton)/(Bmax*Ae)=(10*8)/(0.22*22)=16.52,取整16 (5)计算副边绕组 以输出电压为15V为例进行计算,设整流二极管及绕组的压降为1V 15+1=16V 原边绕组每匝伏数=Vs/Np=10/16=0.625V/匝 副边绕组匝数Ns1=16/0.625=25.6,取整26 (6)计算选定匝数下的占空比;辅助输出绕组匝数 新的每匝的反激电压为:16/26=0.615V ton=(Ts*0.615)/(0.625+0.615)=9.92us 占空比D=9.92/20=0.496 对于10V直流输出,考虑绕组及二极管压降1V后为11V Ns2=11/0.615=17.88,取整17 (7)初级电感,气隙的计算 在周期Ts内的平均输入电流Is=Pin/Vs=13.3/10=1.33A 导通时间内相应的平均值为Iave=(Is*Ts)/ton=1.33*20/9.92=2.68A 开关管导通前的电流值Ip1=Iave/2=2.68/2=1.34A 开关管关闭前的电流值Ip2=3Ip1=1.34*3=4.02A 初级电感量Lp=Vs*&t/&i=10*9.92/2.68=37.01uH 气隙长度Lg=(u0*Np^2*Ae)/Lp=0.19mm

反激变压器的详细公式的计算

单端反激开关电源变压器设计 单端反激开关电源的变压器实质上是一个耦合电感,它要承担着储能、变压、传递能量等工作。下面对工作于连续模式和断续模式的单端反激变换器的变压器设计进行了总结。 1、已知的参数 这些参数由设计人员根据用户的需求和电路的特点确定,包括:输入电压V in、输出电压V out、每路输出的功率P out、效率η、开关频率f s(或周期T)、线路主开关管的耐压V mos。 2、计算 在反激变换器中,副边反射电压即反激电压V f与输入电压之和不能高过主开关管的耐压,同时还要留有一定的裕量(此处假设为150V)。反激电压由下式确定: V f=V Mos-V inDCMax-150V 反激电压和输出电压的关系由原、副边的匝比确定。所以确定了反激电压之后,就可以确定原、副边的匝比了。 N p/N s=V f/V out 另外,反激电源的最大占空比出现在最低输入电压、最大输出功率的状态,根据在稳态下,变压器的磁平衡,可以有下式: V inDCMin?D Max=V f?(1-D Max) 设在最大占空比时,当开关管开通时,原边电流为I p1,当开关管关断时,原边电流上升到I p2。若I p1为0,则说明变换器工作于断续模式,否则工作于连续模式。由能量守恒,我们有下式: 1/2?(I p1+I p2)?D Max?V inDCMin=P out/η 一般连续模式设计,我们令I p2=3I p1 这样就可以求出变换器的原边电流,由此可以得到原边电感量: L p= D Max?V inDCMin/f s?ΔI p 对于连续模式,ΔI p=I p2-I p1=2I p1;对于断续模式,ΔI p=I p2 。 可由A w A e法求出所要铁芯: A w A e=(L p?I p22?104/ B w?K0?K j)1.14 在上式中,A w为磁芯窗口面积,单位为cm2 A e为磁芯截面积,单位为cm2 L p为原边电感量,单位为H I p2为原边峰值电流,单位为A B w为磁芯工作磁感应强度,单位为T K0为窗口有效使用系数,根据安规的要求和输出路数决定,一般为0.2~0.4 K j为电流密度系数,一般取395A/cm2 根据求得的A w A e值选择合适的磁芯,一般尽量选择窗口长宽之比比较大的磁芯,这样磁芯

