当前位置:文档之家› R 在金融数据挖掘的应用-预测股票收益率

R 在金融数据挖掘的应用-预测股票收益率

R 在金融数据挖掘的应用-预测股票收益率
R 在金融数据挖掘的应用-预测股票收益率

目录

R的特点 (2)

一、数据导入 (2)

目标变量 (3)

二、用什么变量预测? (3)

候选特征 (3)

特征选择 (4)

预测问题 (5)

评估准则 (5)

预测模型 (6)

三、从预测到决策 (7)

四、模型评估和选择 (7)

R的特点

1. 开源,免费,用户贡献自己的包

2. 灵活,可处理多种事务、、OOP、、泛型函数

3. 有大量的函数、包,不用再重新发明轮子

4. 先用R 实现算法原型,再用C++ 、、C#

一、数据导入

1.数据的结构:交易的日期、开盘价、最高价、最低价、收盘价、交易量、调整的收盘价

2.为简单起见,用的是股票指数的数据

3.处理时间序列的包zoo,xts,后者是前者的拓展.

4.. 表示的处理时间的类:POSIXct/ POSIXlt,date

Open High Low Close V olume AdjClose

1970-01-02 92.06 93.54 91.79 93.00 8050000 93.00

1970-01-05 93.00 94.25 92.53 93.46 11490000 93.46

1970-01-06 93.46 93.81 92.13 92.82 11460000 92.82

1970-01-07 92.82 93.38 91.93 92.63 10010000 92.63

1970-01-08 92.63 93.47 91.99 92.68 10670000 92.68

1970-01-09 92.68 93.25 91.82 92.40 9380000 92.40

5. 从CSV文件读数据

> GSPC <- as.xts(read.zoo("sp500.csv", header = T))

6. 从网络读取数据

> library(tseries)

> GSPC <- as.xts(get.hist.quote("^GSPC",start="1970-01-02",

quote=c("Open", "High", "Low", "Close","V olume","AdjClose")))

7. quantmod包里的getSymbols()

> setSymbolLookup(IBM=list(name='IBM',src='yahoo'),

+ USDEUR=list(name='USD/EUR',src='oanda))

> getSymbols(c('IBM','USDEUR'))

8. 从数据库读数据:包RODBC,RMySQL

win???myodbc????RODBC??linux????RMySQL?DBI

股票的收益率计算公式

股票收益率的计算公式 【银行从业资格证考讯】 股票收益率=收益额 原始投资额 其中:收益额=收回投资额+全部股利-(原始投资额+全部佣金+税款) 当股票未出卖时,收益额即为股利。 衡量股票投资收益水平的指标主要有股利收益率、持有期收益率和拆股后持有期收益率等。 1.股利收益率股利收益率,又称获利率,是指股份公司以现金形式派发的股息或红利与股票市场价格的比率。 该收益率可用于计算已得的股利收益率,也可用于预测未来可能的股利收益率。 2.股票持有期收益率持有期收益率指投资者持有股票期间的股息收入与买卖差价之和与股票买入价的比率。 股票没有到期日,投资者持有股票的时间短则几天,长则数年,持有期收益率就是反映投资者在一定的持有期内的全部股利收入和资本利得占投资本金的比重。持有期收益率是投资者最关心的指标,

但如果要将它与债券收益率、银行利率等其他金融资产的收益率作比较,须注意时间的可比性,即要将持有期收益率转化为年率。 3.股票持有期回收率持有期回收率是指投资者持有股票期间的现金股利收入与股票卖出价之和与股票买入价的比率。该指标主要反映投资回收情况,如果投资者买入股票后股价下跌或是操作不当,均有可能出现股票卖出价低于买入价,甚至出现持有期收益率为负值的情况,此时,持有期回收率可作为持有期收益率的补充指标,计算投资本金的回收比率。 4.拆股后的持有期收益率投资者在买入股票后,在该股份公司发放股票股利或进行股票分割(即拆股)的情况下,股票的市场的市场价格和投资者持股数量都会发生变化。因此,有必要在拆股后对股票价格和股票数量作相应调整,以计算拆股后的持有期收益率。 买股票前要努力作好各种准备工作,要涉猎金融常识及国内外财径及政治动态,详细分析各上市公司的经营状况,并锻炼好强壮的身体,以备心脏能承受大起大落的冲击。确定长期的投资目标和原则,为股票交易的首要问题。股民是否具备经商的经验,与投资股票能否获利并没有必然的联系。任何直接投资都是专业投资,而专业投资需要专业知识作基础。防止在高价位套牢,是学习买卖股票的最重要的一课。买股票若仅是为了"

