当前位置:文档之家› 分式知识点及题型总结超好用

分式知识点及题型总结超好用

分式知识点及题型总结超好用
分式知识点及题型总结超好用

分式知识点与题型

一、分式的定义:

一般地,如果A ,B 表示两个整数,并且B 中含有字母,那么式子B

A

叫做分式,A 为分子,B 为分母。 二、与分式有关的条件

①分式有意义:分母不为0(0B ≠) ②分式无意义:分母为0(0B =) ③分式值为0:分子为0且分母不为0(??

?≠=0

B A )

④分式值为正或大于0:分子分母同号(???>>00B A 或???<<00

B A ) ⑤分式值为负或小于0:分子分母异号(??

?<>00B A 或???><0

B A )

⑥分式值为1:分子分母值相等(A=B )

⑦分式值为-1:分子分母值互为相反数(A+B=0)

三、分式的基本性质

分式的分子和分母同乘(或除以)一个不等于0的整式,分式的值不变。 字母表示:

C B C ??=A B A ,C

B C ÷÷=A B A ,其中A 、B 、C 是整式,C ≠0。 拓展:分式的符号法则:分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变, 即:

B

B A B B --=--=--=A A A 注意:在应用分式的基本性质时,要注意

C ≠0这个限制条件和隐含条件B ≠0。

四、分式的约分

1.定义:根据分式的基本性质,把一个分式的分子与分母的公因式约去,叫做分式的约分。

2.步骤:把分式分子分母因式分解,然后约去分子与分母的公因。

3.注意:①分式的分子与分母均为单项式时可直接约分,约去分子、分母系数的最大公约数,然后约去分子分母相同因式的最低次幂。

②分子分母若为多项式,先对分子分母进行因式分解,再约分。

4.最简分式的定义:一个分式的分子与分母没有公因式时,叫做最简分式。 ◆约分时。分子分母公因式的确定方法:

1)系数取分子、分母系数的最大公约数作为公因式的系数. 2)取各个公因式的最低次幂作为公因式的因式.

3)如果分子、分母是多项式,则应先把分子、分母分解因式,然后判断公因式.

五、分式的通分

1.定义:把几个异分母的分式分别化成与原来的分式相等的同分母分式,叫做分式的通分。

(依据:分式的基本性质!)

2.最简公分母:取各分母所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母。

◆通分时,最简公分母的确定方法:

1.系数取各个分母系数的最小公倍数作为最简公分母的系数. 2.取各个公因式的最高次幂作为最简公分母的因式.

3.如果分母是多项式,则应先把每个分母分解因式,然后判断最简公分母. 六、分式的四则运算与分式的乘方

分式的乘除法法则:

分式乘分式,用分子的积作为积的分子,分母的积作为积的分母。式子表示为:

d

b c

a d c

b a ??=? 分式除以分式:把除式的分子、分母颠倒位置后,与被除式相乘。式子表示为:

c

c ??=

?=÷b d

a d

b a d

c b a ② 分式的乘方:把分子、分母分别乘方。式子表示为:n n n

b a b a =??

?

??

分式的加减法则:同分母分式加减法:分母不变,把分子相加减。式子表示为:

c

b

a c

b ±=

±c a 异分母分式加减法:先通分,化为同分母的分式,然后再加减。式子表示为:

bd

bc

ad d c ±=

±b a 整式与分式加减法:可以把整式当作一个整数,整式前面是负号,要加括号,看作是分母为1的分式,再通分。

分式的加、减、乘、除、乘方的混合运算的运算顺序

先乘方、再乘除、后加减,同级运算中,谁在前先算谁,有括号的先算括号里面的,也要注意灵活,提高解题质量。

注意:在运算过程中,要明确每一步变形的目的和依据,注意解题的格式要规范,

不要随便跳步,以便查对有无错误或分析出错的原因。 加减后得出的结果一定要化成最简分式(或整式)。

七、整数指数幂

引入负整数、零指数幂后,指数的取值范围就推广到了全体实数,并且正正整数幂的法则对对负整数指数幂一样适用。即:

n m n m a a +=?a ()

mn n

m

a a = ()n n n

b b a a = n m n m a a -=÷a (0≠a )

n n b a b a =??

? ??n

n a 1=-n

a 0≠a ) 10=a (0≠a ) (任何不等于零的数的零

次幂都等于1) 其中m ,n 均为整数。

八、分式方程的解的步骤:

⑴去分母,把方程两边同乘以各分母的最简公分母。(产生增根的过程)

⑵解整式方程,得到整式方程的解。

⑶检验,把所得的整式方程的解代入最简公分母中:

如果最简公分母为0,则原方程无解,这个未知数的值是原方程的增根;如果最简公分母不为0,则是原方程的解。

产生增根的条件是:①是得到的整式方程的解;②代入最简公分母后值为0。

九、列分式方程——基本步骤:

① 审—仔细审题,找出等量关系。 ② 设—合理设未知数。

③ 列—根据等量关系列出方程(组)。 ④ 解—解出方程(组)。注意检验 ⑤

答—答题。

分式典型例题

一、分式

(一)从分数到分式 题型1:考查分式的定义

例:下列式子中,y x +15、8a 2b 、-239a 、y x b a --25、4322b a -、2-a 2、m 1、65xy x 1、21、

212+x 、πxy 3、y x +3、m

a 1

+中分式的个数为( ) (A ) 2 (B ) 3 (C )

4 (D) 5

练习题:(1)下列式子中,是分式的有 .

