当前位置:文档之家› 基于STC15单片机数字电压表

基于STC15单片机数字电压表

基于STC15单片机数字电压表
基于STC15单片机数字电压表

信息与电气工程学院《单片机课程设计报告》

题目:数字电压表

专业:

班级:

姓名:

学号:

指导教师:

单片机原理与应用课程设计评阅书

信息与电气工程学院

课程设计任务书

2014-2015学年第 2学期

专业:学号:姓名:

课程设计名称:单片机原理与应用课程设计

设计题目:数字电压表

完成期限:自 2015 年 6 月 9 日至 2015 年 6 月 19 日共 2 周

设计依据、要求及主要内容(可另加附页):

数字电压表设计

用STC15F2K60S2单片机和ADC0809构成数字电压表,测量0-5v的电压,

将所测电压用4位数码管动态显示出来。

设计要求

数字电压表设计原理

利用A/D转换电路将待测的模拟信号转换成数字信号,通过相应换算后讲测试结果以数字形式显示出来。在高精度数字电压表中,常采用由积分式和比较式相结合起来的复合式A/D转换器。本设计以AT89C51单片机为核心,以逐次比较型A/D转换器ADC0808、LED四位数码管为主体

功能:简易数字电压表可以测量0—5V范围内的电压输入值,并在4位LED

数码管上轮流显示。

主要器件:单片机、AD转换器、LED数码显示器

指导教师(签字):

批准日期:年月日

摘要:本文介绍的是数字电压表的发展背景和利用AVR单片机的A/D转换功能设计一个直流数字电压表。它的具体功能是:最高量程为5V;可以通过按键设定极限电压值,并将极限电压值保存在EEPROM数据存储器,具有断电保护功能;可以显示当前电压值和极限设定值;具有预报警示功能,当被测电压值大于设定值时,指示灯亮。关键字: ATmega16,数字电压表,A/D,EEPROM数据存储器

关键词:STC15F2K60S2单片机数字电压表 LED数码管 keil C51 stc-isp

1课程设计目的

通过《单片微机原理与接口技术》这门课的课程设计,学生应该能对STC15单片机有一个全面的认识,掌握以STC15单片机为核心的电子电路设计方法和应用技术。

1.进一步掌握8位数码管显示电路的编程方法。

2.进一步掌握定时器的使用方法和编程。

3.进一步掌握中断处理程序的编程方法。

2 数字电压表简介:

数字电压表出现在50年代初,60年代末发起来的电压测量仪表,简称DVM。它采用的是数字化测量技术,把连续的模拟量,也就是连续的电压值转变为不连续的数字量,加以数字处理然后再通过显示器件显示。这种电子测量的仪表之所以出现,一方面是由于电子计算机的应用逐渐推广到系统的自动控制信实验研究的领域,提出了将各种被观察量或被控制量转换成数码的要求,即为了实时控制及数据处理的需要;另一方面,也是电子计算机的发展,带动了脉冲数字电路技术的进步,为数字化仪表的出现提供了条件。所以,数字化测理仪表的产生与发展与电子计算机的发展是密切相关的;同时,为革新电子测量中的烦锁和陈旧方式也催促了它的飞速发展,如今,它又成为向智能化仪表发展的必要桥梁。

如今,数字电压表已绝大部分取代了传统的模拟指针式电压表。因为传统的模拟指针式电压表功能单一、精度低,读数的时候也非常不方便,很容易出错。而采用单片机的数字电压表由于测量精度高、速度快,读数时也非常方便,抗干扰能力强,可扩展性强等优点已被广泛的应用于电子及电工的测量、工业自动化仪表、自动测试系统等智能化测量领域,显示出强大的生命力。数字电压表最初是伺服步进电子管比较式,其优点是准确度比较高,但是采样速度慢,重量达几十公斤,体积大。继之出现了斜波式电压表,它的速度方面稍有提高,但是准确度低,稳定性差,再后来出现了比较式仪表改进逐次渐近式结构,它不仅保持了比较式准确度高的优点,而且速度也有了很大的提高,但它有一缺点是抗干扰能力差,很容易受到外界各种因素的影响。随后,在斜波式的基础上双引伸出阶梯波式,它的唯一的进步是成本降低了,可是准确宽,速以及抗干扰能力都未能提高。而现在,数字电压表的发展已经是非常的成熟,就原理来讲,它从原来的一,二种已发展到多种,在功能上讲,则从测单一参数发展到能测多种参数;从制作元件来看,发展到了集成电路,准确度已经有了很大的提高,精度高达1NV;读数每秒几万次,而相对以前,它的价格也有了降低了很多。目前实现电压数字化测量的方法仍然模-数(A/D)转换的方法,而数字电压表种类繁多,型号新异,目前国际仍未有统一的分类方法。而常用的分类方法有如下几种:按用途来分:有直流数字电压表,交、直流数字电压表,交直流万用表等。

3.数字电压表设计方案选择:

数字电压表有多种的设计方法,方案是多种多样的,由于大规模集成电路数字芯片的高速发展,各种数字芯片品种多样,导致对模拟数据的采集部分的不一致性,进而又使对数据的处理及显示的方式的多样性。又由于在现实的工作生活中,电压表的测量测程范围是比较大的,所以必须要对输入电压作分压处理,而各个数据处理芯片的处理电压范围不同,则各种方案的分段也不同。由此结合设计要求选择由单片机系统及数字芯片构建。这种方案是利用单片机系统与与其模数转换功能、显示模块等的结合构建数字电压表。由于单片机的发展已经成熟,利用单片机系统的软硬件结合,可以组装出许多的应用电路来。此方案的原理选用单片机的外部参考电压AREF为模数(A/D)转换功能的基准电压端,被测量电压输入端分别输入基准电压和被测电压。模数(A/D)转换功能将被测量电压输入端所采集到的模拟电压信号转换成相应的数字信号,然后通过对单片机系统进行软件编程,使单片机系统能按规定的时序来采集这些数字信号,通过一定的算法计算出被测量电压的值。最后单片机系统将计算好了的被测电压值按一定的时序送入显示电路模块加以显示。

4.单片机的选择

在这一设计中,我们涉及到了一个关键系统模块——单片机系统模块,而目前单片机的种类是很繁多的,主要有主流的8位单片机和高性能的32位单片机,结合本设计各方面因素,8位单片机对于本设计已经是绰绰有余了,但将用哪一种类8的单片机呢。在这里,不得不先简单的介绍一下几种常用的8单片机。单片机是指一个集成在一块芯片上的完整计算机系统,具有一个完整计算机所需要的大部分部件:CPU,内存,总线系统等。而目前常用的单片机的8位有51系列单片机,AVR单片机,PIC单片机。本设计中选用ATmegaAVR 系列的ATmega16,它是低电压、低功耗的8位单片机,片内含16KB的在线可编程Flash程序存储器、512字节片内在线可编程EEPROM数据存储器,32个I/O口线,1个16位定时/计数器,2个8位定时/计数器,片内振荡器及时钟电路。在设计中,单片机起着连接硬件电路与程序运行及存储数据的任务,一方面,它将其A/D转换功能、显示模块和按键模块等通过I/O口地址线和数据线连接起来;另一方面,它将用户下载的程序通过控制总线控制数据的输入输出,从而实现册电压的功能。