数据挖掘与预测分析

数据挖掘是一个多学科交叉研究领域,它融合了数据库技术、人工智能、机器学习、统计学、知识工程、面向对象方法、信息检索、高性能计算以及数据可视化等最新技术的研究成果。数据挖掘是目前人工智能和数据库领域研究的热点问题,所谓数据挖掘是指从数据库的大量数据中揭示出隐含的、先前未知的并有潜在价值的信息的非平凡过程。数据挖掘是一种决策支持过程,高度自动化地分析企业的数据,做出归纳性的推理,从中挖掘出潜在的模式,帮助决策者调整市场策略,减少风险,做出正确的决策。预测分析是一种统计或数据挖掘解决方案,包含可在结构化和非结构化数据中使用以确定未来结果的算法和技术。可为预测、优化、预报和模拟等许多其他用途而部署。预测分析可帮助用户评审和权衡潜在决策的影响力。可用来分析历史模式和概率,预测未来业绩并采取预防措施。 数据挖掘的含义是广泛的,每个人有每个人不同的体会,每个人有每个人的见解。但这些体会、见解是有许多共通之处的,从而可以归纳出数据挖掘的技术定义以及商业定义:从技术角度,数据挖掘(Data Mining)就是从大量的、不完全的、有噪声的、模糊的、随机的数据中,提取隐含在其中的、人们事先不知道的但又是潜在有用的信息和知识的过程。它是涉及机器学习、模式识别、统计学、人工智能、数据库管理及数据可视化等学科的边缘学科。由于每个人的思维方式不同,这个定义可以被解读为以下几个层次:①数据源必须是真实的、大量的、含噪声的;②发现的是用户感兴趣的知识;③发现的知识要可接受、可理解、可运用;④这些知识是相对的,是有特定前提和约束条件的,在特定领域中具有实际应用价值。 预测是大数据的核心,数据挖掘之后的预测分析无疑成为开拓市场的重要环节。预测分析是一种统计或数据挖掘解决方案,包含可在结构化和非结构化数据中使用以确定未来结果的算法和技术。可为预测、优化、预报和模拟等许多其他用途而部署。预测分析和假设情况分析可帮助用户评审和权衡潜在决策的影响力。可用来分析历史模式和概率,以预测未来业绩并采取预防措施。这种级别的分析可以为规划流程提供各种信息,并对企业未来提供关键洞察。不仅可提供预测分析,使用户可以执行高级分析、发布并与更广泛的用户群交流。还可以提供

股票预测模型【运用ARIMA模型预测股票价格】

股票预测模型【运用ARIMA模型预测股票价格】 [摘要]ARIMA模型是时间序列中十分常见和常用的一种模型,应用与经济的各个领域。本文基于ARIMA模型,采用了莱宝高科近67个交易日的数据,对历史数据进行分析,并且在此基础上做出一定的预测,试图为现实的投资提供一些参考信息。[关键字]ARIMA模型;股价预测;莱宝高科一、引言时间序列分析是从一段时间上的一组属性值数据中发现模式并预测未来值的过程。ARIMA模型是目前最常用的用于拟合非平稳序列的模型,对于满足有限参数线形模型的平稳时间序列的分析,ARIMA在理论上已趋成熟,它用有限参数线形模型描述时间序列的自相关结构,便于进行统计分析与数学处理。有限参数线形模型能描述的随机现象相当广泛,模型拟合的精度能达到实际工程的要求,而且由有限参数的线形模型结构可推导出适用的线形预报理论。利用ARIMA 模型描述的时间序列预报问题在金融,股票等领域具有重要的理论意义。本文将利用ARIMA模型结合莱宝高科的数据建立模型,并运用该模型对莱宝的股票日收盘价进行预测。二、ARIMA模型的建立 2.1ARIMA模型简介ARIMA是自回归移动平均结合模型的简写形式,用于平稳序列或通过差分而平稳的序列分析,简记为ARIMA(p,d,q)用公式表示为:△dZt=Xt=ψ1Xt-1+ψ2Xt-2+?+ψpXt-p+at-θ1at-1-θ2at-2-?-θqat-q 其中,p、d、q分别是自回归阶数、差分阶数和滑动平均阶数;Zt是时间序列;Xt是经过d阶差分后的时间序列值;at-q是时间为t-q的随机扰动项;ψp、θq分别是对应项前的系数。 2.2模型建立流程(1)平稳性检验以2010-3-4到2010-6-10的“莱宝高科”(002106)股票的收盘价作为模型的数据进行建立时间序列模型:做出折线图观察数据的特征:进行单位根检验,判别序列是否为平稳序列;若一阶差分后的数据为平稳序列,可以建立时间序列模型。说明原数据为一阶单整。(2)模型的选择和参数的估计根据数据的平稳性特征,初步确定建立ARIMA模型。观察一阶差分以后的序列的自相关函数和偏自相关

