当前位置:文档之家› 高斯扩散模式的应用

高斯扩散模式的应用

高斯扩散模式的应用
高斯扩散模式的应用

2011数学建模A题优秀论文

承诺书 我们仔细阅读了中国大学生数学建模竞赛的竞赛规则. 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。 我们参赛选择的题号是(从A/B/C/D中选择一项填写): 我们的参赛报名号为(如果赛区设置报名号的话): 所属学校(请填写完整的全名): 参赛队员(打印并签名) :1. 2. 3. 指导教师或指导教师组负责人(打印并签名): 日期:年月日赛区评阅编号(由赛区组委会评阅前进行编号):

编号专用页 赛区评阅编号(由赛区组委会评阅前进行编号): 全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):

基于系统综合评价的城市表层土壤重金属污染分析 摘要 本文针对城市表层土壤重金属污染问题,首先对各重金属元素进行分析,然后对各种重金属元素的基本数据进行统计分析及无量纲化处理,再对各金属元素进行相关性分析,最后针对各个问题建立模型并求解。 针对问题一,我们首先利用EXCEL 和 SPSS 统计软件对各金属元素的数据进行处理,再利用Matlab 软件绘制出该城区内8种重金属元素的空间分布图最后通过内梅罗污染 模型:2 /12 max 22?? ? ? ??+=P P P 平均综,其中平均P 为所有单项污染指数的平均值,max P 为土壤环境中 针对问题二,我们首先利用EXCELL 软件画出8种元素在各个区内相对含量的柱状图,由图可以明显地看出各个区内各种元素的污染情况,然后再根据重金属元素污染来源及传播特征进行分析,可以得出工业区及生活区重金属的堆积和迁移是造成污染的主要原因,Cu 、Hg 、Zn 主要在工业区和交通区如公路、铁路等交通设施的两侧富集,随时间的推移,工业区、交通区的土壤重金属具有很强的叠加性,受人类活动的影响较大。同时城市人口密度,土地利用率,机动车密度也是造成重金属污染的原因。 针对问题三,我们从两个方面考虑建模即以点为传染源和以线为传染源。针对以点为传染源我们建立了两个模型:无约束优化模型()[]()[]() 22y i y x i x m D -+-=,得到污染源的位置坐标()6782,5567;有衰减的扩散过程模型得位置坐标(8500,5500),模型为: u k z u c y u b x u a h u 222 2222222-??+??+??=??, 针对以线为传染源我们建立了l c be u Y ?-+=0模型,并通过线性拟合分析线性污染源的位置。 针对问题四,我们在已有信息的基础上,还应收集不同时间内的样点对应的浓度以及各污染源重金属的产生率。根据高斯浓度模型建立高斯修正模型,得到浓度关于时间和空间的表达式ut e C C -?=0。 在本题求解过程中,我们所建立的模型与实际紧密联系,有很好的通用性和推广性。但在求点污染源时,我们假设只有一个污染源,而实际上可能有多个点污染源,从而使得误差增大,或者使污染源的位置够不准确。 关键词 内梅罗污染模型 无量纲化 相关性 回归模型 高斯浓度模型

高斯扩散模型.

大气污染扩散 第一节大气结构与气象 有效地防止大气污染的途径,除了采用除尘及废气净化装置等各种工程技术手段外,还需充分利用大气的湍流混合作用对污染物的扩散稀释能力,即大气的自净能力。污染物从污染源排放到大气中的扩散过程及其危害程度,主要决定于气象因素,此外还与污染物的特征和排放特性,以及排放区的地形地貌状况有关。下面简要介绍大气结构以及气象条件的一些基本概念。 一、大气的结构 气象学中的大气是指地球引力作用下包围地球的空气层,其最外层的界限难以确定。通常把自地面至1200 km左右范围内的空气层称做大气圈或大气层,而空气总质量的98.2%集中在距离地球表面30 km以下。超过1200 km的范围,由于空气极其稀薄,一般视为宇宙空间。 自然状态的大气由多种气体的混合物、水蒸气和悬浮微粒组成。其中,纯净干空气中的氧气、氮气和氩气三种主要成分的总和占空气体积的99.97%,它们之间的比例从地面直到90km高空基本不变,为大气的恒定的组分;二氧化碳由于燃料燃烧和动物的呼吸,陆地的含量比海上多,臭氧主要集中在55~60km高空,水蒸气含量在4%以下,在极地或沙漠区的体积分数接近于零,这些为大气的可变的组分;而来源于人类社会生产和火山爆发、森林火灾、海啸、地震等暂时性的灾害排放的煤烟、粉尘、氯化氢、硫化氢、硫氧化物、氮氧化物、碳氧化物为大气的不定的组分。 大气的结构是指垂直(即竖直)方向上大气的 密度、温度及其组成的分布状况。根据大气温度在 垂直方向上的分布规律,可将大气划分为四层:对 流层、平流层、中间层和暖层,如图5-1所示。 1. 对流层 对流层是大气圈最靠近地面的一层,集中了大 气质量的75%和几乎全部的水蒸气、微尘杂质。受 太阳辐射与大气环流的影响,对流层中空气的湍流 运动和垂直方向混合比较强烈,主要的天气现象云 雨风雪等都发生在这一层,有可能形成污染物易于 扩散的气象条件,也可能生成对环境产生有危害的 逆温气象条件。因此,该层对大气污染物的扩散、输送和转化影响最大。 大气对流层的厚度不恒定,随地球纬度增高而降低,且与季节的变化有关,赤道附近约

数学建模(关于扩散问题的建模)

