当前位置:文档之家› 第三章 组态五的 视频采集与传输

第三章 组态五的 视频采集与传输

第三章 组态五的 视频采集与传输
第三章 组态五的 视频采集与传输

数字视频采集系统方案

预处理监控设备方案 概述 传统视频监控系统是通过摄像头等这些数据采集前端获取视频图片信息,仅提供视频的捕获、存储和回放等简单的功能;数据吞吐量大造成数据传输和服务器处理数据的压力大;需要大量的人力且准确度并不高;因此,智能视频监控系统应运而生。 本系统在视频采集前端搭建硬件平台,硬件平台中搭载图像处理算法,将摄像头传入的图片筛选出关键信息,通过物联网传入服务器中进行处理。利用算法提取关键信息可以减少传输的数据,从而能提高传输效率并且减小服务器的压力;同时在传输过程中把数据拆分成多个模块并行处理,也可大大提升传输处理速度,达到实时性、高效性的要求。 1硬件前端功能 1)采集图像信息; 2)实现算法对图像的灵活处理,并行高速传输; 3)提取、分类图像关键信息; 4)采用NB-IoT协议实现无线传输 2方案论述 2.1系统构成 图2.1是系统总体结构框图。

图2.1 系统总体结构框图 用CCD进行图像数据采集后,用视频解码芯片进行A/D转换,从模拟视频输入口输入的全电视信号在视频解码芯片内部经过钳位、抗混叠滤波、A/D转换、最后转换成BT.656视频数据流。 本系统中,对图像的处理分为两个阶段,第一个阶段为ZYNQ的双核ARM处理器部分通过算法对图像的处理;第二个阶段为ZYNQ的FPGA部分对数据的打包分类。为了尽可能提高性能并达到实时性要求,我们以ARM为中央处理核心,由FPGA实现系统控制。系统分为处理器模块、FPGA组模块和各总线接口模块等。其中处理器模块包含双核ARM、内存空间以及相应逻辑。处理器作为最小处理单元模块而存在,可以完成相应的处理子任务。 双核ARM作为从CPU做图像的处理(通过算法实现),两个处理模块在系统核心FPGA控制下并行运行。而FPGA作为系统中心,负责两个微处理器互相通信、互相协调以及它们与外界(通过主从总线和互连总线)的信息交换。同时,系统处理子任务可以由FPGA直接派发给处理器。灵活的FPGA体系结构设计是该系统有效性的保证。在实际应用中,可以根据系统的任务,通过配置FPGA控制两个微处理器按流水线方式运行,缩短系统的处理时间。另外,可以通过FPGA的配置扩展双ARM的工作方式,控制它们按MIMD方式并行处理同一输入图像。 最后经过处理过的图像通过NB-IoT协议发送到服务器端。 2.1.1 FIFO机制 为了加快ZYNQ的处理速度,本系统采用同步FIFO高速缓冲方案。FIFO即先进先出存储器, 也是一种专门用来做总线缓冲的特殊存储器。FIFO没有地址

视频采集的一些技巧

视频采集和后期处理的一些手段和技巧 综述:视频是由一帧帧画面组成的,也就是说视频是由一系列连续快速变换的静态画面组成的,那么首先要掌握拍摄静态画面的一些技巧和表达的情感,然后在视频采集和处理的发展过程中,人们发现通过不同的拍摄和处理技巧可以表达不同的情感,这里我就我个人的一些处理视频和对于画面的粗浅理解做一下总结。 第一、静态画面的采集 静态画面的采集就是通常所说的拍照,因为制作视频的时候要用到一些静态的照片,那么这里我就简单的说一点静态画面的采集的技巧(首先声明,绝对的不专业也不权威,只是个人的一些表达,希望大家在后面进行补充)。 大家拍照的时候喜欢让主题事物在中间的位置上,其实从审美角度上来讲1:1的比例显然没有0.618的黄金分割显得有美感,所以我拍照的时候喜欢把主题放在偏左下角或者右下角(尤其是主题并不大占不了全局的一半的时候)。如果是拍摄对象比较大,那么最好压缩到稍微偏下一点,123三个格子下部分占一点就比较好了。 2.远景拍摄 远景拍摄一般都是进行大场面的拍摄(不过好像也有其他的用途,我就不知道了,孤陋寡闻)。远景突出的主题一般放在中心偏一点,近黄金分割点最好。对于如何突出等技巧我就不懂了。这个适合大场面的性质描述,比如春天的田野百花开,远景就很能体现一种壮观,但是拍摄某一个花草,就只能看出花草的纤弱娇美等个体性质。 3.近景拍摄。 近景的话是突出事物的一个整体概观的方法,比如拍一个人,你就可以取不远处的全身照,这样就能够表达一个人的大概的外貌着装等等。这个适合表达事物的个体性质。 4.局部近景 这个好像只有我是这样叫的,一般是指事物的主题占的和近景拍摄差不多,但是只拍摄事物的部分特性,比如拍一个人的背影,那么从腿部以下就可以不用那么重点了,但是这和局部特写还有一点不一样(个人觉得是局部特写只是描述事物的一小部分,但是局部近景是表现大部分并且很少改变事物的背景)。适合表达情感,但是不如局部特写那么鲜明突出。 5.局部特写 我觉得这个是比较好的表达事物局部的某一个方面的特质的镜头。比如拍摄人的手,或者人的眼睛,或者流泪的鳄鱼的眼睛,蜜蜂的翅膀等等……真的可以看出来事物的精细,适合表达情感。