对股票收益率时间序列的检验研究

金融学 对股票收益率时间序列的非线性及机制转变的检验研究 王煦逸1林阳春2 (同济大学中德学院,上海 200092) 0 引言 近年来,对金融市场的时间序列的进行建模,试图通过计量经济学模型解释金融市场时间序列的内在关系一直是金融经济学和计量经济学研究的热点课题。关于金融市场的研究也大都集中于研究金融资产收益率。Campbell,Lo,MacKinlay认为金融资产收益率可以更好地解释投资的机会收益,同时金融资产收益率时间序列由于本身的统计特性也能更容易建立成模型。传统的金融资产收益率时间序列模型以线性关系为假设,最重要的是随机游走假设和ARMA模型。 关于随机游走假设的研究主要是讨论金融资产收益率的可预测性。一般来说,关于实证检验随机游走假设的研究十分困难,原因在于过去和将来的价格变化之间的独立性很难被直接检验出来。Granger和Morgenstern(1964)在美国的股票市场,Cristina Del Rio(1997)在西班牙的股票市场,Conrad和Jüttner(1993),Ronning(1974),Mühlbradt(1978)和M?ller(1986)在德国的股票市场上的研究都否定了随机游走假设。Conrad和Jüttner(1973)认为,连续的价格变化随机性地相互独立,许多股票收益率分布都存在显著的独立性。通过随后大量的研究发现,ARMA过程对于描述金融资产收益率时间序列是十分合适的,因为在这种情况下参数和矩函数都比较容易确定。1970年,Box/Jenkins(1976)解释了ARMA模型建立和参数估计的问题。从70年代开始,大量关于金融资产收益率的时间序列的线性模型研究都采用了ARMA与其扩展模型,实证研究表明,ARMA模型可以较好地解释金融资产收益率的时间序列的线性结构。然而由于金融资产收益率时间序列特殊的统计性质,80年代以来,越来越多的研究结果表明了金融资产收益率时间序列具有的非线性的关系,传统的金融资产收益率时间序列线性模型已经不能完整的刻画金融资产收益率时间序列的分布。90年代以来,关于金融资产收益率时间序列的非线性建模取得了很大的成功。Maravall(1983)用Bilinear模型研究了西班牙金融市场上的股票收益率。根据研究结果Maravall 认为,通过Bilinear模型可以修正由ARMA模型产生的10%的预测错误。Clements和Krolzig (1998),Rothman(1998)则利用了TAR模型成功地模拟了美国宏观经济指标的分布。De Gooijer (1998),Potter(1995),Montgomery等等的研究也得出了相似的结果。随着时间的推移,越来越多的经济科学家都致力于用研究金融资产收益率时间序列的非线性建模。例如,Granger和Anderson(1978)的Bilinear模型,Tong(1978)的TAR模型,Priestley(1980)的State Space模型,Hamilton(1989)的MRS模型。在用非线性模型描述金融资产收益率时间序列之前,首先必须解决下列问题: 1)线性模型(例如ARMA模型)是否足以描述德国股市DAX30收益率时间序列? 2)在DAX30 收益率时间序列中是否存在非线性和机制转变呢? 为了回答这两个问题,在本论文中,通过对德国股票市场DAX30指数的收益率时间序列进行实证研究,并对DAX30指数收益率时间序列的非线性性质和机制转变性质进行检验。 1 金融资产收益率时间序列的非线性检验 由于许多复杂的时间序列过程并不能通过线性模型完全描述出来,对于非线性模型的应用逐渐受到人们的关注。对时间序列的非线性检验则成为一个对时间序列成功建模的前提条件。只有能够成功地检测出时间序列非线性的性质,对时间序列的非线性分析才有意义。80年代以来非线性检验逐渐成为金融市场理论的一个重要的研究领域,在这种情况下,很多用于非线性检验的新方法和技术应运而生,例如McLeod-Li -检验,Bispectral检验,BDS检验,RESET检验,F检验,神经网络非线性检验等等。由于时间序列非线性的来源无法得知,因此哪种检验方法最好也很难下定论。本文将采用部分检验方法,如McLeod-Li -检验和BDS检验。 1王煦逸:管理学博士,同济大学中德学院内部控制学基金教席教授, 同济大学中德学院泽尔腾经济管理研究所常务副所长, 研究方向为行为金融,、金融风险控制和商业银行管理 2林阳春:经济学硕士,同济大学中德学院内部控制学基金教席,研究方向为资本市场,公司治理和风险控制;本项目由德国蒂森克虏伯公司基金资助

数据挖掘与分析心得体会

正如柏拉图所说:需要是发明之母。随着信息时代的步伐不断迈进,大量数据日积月累。我们迫切需要一种工具来满足从数据中发现知识的需求!而数据挖掘便应运而生了。正如书中所说:数据挖掘已经并且将继续在我们从数据时代大步跨入信息时代的历程中做出贡献。 1、数据挖掘 数据挖掘应当更正确的命名为:“从数据中挖掘知识”,不过后者显得过长了些。而“挖掘”一词确是生动形象的!人们把数据挖掘视为“数据中的知识发现(KDD)”的同义词,而另一些人只是把数据挖掘视为知识发现过程的一个基本步骤! 由此而产生数据挖掘的定义:从大量数据中挖掘有趣模式和知识的过程!数据源包括数据库、数据仓库、Web、其他信息存储库或动态地流入系统的数据。作为知识发现过程,它通常包括数据清理、数据集成、数据变换、模式发现、模式评估和知识表示六个步骤。 数据挖掘处理数据之多,挖掘模式之有趣,使用技术之大量,应用范围之广泛都将会是前所未有的;而数据挖掘任务之重也一直并存。这些问题将继续激励数据挖掘的进一步研究与改进! 2、数据分析 数据分析是指用适当的统计方法对收集来的大量第一手资料和第二手资料进行分析,以求最大化地开发数据资料的功能,发挥数据的作用。是为了提取有用信息和形成结论而对数据加以详细研究和概括总结的过程。 数据分析有极广泛的应用范围。典型的数据分析可能包含以下三个步: 1、探索性数据分析:当数据刚取得时,可能杂乱无章,看不出规律,通过作图、造表、用各种形式的方程拟合,计算某些特征量等手段探索规律性的可能形式,即往什么方向和用何种方式去寻找和揭示隐含在数据中的规律性。 2、模型选定分析,在探索性分析的基础上提出一类或几类可能的模型,然后通过进一步的分析从中挑选一定的模型。 3、推断分析:通常使用数理统计方法对所定模型或估计的可靠程度和精确程度作出推断。 数据分析的目的是把隐没在一大批看来杂乱无章的数据中的信息集中、萃取和提炼出来,以找出所研究对象的内在规律。在实用中,数据分析可帮助人们作出判断,以便采取适当行动。数据分析是组织有目的地收集数据、分析数据,使之成为信息的过程。这一过程是质量管理体系的支持过程。在产品的整个寿命周期,包括从市场调研到售后服务和最终处置的各