关于金属汞扩散的问题 引言: 我们都知道,重金属丢弃到土地后会严重污染环境,同时对人体健康造成危害。著名的秦始皇陵墓,据专家在陵墓周围取数据观测,周围的汞含量呈现出外渗的趋势。也就是说,随着外围半径的扩大,汞含量浓度递减,并且随着时间的增加,汞渗透的半径越来越大。这就证明了汞金属在泥土中会发生扩散。因此,我们就提出,能否通过在外部取样的观察数据,建立一个数学模型,来判断陵墓中心处汞的浓度呢? 模型的提出: 由于汞的扩散快慢跟本身的化学性质,物理性质有关。还有,由于在土堆里头,在各个方向上受到的力不相同和各种因素的影响,因此扩散的速度也会有差异。例如东西方向和南北方向会因为地球的自传而扩散速度会不一样。另一方面,汞在扩散的过程,由于泥土的吸收,化学反应等因数的影响,也会影响到汞的扩散。 为此我们引入一个函数u(x, y, z, t),它表示t时刻在(x,y,z)处汞的浓度。我们的目标就是利用所观测到的数据,来推断出这个函数的表达式。 模型符号的引入: 为了表示汞在想x,y,z 方向上的扩散速度,我们在此引

入扩散系数: 2 a :x 方向上的扩散系数 2 b :y 方向上的扩散系数 2 c :z 方向上的扩散系数 2 k :由于泥土吸收,化学反应而引起的衰减系数 M :扩散源汞的质量 模型假设: 1。假设有一汞扩散源,汞从扩散源沿 x ,y ,z 三个方向向四周扩散。 2。扩散前周围空间此物质的浓度为零。 3。扩散过程中没有人为因素的影响。 模型建立: u(x, y, z, t) 是 t 时刻点 (x, y , z) 处某物质的浓度。任取一个闭曲面 S ,它所围的区域是Ω,由于扩散,从 t 到 t t +? 时刻这段时间内,通过 S 流入Ω的质量为 1 M 2 2 2 1(cos cos cos )d d t t t S u u u M a b c S t x y z αβγ+????= ++???? ?? 其中 2 a ,2 b ,2 c 分别是沿 x ,y ,z 方向的扩散系数。 由高斯公式 : ? ??? ?+Ω ??+??+??= t t t t z y x z u c y u b x u a M d d d d )(2 2 2 2 2 2 2 2 2 1

云团扩散模型

1 云团扩散模型 根据物质泄漏后所形成的气云的物理性质的不同,可以将描述气云扩散的模型分为非重气云模型和重气云模型两种[5-13]。 1.1 非重气云模型 高斯模型是一种常用的非重气扩散模型,高斯烟羽(Plume model)模型又称高架点连续点源扩散模型,适用于连续源的扩散,即连续源或泄放时间大于或等于扩散时间的扩散。 高斯烟团(Puff model)模型适用于短时间泄漏的扩散,即泄放时间相对于扩散时间比较短的情形,如突发性泄放等。若假设气体云内空间上的分布为高斯分布,则地面地处风向的烟团浓度分布算式为 式中, c(x,y,H)——点(x,y,H)处浓度值,mg/m3; Q——源强,即单位时问的排放量,mg/s; u——环境平均风速,m/s; σx,σy,σz——扩散参数; H——源高(烟团高度),m; x——下方向到泄漏原点的距离,m; y,z——侧风方向、垂直向上方向离泄漏原点的距离,m。 高斯模式的实际应用效果很大程度上依赖于如何给定模式中的一些参数,尤其要注意源强、扩散参数等的确定。 源强与污染物的物理化学属性、扩散方式、释放点的地理环境等有关。扩散参数表征大气边界层内

湍流扩散的强弱,是高斯模式的一项重要数据。高斯扩散模式所描述的扩散过程(实质上也包含了在实际应用中对高斯模式的一些限制)主要有: 1)下垫面平坦、开阔、性质均匀,平均流场稳定,不考虑风场的切变。 2)扩散过程中,污染物本身是被动、保守的,即污染物和空气无相对运动,且扩散过程中污染物无损失、无转化,污染物在地面被反射。 3)扩散在同一温度层结中发生,平均风速大于1.0 m/s。 4)适用范围一般小于10~20 km。 1.2 重气云模型 由于重气本身的特殊性,在重气扩散领域也有大量基于不同理论的模型。鉴于重气扩散与中性或浮性气体扩散有着明显的区别,目前国内外已开发大量的不同复杂程度的重气扩散模型,如箱模型、相似模型、LTA-HGDM模型、CFD模型等。 1.2.1 箱(BOX)模型 箱模型是指假定浓度、温度和其他场,在任何下风横截面处为矩形分布等简单形状,这里的矩形分布是指在某些空间范围内场是均匀的,而在其他地方为零。该类模型预报气云的总体特征,如平均半径、平均高度和平均气云温度,而不考虑其在空间上的细节特征。重气效应消失后其行为表现为被动气体扩散,所以该类模型还包括被动扩散的高斯模型及对它的修正。 1.2.2 层流及湍流大气环境中的重气扩散(LTA-HGDM)模型 LTA-HGDM模型(Heavy Gas Dispersion Model in Lsaminar and Turbulent Atmosphere层流及湍流大气环境中的重气扩散模型)以箱模型为基础,结合虚点源模型,能描述重气泄漏扩散整个过程。模型同三维有限元模型相比,具有形式简单、原始输入数据运算速度快等优点。 LTA-HGDM模型的建立基于以下几点假设: 1)危险性气体初时泄漏时,其外形呈正圆柱形(H=2R)。 2)初始时刻泄漏源即此核电站内部的浓度、温度呈均匀分布。 3)扩散过程不考虑泄漏源即此核电站内部温度的变化,忽略热传递、热对流及热辐射。