视频交通流采集系统解决方案

视频交通流信息采集系统解决方案 1概述 视频交通流信息采集系统主要包括视频图像采集设备、视频传输网络、交通流视频检测器等。视频检测器采用虚拟线圈技术,利用边缘信息作为车辆的检测特征,实时自动提取和更新背景边缘,受环境光线变化和阴影的影响较小;同时采用动态窗的方式来进行车辆计数,解决了采用以往固定窗方式进行车辆计数时由于车辆变道而导致的错误、重复计数问题。视频检测器能对视频图像采集设备或交通电视监视系统的视频信号自动进行检测,主要采集道路的微观交通信息如流量、速度、占有率、车辆间距、排队长度等,适用于近景监控模式。 2系统功能及特点介绍 2.1数据接口设计 视频交通流信息采集系统可以通过调用本项目提供的交通流数据统一接入接口,或由本项目提供数据格式标准化及上传程序,将采集到的交通流数据共享给本项目相关系统,以实现视频交通流数据的采集功能。 图1 数据接口设计 2.2系统功能 交通流信息视频检测系统的主要功能如下: (1)车辆检测 系统能够对输入的视频流图像进行车型、车牌等特征检测。

(2)交通流数据采集功能 系统可以采集交通流数据包括交通流量、平均车速、车道占有率、车型、平均车头间距、车辆排队长度、车辆密度、交通流状态等,交通流数据采集时间间隔在1~60分钟任意可调。 图 2 视频交通流检测模块 (3)视频图像跟踪功能 系统能对单路监控前端设备在不同预置位采集的视频图像进行不同区域不同事件的自动检测。一旦检测到特定的交通事件,事件检测器应具有该交通事件的视频图像目标自动跟踪、记录、分析功能。 当输入的视频图像不为设定的预置位的视频图像,系统应能自动不进行事件检测。一旦监控前端设备恢复至设定的预置位,系统应能自动进行事件检测。 (4)事件图像抓拍、录像功能 系统可以根据用户的设置,完成相应的录像和图片抓拍功能。 事件录像可以按摄像机、按事件类型、按时间归档存储在系统的预录像子系统中,由系统服务器进行统一的管理调用。 系统循环进行录像,当发生交通异常事件时,系统能够提供事发之前和之后的3分钟间的录像(可设置)。 系统可通过多种组合查询条件对视频交通流检测所采集的数据进行统计,包括时间-流量统计、时间-平均车速统计、时间-占有率统计、速度-流量统计等;统计结果可导出为

视频制作操作流程

视频制作操作流程 一、编写解说文字材料(脚本),按文字内容进行拍摄视频。文字材料编写要参照频栏目大纲,要反应基本情况,又要突出地方特色。编写文字材料时要注意,说不清楚的东西最好不要说。(详见语音合成部分) 二、语音合成。 三、视频拍摄。要根据解说文字材料内容、语音时间进行拍摄,保证图(注意参看视频拍摄注意事项)像时间大于声音时间。。 四、整理素材。 1、DV 带的视频采集安装1394 采集卡,安装软件:把随卡附送的光盘放入光驱中,依照屏幕上自动弹出的安装选项进行操作,直到完成软件的安装。安装完1394 采集卡,开机系统提示找到新硬件并自动安装驱动后,在设备管理器里可以看到该设备已经运转正常。 2、安装绘声绘影10.0,安装完成后并运行。把摄像机与视频采集卡用配套数据线连接上,打开摄像机电源,操作系统提示找到接入的摄像机后点击标题栏的“捕获”菜单。1选择“捕获视频”项,格式选择为DV 格式。 2选择“捕获文件夹”项,选择捕获文件夹路径(注意:1捕获的视频文件多,容易产生混淆,需单独存放在新建的一个文。件夹中) 3选择“按场景分割”选项。 4点击“捕获视频”按钮,开始播放并捕获视频,结束时再次点击该按钮结束捕获。选中此选选择DV 格式选择文件保存路径为方便编辑,把视频素材、合成的语音文件、解说文字、数字乡村图标、背景音乐、片头片尾图片共6 项统一装在一(如村视频素材)个已命名的“大文件夹”里。 五、视频编辑操作 1、启动绘声绘影,做片头。片头要用相片来做。操作步骤:捕获→图像→打开图片→把图片拖到视频轨→输入文字→调整文字→打开时间轴→调整播放时间为 5 秒钟。2 。可应用动画。文字第一行注明“云南省数字乡村工程” 文字第二行注明:视频(乡镇、村)的隶属关系。片头样式见下图: 2、导入视频文件并去除杂音。操作步骤:捕获→视频→打开视频素材→按语音或解说文字内容把对应的视频素材拖到视频轨→播放视频→在有杂音的地方暂停→在该视频文件上点右键分割音频→在音频轨上点右键去除分离出来的杂音。分割音频详见下图: 3、导入语音语音要在片头5 秒后与视频同步播放。操作步骤:捕获→音频→语音文件→打开时间轴→把语音文件拖到音频轨→调整播放时间,片头 5 秒后与视频同步播放。 4、剪辑视频根据语音内容,适当剪辑视频,实现解说与画面相对应。操作步骤:选中要剪辑的视频文件→播放→在要剪切处暂停→剪切→在不需要部分点右键删除操作如下图:4 5、在视频上插入解说词操作步骤:点击音频轨上最前面的“T”后→双击视频画面→选中显示网格线→打开解说文字→选中需要部分→用Ctrlc 命令复制→在光标闪烁位置用Ctrlv 命令粘贴→调整字体、大小、颜色(黑体、25 号、白色)→把文字拖放到视频底黑色部分,达到黑底白字效果。在视上插入解说词时要注意视频、语音、文字相互配合对应。操作如下图:

无线视频监控系统

无线视频监控系统说明 无线视频监控系统,无需铺设网络电缆,可迅速方便地在各种需要的地方布署数字摄像设备,建立新的视频监控系统或对现有的视频监控系统进行扩展,具有很强的灵活性和可扩充性。用宽带无线接入设备,可以将多个被监测点与中央控制中心连接起来,且搭建迅速,可以在最短的时间内迅速建立起无线链路。现场监控点安装的摄像机所摄录的实时和高分辨率的视频图像通过宽带无线接入设备进行传输, 传送到用户的安全监控中心,并可以完成对远程监控点的控制。 无线视频监控系统有以下优点: ?灵活性 工程建设周期短,扩充性强。即插即用,网络管理人员可以迅速将新的监控点加入到现有的网络中,不需要新建传输线路,轻而易举实现远程视频监控。 ?可移动性 系统可轻松实现有线难以铺设的区域的视频监控,一旦遇到河流山脉等障碍时,有线网络无法实现。但是要求需要互通的点达到可视(中间无障碍)。 ?经济性 设备成本低,性价比高。无线网络组建容易,前端设备即插即用,只需一次投入就可解决,所维护都比较简单。 ?功能强大 系统功能强大,利用灵活。提供高可靠性,保证不间断的视频监控,同时全数字化录像方便于保存与检索。 ?支持远程监控 在网络中的的任何一台计算机只要安装了客户端软件或是通过IE浏览器,授权用户可以在一定范围内进行操作。 一,系统组成: 1,视频采集与传输:前端视频采集由无线摄像机完成,无线摄像机内置了视频编码模块,可将摄像机采集到的模拟视频信号转换成网络数字信号(视频、音频和控制信号)。无线摄像机还内置了支持IEEE802.11b/g协议的WIFI无线网卡,可将网络数字信号通过2.4G的微波传输给同样支持IEEE802.11b/g协议的无线交换设备(无线路由器或无线AP)。如有需要听取声音,可在摄像机上接入拾音器。无线摄像机还可与报警设备联动。 2,视频观看:无线摄像机自带了IP地址和域名,局域网内的用户可通过登录IP地址访问无线摄像机观看该摄像机的视频并进行录像、控制和管理。远程用户可通过登录无线摄像机的域名来观看该摄像机的视频并可进行录像、控制和管理。 如果用户需要用电视墙(监控墙)来观看视频,则需要在监控中心增加网络视频解码器。解码器的数量可由客户观看需求和监控点数量来决定。 每个无线摄像机支持最多10个用户同时观看,如果同时观看某摄像机有需要超出10用户的情况,可以拿一台电脑当作代理转发服务器来解决此问题。 3,录像存储:监控视频录像的存储可在视频图像格式(D1、HALF D1、CIF等)、需存储的监控点(精确到某个摄像机是否需要存储)、时间段(精确到分钟,分四个时间段)、移动侦测录像(是否开启)等几方面进行设置。如果前端有拾音器,录像文件中同样有声音。存储录像的文件名有精确到秒的时间显示,这有利于人们快速调用录像。存储录像文件通过天

视频采集的过程

视频采集的过程 视频采集的主要工作包括了以下过程: (一)数据收集阶段。 本阶段是通过数据收集设备(如光源、镜头、摄像、电视设备、云台等)将视频数据进行收集工作。在收集过程中,在收集工作中,一方面摄像设施将需要收集的数据通过光信号的形式进行收集,接下来通过光电传感的方式,对收集来的光信号转换为电信号,完成视频数据采集的转换。 在数据收集阶段,一件重要的器材是图像传感器。视频数据采集系统通过收集设备将视频信号进行收集,同时通过传感系统的图像传感器将光源信号转化为电信号。现在我们经常采用的图像传感技术主要采用CCD和CMOS两种技术系统。这种将光源信号转化为电子信号的过程是这一阶段的主要工作。 在摄像技术中另一个重要的器材是摄像镜头。摄像镜头是由透镜和光组成的光学设备。它是摄像设备光信号的采集来源,所以在数据收集阶段的初步采集工作中,镜头的好坏直接影响到采集到的视频数据是否清晰、完整。 同时在数据收集工作中云台的作用也很重要。云台主要是指在摄像过程中安装、固定摄像设备,为摄像设备提供推来、挪移等运动的机械设备。它的主要作用是扩大摄像设备的监控范围。 (二)数据传输阶段。

在数据收集完成后,转化为电信号的数据通过数据传输阶段。数据传输设备决定了视频数据采集系统的组网方式和范围。在传统的数据传输工作中,多采用同轴电缆传输基带信号技术和光纤传输技术为主的有线传输技术。但随着无线网络、流媒体技术等新技术的出现,无线连接的数据传输技术的使用越来越广泛起来。流媒体技术包括流媒体编解码技术、流媒体服务器技术、端到端流媒体技术和流媒体系统技术。简单地说就是利用视频编码器,它可以把视频信号压缩编码为IP流,在另一端有一个叫视频解码器的设备,可以还原视频信号。通过无线网络的发展,视频数据的传输范围越来越广泛。这种传输技术的出现对于视频数据采集技术的发展是很有帮助的。它加大了传输数据的传输距离,减少了传输成本。 (三)数据收集整理阶段。 视频数据经过传输进入收集整理阶段。在这个阶段,视频数据经过处理并进行保存。因为视频数据的特殊性,所以收集到的视频数据在进入收集系统后,还要经过再次的整理。同时因为采集的数据有时还需要有一定的保存时间。所以数据还要有一定的保存手段。在传统的视频采集系统中,往往采用的是录像设备存储、录像带保存的方式。随着计算机技术的发展,视频处理和自动保存技术越来越先进。数据采集工作中采集来的电子模拟信号经过二次处理,转化为电子信号,去除噪音等干扰信号,同时利用数字技术进行保存,保存时间更长,也不会出现失真等现象。另外在某些采集系统中,采用的是实时监控