股市预测特点

中国股市预测学的基本特点中国的预测思维技术,实质上是一种运用“思维模型”的技术,是充分调动和发挥意识的能动作用和创造性的技术模式借助某种思维工具(数字、干支模型和预测工具)提取“脑信息”(包括感性认识和理性认识等),以五行、六亲、干支等概念体系和卦象、爻(音摇)象、课象、局象等思维模型(类似列方程式),反映主体与客体相互关系及其变化规律的一门科学技术。从信息论、认识论、脑科学角度看,中国预测思维学堪称“脑信息预测学”。预测思维学不但研究意识的能动作用、主体对客体的认识过程、认识方法,探求正确预测的途径和手段,解决主观与客观的关系问题,而且研究预测思维的逻辑形式(概念、模型、判断、推理)和方法(归纳与演绎、分析与综合、抽象与具体、类比等),并运用这些逻辑形式(思维模型)和方法去揭示事物发展变化的基本趋势和规律。 中国的预测思维技术,是开发大脑潜能和创造性、充分发挥和调动意识的能动作用、挑战大脑思维的极限、增强人的智慧、提高认识能力特别是思维判断能力的技术。它有以下突出特点: 1.模型性、抽象性、科学性 预测思维学和股市预测学的科学性主要表现在它科学地揭示了预测思维的基本规律,它具有一系列科学的范畴、公理定理、完整严密的数理思维模型和逻辑体系,它的知识理论体系具有科学的抽象性、逻辑性、规律性、全息性、无矛盾性的完备性。 模型化方法是股市预测学的根本的核心的思维方法。善于运用思维模型进行逻辑推测和数学演算,是中国股市预测技术的优点和优势。思维模型是人们对认识对象所进行的抽象简化的描述和模拟。中国传统的预测思维模型(干支象数符号模型)是远古时期劳动人们长期实践经验的总结和关于预测思维规律知识的抽象概括,它的发明为预测思维学和股市预测学的全部内容只有两个方面:如何建立预测思维模型(列预测分析方程式或预测行列式)和如何解析预测思维模型(解预测方程式或求预测行列式的值)。北京大学教授、博士生导师于希贤先生在《中国古代风水与建筑选址》一书中说:“凡是能建立数理模型的知识,它一定是科学的。”预测思维学和股市预测学的各种思维模型(卦爻象、六壬课象、奇门局向)都是预测思维的工具(如同电脑软件),它能够帮助人们更深刻地认识事物的本质、特点和规律。它的应用,依靠的是人的意识的能动作用、人的智力、认得思维、人的功能和物质的手段、逻辑的方法和科学的定理,没有半点对神鬼的祈求等迷信内容。 中国祖先发明的思维模型(包括八卦模型、大六壬模型、奇门模型等),是进行预测思维的“计算机软件”(而预测实物工具则是硬件),它的本质上是辅助人脑思维的“外脑”技术,是运用“阴阳二进制”的思维模型来加工、处理客观信息和“脑信息”(即主观信息)的技术。“外脑”思维与人脑思维,都具有自己的特点和优势,二者可以互相补充。仅仅使用人脑进行思维,而没有“外脑”协助思维,这是低级的、

数学建模预测股市走向

2012年A股市场涨跌预测 摘要 本文主要解决了预估未来一年时间内A股市场的涨跌变化的问题。 首先通过收集2011年的上证A股指数每天开盘后的收盘价,对其进行分析处理,作出A股收盘价指数的走势图观察后,然后对数据作级比分析,得知一部分级比数据不在区间() 0.9474中,故先对数据进行变换,变换后的数据 , 1.0555 的级比都落在了上述区间中。然后通过分析建立灰色预测)1,1( GM模型,代入数据求解模型,并进行参数检验,先进行残差检验,得出预测模型的精度为:96.69%;然后进行相关度检验,检验合格;但是在进行后验差检验中的小概率检验时不合格,故又对模型进行残差修正后,用修正模型预测出2012年的上证A股指数的收盘价,但是由于灰色预测模型在预测长期数据时误差有可能增大,故用2011年的实际数据与用灰色预测模型预测2011年收盘价值之间的误差值修正了2012年A股指数的预测值。为使预测值更准确,又采用了马尔科可夫链模型预测出每天的涨幅情况来进一步修正预测值,得到了更精确的预测结果。预测上证A 股指数在2012年233天的收盘价分别为:2236.5 2221.5…1574.7 1601.9。其收盘价走势图为: 关键词:A股灰色预测马尔可夫链模型预测