环形变压器计算公式

摘要:介绍了环形变压器的特性和优点,阐明了应用中要注意的事项,通过实例介绍了环形变压器的设计计算方法。 关键词:变压器;环形变压器;设计 1引言 环形变压器是电子变压器的一大类型,已广泛应用于家电设备和其它技术要求较高的电子设备中,它的主要用途是作为电源变压器和隔离变压器。环形变压器在国外已有完整的系列,广泛应用于计算机、医疗设备、电讯、仪器和灯光照明等方面。 我国近十年来环形变压器从无到有,迄今为止已形成相当大的生产规模,除满足国内需求外,还大量出口。国内主要用于家电的音响设备和自控设备以及石英灯照明等方面。 环形变压器由于有优良的性能价格比,有良好的输出特性和抗干扰能力,因而它是一种有竞争力的电子变压器,本文拟就它的特点作一介绍。 2环形变压器的特点 环形变压器的铁心是用优质冷轧硅钢片(片厚一般为0.35mm以下),无缝地卷制而成,这就使得它的铁心性能优于传统的叠片式铁心。环形变压器的线圈均匀地绕在铁心上,线圈产生的磁力线方向与铁心磁路几乎完全重合,与叠片式相比激磁能量和铁心损耗将减小25%,由此带来了下述一系列的优点。 1)电效率高铁心无气隙,叠装系数可高达95%以上,铁心磁导率可取~(叠片式铁心只能取~),电效率高达95%以上,空载电流只有叠片式的10%。 2)外形尺寸小,重量轻环形变压器比叠片式变压器重量可以减轻一半,只要保持铁心截面积相等,环形变压器容易改变铁心的长、宽、高比例,可以设计出符合要求的外形尺寸。 3)磁干扰较小环形变压器铁心没有气隙,绕组均匀地绕在环形的铁心上,这种结构导致了漏磁小,电磁辐射也小,无需另加屏蔽都可以用到高灵敏度的电子设备上,例如应用在低电平放大器和医疗设备上。 4)振动噪声较小铁心没有气隙能减少铁心感应振动的噪音,绕组均匀紧紧包住环形铁心,有效地减小磁致伸缩引起的“嗡嗡”声。 5)运行温度低由于铁损可以做到kg,铁损很小,铁心温升低,绕组在温度较低的铁心上散热情况良好,所以变压器温升低。 6)容易安装环形变压器只有中心一个安装螺杆,特别容易在电子设备中进行快速安装与拆卸。 3环形变压器的分类 根据国外文献介绍,环形变压器可分为标准型、经济型及隔离型等三类,各类的特点是 1)标准型电源变压器产品系列容量8~1500VA,有较小的电压调整率、满载运行温升仅为40℃,允许短时超载运行,适合于要求高的使用场合。 初次级绕组间采用B级(130℃)的聚酯薄膜绝缘,要求至少包三层绝缘

变压器计算公式

变压器计算公式已知容量,求其各电压等级侧额定电流 口诀a : 容量除以电压值,其商乘六除以十。 说明:适用于任何电压等级。 在日常工作中,有些只涉及一两种电压等级的变压器额定电流的计算。将以上口诀简化,则可推导出计算各电压等级侧额定电流的口诀: 容量系数相乘求。 已知变压器容量,速算其一、二次保护熔断体(俗称保险丝)的电流值。 口诀b : 配变高压熔断体,容量电压相比求。 配变低压熔断体,容量乘9除以5。 说明: 正确选用熔断体对变压器的安全运行关系极大。当仅用熔断器作变压器高、低压侧保护时,熔体的正确选用更为重要。 这是电工经常碰到和要解决的问题。 已知三相电动机容量,求其额定电流 口诀(c):容量除以千伏数,商乘系数点七六。 说明: (1)口诀适用于任何电压等级的三相电动机额定电流计算。由公式及口诀均可说明容量相同的电压等级不同的电动机的额定电流是不相同的,即电压千伏数不一样,去除以相同的容量,所得“商数”显然不相同,不相同的商数去乘相同的系数,所得的电流值也不相同。若把以上口诀叫做通用口诀,则可推导出计算220、380、660、电压等级电动机的额定电流专用计算口诀,用专用计算口诀计算某台三相电动机额定电流时,容量千瓦与电流安培关系直接倍数化, 省去了容量除以千伏数,商数再乘系数。 三相二百二电机,千瓦三点五安培。 常用三百八电机,一个千瓦两安培。 低压六百六电机,千瓦一点二安培。

高压三千伏电机,四个千瓦一安培。 高压六千伏电机,八个千瓦一安培。 (2)口诀c 使用时,容量单位为kW,电压单位为kV,电流单位为A,此点一定要注意。 (3)口诀c 中系数是考虑电动机功率因数和效率等计算而得的综合值。功率因数为,效率不,此两个数值比较适用于几十千瓦以上的电动机,对常用的10kW以下电动机则显得大些。这就得使用口诀c计算出的电动机额定电流与电动机铭牌上标注的数值有误差,此误差对10kW以下电动机按额定电流先开关、接触器、导线等影响很小。 (4)运用口诀计算技巧。用口诀计算常用380V电动机额定电流时,先用电动机配接电压数去除、商数2去乘容量(kW)数。若遇容量较大的6kV电动机,容量kW 数又恰是6kV数的倍数,则容量除以千伏数,商数乘以系数。 (5)误差。由口诀c 中系数是取电动机功率因数为、效率为而算得,这样计算不同功率因数、效率的电动机额定电流就存在误差。由口诀c 推导出的5个专用口诀,容量(kW)与电流(A)的倍数,则是各电压等级(kV)数除去系数的商。专用口诀简便易心算,但应注意其误差会增大。一般千瓦数较大的,算得的电流比铭牌上的略大些;而千瓦数较小的,算得的电流则比铭牌上的略小些。对此,在计算电流时,当电流达十多安或几十安时,则不必算到小数点以后。可以四舍而五不入,只取整数,这样既简单又不影响实用。对于较小的电流也只要算到一位小数即可。 *测知电流求容量 测知无铭牌电动机的空载电流,估算其额定容量 口诀: 无牌电机的容量,测得空载电流值, 乘十除以八求算,近靠等级千瓦数。 说明:口诀是对无铭牌的三相异步电动机,不知其容量千瓦数是多少,可按通过测量电动机空载电流值,估算电动机容量千瓦数的方法。 测知电力变压器二次侧电流,求算其所载负荷容量 口诀: 已知配变二次压,测得电流求千瓦。 电压等级四百伏,一安零点六千瓦。