推荐-基于修正高斯扩散模型的城市表层土壤重金属污染探究 精品

基于修正高斯扩散模型的城市表层土壤重金属污染探究 (标题,3号黑体) 摘要(4号黑体) (小4号宋体)本文基于修正的高斯扩散模型,针对城市表层土壤重金属污染问题,考虑到重金属的传播特征,建立了一系列逐步完善和精确化的数学模型,很好地解决了重金属污染物分布、污染程度评价及污染源确定的问题。 对于问题一,首先利用MATLAB软件分别做出了8种重金属污染物浓度的等高线空间分布图。然后综合使用内梅罗单因子和综合因子指数法评价该城区不同功能区域的污染程度。具体过程如下:先对每个取样点使用内梅罗单因子指数法确定其污染程度,再按功能区域的划分将监测点分为5类,对每一类都使用内梅罗综合指数法便可得到各区域综合污染指数,其中综合指数的大小反映了污染程度的轻重。结果显示该城区5个功能区域的污染程度从重到轻的排序依次为:工业区>交通区>生活区>公园绿地区>山地区。 对于问题二,使用主因子分析法研究各功能区的重金属污染原因。通过使用SPSS 软件处理数据我们可以得到如下结论:对于工业区来说造成土壤重金属污染的主要原因是工业生产过程中排放的废气、废水和废渣;对于交通区来说造成区内土壤重金属污染的主要原因是汽车排放的气;对于生活区来说造成其重金属污染的主要原因是生活垃圾的废弃及来自工业区和交通区的废气污染;对于公园绿地区来说造成其重金属污染的主要原因是来自工业区与交通区的废气污染以及植物 对重金属的富集作用;山地区域污染较轻气污染主要原因是工业废气和汽车尾气。对于问题三,首先分析重金属污染物的传播特征,得到了重金属有如下几种基本运动方式:随介质迁移的传播运动、分散运动、被环境介质吸收或降解、沉积、传播中转化。其次考虑到重金属污染物传播过程与流体介质的不同,对适用于流体的高斯模型进行了修正,得到了能反映本题要求的修正后的高斯扩散模型。接着对修正后的高斯扩散模型微分方程组进行了求解,得到了3个主要污染源的位 对于问题四,首先评价问题三中所建立模型,模型的优点是充分考虑了重金属的传播特征,对求出污染源非常有效;缺点在于未能考虑当地降雨及常年风向等影响重金属污染传播的因素,对污染的预测不能很好反映。鉴于此,在改进模型时增加收集当地降水及常年风向这两项信息。最后在改进模型时给原微分方程组增加降水和风向两个控制因子,通过求解改进后的微分方程组,相信会得到更加贴近实际的结果。 关键字:内梅罗指数法主因子分析修正高斯扩散模型

污染物扩散模型-深圳数学建模

赛区评阅编号(由赛区组委会填写): 2015高教社杯全国大学生数学建模竞赛 承诺书 我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。 我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。 我们参赛选择的题号(从A/B/C/D中选择一项填写): C 我们的报名参赛队号(12位数字全国统一编号): 参赛学校(完整的学校全称,不含院系名):温州医科大学 参赛队员 (打印并签名) :1. 章成俊 2. 杨超 3. 谢锦 指导教师或指导教师组负责人 (打印并签名): 日期:年月日

赛区评阅编号(由赛区组委会填写): 2015高教社杯全国大学生数学建模竞赛 编号专用页 送全国评阅统一编号(由赛区组委会填写): 全国评阅随机编号(由全国组委会填写):

对垃圾处理厂污染的动态监控及居民补偿 摘要 城市垃圾处理问题是一个世界性难题。目前垃圾焚烧正逐步成为中国垃圾处理的主要手段之一。本论文构根据题目设置的垃圾处理厂规模,建立了环境动态监控体系,并根据潜在污染风险对周围居民进行了合理经济补偿的设计。 对于问题(1),为了实现对垃圾焚烧厂烟气排放及相关环境影响状况的动态监控,本论文在高斯烟羽模型的基础上进行改进,引入温度、降雨对污染物扩散的影响,建立了新的污染物扩散模型。本论文创新性的提出了风雨影响指数M,用来衡量风向、降雨对颗粒物扩散的影响。本论文将抽象的污染物含量形象化,利用空气污染指数API描述具体的污染程度及其给周围居民带来的影响。并且从不同角度给出了模型检验,验证了所建模型的准确性。 对于问题(1)具体赔偿方案的制定,在综合考虑了不同方位风向频率、受污染时间、受污染程度的基础上,本论文使用了层次分析法,并且进行了一致性检验,使得赔偿方案具有说服力。通过MATLAB编程,计算出当政府和垃圾处理厂共支付风险赔偿金为N时,得出居住地的每位居民应得的赔偿金额计算公式。对于监测点的设置,经计算共需21个,具体布置情况见后文。 对于问题(2),在题目所述的发生事故的情况下,对污染物的具体含量进行了合理的预测与假设。模拟出酸性物质与颗粒物的影响范围,并根据具体的污染程度设置不同的污染区。对每个污染区的不同情况设置更改监测点的设置,并且在问题(1)的基础上对居民的经济补偿进行合理修改。 关键词:高斯烟羽模型,层次分析法,空气污染指数,烟气抬升公式 一、问题重述 “垃圾围城”是世界性难题,在今天的中国显得尤为突出。数据显示,目前全国三分之二以上的城市面临“垃圾围城”问题,垃圾堆放累计侵占土地75万亩。因此,垃圾焚烧正逐步成为中国垃圾处理的主要手段之一。然而,由于政府监管不力、投资者目光短浅等多方面的原因,致使前些年各地建设的垃圾焚烧电厂在运营中出现了环境污染问题,给垃圾焚烧技术在我国的推广造成了很大阻力,许多城市的新建垃圾焚烧厂选址都出现因居民反对而难以落地的局面。在垃圾焚烧厂运行监管方面,目前主要是在垃圾焚烧厂内进行测量监控,缺少从周边环境视角出发的外围动态监控,因而难以形成为民众所信服的全方位垃圾焚烧厂环境监控体系。 深圳市某地点计划建立一个中型的垃圾焚烧厂,计划处理垃圾量1950吨/天(设置三台可处理垃圾650吨/天的焚烧炉,排烟口高度80米,每天24小时运转)。从构建环境动态监控体系、并根据潜在污染风险对周围居民进行合理经济补偿的需求出发,有关部门希望能综合考虑垃圾焚烧厂对周围带来环境污染以及其他危害的多种因素(例如,焚烧炉的污染物排放量、居住点离开垃圾焚烧厂的距离、风力和风向及降雨等气象条件、地形地貌以及建筑物的遮挡程度等等),在进行科学定量分析的基础