问题重述 未来一年时间A股市场涨跌的评估预计 A股即人民币普通股票,是中国大陆机构和个人投资的主要股票。A股市场的涨跌受经济形势,国家政策,外部环境以及投资者心态等多个因素影响。2011年A股市场的上证指数和深成指数都出现暴跌,使投资者蒙受了很大的损失。 请查阅网上的资料和数据。建立数学模型,定量分析并预估未来一年时间内A股市场的涨跌变化。 符号说明 α----------为发展灰度数 μ---------为内生控制灰度 )(t X------表示在时间244 ... 2,1 ,= t t时的股票收盘价 r----------表示关联度 S1-------- 表示序列)(t X的标准差 S2--------表示绝对误差序列的标准差 C----------表示方差比 A i---------表示对数据划分区间,244) 1,2, (i? = p ij --------表示第i状态转移到第j状态的概率18 .... 2,1 ,= j i I0------------表示时刻0处于状态18 ... 2,1 = j的概率 i k j1+-----------表示经过k步转移后处于状态18 ... 2,1 = j的概率 模型假设 (1)运用的数据的来源是有效的,在统计过程中无错误 (2)假设无人为操纵股市的走向,为随机数据 (3)假设2009年到2011年无统计数据的日期为股市休息日 模型分析 一、问题的分析 因为A股指数包括上证A股指数与深成A股指数,选择其中一个进行分析即可,所以就不妨选择上证A股指数2011年1月4日到2011年12月30日的每天

数据清洗、数据分析、数据挖掘

数据清洗 1.基本概念 数据清洗从名字上也看的出就是把"脏"的"洗掉",指发现并纠正数据文件中可识别的错误的最后一道程序,包括检查数据一致性,处理无效值和缺失值等。因为数据仓库中的数据是面向某一主题的数据的集合,这些数据从多个业务系统中抽取而来而且包含历史数据,这样就避免不了有的数据是错误数据、有的数据相互之间有冲突,这些错误的或有冲突的数据显然是我们不想要的,称为"脏数据"。我们要按照一定的规则把"脏数据""洗掉",这就是数据清洗。而数据清洗的任务是过滤那些不符合要求的数据,将过滤的结果交给业务主管部门,确认是否过滤掉还是由业务单位修正之后再进行抽取。不符合要求的数据主要是有不完整的数据、错误的数据、重复的数据三大类。数据清洗是与问卷审核不同,录入后的数据清理一般是由计算机而不是人工完成。 ?残缺数据 这一类数据主要是一些应该有的信息缺失,如供应商的名称、分公司的名称、客户的区域信息缺失、业务系统中主表与明细表不能匹配等。对于这一类数据过滤出来,按缺失的内容分别写入不同Excel文件向客户提交,要求在规定的时间内补全。补全后才写入数据仓库。 折叠错误数据

这一类错误产生的原因是业务系统不够健全,在接收输入后没有进行判断直接写入后台数据库造成的,比如数值数据输成全角数字字符、字符串数据后面有一个回车操作、日期格式不正确、日期越界等。这一类数据也要分类,对于类似于全角字符、数据前后有不可见字符的问题,只能通过写SQL语句的方式找出来,然后要求客户在业务系统修正之后抽取。日期格式不正确的或者是日期越界的这一类错误会导致ETL运行失败,这一类错误需要去业务系统数据库用SQL 的方式挑出来,交给业务主管部门要求限期修正,修正之后再抽取。 折叠重复数据 对于这一类数据--特别是维表中会出现这种情况--将重复数据记录的所有字段导出来,让客户确认并整理。 数据清洗是一个反复的过程,不可能在几天内完成,只有不断的发现问题, 解决问题。对于是否过滤,是否修正一般要求客户确认,对于过滤掉的数据,写入Excel文件或者将过滤数据写入数据表,在ETL开发的初期可以每天向业务单位发送过滤数据的邮件,促使他们尽快地修正错误,同时也可以做为将来验证数据的依据。数据清洗需要注意的是不要将有用的数据过滤掉,对于每个过滤规则认真进行验证,并要用户确认。 数据分析是指用适当的统计分析方法对收集来的大量数据进行分析,提取有用信息和形成结 论而对数据加以详细研究和概括总结的过程。这一过程也是质量管理体系的支持过程。在实 用中,数据分析可帮助人们作出判断,以便采取适当行动。 类型 在统计学领域,有些人将数据分析划分为描述性统计分析、探索性数据分析以及验证性数据分析;其中,探索性数据分析侧重于在数据之中发现新的特征,而验证性数据分析则侧重于已有假设的

基于BP网络的股票数据预测模型

基于BP网络的股票数据 预测模型 姓名:江政 班级:控制2015级 学号:2015028081100015 2016 年6月 26日

需求分析和网络结构设计 根据我们对自然神经系统的构造和机理的认识,神经系统是由大量的神经细胞(神经元)构成的复杂的网络,人们对这一网络建立一定的数学模型和算法,设法使它能够实现诸如基于数据的模式识别,函数映射等带有“智能”的功能,这种网络就是神经网络。其中,BP (Back Propagation )神经网络是1986年由Rumelhart 和McCelland 为首的科学家小组提出,是一种按误差反向传播算法训练的多层前馈网络。BP 网络能学习和存贮大量的输入—输出模式映射关系,而 其他神经网络具有重要作用。 针对150组股票数据进行拟合(详细数据请见《附件1》),选取其中的开盘、最高、最低、收盘和成交次数五组数据,用当日的这五组数据来预测次日的收盘数据,从而等效建立一个股票数据预测模型。采用包括输入层、隐含层和输出层的三层BP 网络结构,如图1所示,输入层包含五个神经元,隐含层包含三个神经元,输出层为一个神经元。其中,隐含层神经元的激活函数采用非对称型Sigmoid 函数,函数表达式为:))exp(1/(1)(x x f -+=,输出层神经元的激活函数采用线性函数,表达式为:x x f =)(。将150组数据分为三等份,其中两份作为训练样本,用来对网络进行训练学习;另外一份作为测试样本,用来检验所训练出的网络的泛化能力。采用BP 算法对隐含层和输出层权值进行修正,以达到计算输出和实际样本输出相差最小,最终实现较精确预测的目的。 图1 预测模型的网络结构