反激式开关电源变压器是这么计算的

反激式开关电源变压器是这么计算的 于法拉弟电磁感应定律,这个定律是在一个铁心中,当磁通变化的时候, 其会产生一个感应电压,这个感应电压=磁通的变化量/时间T 再乘以匝数比,把 磁通变化量换成磁感应强度的变化量乘以其面积就可以推出上式来,NP=90*4.7 微秒/32 平方毫米*0.15,得到88 匝0.15 是选取的值,算了匝数,再确定线径, 一般来说电流越大线越热,所以需要的导线就越粗,需要的线径由有效值来 确定,而不是平均值。上面已经算得了有效值,所以就来选线,用0.25 的线就 可以,用0.25 的线,其面积是0.049 平方毫米,电流是0.2 安,所以其电流密度是4.08,一般选定电流密度是4 到10 安第平方毫米。若是电流很大,最好 采用两股或是两股以上的线并绕,因为高频电流有趋效应,这样可以比较好。 第六步,确定次级绕组的参数、圈数和线径。 原边感应电压,就是一个放电电压,原边就是以这个电压放电给副边的, 看上边的图,因为副边输出电太为5V,加上肖特基管的压降,就有5.6V,原 边以80V 的电压放电,副边以5.6V 的电压放电,那么匝数是多少呢?当然其遵守变压器那个匝数和电压成正比的规律,所以副边电压=NS*(UO+UF) /VOR,其中UF 为肖特基管压降,这个副边匝数等于88*5.6/80,得6.16,整取6 匝,再算副边的线径,当然也就要算出副边的有效值电流,下图是副边电流 的波形,有突起的时间是1-D,没有突起的是D,刚好和原边相反,但其KRP 的值和原边相同,这个峰值电流就是原边峰值电流乘以其匝数比,要比原 边峰值电流大数倍。 第七步,确定反馈绕组的参数。 反馈是反激的电压,其电压是取自输出级的,所以反馈电压是稳定的,TOP

变压器的设计实例

摘要:详细介绍了一个带有中间抽头高频大功率变压器设计过程和计算方法,以及要注意问题。根据开关电源变换器性能指标设计出变压器经过在实际电路中测试和验证,效率高、干扰小,表现了优良电气特性。关键词:开关电源变压器;磁芯选择;磁感应强度;趋肤效应;中间抽头 0 引言 随着电子技术和信息技术飞速发展,开关电源SMPS(switch mode power supply)作为各种电子设备、信息设备电源部分,更加要求效率高、成本小、体积小、重量轻、具有可移动性和能够模块化。变压器作为开关电源必不可少磁性元件,对其进行合理优化设计显得非常重要。在高频开关电源设计中,真止难以把握是磁路部分设计,开关电源变压器作为磁路部分核心元件,不但需要满足上述要求,还要求它性能高,对外界干扰小。由于它复杂性,对其设计一、两次往往不容易成功,一般需要多次计算和反复试验。因此,要提高设计效果,设汁者必须有较高理论知识和丰富实践经验。 1 开关电源变换器性能指标 开关电源变换器部分原理图如图1所示。 PCbfans提示请看下图: 其主要技术参数如下: 电路形式半桥式; 整流形式全波整流; 工作频率f=38kHz; 变换器输入直流电压Ui=310V; 1