视频采集系统

数字图象处理技术在电子通信与信息处理领域得到了广泛的应用,设计一种功能灵活、使用方便、便于嵌入到监控系统中的视频信号采集电路具有重要的实用意义。 在研究基于DSP的视频监控系统时,考虑到高速实时处理及实用化两方面的具体要求,需要开发一种具有高速、高集成度等特点的视频图象信号采集监控系统,为此监控系统采用专用视频解码芯片和复杂可编程逻辑器件(CPLD)构成前端图象采集部分。设计上采用专用视频解码芯片,以CPLD器件作为控制单元和外围接口,以FIFO为缓存结构,能够有效地实现视频信号的采集与读取的高速并行,具有整体电路简单、可靠性高、集成度高、接口方便等优点,无需更改硬件电路,就可以应用于各种视频信号处理监控系统中。使得原来非常复杂的电路设计得到了极大的简化,并且使原来纯硬件的设计,变成软件和硬件的混合设计,使整个监控系统的设计增加柔韧性。 1 监控系统硬件平台结构 监控系统平台硬件结构如图1所示。整个监控系统分为两部分,分别是图象采集监控系统和基于DSP主监控系统。前者是一个基于SAA7110A/SAA7110视频解码芯片,由复杂可编程逻辑芯片CPLD实现精确采样的高速视频采集监控系统;后者是通用数字信号处理监控系统,它主要包括:64K WORD程序存储器、64K WORD数据存储器、DSP、时钟产生电路、串行接口及相应的电平转换电路等。 监控系统的工作流程是,首先由图象采集监控系统按QCIF格式精确采集指定区域的视频图象数据,暂存于帧存储器FIFO中;由DSP将暂存于FIFO中的数据读入DSP的数据存储器中,与原先的几帧图象数据一起进行基于H.263的视频数据压缩;然后由DSP将压缩后的视频数据平滑地从串行接口输出,由普通MODEM或ADSL MODEM传送到远端的监控中心,监控中心的PC机收到数据后进行相应的解码,并将还原后的视频图象进行显示或进行基于WEB的广播。 2 视频信号采集监控系统 2.1 视频信号采集监控系统的基本特性 一般的视频信号采集监控系统一般由视频信号经箝位放大、同步信号分离、亮度/色度信号分离和A/D变换等部分组成,采样数据按照一定的时序和总线要求,输出到数据总线上,从而完成视频信号的解码,图中的存储器作为帧采样缓冲存储器,可以适应不同总线、输出格式和时序要求的总线接口。 视频信号采集监控系统是高速数据采集监控系统的一个特例。过去的视频信号采集监控系统采用小规模数字和模拟器件,来实现高速运算放大、同步信号分离、亮度/色度信号分离、高速A/D变换、锁相环、时序逻辑控制等电路的功能。但由于监控系统的采样频率和工作时钟高达数十兆赫兹,且器件集成度低,布线复杂,级间和器件间耦合干扰大,因此开发和调试都十分困难;另一方面,为达到精确采样的目的,采样时钟需要和输人的视频信号构成同步关系,因而,利用分离出来的同步信号和监控系统采样时钟进行锁相,产生精确同步的采样时钟,成为设计和调试过程中的另一个难点。同时,通过实现亮度、色度、对比度、视频前级放大增益的可编程控制,达到视频信号采集的智能化,又是以往监控系统难以完成的。关于这一点,在监控系统初期开发过程中已有深切体会[1]。 基于以上考虑,本监控系统采用了SAA7110A作为视频监控系统的输入前端视频采样处理器。 2.2 视频图象采集监控系统设计 SAA7110/SAA7110A是高集成度、功能完善的大规模视频解码集成电路[2]。它采用PLCC68封装,内部集成了视频信号采样所需的2个8bit模/数转换器,时钟产生电路和亮度、对比度、饱和度控制等外围电路,用它来替代原来的分立电路,极大地减小监控系统设计的工作量,并通过内置的大量功能电路和控制寄存器来实现功能的灵活配置。

(完整版)音频、视频采集与处理知识点整理.doc

稽山中学信息技术学业水平考试复习资料---音频与视频音频、视频采集与处理相关知识点 知识条目: 单元知识点考试要求试题类型 1.音频的数字化和存储容量的计算 b 2.声音素材的采集 C 音频、视频采集 3. 声音素材的制作 C 选择题、填空题与处理 4. 声音的格式转换 C 必考 +加试 5. 视频的数字化和存储容量的计算 b 6. 视频素材的采集和处理 C 知识点整理 : 1.音频数字化及存储量的计算 数字化音频是指通过采样和量化把模拟音频信号转换成由二进制数码“0”或“ 1”组成的数字化音频文件。 采样频率是指将单位时间的音频波形分隔成的点数,单位为赫兹(HZ)。采样频率决定了声音采集的质量,采样频率越高,声音的质量越好,存储容量越大。 量化位数是指将采样得到的点实现用二进制编码表示。量化位数越大,其量化值越接近采样值,即精度越高,所以存储量也越大。 常见的 wave 文件所占存储量的计算公式: 存储量(字节)=采样频率* 量化位数 * 声道数 * 时间(秒)、 8 2.声音素材的采集 声音素材的获取途径:成品声音文件的使用、声音素材的截取等。 声音文件的录制分硬件设备和软件录制两个部分。硬件设备主要需要声卡、话筒等。常用的声音录制与编辑软件有: GoldWave、录音机、 Cool Edit 、 Wave Edit 等。 3.声音的基本处理 通过 GoldWave 软件的状态栏,观察打开声音文件的采样频率、量化位数、声道数、声音长度、文件格式等信息。利用 GoldWave 软件可以对音频文件进行删除、剪裁、设置静音、淡入、淡 出、音量调整、合成等操作。 (1)用 GoldWave软件进行声音素材的处理: ①打开的音频文件在状态栏显示的参数信息:

摄像头视频采集压缩及传输原理

摄像头视频采集压缩及传输原理 摄像头基本的功能还是视频传输,那么它是依靠怎样的原理来实现的呢?所谓视频传输:就是将图片一张张传到屏幕,由于传输速度很快,所以可以让大家看到连续动态的画面,就像放电影一样。一般当画面的传输数量达到每秒24帧时,画面就有了连续性。 下边我们将介绍摄像头视频采集压缩及传输的整个过程。 一.摄像头的工作原理(获取视频数据) 摄像头的工作原理大致为:景物通过镜头(LENS)生成的光学图像投射到图像传感器表面上,然后转为电信号,经过A/D(模数转换)转换后变为数字图像信号,再送到数字信号处理芯片(DSP)中加工处理,再通过USB接口传输到电脑中处理,通过显示器就可以看到图像了。下图是摄像头工作的流程图: 注1:图像传感器(SENSOR)是一种半导体芯片,其表面包含有几十万到几百万的光电二极管。光电二极管受到光照射时,就会产生电荷。 注2:数字信号处理芯片DSP(DIGITAL SIGNAL PROCESSING)功能:主要是通过一系列复杂的数学算法运算,对数字图像信号参数进行优化处理,并把处理后的信号通过USB等接口传到PC等设备。 DSP结构框架: 1. ISP(image signal processor)(镜像信号处理器) 2. JPEG encoder(JPEG图像解码器) 3. USB device controller(USB设备控制器) 而视频要求将获取的视频图像通过互联网传送到异地的电脑上显示出来这其中就涉及到对于获得的视频图像的传输。 在进行这种图片的传输时,必须将图片进行压缩,一般压缩方式有如H.261、JPEG、MPEG 等,否则传输所需的带宽会变得很大。大家用RealPlayer不知是否留意,当播放电影的时候,在播放器的下方会有一个传输速度250kbps、400kbps、1000kbps…画面的质量越高,这个速度也就越大。而摄像头进行视频传输也是这个原理,如果将摄像头的分辨率调到640×480,捕捉到的图片每张大小约为50kb左右,每秒30帧,那么摄像头传输视频所需的速度为50×30/s=1500kbps=1.5Mbps。而在实际生活中,人们一般用于网络视频聊天时的分辨率为320×240甚至更低,传输的帧数为每秒24帧。换言之,此时视频传输速率将不到300kbps,人们就可以进行较为流畅的视频传输聊天。如果采用更高的压缩视频方式,如MPEG-1等等,可以将传输速率降低到200kbps不到。这个就是一般视频聊天时,摄像头所需的网络传输速度。 二.视频压缩部分 视频的压缩是视频处理的核心,按照是否实时性可以分为非实时压缩和实时压缩。而视频传输(如QQ视频即时聊天)属于要求视频压缩为实时压缩。 下面对于视频为什么能压缩进行说明。 视频压缩是有损压缩,一般说来,视频压缩的压缩率都很高,能够做到这么 高的压缩率是因为视频图像有着非常大的时间和空间的冗余度。所谓的时间冗余度指的是两帧相邻的图像他们相同位置的像素值比较类似,具有很大的相关性,尤其是静止图像,甚至两帧图像完全相同,对运动图像,通过某种运算(运动估计),应该说他们也具有很高的相关性;而空间相关性指的是同一帧图像,相邻的两个像素也具备一定的相关性。这些相关性

电子元器件外形尺寸机器视觉测量系统设计

Optoelectronics 光电子, 2020, 10(3), 84-89 Published Online September 2020 in Hans. https://www.doczj.com/doc/ab6756891.html,/journal/oe https://https://www.doczj.com/doc/ab6756891.html,/10.12677/oe.2020.103011 电子元器件外形尺寸机器视觉测量系统 设计 李超,许杰 盐城市计量测试所,江苏盐城 收稿日期:2020年8月24日;录用日期:2020年9月4日;发布日期:2020年9月11日 摘要 电子元器件是电路的基本组成部分,有着广泛的应用。传统的人工检测存在很多不足,机器视觉尺寸测量技术由此应运而生,机器视觉由于自身具备高灵敏度、高精度及高耐用性的特性,对于提高工业自动化水平和工业生产效率有极大助力。根据课题要求,以单片机芯片为研究对象,以检测单片机芯片二维平面上的长度与宽度为研究目标,设计了基于机器视觉的单片机芯片检测系统的硬件方案,硬件组成包括光源与照明方式的选择,以及相机与镜头的选择。完成硬件平台搭建后,同时制作了应用于相机标定的标定板并在调试完成的硬件平台上拍摄了三十张左右的标定图片。利用MATLABR2016A作为系统的软件处理平台,一方面应用MATLAB标定箱对标定图做相机标定,另一方面编写用于单片机芯片尺寸测量的图像处理代码及测量代码。其中,在图像处理环节主要包括图像滤波、二值化处理和边缘提取等步骤。单片机芯片的尺寸测量实验完成后将实验结果与真实尺寸的对比,可以看出构建的基于机器视觉的电子元器件外形尺寸测量系统满足了课题设定目标。 关键词 机器视觉,图像处理,相机标定,尺寸测量 The Design of Machine Vision Measurement System for the Dimension of Electronic Components Chao Li, Jie Xu Yancheng Institute of Measurement and Testing, Yancheng Jiangsu Received: Aug. 24th, 2020; accepted: Sep. 4th, 2020; published: Sep. 11th, 2020

风光互补无线视频监控系统

风光互补无线视频监控系统 方 案 书 福州科瑞新电子有限公司 2012年2月16日

一.系统概述 电力供应是整个社会生产、人民生活的基本保证之一。为了提高电力部门的生产效益,各变电站/所实现无人值守将成为一种需要。在电力调度通讯中心建立监控中心,通过对各个变电站/所进行视频画面的实时监视,以便能够实时、直接地了解和掌握各个变电站/所的情况,及时对所发生的情况做出反应,适应行业发展需要。 针对这种形势,使用风光互补无线监控系统将能有效地实现监控和管理。系统全天候地对变电站/所现场的视频数据进行采集编码,一方面将视频数据存储数据于本地的存储设备中,以便事后的回放调查;另一方面,通过3G无线传输设备使监控中心能统一地监视和管理。 二.系统设计关键点 1、无线传输 由于监控点自身环境特点,传输方式不可能采用有线或光缆,因此应选择无线传输方式来进行数据的传输。目前,3G无线传输技术成熟,并得到广泛的应用,其具有信号覆盖率高,部署方便等特点,是该系统设计的最佳选择。 2、供电保证 同样由于监控点自身环境的特点,设备供电不能保证有市电的供应,所以要保证设备全天候正常工作,对应的配套供电系统成了该系统设计重点。太阳能供电系统由太阳电池组件构成的太阳电池方阵、太阳能充电控制装置、逆变器、蓄电池组构成。太阳能供电系统在晴朗的白天能将太阳能转换为电能,给负载供电的同时,也给蓄电池组充电;在无光照时,可由蓄电池给负载供电。又考虑到可能出现的极其恶劣的长时间无光照的天气,配备风能供电系统能给供电带来更大的保证。所以综合来看,风光互补放电系统将是保证设备供电的最佳选择。3、避雷接地安全可靠。 户外监控系统的软肋是前端的避雷与接地,前端设备的避雷与接地直接影响