分析报告、统计分析和数据挖掘的区别

分析报告、统计分析和数据挖掘的区别 关于数据挖掘的作用,Berry and Linoff的定义尽管有些言过其实,但清晰的描述了数据挖掘的作用。“分析报告给你后见之明 (hindsight);统计分析给你先机 (foresight);数据挖掘给你洞察力(insight)”。 举个例子说。 你看到孙悟空跟二郎神打仗,然后写了个分析报告,说孙悟空在柔韧性上优势明显,二郎神在力气上出类拔萃,所以刚开始不相上下;结果两个人跑到竹林里,在竹子上面打,孙悟空的优势发挥出来,所以孙悟空赢了。这叫分析报告。 孙悟空要跟二郎神打架了,有个赌徒找你预测。你做了个统计,发现两人斗争4567次,其中孙悟空赢3456次。另外,孙悟空斗牛魔王,胜率是89%,二郎神斗牛魔王胜率是71%。你得出趋势是孙悟空赢。因为你假设了这次胜利跟历史的关系,根据经验作了一个假设。这叫统计分析。 你什么都没做,让计算机自己做关联分析,自动找到了出身、教育、经验、单身四个因素。得出结论是孙悟空赢。计算机通过分析发现贫苦出身的孩子一般比皇亲国戚功夫练得刻苦;打架经验丰富的人因为擅长利用环境而机会更多;在都遇得到明师的情况下,贫苦出身的孩子功夫可能会高些;单身的人功夫总比同样环境非单身的高。孙悟空遇到的名师不亚于二郎神,而打架经验绝对丰富,并且单身,所以这次打头,孙悟空赢。这叫数据挖掘。 数据挖掘跟LOAP的区别在于它没有假设,让计算机找出这种背后的关系,而这种关系可能是你所想得到的,也可能是所想不到的。比如数据挖掘找出的结果发现在2亿条打斗记录中,姓孙的跟姓杨的打,总是姓孙的胜利,孙悟空姓孙,所以,悟空胜利。 用在现实中,我们举个例子来说,做OLAP分析,我们找找哪些人总是不及时向电信运营商缴钱,一般会分析收入低的人往往会缴费不及时。通过分析,发现不及时缴钱的穷人占71%。而数据挖掘则不同,它自己去分析原因。原因可能是,家住在五环以外的人,不及时缴钱。这些结论对推进工作有很深的价值,比如在五环外作市场调研,发现需要建立更多的合作渠道以方便缴费。这是数据挖掘的价值。

用GARCH模型预测股票指数波动率

用GARCI模型预测股票指数波动率 目录 Abstract ......................................................................... 1.引言........................................................................... 2.数据........................................................................... 3.方法........................................................................... 3.1.模型的条件平均............................................................ 32模型的条件方差............................................................... 3.3预测方法.................................................................... 3.4业绩预测评价............................................................... 4.实证结果和讨论................................................................. 5.结论........................................................................... References ....................................................................... Abstract This paper is designed to makea comparison between the daily conditional varianee through seven GRAChhodels. Through this comparison, to test whether advaneed GARCH models are outperform ing the sta ndard GARCH models in predict ing the varia nee of stock in dex. The database of this paper is the statistics of 21 stock in dices around the world from 1 January to 30 November 2013. By forecast ing one —step-ahead con diti onal varia nee within differe nt models, the n compare the results within multiple statistical tests. Throughout the tests, it is found that the sta ndard GARCH model outperforms the more adva need GARCH models, and recomme nds the best

股市预测模型

股市预测模型 基于混合ARMA模型和支持向量机 摘要:股市预测在以往的文献中已经吸引了大量的研究兴趣。传统上,ARMA模型已经成为时间序列中应用最为广泛的线性模型之一。但是,ARMA模型不能够轻易的捕捉非线性模式。并且最近的研究表明,人工神经网络(ANN)方法比传统的统计的人实现了更好的性能。人工神经网络方法在泛化(generalization)方面经历了一定的困难,但是其生产模式可以过度拟合数据。支持向量机(SVM)一种新型的神经网络技术,在解决非线性回归估计问题上已经得到成功的应用。因此,此次调查提出了在股市预测问题的支持向量机模型上,利用ARMA模型的独特优势试图向用户提供更好的解释力模型的混合方法。股市的真实数据集被使用来研究该模型的预测精度。计算的测试结果是很有前景的。 关键字:BP神经网络,金融时间序列,预测,支持向量机1.引言 股市预测因其高波动和不规则性被认为是具有挑战性的任务。因此,许多模型已经被描绘为投资者提供更精确的预