⑴275

x x -+; ⑵ 123x -;⑶25a a -;⑷22x x π--;⑸22b b -;⑹222xy x y +.

(2)下列式子,哪些是分式?

5a -; 234x +;3

y y

; 78x π+;2x xy x y +-;145b -+.

题型2:考查分式有,无意义,总有意义

(1)使分式有意义:令分母≠0按解方程的方法去求解; (2)使分式无意义:令分母=0按解方程的方法去求解; 注意:(12+x ≠0)

例1:当x 时,分式51

-x 有意义; 例2:分式x

x -+212中,当____=x 时,分式没有意义

例3:当x 时,分式1

1

2

-x 有意义。 例4:当x 时,分式

1

2+x x

有意义

例5:x ,y 满足关系 时,分式

x y

x y

-+无意义; 例6:无论x 取什么数时,总是有意义的分式是( )

A .

122+x x B.12+x x C.1

33+x x D.25

x x -

例7:使分式2

+x x

有意义的x 的取值范围为( )A .2≠x B .2-≠x C .2->x

D .2

例8:要是分式)

3)(1(2

-+-x x x 没有意义,则x 的值为( ) A. 2 B.-1或-3

C. -1

D.3

题型3:考查分式的值为零的条件

使分式值为零:令分子=0且分母≠0,注意:当分子等于0使,看看是否使分母=0了,如果使分母=0了,那么要舍去。 例1:当x 时,分式

1

21+-a a

的值为0 例2:当x 时,分式1

1

2+-x x 的值为0

例3:如果分式

2

2+-a a 的值为为零,则a 的值为( ) A. 2± B.2 C.

2- D.以上全不对

例4:能使分式1

22--x x

x 的值为零的所有x 的值是 ( )

A 0=x

B 1=x

C 0=x 或1=x

D 0=x 或1±=x

例5:要使分式6

59

22+--x x x 的值为0,则x 的值为( )A.3或-3 B.3

C.-3 D 2 例6:若01=+a

a

,则a 是( )A.正数 B.负数 C.零 D.任意有理数

题型4:考查分式的值为正、负的条件

【例】(1)当x 为何值时,分式

x

-84

为正;

(2)当x 为何值时,分式

2

)1(35-+-x x

为负;

(3)当x 为何值时,分式3

2+-x x 为非负数.

二、分式的基本性质

题型1:分式的基本性质的应用

分式的基本性质:分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变。

例1:

aby a xy = ; z y z y z y x +=++2

)

(3)(6 ;如果75

)13(7)13(5=++a a 成立,则a 的取值范围是

________;

例2:)(1

332

=

b

a ab

)

(c

b a c

b --=+-

例3:如果把分式

b

a b

a ++2中的a 和

b 都扩大10倍,那么分式的值( )

C

B C A B A ??=

C B C A B A ÷÷=

()0≠C

A 、扩大10倍

B 、缩小10倍

C 、是原来的20倍

D 、不变 例4:如果把分式

y

x x

+10中的x ,y 都扩大10倍,则分式的值( ) A .扩大100倍 B .扩大10倍 C .不变 D .缩小到原来的10

1 例5:如果把分式

y

x xy

+中的x 和y 都扩大2倍,即分式的值( ) A 、扩大2倍; B 、扩大4倍; C 、不变; D 缩小2倍 例6:若把分式

x

y

x 23+的x 、y 同时缩小12倍,则分式的值( )

A .扩大12倍

B .缩小12倍

C .不变

D .缩小6倍

例7:若x 、y 的值均扩大为原来的2倍,则下列分式的值保持不变的是( )

A 、y x 23

B 、223y

x

C 、y x 232

D 、2

323y x

例8:根据分式的基本性质,分式

b

a a

--可变形为( ) A b a a -- B b a a + C b a a -- D b

a a

+-

例9:不改变分式的值,使分式的分子、分母中各项系数都为整数,

=---05

.0012

.02.0x x ;

例10:不改变分式的值,使分子、分母最高次项的系数为正数,

2

11x

x x

-+--

= 。 题型2:分式的约分与最简分式

①约分的概念:把一个分式的分子与分母的公因式约去,叫做分式的约分 ②分式约分的依据:分式的基本性质.

③分式约分的方法:把分式的分子与分母分解因式,然后约去分子与分母的公因式.

④约分的结果:最简分式(分子与分母没有公因式的分式,叫做最简分式) 约分主要分为两类:第一类:分子分母是单项式的,主要分数字,同字母进行约分。

第二类:分子分母是多项式的,把分子分母能因式分解的都要进行因式分解,再去找共同的因式约去。 例1:下列式子(1)y x y x y x -=--122

;(2)c

a b

a a c a

b --=

--;(3)1-=--b a a b ;(4)y x y x y x y x +-=--+-中正确的是( )A 、1个 B 、2 个 C 、 3 个 D 、 4 个 例2:下列约分正确的是( )

A 、3

26x x x =; B 、

0=++y x y x ; C 、x xy x y x 12=++; D 、2

14222=y x xy 例3:下列式子正确的是( ) A

022=++y x y x B.1-=-+-y a y a C.x z y x z x y -+=+- D.0=+--=+--a

d c d c a d c a d c

例4:下列运算正确的是( )

A 、a a

a b a b

=--+ B 、2412x x ÷= C 、22a a b b = D 、1112m m m -=

例5:下列式子正确的是( )