5显示器件的选择

本次设计中有显示模块,设计要求显示最后电压的数字值,采用的是四位七段数码管。数码管是一类显示屏,它的特点是显示清晰、使用简单、价格相对便宜,特别是在家电领域应用极为广泛。其工作原理是通过对其不同的管脚输入相对的电流会使其发亮从而显示出数字能够显示时间、日期、温度等所有可用数字表示的参数。

数码管按段数分为七段数码管和八段数码管,八段数码管比七段数码管多一个发光二极管单元(多一个小数点显示);按能显示多少个“8”可分为1位、2位、4位等等数码管;按发光二极管单元连接方式分为共阳极数码管和共阴极数码管。共阳数码管是指将所有发光二极管的阳极接到一起形成公共阳极(COM)的数码管。共阳数码管在应用时应将公共极COM 接到+5V,当某一字段发光二极管的阴极为低电平时,相应字段就点亮。当某一字段的阴极为高电平时,相应字段就不亮。共阴数码管是指将所有发光二极管的阴极接到一起形成公共阴极(COM)的数码管。共阴数码管在应用时应将公共极COM接到地线GND上,某一字段发光二极管的阳极为高电平时,相应字段就点亮。当某一字段的阳极为低电平时,相应字段就不亮。

数码管要正常显示,就要用驱动电路来驱动数码管的各个段码,从而显示出我们要的数字,因此根据数码管的驱动方式的不同,可以分为静态式和动态式两类。

静态显示驱动:静态驱动也称直流驱动。静态驱动是指每个数码管的每一个段码都由一个单片机的I/O端口进行驱动,或者使用如BCD码二-十进制译码器译码进行驱动。静态驱动的优点是编程简单,显示亮度高,缺点是占用I/O端口多,如驱动5个数码管静态显示则需要5×8=40根I/O端口来驱动,要知道一个89S51单片机可用的I/O端口才32个呢:),实际应用时必须增加译码驱动器进行驱动,增加了硬件电路的复杂性。

动态显示驱动:数码管动态显示接口是单片机中应用最为广泛的一种显示方式之一,动态驱动是将所有数码管的8个显示笔划"a,b,c,d,e,f,g,dp"的同名端连在一起,另外为每个数码管的公共极COM增加位选通控制电路,位选通由各自独立的I/O线控制,当单片机输出字形码时,所有数码管都接收到相同的字形码,但究竟是那个数码管会显示出字形,取决于单片机对位选通COM端电路的控制,所以我们只要将需要显示的数码管的选通控制打开,该位就显示出字形,没有选通的数码管就不会亮。通过分时轮流控制各个数码管的的COM端,就使各个数码管轮流受控显示,这就是动态驱动。在轮流显示过程中,每位数码管的点亮时间为1~2ms,由于人的视觉暂留现象及发光二极管的余辉效应,尽管实际上各位数码管并非同时点亮,但只要扫描的速度足够快,给人的印象就是一组稳定的显示数据,不会有闪烁感,动态显示的效果和静态显示是一样的,能够节省大量的I/O端口,而且功耗更低。

6 数字电压表电路图及原理:

数字电压表设计原理:

利用A/D转换电路将待测的模拟信号转换成数字信号,通过相应换算后讲测试结果以数字形式显示出来。在高精度数字电压表中,常采用由积分式和比较式相结合起来的复合式A/D转换器。本设计以AT89C51单片机为核心,以逐次比较型A/D转换器ADC0808、LED四位数码管为主体

简易的数字电压表设计。该设计主要有三个模块组成:A/D转换模块,数据处理模块及显示模块。A/D转换主要由芯片ADC0808来完成,它负责把采集到的模拟量转换为相应的数字量在传送到数据处理模块。数据处理模块则由芯片AT89C51来完成,其负责把ADC0808传送来的数字量经过一定的数据处理。产生相应的显示码送到显示模块进行显示了;此外,它还控制着ADC0808芯片工作。

该系统的数字电压表电路简单,所用的元件少,成本低,且测量精度和可靠性较高。此数字电压表可以测量0-5V的1路直流输入电压值,并通过一个四位一体的七位数码管显示出来。

7 数字电压表程序:

#define MAIN_Fosc 22118400L

#include "STC15Fxxxx.H"

#define Timer0_Reload (65536UL -(MAIN_Fosc / 1000))

#define DIS_DOT 0x20

#define DIS_BLACK 0x10

#define DIS_ 0x11

8 code t_display[]={

// 0 1 2 3 4 5 6 7

8 9 A B C D E

F

0x3F,0x06,0x5B,0x4F,0x66,0x6D,0x7D,0x07,0x7F,0x6F,0x77,0x7C,0x39,0x5E ,0x79,0x71,

//black - H J K L N

o P U t G Q r M y

0x00,0x40,0x76,0x1E,0x70,0x38,0x37,0x5C,0x73,0x3E,0x78,0x3d,0x67,0x50

,0x37,0x6e,

0xBF,0x86,0xDB,0xCF,0xE6,0xED,0xFD,0x87,0xFF,0xEF,0x46};

//0. 1. 2. 3. 4. 5. 6. 7. 8. 9. -1

u8 code T_COM[]={0x01,0x02,0x04,0x08,0x10,0x20,0x40,0x80}; sbit P_HC595_SER = P4^0;

sbit P_HC595_RCLK = P5^4;

sbit P_HC595_SRCLK = P4^3;

u8 LED8[8];

u8 display_index;

bit B_1ms;

u8 cnt10ms;

u16 Get_ADC10bitResult(u8 channel); /annel = 0~7

void DisplayAD(u16 ADshu);

/**********************************************/

void main(void)

{

u8 i;

//u16 j;

P0M1 = 0; P0M0 = 0;

P1M1 = 0; P1M0 = 0;

P2M1 = 0; P2M0 = 0;

P3M1 = 0; P3M0 = 0;

P4M1 = 0; P4M0 = 0;

P5M1 = 0; P5M0 = 0;

P6M1 = 0; P6M0 = 0;

P7M1 = 0; P7M0 = 0;

display_index = 0;

P1ASF = 0x10;

ADC_CONTR = 0xE0;

AUXR = 0x80;

TH0 = (u8)(Timer0_Reload / 256);

TL0 = (u8)(Timer0_Reload % 256);

ET0 = 1;

TR0 = 1;

EA = 1;

for(i=0; i<8; i++) LED8[i] = 0x10;

cnt10ms = 0;

while(1)

{

if(B_1ms) //1msμ?