音频、视频采集与处理知识点整理

音频、视频采集与处理相关知识点 知识点整理: 1.音频数字化及存储量的计算 数字化音频是指通过采样和量化把模拟音频信号转换成由二进制数码“0”或“1”组成的数字化音频文件。 采样频率是指将单位时间的音频波形分隔成的点数,单位为赫兹(HZ)。采样频率决定了声音采集的质量,采样频率越高,声音的质量越好,存储容量越大。 量化位数是指将采样得到的点实现用二进制编码表示。量化位数越大,其量化值越接近采样值,即精度越高,所以存储量也越大。 常见的wave文件所占存储量的计算公式: 存储量(字节)=采样频率*量化位数*声道数*时间(秒)、8 2.声音素材的采集 声音素材的获取途径:成品声音文件的使用、声音素材的截取等。 声音文件的录制分硬件设备和软件录制两个部分。硬件设备主要需要声卡、话筒等。常用的声音录制与编辑软件有:GoldWave、录音机、Cool Edit、Wave Edit等。 3.声音的基本处理 通过GoldWave软件的状态栏,观察打开声音文件的采样频率、量化位数、声道数、声音长度、文件格式等信息。利用GoldWave软件可以对音频文件进行删除、剪裁、设置静音、淡入、淡出、音量调整、合成等操作。 (1)用GoldWave软件进行声音素材的处理: ①打开的音频文件在状态栏显示的参数信息:

②选取音频文件中的部分音轨信息 方法一:通过“设标”按钮,设置基于时间位置的“开始”和“结束”的时间参数。 如下图所示: 方法二:借助“开始标记线”和“结束标记线”。这种方法对音频区间的选取在时间不是很准确,要做好相对准确,可以事先将音频文件放大。 注意:如果需要选择立体声音频中某一声道的音轨信息,需要先进行声道选择。如需选择“左声道”中1:00分钟——3:00分钟的音轨信息,则可以先通过“编辑”菜单中的“声道”去指定处理的音频是左声道还是右声道。 ③选中的音频信息的执行删除、剪裁操作 :“开始标记”和“结束标记”之间的这段音频素材被删除。 :“开始标记”和“结束标记”之间的这段音频素材被保留下来。 ④选中的音频信息淡入、淡出效果的设置 淡入:实现声音音量由小到大的效果。实现操作:选中音频信息,选择“效果”菜单中的“音量”→“淡入”,并设置好初始音量、淡化曲线等参数。其中初始音量参数在-160到时0之间。 淡出:实现声音音量由大到小的效果。实现操作:选中音频信息,选择“效果”菜单中的“音量”→“淡出”,并设置好最终音量、淡化曲线等参数。其中初始音量参数在-160到时0之间。 ⑤选中的音频信息更改音量效果的设置 选中音频信息,选择“效果”菜单中的“音量”→“更改音量”,并设置好音量或预设的参数。其中音量单位为分贝(dB),正值为音量增加,负值为音量减少。

交通信息采集系统中的行人检测算法

现 代计算机(总第二六三期) MODERNCOMPUTER2007.7 *基金项目:广东省科技计划项目(2002A1010308)收稿日期:2007-05-08修稿日期:2007-06-29 作者简介:曹江中(1976-),男,湖南郴州人,硕士,助教,研究方向为图像信息处理技术及应用 0引言 行人检测是交通信息采集系统的一个重要部分。 高速公路属于全封闭的安全通道,加强对行人的检测对于保障高速公路行车安全是有重要意义的。当检测到路面有行人时,监控中心马上做出相关处理,从而可以迅速地避免交通事故的发生。 1行人检测 1.1背景更新 用于检测行人的视频来自交通信息采集系统,采 用位置固定的摄像机,交通视频的背景相对静止,但由于室外光照的变化和车辆经过时的振动都会引起视频背景的变化,因此需要对背景不断进行更新。根据高速公路行车的特点,设计一个基于像素的背景更新算法[3] ,其基本思路是:给检测区的每一个像素设置 一个计数器Count(i,j),对该计数器作如下操作: ifCti,!"j-Bti,!" j>gray_thr Count(i,j)+1elseCount(i,j)=0 其中Bti,!"j、Cti,!" j分别表示t时刻的背景和采集的图像对应于位置(i,j)处的像素值,gray_thr是灰度阈值,可以根据当时CCD摄像机的电位噪声和地面光照强度来动态设定。 当gray_thr>N时就将当前像素值作为背景(Ct i,!"j←Bt i,!" j),也即:若检测区中像素的灰度连续N 次的变化小于阈值gray_thr。则将该当前像素值作为背景,其中N的值可以根据经验确定,但必须满足下 式: N>50mVmax×! "t式中t为采集连续两帧图像的时间间隔。Vmax为高速公路车辆允许的最大速度。 这种背景更新算法,对于云层阴影、 固定物体的影子、路面水迹等具有较好的适应性,但运动目标进入检测区域后停滞时间较长时会被误认为背景,因此,还需考虑不对运动目标区域进行更新。 1.2运动目标检测 针对高速公路上的行人在视频图像中有效面积较小,运动缓慢的情况,本文采用背景帧差法来检测运动目标。假定获取的背景图像为B,当前图像为C,则在理想情况下当前图像减去背景图像后,像素值发生改变的就是前景区域(运动目标),但在实际应用中,由于采集的图像存在着较大的噪声干扰,往往需要引入一个抑止噪声的阈值thr_gray,如式(1)。图像I中像素值为255的区域则为运动目标区域。 Ii,!" j 255ifabsCij-Bij!">thr_gray 0 ifabsCij-Bij!"<thr_gra$ y (1) 由于运动目标的某些区域往往在灰度上与背景相差不大,检测出的运动区域并不总是一个联通区域,因此还需对其进行后处理,使整个目标区域联通。后处理通常采用的是数学形态学的方法[4]。数学形态学在图像处理方法上表现为邻域运算形式,因此计算量较大,并且交通信息采集系统中的行人检测目的是判断行人的存在与否,并不一定要检测出行人的轮廓,因此我们采用了一种网格降维的方法,将检测区域网格化,划分为互不重叠的5×5的小块,统计小块 交通信息采集系统中的行人检测算法* 曹江中1,戴青云1,谭志标2,邸磊2 (1.广东工业大学信息工程学院,广州510090;2.广东新粤智能交通研究院,广州510101) 摘 要:根据高速公路行人运动的先验知识,设计了一种基于视频检测技术的高速公路行人检测算 法。该算法采用背景帧差分法获取运动目标区域,采用跟踪链实现运动目标跟踪,根据行人运动的先验知识在运动目标中检测行人。算法已嵌入到交通信息采集系统中,在高速公路上进行的现场测试结果表明,算法具有较好的实时性和实效性。 关键词:行人检测;视频检测;运动检测;目标跟踪! "