基于高斯模型的放射性物质扩散模型

放射性气体扩散浓度预估模型 【摘要】本文是以日本地震引起的福岛核电站的核泄漏为背景,并以给出的数据为基础,研究某一假设核电站的核泄漏问题。我们通过收集相关的资料,并结合题目给出的数据,建立了高斯模型、连续点源高斯扩散模型解决了题目提出的四个问题。 针对问题一:考虑到泄漏源是连续、均匀和稳定的,我们运用散度、梯度、流量等数学概念,通过“泄漏放射性物质质量守恒”、“气体泄漏连续性定理”、 Guass 公式及积分中值定理得到了无界区域的抛物线型偏微分方程,然后再通过电源函数解出空间任意一点的放射性物质浓度的表达式,把此表达式定为模型一的前身。鉴于放射性物质的扩散受到诸多因素的影响,如:泄漏源的实际高度、地面反射等。我们以泄漏口为坐标原点建立三维坐标系,通过“像源法”处理地面反射对放射性物质浓度的影响,并由此对模型一的前身进行修正完善,得到模型一:高斯模型,即放射性物质浓度的预测模型。最后我们模拟了放射性物质无风扩散仿真图。 针对问题二:当风速为k m/s 时,我们根据放射性核素云团在大气中迁移和扩散的数值计算的基本方法和步骤,并以泄漏点源在地面的投影点为坐标原点,以风向方向为x 轴,铅直方向为z 轴,与x 轴水平面垂直方向为y 轴建立三维坐标系,地面的反射作用同样利用“像源法”进行处理,得到连续点源高斯扩散模型。考虑到地面反射、烟云抬升、放射性物质自身的沉降及雨水的吸附等对浓度的影响,我们对连续点源高斯扩散模型进行了修正,建立了修正的连续点源高斯扩散模型。最后利用大气稳定度确定了扩散参数,进而求解了模型。 针对问题三:经分析,问题三的提出是以问题二为基础的,模型三的建立只需要将模型二加以调整即可。我们以风速方向为x 轴正方向,将风速与放射性物质的扩散速度进行矢量运算,此问题则转化为求(,0,)L z 和(,0,)L z -两点处的放射性物质浓度,由此建立模型三,即上风和下风L 公里处放射性物质浓度浓度的预测模型。 针对问题四:首先,我们通过网络收集了相关数据,然后,我们结合模型二、模型三对数据进行整理代入,算出了日本福岛核电站泄漏的放射性物质扩散到中国东海岸和美国西海岸的浓度分别为334.242910/g m -?、432.385410/g m -?。 关键词:高斯模型 连续点源高斯扩散模型 核泄漏

(完整)高斯扩散模型及其适用条件

高斯扩散模型及其适用条件 (1)一般表达式 根据质量守恒原理和梯度输送理论,污染物在大气中一般运动规律为:(3分) 1N x y z p p c c c c c c c u v w k k k S t x y z x x y y z z =????????????????+++=+++ ? ? ?????????????????∑ C :污染物质平均浓度; X ,y ,z :三个方向坐标; u ,v ,w :三个方向速度分量; k x ,k y ,k z :三个方向扩散系数; t :为污染物扩散时间; S P :污染物源、汇强度。 (2)高斯模型的适用条件:①大气流动稳定,表明污染物浓度不随时间改变,即0t ?=?; ②有主导风向,表明u=常数,且v=w=0; ③污染物在大气中只有物理运动,物化学 和生物变化,且预测范围内无其他同类 污染的源和汇。表明S P =0(p=1,2,….n ) 此时三维的动态模型就可简化为三维的稳态模型,得: x y z c c c c u k k k x x x y y z z ?????????????=++ ? ? ???????????? ?? (3分) ④有主导风情况下,主导风对污染物输送 应远远大于湍流运动引起污染物在主导风方

向上扩散。即c u x ??(平流输送作用)远远大于x c k x x ???? ????? (湍流弥散作用)。 此时方程又可以简化为: y z c c c u k k x y y z z ?????????=+ ? ???????? ?? (2分) (3)由于y 和z 方向上污染物浓度不发生变化,故规定y k 与y 无关,z k 与z 无关,即: 22z 22z y c c c u k k x y ???=+??? (1分) (4)由质量守恒原,理运用连续点源源强计算方式,按照单元体积(3)简化得到的方程进行积分ucdydz=Q ∞∞ -∞-∞??,结合边界条件 {0c=x y z c=0x y z ===∞ →∞时,,,时,对方程进行求解。(2分) (5)设x=ut ,令22y y z z =2k t =2k t σσ;。化简求解得到高斯扩散模型的标准 形式: ()2222y z 1c ,,exp 22y z Q y z x y z u πσσσσ????=-+?? ? ??????? (1分)