{

B_1ms = 0;

if(++cnt10ms >= 10)

{

cnt10ms = 0;

DisplayAD(Get_ADC10bitResult(4));

}

}

}

}

/**********************************************/

void DisplayAD(u16 ADshu)

{

double a=ADshu;

a= a * 4.8/1024;

a=a*10;

ADshu= (u8)a;

LED8[4] = ADshu / 1000;

LED8[5] = ADshu / 100% 10;

LED8[6] = ADshu/ 10 % 10;

LED8[7] = ADshu % 10;

LED8[6]+=DIS_DOT;

LED8[0] = 1;

LED8[1] = 2;

LED8[2] = 3;

LED8[3] = 4;

}

/**********************************************/

u16 Get_ADC10bitResult(u8 channel) /annel = 0~7

{

ADC_RES = 0;

ADC_RESL = 0;

ADC_CONTR = (ADC_CONTR & 0xe0) | 0x08 | channel; NOP(4);

while((ADC_CONTR & 0x10) == 0) ;

ADC_CONTR &= ~0x10;

return (((u16)ADC_RES << 2) | (ADC_RESL & 3));

}

/**************** HC595 ******************/

void Send_595(u8 dat)

{

u8 i;

for(i=0; i<8; i++)

{

dat <<= 1;

P_HC595_SER = CY;

P_HC595_SRCLK = 1;

P_HC595_SRCLK = 0;

}

}

/********************** ************************/

void DisplayScan(void)

{

Send_595(~T_COM[display_index]);

Send_595(t_display[LED8[display_index]]);

P_HC595_RCLK = 1;

P_HC595_RCLK = 0;

if(++display_index >= 8) display_index = 0;

}

/********************** Timer0 1ms ************************/

void timer0 (void) interrupt TIMER0_VECTOR

{

DisplayScan();

B_1ms = 1; }

8.心得体会

由于本设计使用的是高效的AVR系列单片机作为核心的测量系统,以及高精度、高速度、高抗干扰的A/D转换器。使得本直流电压表具体精度高,灵敏度强,性能可靠,电路简单,成本低的特点。此设计是单片机应用系统的开发性实验。通过此设计可知在单片机系统开发过程应注意以下事项。

1)硬件的选择。选择适合设计目地的元器件是一个重要的方设计环节。不能以元器件是否是最高性能作为选择元器件的标准。往往高性能器件的价格也是较高的。应根据项目设计的需要选择元器件,能够满足设计需要作为标准选择元器件。

2)因为单片机系统设计是硬件和软件相结合的设计,所以系统和硬件和软件必须紧密

配合,协调一致。应不断调整硬软件设计,以提高系统工作效率。

通过该次单片机课程设计,我们逐步掌握了单片机的内部资源及其结构,并熟练掌握了利用C语言进行单片机的开发。在课程设计过程过我们也遇到过一些问题,不过在小组成员的共同努力下克服了困难,并顺利完成了该次课程设计。

参考文献

[1]李建忠编著.单片机原理及应用.西安:西安电子科技大学出版社,2002

[2]李群芳,肖看编著.单片机原理、接口及应用.北京:清华大学出版社,2005

[3]于海生编著.微型计算机控制技术.北京:清华大学出版社,2008

[4]戴梅萼,史嘉权编著.微型计算机技术及应用(第3版).北京:清华大学出版社,2008

[5]江晓安,董秀峰编著.数字电子技术(第二版).西安:西安电子科技大学出版社,2005

单片机课程设计数字电压表

单片机课程设计 ——电压表的设计 学院:信息工程学院 专业:电子信息科学与技术 班级:2011150 学号:201115002 姓名:王冬冬 同组同学:凡俊兴 201115001

目录 1 引言 (1) 2设计原理及要求 (2) 2.1数字电压表的实现原理 (2) 2.2数字电压表的设计要求 (2) 3软件仿真电路设计 (2) 3.1设计思路 (2) 3.2仿真电路图 (3) 3.3设计过程 (3) 3.4 AT89C51的功能介绍 (4) 3.4.1简单概述 (4) 3.4.2主要功能特性 (5) 3.4.3 AT89C51的引脚介绍 (5) 3.5 ADC0809的引脚及功能介绍 (7) 3.5.1芯片概述 (7) 3.5.2 引脚简介 (8) 3.5.3 ADC0809的转换原理 (8) 3.6 74LS373芯片的引脚及功能 (8) 3.6.1芯片概述 (8) 3.6.2引脚介绍 (9) 3.7 LED数码管的控制显示 (9) 3.7.1 LED数码管的模型 (9)

LED数码管模型如图3-6所示。 (9) 3.7.2 LED数码管的接口简介 (9) 4系统软件程序的设计 (9) 4.1 主程序 (10) 4.2 A/D转换子程序 (11) 4.3 中断显示程序 (12) 5使用说明与调试结果 (13) 6总结 (13) 参考文献 (14) 附录1 源程序 (15) 附录2原理电路 (19)

1 引言 在电量的测量中,电压、电流和频率是最基本的三个被测量,其中电压量的测量最为经常。而且随着电子技术的发展,更是经常需要测量高精度的电压,所以数字电压表就成为一种必不可少的测量仪器。数字电压表简称DVM,它是采用数字化测量技术,把连续的模拟量转换成不连续、离散的数字形式并加以显示的仪表。由于数字式仪器具有读数准确方便、精度高、误差小、测量速度快等特而得到广泛应用[1]。 传统的指针式刻度电压表功能单一,进度低,容易引起视差和视觉疲劳,因而不能满足数字化时代的需要。采用单片机的数字电压表,将连续的模拟量如直流电压转换成不连续的离散的数字形式并加以显示,从而精度高、抗干扰能力强,可扩展性强、集成方便,还可与PC实时通信。数字电压表是诸多数字化仪表的核心与基础[2]。以数字电压表为核心,可以扩展成各种通用数字仪表、专用数字仪表及各种非电量的数字化仪表。目前,由各种单片机和A/D转换器构成的数字电压表作全面深入的了解是很有必要的。 最近的几十年来,随着半导体技术、集成电路(IC)和微处理器技术的发展,数字电路和数字化测量技术也有了巨大的进步,从而促使了数字电压表的快速发展,并不断出现新的类型[4]。数字电压表从1952年问世以来,经历了不断改进的过程,从最早采用继电器、电子管和形式发展到了现在的全固态化、集成化(IC 化),另一方面,精度也从0.01%-0.005%。 目前,数字电压表的内部核心部件是A/D转换器,转换的精度很大程度上影响着数字电压表的准确度,因而,以后数字电压表的发展就着眼在高精度和低成本这两个方面[3]。 本文是以简易数字直流电压表的设计为研究内容,本系统主要包括三大模块:转换模块、数据处理模块及显示模块。其中,A/D转换采用ADC0808对输入的模拟信号进行转换,控制核心AT89C51再对转换的结果进行运算处理,最后驱动输出装置LED显示数字电压信号

基于单片机的数字电压表设计报告

单片机原理及系统课程设计 专业:电气工程及其自动化 班级: 姓名: 学号: 指导教师: 兰州交通大学自动化与电气工程学院 2010 年 3 月 7 日

基于单片机的数字电压表设计 摘要

图3.2系统原理图4软件设计

5.系统调试及仿真结果 6.总结 两周的课程设计结束了,在这过程中,我学到了很多东西。首先,我学会了单片机设计的基本过程有哪些,每一过程有哪些基本的步骤,怎样通过查资料去完成这每一步。其次我巩固了上学期所学的一些单片机知识,从而加深了对ADC0809芯片的功能的了解。在编程过程中,遇到了许多困难,通过与同学之间的交流和咨询,最后解决了这些困难。所谓实践出真知,学到的东西只有运用到实践当中,才能真正体会到知识的力量。最后,通过这次课程设计,让我明白了想法和实践还是有差距的,当你真正去做一件事的时候,你会发现你的想法可能不适用,随时都需要调整,另外扎实的理论知识也是完成设计任何设计必不可少的要素,一切想法离开了理论知识都是空想。 参考文献 [1]彭为,黄科,雷道仲.单片机典型系统设计实例精讲[M].电子工业出版社.2009:22-54. [2] 谭浩强.C程序设计(第三版)[M].清华大学出版社.2009:32-46. [3] 王思明,张金敏,张鑫等.单片机原理及应用系统设计(第一版)[M].科学出版社.2012:70-292.