A .22a b a b =

B .0=++b a b a

C .1-=-+-b a b a

D .b

a b

a b a b a +-=+-232.03.01.0

例6:化简2293m m m --的结果是( )A 、3+m m B 、3

+-m m

C 、3-m m

D 、

m

m

-3

例7:约分:=

-2264xy y

x ;932--x x = ;()xy xy 132=; (

)y x y x y x 536.031

51+=-+。

例8:约分: 224

44

a a a -++= ; =y x xy 2164 ;=++)()(

b a b b a a ; =--2

)(y x y

x =-+22y x ay

ax ;=++-16

81622x x x ;=+-6292x x

23

314___________

21a bc a bc

-=

29__________3m m -=+=b

a ab

2205__________=+--9692

2x x x __________。 例9:分式

3a 2a 2++,2

2b a b

a --,

)b a (12a

4-,2

x 1-中,最简分式有( )

A .1个

B .2个

C .3个

D .4个

题型3:分式的通分与最简公分母:

通分:主要分为两类:第一类:分母是单项式;第二类:分母是多项式(要先把分母因式分解)

分为三种类型:“二、三”型;“二、四”型;“四、六”型等三种类型。 “二、三”型:指几个分母之间没有关系,最简公分母就是它们的乘积。 例如:

2

22--+x x

x 最简公分母就是()()22-+x x 。 “二、四”型:指其一个分母完全包括另一个分母,最简公分母就是其一的那个分母。 例如:

4

222--+x x

x 最简公分母就是[][]()2242-+=-x x x “四、六”型:指几个分母之间有相同的因式,同时也有独特的因式,最简公分母要有独特的;相同的都要有。 例如:

()()

22

22-+-x x x x 最简公分母是:()22-x x

例1:分式

n

m n m n m --+2

,1,12

2的最简公分母是( ) A .))((22n m n m -+ B .222)(n m - C .)()(2n m n m -+ D .22n m - 例2:对分式

2y

x

,23x y ,14xy 通分时, 最简公分母是( )

A .24x 2y 3

B .12x2y2 C.24xy2 D.12xy2

例3:下面各分式:221x x x -+,22x y x y +-,11x x --+,22

22

x y x y +-,其中最简分式有( )个。

A. 4

B. 3

C. 2

D. 1

例4:分式

412

-a ,42-a a

的最简公分母是 . 例5:分式a 与1

b

的最简公分母为________________;

例6:分式

xy

x y x +--2

221

,1的最简公分母为 。 二、分式的运算 (一)分式的乘除

题型1:分式的乘,除,乘方

分式的乘法:乘法法测:b a ·d c =

bd ac

.

分式的除法:除法法则:b a ÷d c =b a ·c d =

bc

ad

分式的乘方:求n 个相同分式的积的运算就是分式的乘方,用式子表示就是(b

a

)n .

分式的乘方,是把分子、分母各自乘方.用式子表示为:(b a )n =n n

b

a (n 为正整数)

例题:

计算:(1)7

4

6239251526y x x x -? (2)13410431005612516a x a y x ÷ 计算:(3)24

222a ab a b a ab a b a --?+- (4)2144122++÷++-a a a a a

计算:(5) 2

2221106532x y

x y y x ÷? (6) 22213(1)69x x x x x x x -+÷-?+++

计算:(7)()22121441a a a a a a -+÷+?++- (8)11

12421222-÷+--?+-a a a a a a

求值题:(1)已知:43=y x ,求xy

x y xy y xy x y x -+÷

+--22

22222的值。 (2)已知:x y y x 39-=+,求2

22

2y

x y x +-的值。 (3)已知:311=-y x ,求y

xy x y xy x ---+2232的值。 例题:

计算:(1)232()3y x = (2)5

2???

??-b a = (3)3

2

323???

?

?

?-x y = 计算:(4)3

222???

???????? ??a b = (5)()4

3

22ab a b b a -÷?

??? ??-???? ??- = 求值题:(1)已知:4

32z

y x

==

求2

22

z y x xz yz xy ++++的值。 (2)已知:0325102

=-++-y x x 求y

xy x

x 222++的值。

练习:计算y x x x y x y x +?+÷+2

22

)(的结果是( )A y x x +22 B y x +2 C y

1

D

y

+11

化简x y x x 1?÷的结果是( )A. 1 B. xy C. x

y D .

y

x

计算:(1)4224

48223-+?++-x x x x x x ;(2)1221122

2+-÷-+-x x x x x (3)(a 2

-1)·

2

22

21

a a a +-+÷122a a +- (二)分式的加减:

分式加减主体分为:同分母和异分母分式加减。 1、同分母分式不用通分,分母不变,分子相加减。 2、异分母分式要先通分,在变成同分母分式就可以了。

通分方法:先观察分母是单项式还是多项式,如果是单项式那就继续考虑是什么类型,找出最简公分母,进行通分;如果是多项式,那么先把分母能分解的要因式分解,考虑什么类型,继续通分。

分类:第一类:是分式之间的加减,第二类:是整式与分式的加减。

例1:m

n

m 22-= 例2:141322222--+-+a a a a =

例3:

x y x

y x y -+-= 例4:22222222y

x x x y y y x y x ---+-+= 计算:(1)41

33m m m -+++ (2)a b b b a a -+- (3) 2

222)

()(a b b b a a --- (4) 2253a b ab +-22

35a b ab

--228a b

ab +.