大气污染物扩散高斯模型模拟

大气污染物扩散的高斯模型模拟:可视化模拟点源大气污染的扩散Gaussian Atmospheric Dispersion Model 突发性大气污染事故时有发生,对大气污染扩散进行模拟和分析,有利于减小事故的危害,减轻人员伤亡和财产损失。高斯扩散模型是国际原子能机构(IAEA)推荐使用于重气云扩散模拟的数学模型,该模型在非重气云扩散的应用日益广泛。高斯扩散模型是描述大气对有害气体的输移、扩散和稀释作用的物理或数学模型,是进行灾害预测和救援指挥的有力手段之一。 高斯扩散模型 高斯模型又分为高斯烟团模型和高斯烟羽模型。大气污染物泄漏分为瞬时泄漏和连续泄漏,瞬时泄漏是指污染物泄放的时间相对于污染物扩散的时间较短如突发泄漏等的情形,连续泄漏则是指污染物泄放的时间较长的情形。瞬时泄漏采用高斯烟团模型模拟,而连续泄漏采用高斯模型烟羽模型模拟。高斯模型适用于非重气云气体,包括轻气云和中性气云气体。要求气体在扩散过程中,风速均匀稳定。 在高斯烟团模型中,选择风向建立坐标系统,即取泄漏源为坐标原点,x轴指向风向,y轴表示在水平面内与风向垂直的方向,z轴则指向与水平面垂直的方向,具体公式见式: (mg/s); x、y、z轴上的扩散系数,需根据大气稳定度选择参数计算得到(m);x、y、z表示x、y、z上的坐标值(m);u 表示平均风速(m/s);t表示扩散时间(s);H 表示泄漏源的高度(m)。 同理,高斯烟羽模型的表达式如: 技术方法 若用高斯模型算出空间每一个点在一个时刻的污染浓度,这个计算量是很大的。因此所设计的系统一般都是采用先进行图层网格化,由高斯模型计算出有限个网格点的上的污染物浓度,在进行空间内插得到面上每一个点的污染物浓度,并由此得到污染物浓度的等值线。整个过程的示意图如图所示

数学建模高斯扩散模型培训资料

数学建模高斯扩散模 型

§4-2高斯扩散模式 ū —平均风速; Q—源强是指污染物排放速率。与空气中污染物质的浓度成正比,它是研究空气污染问题的基础数据。通常: (ⅰ)瞬时点源的源强以一次释放的总量表示; (ⅱ)连续点源以单位时间的释放量表示; (ⅲ)连续线源以单位时间单位长度的排放量表示; (ⅳ)连续面源以单位时间单位面积的排放量表示。 δy—侧向扩散参数,污染物在y方向分布的标准偏差,是距离y的函数,m; δz—竖向扩散参数,污染物在z方向分布的标准偏差,是距离z的函数,m; 未知量—浓度c、待定函数A(x)、待定系数a、b; 式①、②、③、④组成一方程组,四个方程式有四个未知数,故方程式可解。 二、高斯扩散模式 (一)连续点源的扩散 连续点源一般指排放大量污染物的烟囱、放散管、通风口等。排放口安置在地面的称为地面点源,处于高空位置的称为高架点源。 1. 大空间点源扩散 高斯扩散公式的建立有如下假设:①风的平均流场稳定,风速均匀,风向平直;②污染物的浓度在y、z轴方向符合正态分布;③污染物在输送扩散中质量守恒; ④污染源的源强均匀、连续。 图5-9所示为点源的高斯扩散模式示意图。有效源位于坐标原点o处,平均风向与x轴平行,并与x轴正向同向。假设点源在没有任何障碍物的自由空间扩散,不考虑下垫面的存在。大气中的扩散是具有y与z两个坐标方向的二维正态分布,当两坐

标方向的随机变量独立时,分布密度为每个坐标方向的一维正态分布密度函数的乘积。由正态分布的假设条件②,参照正态分布函数的基本形式式(5-15),取μ=0,则在点源下风向任一点的浓度分布函数为: (5-16)式中 C—空间点(x,y,z)的污染物的浓度,mg/m3; A(x)—待定函数; σy、σz—分别为水平、垂直方向的标准差,即y、x方向的扩散参数,m。 由守恒和连续假设条件③和④,在任一垂直于x轴的烟流截面上有: (5-17) 式中 q—源强,即单位时间内排放的污染物,μg/s; u—平均风速,m/s。 将式(5-16)代入式(5-17), 由风速稳定假设条件①,A与y、z无关,考虑到③和④,积分可得待定函数A(x): (5-18) 将式(5-18)代入式(5-16),得大空间连续点源的高斯扩散模式 (5-19) 式中,扩散系数σy、σz与大气稳定度和水平距离x有关,并随x的增大而增加。当y=0,z=0时,A(x)=C(x,0,0),即A(x)为x轴上的浓度,也是垂直于x轴截面上污染物的最大浓度点C max。当x→∞,σy及σz→∞,则C→0,表明污染物以在大气中得以完全扩散。 2.高架点源扩散

高斯扩散模式在瞬间排放空气污染物模拟中的应用

高斯扩散模式在瞬间排放空气污染物模拟中的应用 摘要:在文章中提出应用高斯模式模拟和预测在瞬间排放状况下空气污染等级,用FORTRAN 语言编写的高斯模式程序还可应用于区域污染影响评价中,模式不仅可以从GIS 中输入数据而且还可以应用GIS 格式输出结果。 关键词:高斯模式 空气污染 地理信息系统 瞬时污染源 浓度场 瞬间排放是指工业企业或电厂的事故性污染物排放,如贮油罐或输油管道发生事故等。排放的污染物污染了空气、土壤、地面及地下水,影响植被和影响环境。 模拟瞬间空气污染要求得到污染区域面积、污染浓度和等级、污染预测等。 本文提出用高斯模式的解析解来模拟和预测瞬间排放空气污染状况。基于烟羽扩散上的解析公式求解的高斯模式非常广泛的应用于评价区域污染状况。高斯数学模式作为一个污染物扩散的基础模式被国际原子能机构广泛推广。 从瞬间点源污染源排放的污染物,其转换和扩散可以用以下的扩散方程来表示: t C ??+div(CV )=?(K ?C )+Ri +Q δ(t ?t 0)δ(x ?x 0)δ(y ?y 0)δ(z ?z 0) (1) 式中:C(x, y, z, t)为污染物浓度 V 为风速 K 为扩散系数 R 为污染物光化学转化率 Q 为污染物排放量