附录A源程序代码#include #include #define uchar unsigned char sbit p21=P2^1; sbit p22=P2^2; sbit p23=P2^3; sbit EOC=P3^1; sbit OE=P3^0; sbit ST=P3^2; sbit p34=P3^4; sbit p35=P3^5; sbit p36=P3^6;

51单片机简单数字电压表

毕业论文声明 本人郑重声明: 1.此毕业论文是本人在指导教师指导下独立进行研究取得的成果。除了特别加以标注地方外,本文不包含他人或其它机构已经发表或撰写过的研究成果。对本文研究做出重要贡献的个人与集体均已在文中作了明确标明。本人完全意识到本声明的法律结果由本人承担。 2.本人完全了解学校、学院有关保留、使用学位论文的规定,同意学校与学院保留并向国家有关部门或机构送交此论文的复印件和电子版,允许此文被查阅和借阅。本人授权大学学院可以将此文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本文。 3.若在大学学院毕业论文审查小组复审中,发现本文有抄袭,一切后果均由本人承担,与毕业论文指导老师无关。 4.本人所呈交的毕业论文,是在指导老师的指导下独立进行研究所取得的成果。论文中凡引用他人已经发布或未发表的成果、数据、观点等,均已明确注明出处。论文中已经注明引用的内容外,不包含任何其他个人或集体已经发表或撰写过的研究成果。对本文的研究成果做出重要贡献的个人和集体,均已在论文中已明确的方式标明。

学位论文作者(签名): 年月

关于毕业论文使用授权的声明 本人在指导老师的指导下所完成的论文及相关的资料(包括图纸、实验记录、原始数据、实物照片、图片、录音带、设计手稿等),知识产权归属华北电力大学。本人完全了解大学有关保存,使用毕业论文的规定。同意学校保存或向国家有关部门或机构送交论文的纸质版或电子版,允许论文被查阅或借阅。本人授权大学可以将本毕业论文的全部或部分内容编入有关数据库进行检索,可以采用任何复制手段保存或编汇本毕业论文。如果发表相关成果,一定征得指导教师同意,且第一署名单位为大学。本人毕业后使用毕业论文或与该论文直接相关的学术论文或成果时,第一署名单位仍然为大学。本人完全了解大学关于收集、保存、使用学位论文的规定,同意如下各项内容: 按照学校要求提交学位论文的印刷本和电子版本;学校有权保存学位论文的印刷本和电子版,并采用影印、缩印、扫描、数字化或其它手段保存或汇编本学位论文;学校有权提供目录检索以及提供本学位论文全文或者部分的阅览服务;学校有权按有关规定向国家有关部门或者机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入学校有关数据库和收录到《中国学位论文全文数据库》进行信息服务。在不以赢利为目的的前提下,学校可以适当复制论文的部分或全部内容用于学术活动。 论文作者签名:日期: 指导教师签名:日期: 单片机硬件实习任务书

基于51单片机的数字电压表设计说明

1.1数字电压表介绍 数字电压表简称DVM,数字电压表基本原理是将输入的模拟电压信号转化为数字信号,再进行输出显示。而A/D转换器的作用是将连续变化的模拟信号量转化为离散的数字信号,器基本结构是由采样保持,量化,编码等几部分组成。因此AD转换是此次设计的核心元件。输入的模拟量经过AD转换器转换,再由驱动器驱动显示器输出,便得到测量的数字电压。 本次自己的设计作品从各个角度分析了AD转换器组成的数字电压表的设计过程及各部分电路的组成及原理,并且分析了数模转换进而使系统运行起来的原理及方法。通过自己的实践提高了动手能力,也只有亲历亲为才能收获掌握到液晶学过的知识。其实也为建立节约成本的意识有些帮助。本次设计同时也牵涉到了几个问题:精度、位数、速度、还有功耗等不足之处,这些都是要慎重考虑的,这些也是在本次设计中的收获。 1.3 本次设计要求 本次设计的作品要求制作数字电压表的量程为0到10v,由于用到的模数转换芯片是ADC0809,设计系统给的供电电压为+5v,所以能够测量的电压围为-0.25v到5.25v之间,但是一般测量的直流电压围都在这之上,所以采用电阻分压网络,设计的电压测量围是0到25v之间,满足设计要求的最大量程5v的要求。同时设计的精度为小数点后三位,满足要求的两位小数的精度,在不考虑AD芯片的量化误差的前提下,此次设计的精度能够满足一般测量的要求。

2单片机和AD相关知识 2.1 51单片机相关知识 51单片机是对目前所有兼容intel 8031指令系统的单片机的统称。该系列单片机的始祖是intel的8031单片机,后来随着技术的发展,成为目前广泛应用的8为单片机之一。单片机是在一块芯片集成了CPU、RAM、ROM、定时器/计数器和多功能I/O口等计算机所需要的基本功能部件的大规模集成电路,又称为MCU。51系列单片机包含以下几个部件: 一个8位CPU;一个片振荡器及时钟电路; 4KB的ROM程序存储器; 一个128B的RAM数据存储器; 寻址64KB外部数据存储器和64KB外部程序存储空间的控制电路; 32条可编程的I/O口线; 两个16位定时/计数器; 一个可编程全双工串行口; 5个中断源、两个优先级嵌套中断结构。51系列单片机如下图: 图1 51单片机引脚图

基于单片机的数字电压表

基于单片机的数字电压表 摘要:本文介绍一种基于89S52单片机的一种电压测量电路,该电路采用ICL7135高精度、双积分A/D转换电路,测量范围直流0-±2000伏,使用LCD液晶模块显示,可以与PC机进行串行通信。正文着重给出了软硬件系统的各部分电路,介绍了双积分电路的原理,89S52的特点,ICL7135的功能和应用,LCD1601的功能和应用。该电路设计新颖、功能强大、可扩展性强。 关键词:电压测量,ICL7135,双积分A/D转换器,1601液晶模块 Abstract: The introduction of a cost-based 89S52 MCU a voltage measurement circuits, the circuits used ICL7135 high-precision, dual-scoring A/D conversion circuits, measuring scope DC 0-2000 volts, the use of LCD that can be carried out with a PC serial communications. The paper focuses on providing a software and hardware system components circuit, introduced double integral circuit theory, 89S52 features ICL7135 functions and applications, LCD1601 functions and applications. the circuit design innovative, powerful, can be expansionary strong. Key Words: Digital Voltmeter ICL7135 LCD1601 89S52 1前言 数字电压表(Digital Voltmeter)简称DVM,它是采用数字化测量技术,把连续的模拟量(直流输入电压)转换成不连续、离散的数字形式并加以显示的仪表。传统的指针式电压表功能单一、精度低,不能满足数字化时代的需求,采用单片机的数字电压表,由精度高、抗干扰能力强,可扩展性强、集成方便,还可与PC进行实时通信。目前,由各种单片A/D 转换器构成的数字电压表,已被广泛用于电子及电工测量、工业自动化仪表、自动测试系统等智能化测量领域,示出强大的生命力。与此同时,由DVM扩展而成的各种通用及专用数字仪器仪表,也把电量及非电量测量技术提高到崭新水平。本章重点介绍单片A/D 转换器以及由它们构成的基于单片机的数字电压表的工作原理。