例5:化简1x +12x +1

3x 等于( ) A .12x B .32x C .116x D .5

6x

例6:c a b c a b +- 例7:221

42a a a --- 例8:

x

x x x ---3)3(32

例9:x x x x x x 13632+-+-- 例10:2

21

2

a a a ++--224a a -- 例11:11--+a a a

练习题:(1)

2

2a

b ab

b a b -++ (2) x x x x +-+-+-2144212 (3) 2129a -+23a -. (4) b a b -a b 2++ (5) 2x y

x y y x

---- 例13:计算1

1--+a a

a 的结果是( )A 11-a B 11--a C 112---a a a D

1-a

例14:请先化简:21224

x

x x ---,然后选择一个使原式有意义而又喜欢的数代入求值.

例15:已知:0342=-+x x 求

4

42122++--+x x x x x 的值。

(三)分式的混合运算

题型1:化简分式

例1:4

421642++-÷-x x

x x 例2:34121311222+++-?-+-+x x x x x x x

例3:222)2222(x x x x x x x -?-+-+- 例4:1342+???

? ??+-x x x 例5:1111-÷??

? ??

--x x x 例6:2

2224421y xy x y x y x y x ++-÷+-- 例7

2

2

112(

)2y x y x y x xy y -÷-+-+ 例8: x

x x x x x x 1

1212

2÷???

??+---+ 题型2:分式求值问题: 例1:已知x 为整数,且

23x ++23x -+2218

9

x x +-为整数,求所有符合条件的x 值的和. 例2:已知x =2,y =1

2,求222424()()x y x y ??-??+-??÷11x y x y ??

+ ?+-??的值. 例3:已知实数x 满足4x 2-4x+l=O ,则代数式2x+x

21

的值为________. 例4:已知实数a 满足a

2

+2a -8=0,求3

41

21311222+++-?

-+-+a a a a a a a 的值. 例5:若13x x

+= 求1242++x x x 的值是( ).A .81 B .101

C .21

D .

41

例6:已知1

13x y -=,求代数式

21422x xy y

x xy y

----的值

例7:先化简,再对a 取一个合适的数,代入求值22

1369

324

a a a a a a a +--+-÷-+-. 练习题:先化简再求值

(1)168422+--x x x x ,其中x=5. (2)2

222b ab a ab

a +++,其中a=-3,b=2 (3)2

1

44122++÷

++-a a a a a ;其中a=85; (4)x

x x x x x x x 4

)44122(

22-÷

+----+,其中x= -1

(5)先化简,再求值:

324

x

x --÷(x +2-52x -).其中x =-2.

(6)3,3

2

,1)()2(

222222-==+--+÷+---b a b a a b a a b ab a a b a a 其中

题型3:分式其他类型试题:

例1:观察下面一列有规律的数:32,83,154,245,356,48

7

,…….根据其规律可知第n个数应是___(n 为正整数) 例2: 观察下面一列分式:23

45124816

,

,,,,...,x x x x x

---根据你的发现,它的第8项是 ,第n 项是 。 例3:当x=_______时,分式x -51与x

3210-互为相反数. 例4:已知

4

)4(422+++=+x C

Bx x A x x ,则___________,_____,===C B A ;

例5: 已知37(1)(2)12y A B

y y y y +=+----,则( )

A .10,13A

B =-= B .10,13A B ==

C .10,13A B ==-

D .10,13A B =-=-

例6:已知y x 32=,求222

22y

x y y x xy --+的值;

例7:先填空后计算:

111+-n n = 。21

11+-+n n = 。3

1

21+-+n n = 。(3分)

②(本小题4分)计算:)

2008)(2007(1

)3)(2(1)2)(1(1)1(1+++++++++++n n n n n n n n

解:)

2008)(2007(1

)3)(2(1)2)(1(1)1(1+++++++++++n n n n n n n n

=

三、分式与方程 (一 )分式方程的解法

解分式方程,主要是把分式方程转化为整式方程,通常的方法是去分母,并且要检验,但对一些特殊的分式方程,可根据其特征,采取灵活的方法求解,现举例如下:

1、交叉相乘法:例1.解方程:2

3

1+=

x x

2、化归法:例2.解方程:

01

2112=---x x 3、左边通分法:例3:解方程:871

7

8=--

--x

x x

4、分子对等法:例4.解方程:)(11b a x

b

b

x

a a

≠+=+

5、观察比较法:例5.解方程:

4

17

425254=-+-x x x x 6、分离常数法:例6.解方程:8

7

32982

1+++++=

+++++x x x x x x x x 7、分组通分法:例7.解方程:

4

1

315121+++=+++x x x x

(二)分式方程求待定字母值的方法

例1.若分式方程x

m

x x -=--221无解,求m 的值。 例2.若关于x 的方程1

1122+=-+-x x x k x x 不会产生增根,求k 的值。 例

3.若关于x 分式方程4

32212-=++-x x k x 有增根,求k 的值。

例4.若关于x 的方程1

1512

2

1

--=

+-+

-x k x

x k x

x 有增根1=x ,求k 的值。

(二)分式方程的题型

题型1:化为一元一次的分式方程

(1)分式方程:含分式,并且分母中含未知数的方程——分式方程。

(2)解分式方程的过程,实质上是将方程两边同乘以一个整式(最简公分母),把分式方程转化为整式方程。解分式方程时,方程两边同乘以最简公分母时,最简公分母有可能为0,这样就产生了增根,因此分式方程一定要验根。

(3)解分式方程的步骤 :(1)能化简的先化简; (2)方程两边同乘以最简公分母,化为整式方程;

(3)解整式方程; (4)验根.