变换器输出直流电压Ub=14.7V; 输出电流Io=25A; 工作脉冲占空度D=0.25~O.85; 转换效率η≥85%; 变压器允许温升△τ=50℃; 变换器散热方式风冷; 工作环境温度t=45℃~85℃。 2 变压器磁芯选择以及工作磁感应强度确定 2.1 变压器磁芯选择 目前,高频开关电源变压器所用磁芯材料一般有铁氧体、坡莫合金材料、非晶合金和超微晶材料。这些材料中,坡莫合金价格最高,从降低电源产品成本方面来考虑不宜采用。非晶合金和超微晶材料饱和磁感应强度虽然高,但在假定测试频率和整个磁通密度测试范围内,它们呈现铁损最高,因此,受到高功率密度和高效率制约,它们也不宜采用。虽然铁氧体材料损耗比坡莫合金大些,饱和磁感应强度也比非晶合金和超微晶材料低,但铁氧体材料价格便宜,可以做成多种几何形状铁芯。对于大功率、低漏磁变压器设计,用E-E型铁氧体铁芯制成变压器是最符合其要求,而且E-E型铁芯很容易用铁氧体材料制作。所以,综合来考虑,变换器变压器磁芯选择功率铁氧体材料,E-E型。 2.2 工作磁感应强度确定 工作磁感应强度Bm是开关电源变压器设计中一个重要指标,它与磁芯结构形式、材料性能、工作频率及输出功率因素有关关。若工作磁感应强度选择太低,则变压器体积重量增加,匝数增加,分布参数性能恶化;若工作磁感应强度选择过高,则变压器温升高,磁芯容易饱和,工作状态不稳定。一般情况下,开关电源变压器Bm值应选在比饱和磁通密度Bs低一些,对于铁氧体材料,工作磁感应强度选取一般在0.16T 到0.3T之间。在本设计中,根据特定工作频率、温升、工作环境等因素,把工作磁感应强度定在0.2 T。 3 变压器主要设计参数计算 3.1 变压器计算功率 开关电源变压器工作时对磁芯所需功率容量即为变压器计算功率,其大小取决于变压器输出功率和整流电路形式。变换器输出电路为全波整流,因此 2

变压器的计算公式

一、按变压器的效率最高时的负荷率βM来计算变压器容量 当建筑物的计算负荷确定后,配电变压器的总装机容量为: S=Pjs/βb×cosφ2(KVA) (1) 式中Pjs ——建筑物的有功计算负荷KW; cosφ2——补偿后的平均功率因数,不小于0.9; βb——变压器的负荷率。 因此,变压器容量的最终确定就在于选定变压器的负荷率βb。 我们知道,当变压器的负荷率为: βb=βM=Po/PKH (2) 时效率最高 式中Po——变压器的空载损耗; PKH ——变压器的短路损耗。 然而高层建筑中设备用房多设于地下层,为满足消防的要求,配电变压器一般选 用干式或环氧树脂浇注变压器,表一为国产SGL型电力变压器最佳负荷率。 表国产SGL型电力变压器最佳负荷率βm 容量(千伏安) 500 630 800 1000 1250 1600 空载损耗(瓦) 1850 2100 2400 2800 3350 3950 负载损耗(瓦) 4850 5650 7500 9200 11000 13300 损失比α2:2.62 2.69 3.13 3.20 3.28 3.37 最佳负荷率βm% 61.8 61.0 56.6 55.2 55.2 54.5 技术文章选择变压器容量的简便方法: 我们在平时选用配电变压器时,如果把变压器容量选择过大,就会形成“大马拉小车”的现象。这不仅增加了设备投资,而且还会使变压器长期处于空载状态,使无功损失增加。如果变压器容量选择过小,将会使变压器长期处与过负荷状态,易烧毁变压器。因此,正确选择变压器容量是电网降损节能的重要措施之一,在实际应用中,我们可以根据以下的简便方法来选择变压器容量。高频变压器 变压器容量本着“小容量,密布点”的原则,配电变压器应尽量位于负荷中心,供电半径不超过0.5千米。