基于单片机的数字电压表设计

引言 数字电压表(Digital Voltmeter)简称DVM,它是采用数字化测量技术,把连续的模拟量(直流输入电压)转换成不连续、离散的数字形式并加以显示的仪表。传统的指针式电压表功能单一、精度低,不能满足数字化时代的需求,采用单片机的数字电压表,由精度高、抗干扰能力强,可扩展性强、集成方便。目前,由各种单片A/D 转换器构成的数字电压表,已被广泛用于电子及电工测量、工业自动化仪表、自动测试系统等智能化测量领域,示出强大的生命力。与此同时,由DVM扩展而成的各种通用及专用数字仪器仪表,也把电量及非电量测量技术提高到崭新水平。本论文重点介绍单片A/D 转换器以及由它们构成的基于单片机的数字电压表的工作原理。

1 实训要求 (1)基本要求: ①实现8路直流电压检测 ②测量电压范围0-5V ③显示指定电压通道和电压值 ④用按键切换显示通道 (2)发挥要求 ①测量电压范围为0-25V ②循环显示8路电压 2 实训目的 (1)进一步熟悉和掌握单片机的结构和工作原理; (2)掌握单片机的借口技术及,ADC0809芯片的特性,控制方法; (3)通过这次实训设计,掌握以单片机为核心的电路设计的基本方法和技术;(4)通过实际程序设计和调试,逐步掌握模块化程序设计的方法和调试技术。 3 实训意义 通过完成一个包括电路设计和程序开发的完整过程,使自身了解开发单片机应用系统的全过程,强化巩固所学知识,为以后的学习和工作打下基础。 4 总体实训方案 测量一个0——5V的直流电压,通过输入电路把信号送给AD0809,转换为数字信号再送至89s52单片机,通过其P1口经数码管显示出测量值。 4.1 结构框图 如图1—1所示 图1—1

数字电压表单片机课程设计

《单片机技术及其应用》 课程设计报告 题目:数字电压表的设计 班级:11通信本2班 学号:1011028432 姓名:段苓苓 同组人员:钟梦为梅韶田赵赫宇周洋 指导教师:刘少敏薛莲 2014年06月26日

目录 1 引言 (1) 1.1 设计意义 (1) 1.2 系统功能要求 (1) 2 设计内容 (1) 2.1 设计思路 (1) 2.2 主要功能 (2) 3 方案论证 (2) 3.1 程序设计 (2) 3.2 电路设计原理 (3) 3.3 软件设计方案 (4) 3.4 硬件设计方案 (4) 4 单元电路设计 (5) 4.1 数码管显示器 (5) 4.2 单片机的晶振电路 (6) 4.3 显示模块 (7) 4.4 ADC0808模数转换芯片 (7) 4.5 复位电路 (8)

4.6 AT89C52单片机的引脚介绍 (9) 4.7 模拟输入电路 (10) 4.8 总电路设计 (10) 5 系统软件程序的设计 (11) 5.1 主程序 (11) 5.2 A/D转换子程序 (11) 5.3 显示子程序 (11) 6 调试及性能分析 (11) 6.1 调试方法及步骤 (11) 6.2 实物调试数据 (12) 6.3 误差分析 (13) 7 心得体会 (14) 8 指导老师意见 (15) 附录: (16)

数字电压表的设计 1 引言 1.1 设计意义 我们学习的是单片机这门课程,这门课程最显著的特点就是它是一门实用技术课程,它要求我们不仅仅要掌握扎实的理论基础,更重要的是要学会如何去真真利用它为我们的电路设计服务,也只有通过课程设计这样的动手实践才是我们掌握这门技术的最佳途径,因此,我们开设这样的实践是很重要的,也是我们努力去学习钻研的动力。 数字电压表是采用数字化检测技术,把连续的模拟量(直流输入电压)换成不连续的、离散的数字形式并加以现实的仪表,克服了传统模拟电压表的读书不方便和不精确等问题。不能满足数字化时代的需求,采用单片机的数字电压表,由精度高、抗干扰能力强,可扩展性强集成方便,还可以与PC进行实时通信。目前,由各种单片A/D转换器构成的数字电压表,已广泛应用于电子电工测量、工业自动化仪表、自动测试系统等智能化测量领域,展现了强大的生命力。与此同时,由数字电压表扩展而成的各种通用及专用数字化仪器,也把电量及非电量测量技术提高到了崭新的水平,因此,通过这次课程设计能让我们了解这些知识,为以后研究相关技术打下坚实的基础。 1.2 系统功能要求 采用51系列单片机和ADC设计一个数字电压表,测量0~5V范围内的8路输入电压值,并在4位LED数码管上轮流显示或单路选择显示,要求显示两位小数。 2 设计内容 2.1 设计思路 (1)根据设计要求,选择AT89C51单片机为核心控制器件。 (2)A/D转换采用ADC0808实现,与单片机的接口为P1口和P2口的高四位引脚。 (3)电压显示采用4位一体的LED数码管。 (4)LED数码的段码输入,由并行端口P0产生:位码输入,用并行端口P2低四位产生。

基于单片机的数字电压表制作——(C语言)

基于单片机的数字电压表制作——ADC0832模数转换应用程序(C语言) 主要部件:AT89S51 ADC0832 八段数码管 关键字:ADC0832程序C语言数字电压表 本文所描述的数字电压表是利用ADC0832模数转换芯片完成的。该芯片能将0~5V的模拟电压量转换为0~255级的数字量,所以本文描述的数字电压表的量程为0~5V。 以下是程序部分: 该程序是本人自编的,经测试可用,但不保证程序的可靠性及稳定性。若有转载请标明出处。 如果有同学将本程序烧写到单片机里却不能正常工作的,请注意以下三点: 1、是否将端口重新定义。每个单片机开发板的引脚连接都是不一样的,若不加修改直接把程序烧写到单片机里,那是绝对不能正常工作的。 2、是否正确选择通道值。ADC0832有两个模拟输入端口(也就是我说的通道),你要先弄清楚你用的是那个通道,并在main函数中设置相应的通道值(以CH命名的那个变量)。本程序默认使用0通道,如果0通道不行就改成1通道,反正不是0通道就是1通道。 3、如果你做的电压表在保证电路连接正确且没有以上两点问题的情况下,还是不能正常工作,请将程