例1:如果分式

121

+-x x 的值为-1,则x 的值是 ;

例2:要使2

415--x x 与的值相等,则x =__________。 例3:当m=_____时,方程21

mx m x

+-=2的根为12.

例4:如果方程

3)

1(2

=-x a 的解是x =5,则a = 。

例5:解方程:

2

2

416222-+=

--+-x x x x x 例6:已知:关于x 的方程x

x x a --=

-+34

31无解,求a 的值。 例7:若分式21+x 与3

2

--x x 的2倍互为相反数,则所列方程为

___________________________; 例8:当m 为何值时间?关于x 的方程2

1

122

---+=--x x x x x x m 的解为负数? 例9:解关于x 的方程

)0(2≠-=

+-a a

b x a

x b

例10:解关于x 的方程:)0(2112

2≠-=--+++a b a a

b a x b a x 例11知关于x 的方程

)

1)(2(121-+=--+-x x m

x x x x 的解为负值,求m 的取值范围。 练习题: (1) 16

4

412

-=-x x (2)

0)

1(213=-+--x x x x (3)

X

X X +-

-=-15

13112 (4)625+-=-x x x x (5)2

1

63524245--+=--x x x x (6)11112-=-x x (7) x

x

x --=+-21321 (8)21212339x x x -=+-- (9)

311223=-+-x x 题型2:分式方程的增根问题:

(1)增根应满足两个条件:一是其值应使最简公分母为0,二是其值应是去分母后所的整式方程的根。

(2)分式方程检验方法:将整式方程的解带入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解。 例1:分式方程

3-x x +1=3

-x m

有增根,则m= 例2:当k 的值等于 时,关于x 的方程

3

423--=+-x x

x k 不会产生增根; 例3:若解关于x 的分式方程23

4222+=

-+-x x mx x 会产生增根,求m 的值。

例4:m 取 时,方程

323-=--x m x x 会产生增根; 例5:若关于x 的分式方程3

232

-=--x m x x 无解,则m 的值为__________。

例6:当k 取什么值时?分式方程0111

x k x

x x x +-=--+有增根. 例7:若方程4

41-=

--x m

x x 有增根,则m 的值是( )A .4 B .3 C .-3 D .1

例8:若方程

34

2(2)

a x x x x =+--有增根,则增根可能为( ) A 、0 B 、2 C 、0或2 D 、1 题型3:公式变形问题: 例1:已知公式12

111R R R =+(12R R ≠),则表示1R 的公式是( ) A .212R R R RR -=

B .212RR R R R =-

C .1212()R R R R R +=

D .2

12RR R R R

=-

例2:一根蜡烛在凸透镜下成一实像,物距u ,像距v 和凸透镜的焦距f 满足关系式:1u +1v =1

f

. 若f =6厘米,v =8厘米,则物距u = 厘米.

例3:已知梯形面积,)(2

1

h b a S +=S 、a 、b 、h 都大于零,下列变形错误是( ) A .b

a S

h +=

2 B. b h S a -=2 C.a h S b -=2 D.)(2b a S h +=

例4:已知b

b

a a N

b a M ab ++

+=+++=

=11,1111,1,则M 与N 的关系为( ) A.

M >N B.M =N C .M

题型4:分式的应用题

列方程应用题的步骤是什么? (1)审;(2)设;(3)列;(4)解;(5)答. 应用题有几种类型;

1.营销类应用性问题

2.工程类应用性问题:这类问题也涉与三个数量:工作量、工作效率和工作时间。它们的数量关系是:工作量=工作效率*工作时间。列分式方程解决实际问题用它的变形公式:工作效率=工作量/工作时间。特别地,有时工作总量可以看作整体“1”,这时,工作效率=1/工作时间。

3.行程中的应用性问题:这类问题涉与到三个数量:路程、速度和时间。它们的数量关系是:路程=速度*时间。列分式方程解决实际问题要用到它的变形公式:速度=路程/时间,时间=路程/速度。而行程问题中又分相遇问题、追与问题.

4.轮船顺逆水应用性问题:v 顺水=v 静水+v 水. v 逆水=v 静水-v 水.

5.浓度应用性问题

6.耕地问题

7.数字问题

一、营销类应用性问题

例1.1 某校办工厂将总价值为2000元的甲种原料与总价值为4800元的乙种原料混合后,其平均价比原甲种原料每千克少3元,比乙种原料每千克多1元,问混合后的单价每千克是多少元?

解:设混合后的单价为每千克 x 元,则甲种原料的单价为每千克(3)x +元,混合后的总价值为(2000+4800)元,混合后的重量为

x

4800

2000+斤,甲种原料的重量为32000+x ,乙种原料的重量为1

4800

-x ,依题意,得: 32000+x +14800-x =x

4800

2000+,解得17x =, 经检验,17x =是原方程的根,所以17x =. 即混合后的单价为每千克17元. 例1.2 A 、B 两位采购员同去一家饲料公司购买同一种饲料两次,两次饲料的价格有变化,但两位采购员的购货方式不同.其中,采购员A 每次购买1000千克,采购员B 每次用去800元,而不管购买饲料多少,问选用谁的购货方式合算?

解: 两次购买的饲料单价分别为每1千克m 元和n 元(m>0,n>0,m ≠n),依题意,得: 采购员A 两次购买饲料的平均单价为

(元/千克),

采购员B 两次购买饲料的平均单价为

(元/千克).

总价值 价格 数量

2000元

乙 4800元

X 元

而>0.