测。尤其是,人工神经网络(ANN)方法在以前的文献中最为频繁被使用,因为其已知的预测的效率优于其他模型。然而,由于解释神经网络的难度,大多数应用神经网络的研究集中在预测精度。在文献中已被报道,利用人工神经网络模型,以很少的努力提供对破产预测过程更好的理解。此外,由于神经网络的过度拟合在泛化方面具有困难,并且完全取决研究人员的经验或是知识,用于选择大量的包括相关的输入变量,隐含层的大小,学习率以及动量控制参数的预处理。 最近,在1995年首次由Vapnik提出的支持向量机(SVM)方法近来被使用在一系列应用中,包括金融股市预测。支持向量机(SVM)的基础已经被Vapnik开发,由于许多吸引人的特点以及在广泛的问题上优异的泛化性能使其越来越受欢迎。该制定(formulation)体现了结构风险最小化(SRM)原则被常规神经网络采用,且已被证明优于传统的经验风险最小化原则。SRM泛化误差上限的最小化,用术语来说,就是在训练数据中误差最小化。 此外,SVM的解决方案可能是全局最优解,而其他神经网络模型往往会陷入局部最优解。一般来说,支持向量机技术被广泛认为是艺术分类的状态(the state of art classifier),并且以往的研究表明,SVM预测方法优于神经网络的方法。 最初为解决分类问题开发的SVM技术可以成功地在回归中应用。与模式识别问题只需输出是离散值不同,支持向

股票预测模型

2014高教社杯全国大学生数学建模竞赛 承诺书 我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。 我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。 我们参赛选择的题号是(从A/B/C/D中选择一项填写): 我们的报名参赛队号为(8位数字组成的编号): 所属学校(请填写完整的全名): 参赛队员(打印并签名) :1. 2. 3.

指导教师或指导教师组负责人(打印并签名): (论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。以上内容请仔细核对,提交后将不再允许做任何修改。如填写错误,论文可能被取消评奖资格。) 日期:年月日赛区评阅编号(由赛区组委会评阅前进行编号):

2014高教社杯全国大学生数学建模竞赛 编号专用页 赛区评阅编号(由赛区组委会评阅前进行编号): 全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):

大数据、数据分析和数据挖掘的区别

大数据、数据分析和数据挖掘的区别 大数据、数据分析、数据挖掘的区别是,大数据是互联网的海量数据挖掘,而数据挖掘更多是针对内部企业行业小众化的数据挖掘,数据分析就是进行做出针对性的分析和诊断,大数据需要分析的是趋势和发展,数据挖掘主要发现的是问题和诊断。具体分析如下: 1、大数据(big data): 指无法在可承受的时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产; 在维克托·迈尔-舍恩伯格及肯尼斯·库克耶编写的《大数据时代》中大数据指不用随机分析法(抽样调查)这样的捷径,而采用所有数据进行分析处理。大数据的5V特点(IBM提出):Volume(大量)、Velocity(高速)、Variety(多样)、Value(价值)Veracity(真实性) 。 2、数据分析:

是指用适当的统计分析方法对收集来的大量数据进行分析,提取有用信息和形成结论而对数据加以详细研究和概括总结的过程。这一过程也是质量管理体系的支持过程。在实用中,数据分析可帮助人们作出判断,以便采取适当行动。 数据分析的数学基础在20世纪早期就已确立,但直到计算机的出现才使得实际操作成为可能,并使得数据分析得以推广。数据分析是数学与计算机科学相结合的产物。 3、数据挖掘(英语:Data mining): 又译为资料探勘、数据采矿。它是数据库知识发现(英语:Knowledge-Discovery in Databases,简称:KDD)中的一个步骤。数据挖掘一般是指从大量的数据中通过算法搜索隐藏于其中信息的过程。数据挖掘通常与计算机科学有关,并通过统计、在线分析处理、情报检索、机器学习、专家系统(依靠过去的经验法则)和模式识别等诸多方法来实现上述目标。 简而言之: 大数据是范围比较广的数据分析和数据挖掘。 按照数据分析的流程来说,数据挖掘工作较数据分析工作靠前些,二者又有重合的地方,数据挖掘侧重数据的清洗和梳理。 数据分析处于数据处理的末端,是最后阶段。 数据分析和数据挖掘的分界、概念比较模糊,模糊的意思是二者很难区分。 大数据概念更为广泛,是把创新的思维、信息技术、统计学等等技术的综合体,每个人限于学术背景、技术背景,概述的都不一样。

回归分析在股票价格预测中的应用

回归分析在股票价格预测中的应用 摘要:随着我国市场经济环境的日益成熟,股市规模的不断扩大,股票价格成为投资者、经济、系统科学领域研究的热点问题,影响股票价格的因素越来越多,预测未来的股票价格变得十分有必要。股票市场的价格数据呈时间序列,本文将运用Eviews软件对股票价格进行多元线性回归模型预测,以国电电力的历史价格为例,预测该股票的次日收盘价。通过对比消除共线性前后的两个模型对次日收盘价的预测结果,验证了利用主成分分析消除共线 性后的多元线性回归方程预测效果更好。 关键词:股票价格;Eviews;多元线性回归;主成分分析 Abstract:With the growing maturity of China's market economy environment, the scale of stock market is expanding.Stock price has become a hot topic in the field of investor, economy and system science.There are more and more factors influencing stock prices,so it is very necessary to predict future stock prices.The price data in stock market being time series,this article will use Eviews software to predict stock price by multiple linear regression model.Taking the historical price of Guodian power as an example,we predict the next closing price of the stock.By comparing the prediction results of the two models before and after collinearity to the closing price of the next day,it is proved that the effect of the multivariate linear regression equation after the use of principal component analysis is better than that of the multi linear regression equation after the elimination of the collinearity. Key words:Eviews; Multiple linear regression; Principal component analysis