序中的“if (adval == test)”这一行删掉。其实这一点我个人也不清楚到底有没有问题。我有两个单片机开发板,其中一个必须要把那一行删掉才能工作。这说明ADC0832读出的前8位与后8位数值不一样(确切的说应该是后8位反转的数值),这有悖于ADC0832的原理。我不知道到底是硬件还是软件出了问题,特此把这种现象标明。若有哪位同学知道其原因的还请多多指教。 /***********************************************************************************/ /*简易数字电压表制作——ADC0832模数转换应用程序(C语言版)*/ /*目标器件:AT89S51 */ /*晶 振:12.000MHZ */ /*编译环境:Keil uVision2 V2.12 */ /***********************************************************************************/ /*********************************包含头文件********************************/ #include #include /*********************************端口定义**********************************/ sbit CS = P3^5; sbit Clk = P3^4; sbit DATI = P3^3; sbit DATO = P3^3; /*******************************定义全局变量********************************/ unsigned char dat = 0x00; //AD值 unsigned char count = 0x00; //定时器计数 unsigned char CH; //通道变量 unsigned char dis[] = {0x00, 0x00, 0x00}; //显示数值 /*******************************共阳LED段码表*******************************/

51单片机数字电压表实验报告

微控制器技术创新设计实验报告 姓名:学号:班级: 一、项目背景 使用单片机AT89C52和ADC0808设计一个数字电压表,能够测量0-5V之间的直流电压值,四位数码显示。在单片机的作用下,能监测两路的输入电压值,用8位串行A/D转换器,8位分辨率,逐次逼近型,基准电压为5V;显示精度0.001伏。 二、项目整体方案设计 ADC0808 是含8 位A/D 转换器、8 路多路开关,以及与微型计算机兼容的控制逻辑的CMOS组件,其转换方法为逐次逼近型。ADC0808的精度为1/2LSB。在AD 转换器内部有一个高阻抗斩波稳定比较器,一个带模拟开关树组的256 电阻分压器,以及一个逐次通近型寄存器。8 路的模拟开关的通断由地址锁存器和译码器控制,可以在8 个通道中任意访问一个单边的模拟信号。

三、硬件设计 四、软件设计 #include #include"intrins.h" #define uchar unsigned char #define uint unsigned int sbit OE = P2^7; sbit EOC=P2^6; sbit START=P2^5;

sbit CLK=P2^4; sbit CS0=P2^0; sbit CS1=P2^1; sbit CS2=P2^2; sbit CS3=P2^3; uint adval,volt; uchar tab[]={0xC0,0xF9,0xA4,0xB0,0x99,0x92,0x82,0xF8, 0x80,0x90,0x88,0x83,0xC6,0xA1,0x86,0x8E}; void delayms(uint ms) { uchar j; while(ms --) { for(j=0;j<120;j++); } } void ADC_read() { START=0; START=1; START=0; while(EOC==0);

基于51单片机制作的数字电压表

基于51单片机数字电压表的设计 基于51单片机数字电压表的设计 摘要:本文介绍了基于STC89C52单片机为核心的,以AD0809数模转换芯片作为采样,以四位八段数码管作为显示的具有测量功能的具有一定精度的数字电压表。在实现基础功能的情况下,另外还可以扩展串行口通信,时钟,等其他一系列功能,使系统达到了良好的设计效果和要求。本课题主要解决A/D转换,数据处理及显示控制等三个模块。 关键词:STC89C52;数字电压表;模数转换;数字信号

Abstract:This paper introduces STC89C52 SCM as the core based on AD0809 analog-to-digital conversion chip, as sampled to four seven segment digital tube as display with certain with measuring function of digital voltmeter accuracy. The basic function in realizing circumstance, also can expand serial port communication, clock, and other series of function, make the system to achieve a good design effect and requirements.This subject mainly to solve AD, data processing and display control three modules. Key words: Digital voltmeter; Frequency-field; Digital signal 本设计在分析研究和总结了单片机技术的发展历史及趋势的基础上,以使用可靠,经济,精度高等设计原则为目标,设计出基于单片机的数字测量电压表。单片机有着微处理所具备的功能,它可单独地完成现代工业控制所要求的智能化控制功能,这是单片机最大的特征。 单片机控制系统能够取代以前利用复杂电子线路或数字电路构成的控制系统,可用软件控制来实现,并能够实现智能化。由于单片机具有功能强,体积小,功耗低,价格便宜,工作可靠,使用方便等特点,因此,现在单片机控制范畴无所不在,例如通信产品,家用电器,智能化仪器仪表,过程控制和专用控制装置等等,单片机的应用领域越来越广泛。 1 系统构成 该电压表的测量电路主要由三个模块组成:A/D转换模块、数据处理模块及显示控制模块。A/D转换主要由芯片ADC0809来完成,它负责把采集到的模拟量转换为相应的数字量再传送到数据处理模块。数据处理则由芯片STC89C51来完成,其负责把ADC0809传送来的数字量,经一定的数据处理,产生相应的显示码送到显示模块进行显示;另外它还控制着ADC0809芯片的工作。显示模块主要由7段数码管显示测量到的电压值 系统构成框图 2 系统硬件设计 2.1 电源电路原理 由于本系统的主控芯片是单片机,所以应提供五伏的恒流源作为单片机的基准电压。主要原理是用变压器将220V交流电压进行变压,然后经过电桥整流,将交流电变为直流电源,经过稳压管稳压,得到稳定的5V电源供单片机使用。 电桥由整流二极管1N4007所搭建的电

基于单片机的数字电压表--开题报告

毕业设计(论文)开题报告 ——基于单片机的数字电压表设计与实现 引言 在传统的电工和电子测量中广泛使用的模拟测量仪表,虽然具有可直观看出表针偏转了多少格或满刻度的百分之几等优点,但需要对读数加以换算或说明, 尤其是不可避免地要带来人为的“视差”,不同的观察者会得到不同的结果。数字仪表则不同,它可以将测量结果直接用数字显示出来,读数准确,设计简单,可以随身携带,使用上更加方便快捷。 一、数字电压表的历史发展与选题意义 数字电压表(Digital Voltmeter)简称DVM,它是采用数字化测量技术,把连续的模拟量(直流输入电压)转换成不连续、离散的数字形式并加以显示的仪表。传统的指针式电压表功能单一、精度低,不能满足数字化时代的需求,采用单片机的数字电压表,由精度高、抗干扰能力强,可扩展性强、集成方便,还可与PC进行实时通信。目前,由各种单片A/D 转换器构成的数字电压表,已被广泛用于电子及电工测量、工业自动化仪表、自动测试系统等智能化测量领域,示出强大的生命力。与此同时,由DVM扩展而成的各种通用及专用数字仪器仪表,也把电量及非电量测量技术提高到崭新水平。 1.1 数字电压表的历史发展 数字电压表自1952年问世以来,已有50多年的发展史,大致经历了五代产品。第一代产品是20世纪50年代问世的电子管数字电压表,第二代产品属于20世纪60年代出现的晶体管数字电压表,第三代产品为20世纪70年代研制的中、小规模集成电路的DVM。近年来,国内外相继推出由大规模集成电路(LSI)或超大规模集成电路(VLSI)构成的数字电压表、智能数字电压表,分别属于第四代、第五代产品。它们不仅开创了电子测量的先河,更以其高准确度、高可靠性、高分辨力、高性价比等优良特性而受到人们的青睐。 1.2选题意义 相对于传统的指针表而言,数字电压表有以下特点: 1.读数直观准确; 2.显示位数; 3.准确度高,分辨率高;