也就是说,采购员A 所购饲料的平均单价高于采购员B 所购饲料的平均单价,所以选用采购员B 的购买方式合算.

例1.3 某商场销售某种商品,一月份销售了若干件,共获得利润30000元;二月份把这种商品的单价降低了 0.4元,但是销售量比一月份增加了5000件,从而获得利润比一月份多2000元,调价前每件商品的利润为多少元?

解: 可以列出三个等量关系:1.2月份销售量一1月份销售量=5000 2.2月份销售量×2月份利润=2月份总利润 3.1月份利润一2月份利润=0.4

二、工程类应用性问题

例2.1 甲乙两个工程队合作一项工程,两队合作2天后,由乙队单独做1

天就完成了全部工程。已知乙队单独做所需天数是甲队单独做所需天数的

倍,问甲乙单独做各需多少天?

析:

等量关系:甲队单独做的

工作量+乙队单

独做的工作量=1

例2.2 甲、乙两个学生分别向计算机输入1500个汉字,乙的速度是甲的3倍,因此比甲少用20分钟完成任务,他们平均每分钟输入汉字多少个?

单独做所需时间

一天的工

作量

实际做时间 工作

甲 x 天

2天

1

(2+1)天

输入汉每分钟输入

所需时间

1

1

23

2

x 天1

x 132

x

析:

等量关系:甲用时间=乙用时间+20(分钟)

例2.3 某农场原计划在若干天内收割小麦960公顷,但实际每天多收割40公顷,结果提前4天完成任务,试求原计划一天的工作量与原计划的天数。

解析1:

等量

关系:原计划

天数=实

际天数+4(天)

解析2:

等量关系:原计划每天工作量=实际每天工作量-40(公顷)

例2.4 某工程由甲、乙两队合做6天完成,厂家需付甲、乙两队共8700元,乙、丙两队合做10天完成,厂家需付乙、丙两队共9500元,甲、丙两队合做5天

《分式》典型例题分析

《分式》典型例题分析

《分式》复习提纲 考点1. 分式的概念 1、下列各有理式 π y y x y x y x x y xy y x x x ,31),(23,,53,81,4, 23,822++-+---中,分式的个数是( ) A. 3个 B. 4个 C. 5个 D. 6个 考点2. 分式的意义 分式: B A (A ,B 都是整式,且B 中含有字母,B ≠0) ① 分式有意义? ;② 分式无意义? ;③ 分式值为零? 1、若分式 3 2 -x 有意义,则x__________ 2、 要使分式 ) 5)(32(23-+-x x x 有意义,则( ) A. x ≠2 3 - B. x ≠5 C. x ≠23-且x ≠5 D. x ≠2 3 -或x ≠5 3、 当a 为任意有理数时,下列分式一定有意义的是( ) A . 112++a a B. 12+a a C. 112++a a D. 21 a a + 4、分式 3 24 x x +-当x 时有意义;当x 时分式没有意义;当x 时分式的值为零。 5、当x 时,分式2 5 2++x x 的值是零;当x 时,分式242--x x 的值是零; 当x 时,分式 x x -+22 的值是零 考点3、最简公分母、最简分式 1、分式 ac b bc a ab c 3,2,2 --的最简公分母是 ;分式1 3x ,11x x +-,225(1)xy x -的最简公分母为________ 2、下列分式中是最简分式的是( ) A. 122+x x B. x 24 C. 1 12 --x x D. 11--x x

3、下列分式中是最简分式的是( ) A. 2 2 2) (y x y x -- B. 2x xy - C. xy x y x ++2 D. 22-+x x 考点4、分式的基本性质 1. 不改变分式的值,把下列各式的分子与分母中各项的系数都化为整数。 (1)y x y x 3 22132 21-+; (2)b a b a -+2.05.03.0 2、把分式xy y x +中的分子、分母的x 、y 同时扩大2倍,那么分式的值( ) A. 扩大2倍 B. 缩小为原来的2 1 C. 不变 D. 缩小为原来的4 1 3、约分(1)4 3 22016xy y x -= ;(2)4 4422+--x x x = 4、通分(1)b a 21,2 1ab ; (2)y x -1,y x +1; (3)221y x -,xy x +21. 考点5、计算 1、(1)222222x b yz a z b xy a ÷= ;(2)49 3222--?+-x x x x = ;(3)43222)1.().()( ab a b b a --= (4) x x x x x x 36299622 2+-÷-+- (5)ab a b a a b a b a --+-2224. (6) 22212(1)441x x x x x x x -+÷+?++-

分式知识点总结和练习题讲义

分式知识点总结和题型归纳 (一)分式定义及有关题型 题型一:考查分式的定义: 一般地,如果A ,B 表示两个整数,并且B 中含有字母,那么式子 B A 叫做分式,A 为分子,B 为分母。 【例1】下列代数式中:y x y x y x y x b a b a y x x -++-+--1 , ,,21,22π,是分式的有: . 题型二:考查分式有意义的条件 分式有意义:分母不为0(0B ≠) 分式无意义:分母为0(0B =) 【例1】当x 有何值时,下列分式有意义 (1) 44+-x x (2)232+x x (3)1 2 2-x (4) 3||6--x x (5)x x 11- 题型三:考查分式的值为0的条件 分式值为0:分子为0且分母不为0(?? ?≠=0 B A ) 【例1】当x 取何值时,下列分式的值为0. (1)3 1 +-x x (2)4 2||2--x x (3)6 53222----x x x x 【例2】当x 为何值时,下列分式的值为零: (1)4 |1|5+--x x (2) 5 6252 2+--x x x 题型四:考查分式的值为正、负的条件 分式值为正或大于0:分子分母同号(???>>00B A 或???<<00B A ) 分式值为负或小于0:分子分母异号(???<>00B A 或???><0 B A ) (1)当x 为何值时,分式x -84 为正; (2)当x 为何值时,分式2 )1(35-+-x x 为负; (2)当x 为何值时,分式32 +-x x 为非负数.