x 0, y 0, z 0为污染源相对坐标 在一定的风速和扩散系数条件下,公式(1)有其高斯扩散模式的解析解。 因此,污染物浓度值C 由点源污染源的高度H 决定。H 在高斯扩散模式中由下述公式计算: C (x,y,z,t )= )() 2(22 22 2 22 2 2/) 2(2/) (2/)(2/) (2 /3z z y x wt h H z wt h z vt y ut x z y x e e e e Q σσσσσσσπ-++--------+ (2) 式中:t 为时间 Q 为排放量 u ,v ,w 为风速分别在x ,y ,z 方向的分量 σx , σy , σz 分别在x ,y ,z 方向的扩散系数 h 为点源高度 H 为混合层高度 高斯模式中,假设X 轴与风向方向一致,Z 轴铅直向上,V=W=0。公式(2)可以转化为以下形式。 C (x,y,z,t )= )() 2(22 22 2 22 2 2/) (2/) (2/2/) (2 /3z z y x H z H z y ut x z y x e e e e Q σσσσσσσπ+------+ (3) 从公式(3)我们可以看出,每一个烟团需要用不同的坐标系进行计算,当我们计算多源的污染浓度时,我们需要用到几个坐标系,这样计算起来很复杂。因此,公式(3)必须做相应的转化到同一个坐标系中。 我们建立一个相对的坐标系,I 表示原点,坐标轴为ξ和η(见1)。并以I 为原点建立第二个坐标系,LX 表示X 轴,其方向与风向

扩散问题的偏微分方程模型,数学建模

第七节 扩散问题的偏微分方程模型 物质的扩散问题,在石油开采、环境污染、疾病流行、化学反应、新闻传播、煤矿瓦斯爆炸、农田墒情、水利工程、生态问题、房屋基建、神经传导、药物在人体内分布以及超导、液晶、燃烧等诸多自然科学与工程技术领域,十分普遍地存在着. 显然,对这些问题的研究是十分必要的,其中的数学含量极大. 事实上,凡与反应扩散有关的现象,大都能由线性或非线性抛物型偏微分方程作为数学模型来定量或定性地加以解决. MCM的试题来自实际,是“真问题⊕数学建模⊕计算机处理”的“三合一”准科研性质的一种竞赛,对上述这种有普遍意义和数学含量高,必须用计算机处理才能得到数值解的扩散问题,当然成为试题的重要来源,例如,AMCM-90A,就是这类试题;AMCM-90A要研究治疗帕金森症的多巴胺(dopamine )在人脑中的分布,此药液注射后在脑子里经历的是扩散衰减过程,可以由线性抛物型方程这一数学模型来刻划. AMCM-90A要研究单层住宅混凝土地板中的温度变化,也属扩散(热传导)问题,其数学模型与AMCM-90A一样,也是线性抛物型方程. 本文交代扩散问题建模的思路以及如何推导出相应的抛物型方程,如何利用积分变换求解、如何确定方程与解的表达式中的参数等关键数学过程,且以AMCM-90A题为例,显示一个较细致的分析、建模、求解过程. §1 抛物型方程的导出 设(,,,)u x y z t 是t 时刻点(,,)x y z 处一种物质的浓度. 任取一个闭曲面S ,它所围的区域是Ω,由于扩散,从t 到t t +?时刻这段时间内,通过S 流入Ω的质量为 2 221(cos cos cos )dSd t t t S u u u M a b c t x y z αβγ+????=++???? ??. 由高斯公式得 2222 221222()d d d d t t t u u u M a b c x y z t x y z +?Ω ???=++???? ???. (1) 其中,222,,a b c 分别是沿,,x y z 方向的扩散系数. 由于衰减(例如吸收、代谢等),Ω内的质量减少为 2 2d d d d t t t M k u x y z t +?Ω =? ???, (2) 其中2 k 是衰减系数. 由物质不灭定律,在Ω内由于扩散与衰减的合作用,积存于Ω内的质量为12M M -. 换一种角度看,Ω内由于深度之变化引起的质量增加为 3[(,,,)(,,,)]d d d d d d d . (3)t t t M u x y z t t u x y z t x y z u x y z t t Ω +?Ω =+?-?=????? ??? 显然312M M M =-,即

数学建模word版素材

1建模中几种基本预测方法(数模大全-数学建模的几种基本预测算法的探讨)1.1微分方程 适用范围: 传染病的预测模型、经济增长预测模型、正规战与游击战的预测模型、药物在体内的分布与排除预测模型、人口的预测模型、烟雾的扩散与消失预测模型以及相应的同类型的预测模型 改进方法: 常系数改进,增加控制系数,综合二者。 优点: 短、中、长期的预测都适合,既能反映内部规律,反映事物的内在关系,也能分析两个因素的相关关系,精度相应的比较高,另外对初等模型的改进也比较容易理解和实现。 缺点:虽然反映的是内部规律,但是由于方程的建立是以局部规律的独立性假定为基础,故做中长期预测时,偏差有点大,而且微分方程的解比较难以得到。1.2时间序列(数模大全-时间序列模型) 使用范围:数据具有以下特点时: (1)长期趋势变动。它是指时间序列朝着一定的方向持续上升或下降,或停留在 某一水平上的倾向,它反映了客观事物的主要变化趋势。 (2)季节变动。 (3)循环变动。通常是指周期为一年以上,由非季节因素引起的涨落起伏波形相 似的波动。 (4)不规则变动。通常它分为突然变动和随机变动。 建立方法有以下几种 1)移动平均法: 简单移动平均:近期预测,趋势变化不大 加权移动平均:不同时期数据影响力不同时,近期预测,趋势变化不大 趋势移动平均:存在直线上升下降时,做二次平均进行调整。使用于直线与周期趋势并存的2)指数平滑法 一般说来历史数据对未来值的影响是随时间间隔的增长而递减的。所以,更切合实际的方法应是对各期观测值依时间顺序进行加权平均作为预测值。前者无法满足,指数可以。 主意:加权系数选择,根据数据变化特性选择。 1).一次指数平滑 2).二次指数平滑(为了解决一次指数平滑中滞后问题) 数据 3).三次指数平滑:当数据量呈现曲线变动时 3)差分指数平滑法 克服了指数平滑法的数据滞后性 4)自适应滤波法 利用部分已知数据先分权后进行预测另外已知数据,然后对权系数进行修正,重复,最终得出较为合理的权系数对未知数进行预测。 5)趋势外推预测方法