反激变压器设计步骤及变压器匝数计算

1. 确定电源规格. 输入电压范围Vin=85 —265Vac; 输出电压/ 负载电 流:Vout1=5V/10A,Vout2=12V/1A; 变压器的效率?=0.90 2. 工作频率和最大占空比确定. 取: 工作频率fosc=100KHz, 最大占空比Dmax=0.45. T=1/fosc=10us.Ton(max)=0.45*10=4.5us Toff=10-4.5=5.5us. 3. 计算变压器初与次级匝数比n(Np/Ns=n). 最低输入电压Vin(min)=85* “2-20=100Vdc( 取低频纹波为20V). 根据伏特- 秒平衡,有: Vin(min)* Dmax= (Vout+Vf)*(1-Dmax)*n. n= [Vin(min)* Dmax]/ [(Vout+Vf)*(1-Dmax)] n=[100*0.45]/[(5+1.0)*0.55]=13.64 4. 变压器初级峰值电流的计算. 设+5V输岀电流的过流点为120%;+5v 和+12v整流二极管的正向压降均为 1.0V. +5V 输出功率Pout1=(V01+Vf)*I01*120%=6*10*1.2=72W +12V 输岀功率 Pout2=(V02+Vf)*I02=13*1=13W 变压器次级输岀总功率Pout=Pout1+Pout2=85W 1/2*(Ip1+Ip2)*Vin(min)*Ton(max)/T= Pout/ Ip1=2*Pout/[?(1+k)*Vin(min)*Dmax] =2*85/[0.90*(1+0.4)*100*0.45] =3.00A Ip2=0.4*Ip1=1.20A 5. 变压器初级电感量的计算. 由式子Vdc=Lp*dip/dt, 得: Lp= Vin(min)*Ton(max)/[Ip1-Ip2] =100*4.5/[3.00-1.20] =250uH 6. 变压器铁芯的选择. 根据式子Aw*Ae=P t*106/[2*ko*kc*fosc*Bm*j*?], 其中: Pt( 变压器的标称输岀功率)= Pout=85W Ko( 窗口的铜填充系数)=0.4 Kc( 磁芯填充系数)=1( 对于铁氧体), 变压器磁通密度Bm=1500 Gs j( 电流密度): j=5A/mm2; Aw*Ae=85*106/[2*0.4*1*100*103*1500Gs*5*0.90]

反激式变压器的设计

反激式变压器的设计 反激式变压器的工作与正激式变压器不同。正激式变压器两边的绕组是同时流过电流的,而反激式变压器先是通过一次绕组把能量存储在磁心材料中,一次侧关断后再把能量传到二次回路。因此,典型的变压器阻抗折算和一次、二次绕组匝数比关系不能在这里直接使用。这里的主要物理量是电压、时间、能量。 在进行设计时,在黑箱估计阶段,应先估计出电流的峰值。磁心尺寸和磁心材料也要选好。这时,为了变压器能可靠工作,就需要有气隙。 刚开始,在开关管导通时把一次绕组看作是一个电感器件,并满足式(24)。 (24) 把 Lpri移到左边,用Ton=Dmax/f 代到上式中,用已知的电源工作参数,通过式(25) 就可以算出一次最大电感 ——最大占空比(通常为50%或0.5)。 (25) 这个电感值是在输入最小工作电压时,电源输出仍能达到额定输出电压所允许选择的最大电感值。 在开关管导通的每个周期中,存储在磁心的能量为: (26) 要验证变压器最大连续输出的功率能否满足负载所需的最大功率,可以使用下式: (27)

所有磁心工作在单象限的场合,都要加气隙。气隙的长度(cm)可以用下式近似(CGS制(美 国)): (28a) 式中Ac——有效磁心面积,单位为; Bmax——最大磁通密度,单位为G(Wb/cm )。 在MKS系统(欧洲)中气隙的长度(m)为 (28b) 式中Ac——有效磁心面积,单位为; Bmax——最大磁通密度,单位为T(Wb/m )。 这只是估算的气隙长度,设计者应该选择具有最接近气隙长度的标准磁心型号。 磁心制造厂商为气隙长度提供了一个A L的参数。这参数是电感磁心绕上1000 匝后的数据(美 国)。根据设计好的电感值,绕线的匝数可以用式(29)计算确定。 (29) 式中 Lpri——一次电感量,单位为mH。 如果有些特殊的带有气隙的磁心材料没有提供A L。的值,可以使用式(30)。注意不要混淆CGS和MKS两种单位制(G和cm与T和m)。 (30)