题型五:考查分式的值为1,-1的条件 分式值为1:分子分母值相等(A=B ) 分式值为-1:分子分母值互为相反数(A+B=0) 【例1】若 2 2 ||+-x x 的值为1,-1,则x 的取值分别为 (二)分式的基本性质及有关题型 1.分式的基本性质: M B M A M B M A B A ÷÷= ??= 2.分式的变号法则:b a b a b a b a =--=+--=-- 题型一:化分数系数、小数系数为整数系数 【例1】不改变分式的值,把分子、分母的系数化为整数. (1)y x y x 4 1313221+- (2) b a b a +-04.003.02.0 题型二:分数的系数变号 【例1】不改变分式的值,把下列分式的分子、分母的首项的符号变为正号. (1)y x y x --+- (2)b a a --- (3)b a --- 题型三:化简求值题 【例1】 已知:511=+y x ,求y xy x y xy x +++-2232的值 【例2】 已知:21=-x x ,求2 21 x x +的值. 【例3】 若0)32(|1|2=-++-x y x ,求y x 241 -的值. 【例4】 已知:311=-b a ,求a ab b b ab a ---+232的值.

八年级上册第十五章分式知识点总结及练习

第十五章 分式 一、知识概念: 1.分式:形如 A B ,A B 、是整式,B 中含有字母且B 不等于0的整式叫做分式.其中A 叫做分式的分子,B 叫做分式的分母. 2.分式有意义的条件:分母不等于0. 3.分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不为0的整式,分式的值不变. 4.约分:把一个分式的分子和分母的公因式(不为1的数)约去,这种变形称为约分. 5.通分:异分母的分式可以化成同分母的分式,这一过程叫做通分. 6.最简分式:一个分式的分子和分母没有公因式时,这个分式称为最简分式,约分时,一般将一个分式化为最简分式. 7.分式的四则运算: ⑴同分母分式加减法则:同分母的分式相加减,分母不变,把分子相加减.用字母表示为:a b a b c c c ±±= ⑵异分母分式加减法则:异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进行计算.用字母表示为: a c ad cb b d bd ±±= ⑶分式的乘法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.用字母表示为:a c ac b d bd ?= ⑷分式的除法法则:两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.用字母表示为:a c a d ad b d b c bc ÷=?= ⑸分式的乘方法则:分子、分母分别乘方.用字母表示为:n n n a a b b ?? = ???

8.整数指数幂: ⑴m n m n a a a +?=(m n 、是正整数) ⑵() n m mn a a =(m n 、是正整数) ⑶()n n n ab a b =(n 是正整数) ⑷m n m n a a a -÷=(0a ≠,m n 、是正整数,m n >) ⑸n n n a a b b ?? = ??? (n 是正整数) ⑹1 n n a a -=(0a ≠,n 是正整数) 9. 分式方程的意义:分母中含有未知数的方程叫做分式方程. 10.分式方程的解法:①去分母(方程两边同时乘以最简公分母,将分式方程化为整式方程);②按解整式方程的步骤求出未知数的值;③验根(求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根).

分式的乘除法典型例题

《分式的乘除法》典型例题 例1 下列分式中是最简分式的是() A .264a b B .b a a b --2)(2 C .y x y x ++22 D .y x y x --2 2 例2 约分 (1)36)(12)(3a b a b a ab -- (2)44422 -+-x x x (3)b b 2213432-+ 例3 计算(分式的乘除) (1)22563ab cd c b a -?- (2)42 2 643mn n m ÷- (3)2 33344222++-?+--a a a a a a (4)2 22 22222b ab a b ab b ab b ab a +-+÷-++ 例4 计算 (1))()()(432 2xy x y y x -÷-?- (2)x x x x x x x --+?+÷+--36)3(446222 例5 化简求值 22232232b ab b a b b a ab a b a b +-÷-+?-,其中3 2=a ,3-=b . 例6 约分 (1)3286b ab ; (2)2 22322xy y x y x x --

例7 判断下列分式,哪些是最简分式?不是最简分式的,化成最简分式或整式. (1)44422-+-x x x ; (2)36 ) (4)(3a b b a a --; (3)22 2y y x -; (4)882122++++x x x x 例8 通分: (1)223c a b , ab c 2-,cb a 5 (2)a 392 -, a a a 2312---,652+-a a a