51单片机简单数字电压表

单片机硬件实习任务书

通信工程教研室指导教师:_

基于单片机的简易数字电压表的设计 目录 1 引言 (1) 2 设计总体方案 (2) 2.1设计要求 (2) 2.2 设计思路 (2) 2.3 设计方案 (2) 3 硬件电路设计 (3) 3.1 A/D转换模块 (3) 3.2 单片机系统 (6) 3.3 复位电路和时钟电路 (8) 3.4 LED显示系统设计 (8) 3.5 总体电路设计 (11) 4 程序设计 (13) 4.1 程序设计总方案 (13) 4.2 系统子程序设计 (13) 5 仿真 (15) 5.1 软件调试 (15) 5.2 显示结果及误差分析 (17) 结论 (20)

参考文献 (21) 附录程序代码和实物图 (24) 心得体会 ......................................................... 错误!未定义书签。

1引言 在电量的测量中,电压、电流和频率是最基本的三个被测量,其中电压量的测量最为经常。而且随着电子技术的发展,更是经常需要测量高精度的电压,所以数字电压表就成为一种必不可少的测量仪器。数字电压表简称DVM,它是采用数字化测量技术,把连续的模拟量转换成不连续、离散的数字形式并加以显示的仪表。由于数字式仪器具有读数准确方便、精度高、误差小、测量速度快等特而得到广泛应用[1]。 传统的指针式刻度电压表功能单一,进度低,容易引起视差和视觉疲劳,因而不能满足数字化时代的需要。采用单片机的数字电压表,将连续的模拟量如直流电压转换成不连续的离散的数字形式并加以显示,从而精度高、抗干扰能力强,可扩展性强、集成方便,还可与PC实时通信。数字电压表是诸多数字化仪表的核心与基础[2]。以数字电压表为核心,可以扩展成各种通用数字仪表、专用数字仪表及各种非电量的数字化仪表。目前,由各种单片机和A/D转换器构成的数字电压表作全面深入的了解是很有必要的。 最近的几十年来,随着半导体技术、集成电路(IC)和微处理器技术的发展,数字电路和数字化测量技术也有了巨大的进步,从而促使了数字电压表的快速发展,并不断出现新的类型[4]。数字电压表从1952年问世以来,经历了不断改进的过程,从最早采用继电器、电子管和形式发展到了现在的全固态化、集成化(IC 化),另一方面,精度也从0.01%-0.005%。 目前,数字电压表的内部核心部件是A/D转换器,转换的精度很大程度上影响着数字电压表的准确度,因而,以后数字电压表的发展就着眼在高精度和低成本这两个方面[3]。 本文是以简易数字直流电压表的设计为研究内容,本系统主要包括三大模块:转换模块、数据处理模块及显示模块。其中,A/D转换采用ADC0808对输入的模拟信号进行转换,控制核心AT89C51再对转换的结果进行运算处理,最后驱动输出装置LED显示数字电压信号[11]。

基于单片机的数字电压表pcf8591..

XXXXXXX 学生实习(实训)总结报告 学院: XXXXXXXXXXXX专业班级: 测控 学生姓名: xxxxxxx 学号: 2014000000 设计地点(单位) I001 设计题目:单片机综合实训--基于单片机的电压表设计 完成日期:年月日 指导教师评语: 成绩(五级记分制): 指导教师(签字):

前言 本次单片机综合训练,我们做了一个基于单片机的数字电压表。在设计这个电压表之前,指导老师给我们讲解了设计要求和步骤。按照要求我们设计的数字电压表,通过A/D转换芯片实时采集输入端电压的变化,显示于数码管上。可通过按键选择输入通道。在芯片的选择上,单片机选用的是AT89C52芯片,A/D采样芯片片为PCF8591A/D转换芯片。这个数字电压表除了测量电压的功能,还可以设置报警,超过上下限自动报警。本次单片机综合训练,用到了单片机开发板、proteus软件等工具,运用了IIC总线、数码管显示等技术。经历了一个从设计到产品的过程,学到了很多,也收获了很多。

目录 前言....................................................................................................................................................... I 一、实训的目的和任务 (1) 1.1实训目的 (1) 1.2实训任务 (1) 二、设计总方案 (2) 三、系统硬件设计 (3) 3.1单片机最小系统 (3) 3.2 A/D转换部分 (5) 3.3数码管 (7) 3.4四位独立按键及声光报警 (8) 四、系统软件设计 (9) 4.1软件实现流程图 (9) 4.2 IIC总线在实训中的应用 (10) 4.3完整程序见附录3 (12) 五、调试及性能分析 (13) 5.1调试效果图 (13) 5.2性能分析 (13) 心得体会 (14) 致谢 (15) 参考文献 (16) 附录1 任务书 (17) 附录2 自画原理图 (18) 附录3 源程序: (19)

51单片机数字电压表设计

基于51单片机的数字电压表设计 二级学院铜陵学院 专业自动化 班级 组号 组员 指导教师

简易的数字电压表的设计 目录 一课程设计任务书·····························································································································错误!未定义书签。 1.1 设计题目、目的····················································································································错误!未定义书签。 1.2 题目的基本要求和拓展功能··························································································错误!未定义书签。 1.3 设计时间及进度安排··········································································································错误!未定义书签。 二设计内容············································································································································错误!未定义书签。 2.1 元器件选型······························································································································错误!未定义书签。 2.2 系统方案确定·························································································································错误!未定义书签。 2.3 51单片机相关知识··············································································································错误!未定义书签。 2.4 AD转换器相关知识··············································································································错误!未定义书签。 三数字电压表系统设计 (7) 3.1系统设计框图 (8) 3.2 单片机电路 (9) 3.3 ADC采样电路 (10) 3.4显示电路 (11) 3.5供电电路和参考电压·························································································································································· 3.6 数字电压表系统电路原理图·········································································································································四软件部分 4.1 主程序 4.2 显示子程序 五数字电压表电路仿真 5.1 仿真总图 5.2 仿真结果显示 六系统性能分析 七心得体会 - 2 -

基于51单片机的简易数字电压表的设计要点

五邑大学 单片机课程设计报告 基于51单片机的简易数字电压表的设计 学院:信息工程学院 专业:交通工程(交通控制与管理) 班 姓名 学号 指导老师: 完成日期:2015年01月05日

目录 1 引言 (1) 2 设计方案 (1) 3 元器件 (3) 4 实际电路 (8) 5 单片机程序 (10) 6 电路板制作 (15) 7总结 (16) 8附录 (16) 9参考文献 (17)