数学建模高斯扩散模型

§4-2高斯扩散模式 ū —平均风速; Q—源强就是指污染物排放速率。与空气中污染物质的浓度成正比,它就是研究空气污染问题的基础数据。通常: (ⅰ)瞬时点源的源强以一次释放的总量表示; (ⅱ)连续点源以单位时间的释放量表示; (ⅲ)连续线源以单位时间单位长度的排放量表示; (ⅳ)连续面源以单位时间单位面积的排放量表示。 δy—侧向扩散参数,污染物在y方向分布的标准偏差,就是距离y的函数,m; δz—竖向扩散参数,污染物在z方向分布的标准偏差,就是距离z的函数,m; 未知量—浓度c、待定函数A(x)、待定系数a、b; 式①、②、③、④组成一方程组,四个方程式有四个未知数,故方程式可解。 二、高斯扩散模式 (一)连续点源的扩散 连续点源一般指排放大量污染物的烟囱、放散管、通风口等。排放口安置在地面的称为地面点源,处于高空位置的称为高架点源。 1、大空间点源扩散 高斯扩散公式的建立有如下假设:①风的平均流场稳定,风速均匀,风向平直;②污染物的浓度在y、z轴方向符合正态分布;③污染物在输送扩散中质量守恒;④污染源的源强均匀、连续。 图5-9所示为点源的高斯扩散模式示意图。有效源位于坐标原点o处,平均风向与x轴平行,并与x轴正向同向。假设点源在没有任何障碍物的自由空间扩散,不考虑下垫面的存在。大气中的扩散就是具有y与z两个坐标方向的二维正态分布,当两坐标方向的随机变量独立时,分布密度为每个坐标方向的一维正态分布密度函数的乘积。由正态分布的假设条件②,参照正态分布函数的基本形式式(5-15),取μ=0,则在点源下风向任一点的浓度分布函数为: (5-16) 式中 C—空间点(x,y,z)的污染物的浓度,mg/m3; A(x)—待定函数;

气体高斯扩散模型模拟

%气体高斯扩散模型模拟 Q=input('请输入泄漏源强(mg/s):Q='); u=input('请输入计算风速(m/s):u='); d=input('请输入计算精度(m):d='); Zo=input('请输入地面粗糙长度(m):Zo='); [x,y]=meshgrid(50:d:1000,-100:d:100); by0=0.08*x.*(1+0.0001*x).^(-1/2); bz0=0.06 *x.*(1+0.0015*x).^(-1/2); by=by0.*(1+0.38*Zo); fz=(2.53-0.13*log(x)).*(0.55+0.042*log(x)).^(-1).*Zo.^(0.35-0.03*log(x)); bz=bz0.*fz; tempy1=-y.*y./by./by./2; tempy2=2.718282.^(tempy1); c=Q/pi/u*((by.*bz).^(-1)).*tempy2; figure(1); Cs=input('请输入所有求解浓度(mg/m^3):'); contour(x,y,c,Cs); shading interp; colorbar; grid; xlabel('X轴向距离(m)'); ylabel('Y轴向距离(m)'); title('气体扩散下风向浓度分布图'); set(gcf,'color','white'); figure(2); Cs=input('请输入所有求解浓度(mg/m^3):'); contour(x,y,c,Cs); shading interp; colorbar; grid; xlabel('X轴向距离(m)'); ylabel('Y轴向距离(m)'); title('气体扩散下风向浓度分布图'); set(gcf,'color','white'); figure(3); Cs=input('请输入所有求解浓度(mg/m^3):'); contour(x,y,c,Cs); shading interp; colorbar; grid; xlabel('X轴向距离(m)'); ylabel('Y轴向距离(m)');