无线视频监控系统详解

无线视频监控系统详解

无线视频监控系统详解 《自动化测试趋势展望2013》国防与航空航天应用解决方案与产品选型指? NI CompactRIO开发者指南? LabVIEW 2012评估版软件 无线视频监控典型部署方式 一般在无线网状网覆盖区域架设支持WLAN接入的无线视频前端设备(如支持WLAN的IP摄像机或IP视频服务器加模拟摄像机),然后通过无线网状网将采集的IP视频信号回传到网络中心的监控处理平台。通常在网络中心配置支持多通道的网络视频录像机和大容量的存储系统,用于监控视频录像和存储,同时为一个或多个网络监控终端提供实时的监控图像,还可通过安全的网络连接(如VPN),从远端视频监控终端上实现远程监控和管理。 以下是目前在无线监控网络中应用的典型IP视频系统单元。 *IP摄像机 IP摄像机为集成模拟视频图像采集和视频图像数字化处理功能的一体化视频前端设备。它可以将模拟的视频信号按照标准格式转换成数字信号,并直接提供IP网络接口。通过WLAN无线桥接器可以很方便地将IP摄像机变成支持无线传输的无线视频前端设备。 *IP视频服务器 IP视频服务器通常用于连接模拟摄像机,它可以将模拟的视频信号按照标准格式(普遍采用M-JPEG或MPEG4)转换成数字信号,并直接提供IP网络接口。通过WLAN无线桥接器也可很方便地将IP视频服务器变成支持无线传输的无线视频前端设备。 采用IP视频服务器方式,用户可以自由地选择模拟摄像机的类型。可以根据自己的需要,购买价格和性能不同的模拟摄像机,从而满足个性化的要求。 *WLAN无线桥接器 WLAN无线桥接器可以为具有有线网络接口的IP视频设备提供无线局域网接口的转换,为其扩展无线网络传输的能力。WLAN无线桥接器通常应支持以太网接口到802.11b/g无线局域网接口的转换,可满足长时间的无故障工作(其平

初中信息技术《视频采集与处理》教案

《视频采集与处理》教案 日期周次年级七年级课题 视频采集与处理—畅游在山水圣 人间 课时安排建议1课时 教学目标 知识目标 1、了解动画、视频的基本知识; 2、掌握视频的基本编辑方法。 技能目标 学会对视频文件进行简单的加工。 情感态度与价值观目标 1、感受视频处理的过程; 2、培养自主探索和互助合作的精神。 重难点 重点:掌握视频的基本知识。 难点:学会视频的基本编辑方法。 教学准备自制课件,lanstar多媒体网络教室 教材分析本节课学习视频的基本编辑,会对视频进行简单的加工。 教学过程创设情景 激趣导入 教师播放一段视频,请学生欣赏。 师:大家会播放视频吗? 生:回答 师:如何播放和加工视频呢?今天我们就来学习视频采集与处理—畅游在山水圣人间。 设计理念:教师播放视频,激发学生学习的兴趣,创设问题情景,导出课题。 自主探究 交流分享 将全班同学分成四个小组,每个小组选择一个任务进行自主探究,先在小组内交流,然后小组派代表汇报探究成果,其他小组进行验证。 任务一、动画和视频的含义分别是什么? 任务二、如何播放视频 任务三、用“超级解霸3000”采集光盘上的一段视频

任务四、给这段视频添加字幕“山水圣人行” 设计理念:教师根据教学内容,设置适当的学习任务,让学生自主探究问题,培养学生的探究能力,学生交流心得体会,共同进步。 合作学习释疑解难 教师询问哪些同学还有不明白的地方,可以提出来,大家一起来探讨。 生:…… 师:谁能帮他解决一下这个问题? 设计理念:教师整合学生提出的问题,然后让学生进行小组讨论,教师组织学生合作学习,如果学生不能解决问题,教师则进行重点讲解。 实践创作展示评价 师:请你寻找合适的视频资源并进行编辑加工,以“新青岛、新奥运”的主题,展示青岛“海上奥运”的特色,体现青岛“山、海、城”浑然一体、人与自然和谐共处的城市特点。 设计理念:教师设置合适的任务,学生进行实践创作,然后师生对学生作品进行评价,教师要发现学生作品中的闪光点,对学生作品进行充分的肯定。 梳理总结拓展延伸 设计理念:教师设置新的问题,引起学生思考,让学生课后研究,培养学生的拓展性思维。