数字电压表设计 1引言 在电量的测量中,电压、电流和频率是最基本的三个被测量,其中电压量的测量最为经常。而且随着电子技术的发展,更是经常需要测量高精度的电压,所以数字电压表就成为一种必不可少的测量仪器。数字电压表简称DVM,它是采用数字化测量技术,把连续的模拟量转换成不连续、离散的数字形式并加以显示的仪表。由于数字式仪器具有读数准确方便、精度高、误差小、测量速度快等特而得到广泛应用。 传统的指针式刻度电压表功能单一,进度低,容易引起视差和视觉疲劳,因而不能满足数字化时代的需要。采用单片机的数字电压表,将连续的模拟量如直流电压转换成不连续的离散的数字形式并加以显示,从而精度高、抗干扰能力强,可扩展性强、集成方便,还可与PC实时通信。数字电压表是诸多数字化仪表的核心与基础。以数字电压表为核心,可以扩展成各种通用数字仪表、专用数字仪表及各种非电量的数字化仪表。目前,由各种单片机和A/D转换器构成的数字电压表作全面深入的了解是很有必要的。 目前,数字电压表的内部核心部件是A/D转换器,转换的精度很大程度上影响着数字电压表的准确度,因而,以后数字电压表的发展就着眼在高精度和低成本这两个方面。 本文是以简易数字直流电压表的设计为研究内容,本系统主要包括三大模块:转换模块、数据处理模块及显示模块。其中,A/D转换采用ADC0808对输入的模拟信号进行转换,控制核心AT89C51再对转换的结果进行运算处理,最后驱动输出装置LED显示数字电压信号 2 设计方案 2.1设计要求 以单片机为核心,设计一个数字电压表。采用中断方式,对2路0~5V的模拟电压进行循环采集,采集的数据送LED显示,并存入内存。超过界限时指示灯闪烁。为了稍微增加一点难度,我加入测量温度的功能。

基于单片机的数字电压表的设计——文献综述

衡水学院 毕业设计文献综述题目: 基于单片机的数字电压表的设计 学生姓名: 李强 系别: 物理与电子信息系 专业: 电子信息工程 年级: 2009级 学号: 200940513048 指导教师: 郭海丽 衡水学院教务处印制

毕业设计文献综述 设计题目基于单片机的数字电压表的设计 指导教师郭海丽研究方向电路与系统 参考文献情况国内12篇,国外1篇,共计13篇 收集参考文献时间2012年10月21日至2012年11月30日 一、文献综述 1.国内外发展现状 数字电压表在1952年由美国NLS公司首次从电位差计的自动化过程中研制成功。50多年来,数字电压表有了不断的进步和提高。数字电压表刚开始是4位显示,然后是5位、6位,而现在发展到7位、8位数码显示;从最初的一两种类型发展到原理不同的几十种类型;从最早的采用继电器、电子管发展到全晶体管、集成电路、微处理器;从一台仪器只能测一到两种参数到能测几十种参数的多用型;显示器件也从辉光数码管发展到等离子体管、发光二极管、液晶显示器等。数字电压表的体积和功耗越来越小,重量不断变轻,价格也逐步下降,可靠性越来越高,量程范围也逐步扩大。 随着我国现代化建设的发展,电子检测产品日新月异,特别是单片机的出现,正在引起测量控制仪表领域的新的技术革命。电子信息产业总体也面临一个较有利的发展环境。我国数字电压表产业发展研究报告阐述了世界数字电压表产业发展历程,分析了我国数字电压表产业发展现状与差距,开创性的提出了“新型数字电压表产业”及替代品产业概念,从四个维度“以人为本”、”科技创新”、“环境友好”和“面向未来”准确的界定了“新型数字电压表产业”及替代产品的内涵。根据“新型数字电压表产业”及替代品的评价体系和量化指标体系,从全新的角度对中国的数字电压表产业发展进行了推演和精准预测,在此基础上,对我国的行政区划和四大都市圈的数字电压表产业发展进行了全面研究。 2.主要研究成果 数字电压表的高速发展,使它已成为实现测量自动化、提高工作效率不可缺少的仪表,现在已经广泛应用于电子、电工测量,自动化测试系统等领域。数字电压表已成为一种必不可少的测量仪器。当前数字电压表的主要研究成果主要体现在以下两方面。 (1)新技术的广泛应用 20世纪90年代初,世界各国相继研发了新的A/D转换技术。例如:四斜率A/D转换技

单片机数字电压表课程设计报告

内容摘要 电压表是测量仪器中不可缺少的设备,目前广泛应用的是采用专用集成电路实现的数字电压表。本系统以8051单片机为核心,以逐次逼近式A/D转换器ADC0809、LED显示器为主体,设计了一款简易的数字电压表,能够测量0~5V 的直流电压,最小分辨率为0.02V。 该设计大体分为以下几个部分,同时,各部分选择使用的主要元器件确定如下: 1、单片机部分。使用常见的8051单片机,同时根据需要设计单片机电路。 2、测量部分。该部分是实验的重点,要求将外部采集的模拟信号转换成数字信号,通过单片机的处理显示在显示器上,该部分决定了数字电压表的精度等主要技术指标。根据需要本设计采用逐次逼近型A∕D转换器ADC0809进行模数转换。 3、键盘显示部分。利用4×6矩阵键盘的一个按键控制量程的转换,3或4位LED显示。其中一位为整数部分,其余位小数部分。 索引关键词:8051 模数转换LED显示矩阵键盘

目录 一概述 (4) 二方案设计与论证 (4) 三单元电路设计与参数计算 (4) 3.1. A∕D转换器0809 (5) 3.1. LED数码显示 (7) 四总原理图及参考程序 (9) 五结论 (10) 六心得体会 (14) 七参考文献 (15)

一、概述 数字电压表的基本工作原理是利用A/D转换电路将待测的模拟信号转换成数字信号,通过相应换算后将测试结果以数字形式显示出来的一种电压表。较之于一般的模拟电压表,数字电压表具有精度高、测量准确、读数直观、使用方便等优点。 电压表的数字化测量,关键在于如何把随时连续变化的模拟量转化成数字量,完成这种转换的电路叫模数转换器(A/D)。数字电压表的核心部件就是A/D 转换器,由于各种不同的A/D转换原理构成了各种不同类型的DVM。一般说来,A/D转换的方式可分为两类:积分式和逐次逼近式。 积分式A/D转换器是先用积分器将输入的模拟电压转换成时间或频率,再将其数字化。根据转化的中间量不同,它又分为U-T(电压-时间)式和U-F(电压-频率)式两种。 逐次逼近式A/D转换器分为比较式和斜坡电压式,根据不同的工作原理,比较式又分为逐次比较式及零平衡式等。斜坡电压式又分为线性斜坡式和阶梯斜坡式两种。 在高精度数字电压表中,常采用由积分式和比较式相结合起来的复合式A/D 转换器。本设计以8051单片机为核心,以逐次比较型A/D转换器ADC0809、LED显示器为主体,构造了一款简易的数字电压表,能够测量1路0~5V直流电压,最小分辨率0.02V。 二、方案设计与论证 该设计是基于8051的数字电压表,大体分为以下几个部分,同时,各部分选择使用的主要元器件确定如下: (1)单片机部分使用常见的8051单片机,同时根据需要设计单片机电路。 (2)测量部分该部分是实验的重点,要求将外部采集的模拟信号转换成数字信号,通过单片机的处理显示在显示器上,该部分决定了数字电压表的精度等主要技术指标。根据需要本设计采用逐次逼近式A/D转换器0809进行模数转换。 (3)键盘显示部分利用4×6矩阵键盘的一个按键控制量程的转换,3或4位LED显示。其中一位为整数部分,其余位小数部分。 三、单元电路设计与参数计算

相关主题
文本预览
相关文档 最新文档