大气污染扩散模型剖析

第一节大气污染物的扩散 一、湍流与湍流扩散理论 1. 湍流 低层大气中的风向是不断地变化,上下左右出现摆动;同时,风速也是时强时弱,形成迅速的阵风起伏。风的这种强度与方向随时间不规则的变化形成的空气运动称为大气湍流。湍流运动是由无数结构紧密的流体微团——湍涡组成,其特征量的时间与空间分布都具有随机性,但它们的统计平均值仍然遵循一定的规律。大气湍流的流动特征尺度一般取离地面的高度,比流体在管道内流动时要大得多,湍涡的大小及其发展基本不受空间的限制,因此在较小的平均风速下就能有很高的雷诺数,从而达到湍流状态。所以近地层的大气始终处于湍流状态,尤其在大气边界层内,气流受下垫面影响,湍流运动更为剧烈。大气湍流造成流场各部分强烈混合,能使局部的污染气体或微粒迅速扩散。烟团在大气的湍流混合作用下,由湍涡不断把烟气推向周围空气中,同时又将周围的空气卷入烟团,从而形成烟气的快速扩散稀释过程。 烟气在大气中的扩散特征取决于是否存在 湍流以及湍涡的尺度(直径),如图5-7所示。 图5-7(a)为无湍流时,烟团仅仅依靠分子 扩散使烟团长大,烟团的扩散速率非常缓慢, 其扩散速率比湍流扩散小5~6个数量级;图5 -7(b)为烟团在远小于其尺度的湍涡中扩散, 由于烟团边缘受到小湍涡的扰动,逐渐与周边 空气混合而缓慢膨胀,浓度逐渐降低,烟流几乎呈直线向下风运动;图5-7(c)为烟团在与其尺度接近的湍涡中扩散,在湍涡的切入卷出作用下烟团被迅速撕裂,大幅度变形,横截面快速膨胀,因而扩散较快,烟流呈小摆幅曲线向下风运动;图5-7(d)为烟团在远大于其尺度的湍涡中扩散,烟团受大湍涡的卷吸扰动影响较弱,其本身膨胀有限,烟团在大湍涡的夹带下作较大摆幅的蛇形曲线运动。实际上烟云的扩散过程通常不是仅由上述单一情况所完成,因为大气中同时并存的湍涡具有各种不同的尺度。 根据湍流的形成与发展趋势,大气湍流可分为机械湍流和热力湍流两种形式。机械湍流是因地面的摩擦力使风在垂直方向产生速度梯度,或者由于地面障碍物(如山丘、树木与建筑物等)导致风向与风速的突然改变而造成的。热力湍流主要是由于地表受热不均匀,或因大气温度层结不稳定,在垂直方向产生温度梯度而造成的。一般近地面的大气湍流总是机械湍流和热力湍流的共同作用,其发展、结构特征及强弱决定于风速的大小、地面障碍物形成的粗糙度和低层大气的温度层结状况。 2. 湍流扩散与正态分布的基本理论 气体污染物进入大气后,一面随大气整体飘移,同时由于湍流混合,使污染物从高浓度区向低浓度区扩散稀释,其扩散程度取决于大气湍流的强度。大气污染的形成及其危害程度在于有害物质的浓度及其持续时间,大气扩散理论就是用数理方法来模拟各种大气污染源在

重金属污染扩散模型

扩散模型 摘要: 本文回顾了颗粒物大气扩散模型的应用,概括介绍了现有的不同扩散模型,从简单的箱式模型到复杂的流体动力学模型,以及扩散模型在不同环境中不同方法的适用性,考虑应用尺度、环境复杂性以及浓度参数化的确定。最后,回顾了几个商业的和非商业的粒子扩散软件(packages),详细的介绍了它们的使用过程、在应用方面的优势和局限性。回顾的模型包括:箱式模型(AURORA, CPB和PBM)、高斯模型(CALINE4, HIWAY2, CAR-FMI, OSPM, CALPUFF, AEROPOL, AERMOD, UK-ADMS 和 SCREEN3)、拉格朗日/欧拉模型(GRAL, TAPM, ARIA Regional)、CFD 模型(GRAL, TAPM, ARIA Regional)和气溶胶动力学模型(GATOR, MONO32, UHMA, CIT, AERO, RPM,AEROFOR2, URM-1ATM, MADRID, CALGRID和UNI-AERO)。 1、引言 扩散模型描述大气、扩散和烟羽的化学物理过程,运用数学方程式来计算不同位置的浓度。同时,还有很多关于大气模型、街道峡谷中扩散的研究方法(Vardoulakis et al.,2003),不同模型运用试验气象数据比较(Ellis et al., 2001;Sivacoumar and Thanasekaran, 2001; Hall et al.,2002; Caputo et al., 2003) 的评论文章,这些都是集中在模拟气体的扩散上。 不幸的是,只有很少的研究同时测定了粒子和气体浓度,这两个研究的差别可能部分源于观测的不同。在开放的生境中,几项研究已经揭示气体和粒子浓度变化的相关性。尽管在后来的研究中只有两个采样点,但是Monn et al. (1997)指出了城市环境下PM10和NO2浓度的相关性较差,以及PM2.5和NO2较好的相关性。相反,Clairborn et al. (1995)揭示了SF6 和PM10较好的相关性,尽管只是观测了距离高速公路60m的范围。Roorda-Knape et al.(1998)指出苯、PM2.5和PM10的浓度在公路主干道300m范围内没有明显的降低。这和Hitchins et al. (2000)提出的PM2.5浓度有很小的降低相一致。在那项研究中作者指出高速公路周围颗粒物数量浓度下降比NO2快。Zhu et al.(2002a, b)指出高速路周围颗粒物数量浓度在6-220nm之间,这和CO浓度密切相关。所有这些研究都是在风向垂直的远离道路开放环境中进行的。然而Morawska, (2003; Holmes et al., 2005)已经观测到了局部气体和颗粒物扩散的区别。同时测定的CO和粒子数量浓度显示观测点附近的CO和粒子数量浓度没有很明显的相关性,在观测点周围两个污染物的比较研究指出了不同空间和时间的趋势。Harrison and Jones(2005)在城市观测点的另一个研究显示粒子浓度和NOx相关性较差,但是在人行道监测点两者有很好的相关性,这是由于浓度受扩散影响很小。此外,对(Morawska,2003)很多野外研究验证发现在建筑物附近的粒子数量浓度的垂直廓线不同于气体。这些不同于先前在较复杂环境中进行的研究,在复杂环境中,湍流严重影响风向,污染物的排放也不仅限于简单的线源。一般来说,在开放环境中观测到的气体和粒子浓度相关性很好,可是在较复杂的城市环境中两者有很大的不同。Van Dingenen等在 2004年指出在颗粒物源以交通排放为主的城市环境中所有监测网络中的网格点的PM2.5和PM10的相关系数R2=0.95。可是, PM10/PM2.5的斜率变化太多而不足以给出一个简单的PM10/PM2.5斜率。在同样

相关主题
文本预览
相关文档 最新文档