(完整版)音频、视频采集与处理知识点整理

音频、视频采集与处理相关知识点 单元知识点考试要求试题类型 音频、视频采集与处理1.音频的数字化和存储容量的计算 b 选择题、填空题 必考+加试2.声音素材的采集 C 3.声音素材的制作 C 4.声音的格式转换 C 5.视频的数字化和存储容量的计算 b 6.视频素材的采集和处理 C 知识点整理: 1.音频数字化及存储量的计算 数字化音频是指通过采样和量化把模拟音频信号转换成由二进制数码“0”或“1”组成的数字化音频文件。 采样频率是指将单位时间的音频波形分隔成的点数,单位为赫兹(HZ)。采样频率决定了声音采集的质量,采样频率越高,声音的质量越好,存储容量越大。 量化位数是指将采样得到的点实现用二进制编码表示。量化位数越大,其量化值越接近采样值,即精度越高,所以存储量也越大。 常见的wave文件所占存储量的计算公式: 存储量(字节)=采样频率*量化位数*声道数*时间(秒)、8 2.声音素材的采集 声音素材的获取途径:成品声音文件的使用、声音素材的截取等。 声音文件的录制分硬件设备和软件录制两个部分。硬件设备主要需要声卡、话筒等。常用的声音录制与编辑软件有:GoldWave、录音机、Cool Edit、Wave Edit等。 3.声音的基本处理 通过GoldWave软件的状态栏,观察打开声音文件的采样频率、量化位数、声道数、声音长度、文件格式等信息。利用GoldWave软件可以对音频文件进行删除、剪裁、设置静音、淡入、淡出、音量调整、合成等操作。 (1)用GoldWave软件进行声音素材的处理: ①打开的音频文件在状态栏显示的参数信息:

②选取音频文件中的部分音轨信息 方法一:通过“设标”按钮,设置基于时间位置的“开始”和“结束”的时间参数。 如下图所示: 方法二:借助“开始标记线”和“结束标记线”。这种方法对音频区间的选取在时间不是很准确,要做好相对准确,可以事先将音频文件放大。 注意:如果需要选择立体声音频中某一声道的音轨信息,需要先进行声道选择。如需选择“左声道”中1:00分钟——3:00分钟的音轨信息,则可以先通过“编辑”菜单中的“声道”去指定处理的音频是左声道还是右声道。 ③选中的音频信息的执行删除、剪裁操作 :“开始标记”和“结束标记”之间的这段音频素材被删除。 :“开始标记”和“结束标记”之间的这段音频素材被保留下来。 ④选中的音频信息淡入、淡出效果的设置 淡入:实现声音音量由小到大的效果。实现操作:选中音频信息,选择“效果”菜单中的“音量”→“淡入”,并设置好初始音量、淡化曲线等参数。其中初始音量参数在-160到时0之间。 淡出:实现声音音量由大到小的效果。实现操作:选中音频信息,选择“效果”菜单中的“音量”→“淡出”,并设置好最终音量、淡化曲线等参数。其中初始音量参数在-160到时0之间。 ⑤选中的音频信息更改音量效果的设置 选中音频信息,选择“效果”菜单中的“音量”→“更改音量”,并设置好音量或预设的参数。其中音量单位为分贝(dB),正值为音量增加,负值为音量减少。

视频采集常见接口类型

常见输入输出接口介绍 现在的高清电视机和高清电视节目已近是人们高清娱乐的主要内容之一了,随着视频清晰度的不断上升,先后诞生了不少视频接口,可以说视频接口是实现高清的基础,不管是早期的还是最新的接口,现在很多视频接口还在继续使用,通过各种信号转换器/视频采集卡,AV,S-VIDEO转VGA AV,S-VIDEO转HDMI,色差转VGA,色差转HDMI等等,图像提升几倍,效果更好。想看到清晰度高质量好的视频,视频信号的采集、传输、处理等视频技术固然很重要,但是数码产品的视频输入输出接口一样值得去考虑。 通常我们也称之为RCA接口或者复合AV接口,一般复合AV线的输出或输入都采用与音响相同的梅花形RCA端子,用红色和白色分别表示左右声道,视频信号用黄色端子。复合信号传输方便、设备结构简单、成本低。 AV接口(RCARCA)可以算是TV的改进型接口,外观方面有了很大不同。分为了3条线,分别为:音频接口(红色与白色线,组成左右声道)和视频接口(黄色)。由三个独立的RCA插头(又叫梅花接口、RCA接口)组成的,其中的V接口连接混合视频信号,为黄色插口;L接口连接左声道声音信号,为白色插口;R接口连接右声道声音信号,为红色插口。 参考图示:AV接口/复合视频(CVBS)接口/RCA接口 复合视频(Composite)通常采用黄色的RCA(莲花插座)接头。“复合”含义是同一信道中传输亮度和色度信号的模拟信号,但如果不能很好的分离这两种信号,就会出现虚影。音频接口和视频接口成对使用,通常都是白色的音频接口和黄色的视频接口,采用RCA(莲花头)进行连接,使用时只需要将带莲花头的标准AV 线缆与相应接口连接起来即可。 AV接口实现了音频和视频的分离传输,这就避免了因为音/视频混合干扰而导致的图像质量下降,但由于AV 接口传输的仍然是一种亮度/色度(Y/C)混合的视频信号,需要对其进行亮/ 色分离和色度解码才能成像,在先混合,再分离处理过程中必然会造成信号的丢失或失真,色度信号和亮度信号也会有很大的机会相互干扰。由于亮度/色度(Y/C)混合的视频信号处理方式所固有的技术缺陷,AV 视频接口的应用就有了极大的限制。

相关主题
文本预览
相关文档 最新文档