开关电源-高频-变压器计算设计

要制造好高频变压器要注意两点: 一是每个绕组要选用多股细铜线并在一同绕,不要选用单根粗铜线,简略地说便是高频交流电只沿导线的表面走,而导线内部是不走电流的实习是越挨近导线中轴电流越弱,越挨近导线表面电流越强。选用多股细铜线并在一同绕,实习便是为了增大导线的表面积,然后更有效地运用导线。 二是高频逆变器中高频变压器最好选用分层、分段绕制法,这种绕法首要目的是削减高频漏感和降低分布电容。 1、次级绕组:初级绕组绕完,要加绕(3~5 层绝缘垫衬再绕制次级绕组。这样可减小初级绕组和次级绕组之间分布电容的电容量,也增大了初级和次级之间的绝缘强度,契合绝缘耐压的需求。减小变压器初级和次级之间的电容有利于减小开关电源输出端的共模打扰。若是开关电源的次级有多路输出,而且输出之间是不共地的为了减小漏感,让功率最大的次级接近变压器的初级绕组。 若是这个次级绕组只要相对较少几匝,则为了改善耦合状况,仍是应当设法将它布满完好的一层,如能够选用多根导线并联的方法,有助于改善次级绕组的填充系数。其他次级绕组严密的绕在这个次级绕组的上面。当开关电源多路输出选用共地技能时,处置方法简略一些。次级能够选用变压器抽头方式输出,次级绕组间不需要采用绝缘阻隔,从而使变压器的绕制愈加紧凑,变压器的磁耦合得到加强,能够改善轻载时的稳压功能。 2、初级绕组:初级绕组应放在最里层,这样可使变压器初级绕组每一匝用线长度最短,从而使整个绕组的用线为最少,这有效地减小了初级绕组自身的分布电容。通常状况下,变压器的初级绕组被规划成两层以下的绕组,可使变压器的漏感为最小。初级绕组放在最里边,使初级绕组得到其他绕组的屏蔽,有助于减小变压器初级绕组和附近器材之间电磁噪声的相互耦合。初级绕组放在最里边,使初级绕组的开始端作为衔接开关电源功率晶体管的漏极或集电极驱动端,可削减变压器初级对开关电源其他有些电磁打扰的耦合。 3、偏压绕组:偏压绕组绕在初级和次级之间,仍是绕在最外层,和开关电源的调整是依据次级电压仍是初级电压进行有关。若是电压调整是依据次级来进行的则偏压绕组应放在初级和次级之间,这样有助于削减电源发生的传导打扰发射。若是电压调整是依据初级来进行的则偏压绕组应绕在变压器的最外层,这可使偏压绕组和次级绕组之间坚持最大的耦合,而与初级绕组之间的耦合减至最小。 初级偏压绕组最佳能布满完好的一层,若是偏压绕组的匝数很少,则能够采用加粗偏压绕组的线径,或许用多根导线并联绕制,改善偏压绕组的填充状况。这一改善方法实际上也改善了选用次级电压来调理电源的屏蔽才干,相同也改善了选用初级电压来调理电源时,次级绕组对偏压绕组的耦合状况。 高频变压器匝数如何计算?很多设计高频变压器的人都会有对于匝数的计算问题,那么我们应该

变压器损耗的计算公式及方法

变压器损耗分为铁损和铜损,铁损又叫空载损耗,就是其固定损耗, 实是铁芯所产生的损耗(也称铁芯损耗,而铜损也叫负荷损耗,1 、变压器损耗计算公式 ⑴有功损耗:△ P=PO+KT B 2PK --------- ⑴ ⑵无功损耗:△ Q=QO+K"T 2QK——(2) ⑶综合功率损耗:△ PZ=A P+KQX Q ----(3) QO IO%SN Q? UK%SN 式中:Q0 ----- 空载无功损耗(kvar) P0――空载损耗(kW) PK额定负载损耗(kW) SN变压器额定容量(kVA) 10%――变压器空载电流百分比。 UK%短路电压百分比 3 ――平均负载系数 KT――负载波动损耗系数 QK额定负载漏磁功率(kvar) KQ无功经济当量(kW/kvar) 上式计算时各参数的选择条件: (1)取KT=1.05; ⑵对城市电网和工业企业电网的6kV?10kV降压变压器取系统最小负荷时,其无功当量 KQ=0.1kW/kvar; (3)变压器平均负载系数,对于农用变压器可取3 =20%;对于工业企业,实行三班制,可取 3 =75%; ⑷变压器运行小时数T=8760h,最大负载损耗小时数:t=5500h; (5)变压器空载损耗P0、额定负载损耗PK 10%、UK%见产品资料所示。 2、变压器损耗的特征 P0――空载损耗,主要是铁损,包括磁滞损耗和涡流损耗;