基于GARCH模型族的中国股市波动性预测

基于GARCH 模型族的中国股市波动性预测 2005级数量经济学专业 倪小平 摘要:本文采用上证综合指数和深证成份指数2000年1月4日—2006年12月27日的每日收盘价对数百分收益率为样本采用GARCH 模型对我国股市波动性进行实证分析。 关键词:GARCH 模型 波动性 预测 一、引 言 波动性是金融市场最为重要特性之一。金融市场在一些时间段内显得非常平静,而在另外一些时间段内剧烈波动。描述波动性的时变特性是非常重要,因为第一,资产风险是资产价格的重要决定因素,投资者要求更高的预期收益作为持有更高风险资产的补偿,因此回报方差的变化对于理解金融市场是非常重要的,事实上,波动性是证券组合理论、资本资产定价模型(CAPM)、套利定价模型(APT)及期权定价公式的核心变量。第二,它与市场的不确定性和风险直接相关,是体现金融市场质量和效率的最简洁和最有效的指标之一。另一方面波动性对企业的投资与财务杠杆决策、消费者的消费行为和模式、经济周期及相关宏观经济变量等都具有重要影响。因此,波动性的估计、预测和影响因素分析一直是金融经济学研究的持续热点。 Engle 于1982年开创性的提出ARCH 模型,Bollerslev 于1986年对其进行扩展,给出了GARCH 模型。如今GARCH 模型族已经成为度量金融市场波动性的强有力工具。 本文的结构如下:首先对所选用的四种GARCH 模型给予了简单的描述;第二部分实证分析,包括:数据的选取与基本统计分析、模型参数的估计以及对波动性的预测和模型的比较;最后是本文的总结。 二、模型概述 1、一般GARCH 模型 ARCH 模型的主要贡献在于发现了经济时间序列中比较明显的变化是可以预测的,并且说明了这种变化是来自某一特定类型的非线性依赖性,而不是方差的外生结构变化。GARCH 模型是ARCH 模型族中的一种带异方差的时间序列建模的方法。 一般的GARCH 模型可以表示为 : 2011',t t t t t q p t i t i j t j i j y x v h h βεεααε θ--===+==++∑∑ 其中1var(|)t t t h ε?-=,1t ?-是时刻t-1及t-1之前的全部信息,其中, t v 独立同分布,且参数满足条件:这里t h 可以理解为过去所有残差的正加权平均,这与波动率的聚集效应相符合,即:大的变化后倾向于有更大的变化,小的变化后倾向于有小的变化。由于GARCH (p,q)模型是ARCH 模型的扩展,因此GARCH(p,q)同样具有ARCH(q)模型的特点。但GARCH 模型的条件方差不仅是滞后残差平方的线性函数,而且是滞后条件方差的线性函数。

数据分析与挖掘实验报告

数据分析与挖掘实验报告

《数据挖掘》实验报告 目录 1.关联规则的基本概念和方法 (1) 1.1数据挖掘 (1) 1.1.1数据挖掘的概念 (1) 1.1.2数据挖掘的方法与技术 (2) 1.2关联规则 (5) 1.2.1关联规则的概念 (5) 1.2.2关联规则的实现——Apriori算法 (7) 2.用Matlab实现关联规则 (12) 2.1Matlab概述 (12) 2.2基于Matlab的Apriori算法 (13) 3.用java实现关联规则 (19) 3.1java界面描述 (19) 3.2java关键代码描述 (23) 4、实验总结 (29) 4.1实验的不足和改进 (29) 4.2实验心得 (30)

1.关联规则的基本概念和方法 1.1数据挖掘 1.1.1数据挖掘的概念 计算机技术和通信技术的迅猛发展将人类社会带入到了信息时代。在最近十几年里,数据库中存储的数据急剧增大。数据挖掘就是信息技术自然进化的结果。数据挖掘可以从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中,提取隐含在其中的,人们事先不知道的但又是潜在有用的信息和知识的过程。 许多人将数据挖掘视为另一个流行词汇数据中的知识发现(KDD)的同义词,而另一些人只是把数据挖掘视为知识发现过程的一个基本步骤。知识发现过程如下: ·数据清理(消除噪声和删除不一致的数据)·数据集成(多种数据源可以组合在一起)·数据转换(从数据库中提取和分析任务相关的数据) ·数据变换(从汇总或聚集操作,把数据变换和统一成适合挖掘的形式) ·数据挖掘(基本步骤,使用智能方法提取数

据模式) ·模式评估(根据某种兴趣度度量,识别代表知识的真正有趣的模式) ·知识表示(使用可视化和知识表示技术,向用户提供挖掘的知识)。 1.1.2数据挖掘的方法与技术 数据挖掘吸纳了诸如数据库和数据仓库技术、统计学、机器学习、高性能计算、模式识别、神经网络、数据可视化、信息检索、图像和信号处理以及空间数据分析技术的集成等许多应用领域的大量技术。数据挖掘主要包括以下方法。神经网络方法:神经网络由于本身良好的鲁棒性、自组织自适应性、并行处理、分布存储和高度容错等特性非常适合解决数据挖掘的问题,因此近年来越来越受到人们的关注。典型的神经网络模型主要分3大类:以感知机、bp反向传播模型、函数型网络为代表的,用于分类、预测和模式识别的前馈式神经网络模型;以hopfield 的离散模型和连续模型为代表的,分别用于联想记忆和优化计算的反馈式神经网络模型;以art 模型、koholon模型为代表的,用于聚类的自组

相关主题
文本预览
相关文档 最新文档