磁滞损耗与频率成正比; 与最大磁通密度的磁滞系数的次方成正比。 涡流损耗与频率、最大磁通密度、矽钢片的厚度三者的积成正比。 P 负载损耗,主要是负载电流通过绕组时在电阻上的损耗,一般称铜损。其大小随负载电流而 变化,与负载电流的平方成正比;(并用标准线圈温度换算值来表示)。 负载损耗还受变压器温度的影响,同时负载电流引起的漏磁通会在绕组内产生涡流损耗,并在绕组 外的金属部分产生杂散损耗。 变压器的全损耗△ P=PO+PC 变压器的损耗比=PC /P0 变压器的效率=PZ/(PZ+ △ P),以百分比表示;其中PZ为变压器二次侧输出功率。一、变损电量的计 算:变压器的损失电量有铁损和铜损两部分组成。铁损与运行时间有关,铜损与负荷大小有关。因此,应分别计算损失电量。 1、铁损电量的计算:不同型号和容量的铁损电量,计算公式是: 铁损电量(千瓦时)=空载损耗(千瓦)x供电时间(小时) 配变的空载损耗(铁损),由附表查得,供电时间为变压器的实际运行时间,按以下原则确定: (1)对连续供电的用户,全月按720 小时计算。 (2)由于电网原因间断供电或限电拉路,按变电站向用户实际供电小时数计算,不得以难计算为由,仍按全月运行计算,变压器停电后,自坠熔丝管交供电站的时间,在计算铁损时应予扣除。 (3)变压器低压侧装有积时钟的用户,按积时钟累计的供电时间计算。 2、铜损电量的计算:当负载率为40%及以下时,按全月用电量(以电能表读数)的2%计收,计算公式:铜损电量(千瓦时)=月用电量(千瓦时)X 2% 因为铜损与负荷电流(电量)大小有关,当配变的月平均负载率超过40%时,铜损电量应按月用电量的3%计收。负载率为40%时的月用电量,由附表查的。负载率的计算公式为:负载率=抄见电量/ 式中:S――配变的额定容量(千伏安);T ――全月日历时间、取720小时; COSZ――功率因数,取0.80。 电力变压器的变损可分为铜损和铁损。铜损一般在0.5%。铁损一般在5~7%。干式变压器的变损比油侵式要小。合计变损:0.5+6=6.5 计算方法:1000KVA X 6.5%=65KVA 65KV/X 24 小时X 365 天=568400KWT度) 变压器上的标牌都有具体的数据。 变压器空载损耗空载损耗指变压器二次侧开路,一次侧加额率与额定电压的正弦波电压时变压器所吸取的功率。一般

变压器的主要计算公式

初中生就会的变压器的主要计算公式: 第一步:变压器的功率= 输出电压* 输出电流(如果有多组就每组功率相加) 得到的结果要除以变压器的效率,否则输出功率不 足。100W以下除0.75,100W-300W除0.9,300W 以上除0.95.事实上变压器的骨架不一定很合适计 算结果,所以这只是要设计变压器的功率,比如一 个变压器它的输入220V,输出是12V 8A,那么它的 需要的功率是12*8/0.75=128W,后面的例子以此参 数为例(市售的产品一般不会取理论上的值,因为 它们考虑的更多是成本,所以它们选的功率不会大 这么多) 第二步:决定需要的铁芯面积;需要的铁芯面积=1.25变压器的功率.单位为平方厘米。上例的铁芯面 积是1.25*128=14.142=14.2平方厘米 第三步:选择骨架,铁芯面积就是铁芯的长除以3(得到的数就是舌宽,就是中间那片的宽度),再乘以铁芯要 叠的厚度,如上例它应该选择86*50或86*53的骨 架,从成本考虑选86*50,它的面积是 8.6/3*5=14.333,由于五金件的误差,真实的面积大 约是14.0。这个才是真实的铁芯面积 第四步:计算每V电压需要的匝数,公式:

100000000÷4.44*电源频率*铁芯面积*铁芯最大磁感应强度 当电源电压为50Hz时(中国大陆),代入以上公式,得到以下公式; 450000÷铁芯面积*铁芯最大磁感应强度 铁芯最大磁感应强度一般取10000—14000(高斯)之 间,质量好的取14000-12000,一般的取 10000-12000,个人一般取中间12000,这个取值直 接影响到匝数,取值大了变压器损耗也大,小了线 又要多,就要在成本和损耗中折中选择 以上例: 450000÷14.0*12000=2.678=2.7 初极220V即220*2.7=594匝,次级12V即 12*2.7=32.4匝。由于次级需有损耗,所以需要增 加损耗1.05—1.03(线小补多些,线大补少些)。 即32.4*1.04=33.7=34匝。这样空载电压会稍高, 但是负载会降到正常电压。 第五步;选择线径,线径很多电工书里都会有一个表注明是 4.5A或2.5A的电流密度时电线可以通过的电流,

变压器计算公式

变压器计算公式 已知变压器容量,求其各电压等级侧额定电流 口诀a : 容量除以电压值,其商乘六除以十。 说明:适用于任何电压等级。 在日常工作中,有些电工只涉及一两种电压等级的变压器额定电流的计算。将以上口诀简化,则可推导出计算各电压等级侧额定电流的口诀: 容量系数相乘求。 已知变压器容量,速算其一、二次保护熔断体(俗称保险丝)的电流值。 口诀b : 配变高压熔断体,容量电压相比求。 配变低压熔断体,容量乘9除以5。 说明: 正确选用熔断体对变压器的安全运行关系极大。当仅用熔断器作变压器高、低压侧保护时,熔体的正确选用更为重要。 这是电工经常碰到和要解决的问题。 已知三相电动机容量,求其额定电流 口诀(c):容量除以千伏数,商乘系数点七六。 说明: (1)口诀适用于任何电压等级的三相电动机额定电流计算。由公式及口诀均可说明容量相同的电压等级不同的电动机的额定电流是不相同的,即电压千伏数不一样,去除以相同的容量,所得“商数”显然不相同,不相同的商数去乘相同的系数0.76,所得的电流值也不相同。若把以上口诀叫做通用口诀,则可推导出计算220、380、660、3.6kV电压等级电动机的额定电流专用计算口诀,用专用计算口诀计算某台三相电动机额定电流时,容量千瓦与电流安培关系直接倍数化, 省去了容量除以千伏数,商数再乘系数0.76。 三相二百二电机,千瓦三点五安培。 常用三百八电机,一个千瓦两安培。 低压六百六电机,千瓦一点二安培。

高压三千伏电机,四个千瓦一安培。 高压六千伏电机,八个千瓦一安培。 (2)口诀c 使用时,容量单位为kW,电压单位为kV,电流单位为A,此点一定要注意。 (3)口诀c 中系数0.76是考虑电动机功率因数和效率等计算而得的综合值。功率因数为0.85,效率不0.9,此两个数值比较适用于几十千瓦以上的电动机,对常用的10kW以下电动机则显得大些。这就得使用口诀c计算出的电动机额定电流与电动机铭牌上标注的数值有误差,此误差对10kW以下电动机按额定电流先开关、接触器、导线等影响很小。 (4)运用口诀计算技巧。用口诀计算常用380V电动机额定电流时,先用电动机配接电源电压0.38kV数去除0.76、商数2去乘容量(kW)数。若遇容量较大的6kV 电动机,容量kW数又恰是6kV数的倍数,则容量除以千伏数,商数乘以0.76系数。(5)误差。由口诀c 中系数0.76是取电动机功率因数为0.85、效率为0.9而算得,这样计算不同功率因数、效率的电动机额定电流就存在误差。由口诀c 推导出的5个专用口诀,容量(kW)与电流(A)的倍数,则是各电压等级(kV)数除去0.76系数的商。专用口诀简便易心算,但应注意其误差会增大。一般千瓦数较大的,算得的电流比铭牌上的略大些;而千瓦数较小的,算得的电流则比铭牌上的略小些。对此,在计算电流时,当电流达十多安或几十安时,则不必算到小数点以后。可以四舍而五不入,只取整数,这样既简单又不影响实用。对于较小的电流也只要算到一位小数即可。 *测知电流求容量 测知无铭牌电动机的空载电流,估算其额定容量 口诀: 无牌电机的容量,测得空载电流值, 乘十除以八求算,近靠等级千瓦数。 说明:口诀是对无铭牌的三相异步电动机,不知其容量千瓦数是多少,可按通过测量电动机空载电流值,估算电动机容量千瓦数的方法。 测知电力变压器二次侧电流,求算其所载负荷容量 口诀: 已知配变二次压,测得电流求千瓦。

反激变压器设计步骤及变压器匝数计算教学内容

反激变压器设计步骤及变压器匝数计算

1. 确定电源规格. .输入电压范围Vin=85—265Vac; .输出电压/负载电流:Vout1=5V/10A,Vout2=12V/1A; .变压器的效率?=0.90 2. 工作频率和最大占空比确定. 取:工作频率fosc=100KHz, 最大占空比Dmax=0.45. T=1/fosc=10us.Ton(max)=0.45*10=4.5us Toff=10-4.5=5.5us. 3. 计算变压器初与次级匝数比n(Np/Ns=n). 最低输入电压Vin(min)=85*√2-20=100Vdc(取低频纹波为20V). 根据伏特-秒平衡,有: Vin(min)* Dmax= (Vout+Vf)*(1-Dmax)*n. n= [Vin(min)* Dmax]/ [(Vout+Vf)*(1-Dmax)] n=[100*0.45]/[(5+1.0)*0.55]=13.64 4. 变压器初级峰值电流的计算. 设+5V输出电流的过流点为120%;+5v和+12v整流二极管的正向压降均为1.0V. +5V输出功率Pout1=(V01+Vf)*I01*120%=6*10*1.2=72W +12V输出功率Pout2=(V02+Vf)*I02=13*1=13W 变压器次级输出总功率Pout=Pout1+Pout2=85W 1/2*(Ip1+Ip2)*Vin(min)*Ton(max)/T= Pout/ Ip1=2*Pout/[?(1+k)*Vin(min)*Dm ax] =2*85/[0.90*(1+0.4)*100*0.45] =3.00A

相关主题
文本预览
相关文档 最新文档