参考答案 例1 分析:(用排除法)4和6有公因式2,排除A .2)(a b -与)(b a -有公因式)(b a -,排除B ,22y x -分解因式为))((y x y x -+与)(y x -有公因式)(y x -,排除D. 故选择C. 解 C 例2 分析(1)中分子、分母都是单项式可直接约分.(2)中分子、分母是多项式,应该先分解因式,再约分.(3)中应该先把分子、分母的各项系数都化为整数,把分子、分母中的最高次项系数化为正整数,再约分. 解:(1)36)(12)(3a b a b a ab --)4()(3)()(3333-?--?-=b a a b b a b a a 3)(4 1b a b --= (2)4 4422-+-x x x )2)(2()2(2-+-=x x x 22+-=x x (3)原式2123486)22 1(6)3432(b b b b -+=?-?+=312482-+-=b b b b b b 634)12)(12(3)12(4-=-++-= 例3 分析(1)可以根据分式乘法法则直接相乘,但要注意符号.(2)中的除式是整式,可以把它看成1 64 mn .然后再颠倒相乘,(3)(4)两题都需要先分解因式,再计算. 解:(1)22563ab cd c b a -?-2253)6(ab c cd b a ?--=b ad 52= (2)422643mn n m ÷-7 43286143n m mn n m -=?-= (3)原式)2)(1)(3)(1()3)(2)(2(++----+=a a a a a a a 1 22--=a a (4)原式)()()()(2b a b a b b a b b a -+÷-+=2 2 22))((b b a b b a b a -=-+= 说明:(1)运算的结果一定要化成最简分式;(2)乘除法混合运算,可将除

分式方程知识点复习总结大全

分式方程知识点复习总结大全重点:1理解分式的概念、有意义的条件,分式的值为零的条件。 2理解分式的基本性质. 3会用分式乘除的法则进行运算. 4熟练地进行分式乘除法的混合运算. 5熟练地进行分式乘方的运算. 6熟练地进行异分母的分式加减法的运算. 7熟练地进行分式的混合运算. 8掌握整数指数幂的运算性质. 9会解可化为一元一次方程的分式方程,会检验一个数是不是 原方程的增根. 10利用分式方程组解决实际问题. 难点: 1能熟练地求出分式有意义的条件,分式的值为零的条件. 2灵活应用分式的基本性质将分式变形. 3灵活运用分式乘除的法则进行运算 4熟练地进行分式乘除法的混合运算. 5熟练地进行分式乘、除、乘方的混合运算. 6熟练地进行异分母的分式加减法的运算. 7熟练地进行分式的混合运算. 8会用科学计数法表示小于1的数. 9会解可化为一元一次方程的分式方程,会检验一个数是不是 原方程的增根. 10会列分式方程表示实际问题中的等量关系. 16.1分式及其基本性质

1.分式的概念:形如(A、B是整式,且B中含有字母,B≠0)的式子,叫做分式。其中A 叫做分式的分子,B叫做分式的分母。分母,分式才有意义 整式和分式统称有理式, 即有有理式=整式+分式. 分式值为0的条件:分子等于0,分母不等于0(两者必须同时满足,缺一不可) 例1:( 2011重庆江津)下列式子是分式的是( ) A. B. C. D. 【答案】B. 注意:不是分式 例2:已知,当x为何值时,分式无意义? 当x为何值时,分式有意义? 例3:(2011四川南充市)当分式的值为0时,x的值是()(A)0(B)1(C)-1(D)-2 【答案】B 2.分式的基本性质 (1)分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变. ,,且均表示的是整式。 (2)分式的变号法则:

人教版初中数学专题复习---分式知识点和典型例习题

第十六章分式知识点和典型例习题 【知识网络】 第一讲 分式的运算 【知识要点】1.分式的概念以及基本性质; 2.与分式运算有关的运算法则 3.分式的化简求值(通分与约分) 4.幂的运算法则 【主要公式】1.同分母加减法则:()0b c b c a a a a ±±=≠ 2.异分母加减法则:()0,0b d bc da bc da a c a c ac ac ac ±±=±=≠≠; 3.分式的乘法与除法:b d bd a c ac ?=,b c b d bd a d a c ac ÷=?= 4.同底数幂的加减运算法则:实际是合并同类项 5.同底数幂的乘法与除法;a m ● a n =a m+n; am ÷ a n =am -n 6.积的乘方与幂的乘方:(ab)m = am b n , (a m ) n = a mn 7.负指数幂: a -p = 1p a a 0 =1 8.乘法公式与因式分解:平方差与完全平方式 (a+b )(a-b )= a 2 - b 2 ;(a±b )2= a 2±2a b+b2 (一)、分式定义及有关题型 题型一:考查分式的定义 【例1】下列代数式中:y x y x y x y x b a b a y x x -++-+--1 , ,,21,2 2 π,是分式的有: . 题型二:考查分式有意义的条件 【例2】当x 有何值时,下列分式有意义 (1) 44+-x x ?(2)2 32+x x (3) 1 22-x (4) 3||6--x x (5)x x 11- 题型三:考查分式的值为0的条件

【例3】当x 取何值时,下列分式的值为0. (1)3 1+-x x (2) 4 2 ||2--x x ?(3)653 222----x x x x 题型四:考查分式的值为正、负的条件 【例4】(1)当x 为何值时,分式 x -84 为正; (2)当x 为何值时,分式2 )1(35-+-x x 为负; (3)当x 为何值时,分式 3 2 +-x x 为非负数. 练习: 1.当x 取何值时,下列分式有意义: (1) 3 ||61 -x (2) 1 )1(32++-x x ??(3) x 111+ 2.当x 为何值时,下列分式的值为零: (1)4 |1|5+--x x (2) 5 6252 2+--x x x 3.解下列不等式 (1) 01 2 ||≤+-x x (2) 03 252 >+++x x x (二)分式的基本性质及有关题型 1.分式的基本性质: M B M A M B M A B A ÷÷=??= 2.分式的变号法则: b a b a b a b a =--=+--=-- 题型一:化分数系数、小数系数为整数系数 【例1】不改变分式的值,把分子、分母的系数化为整数. (1)y x y x 4 1313221+- (2) b a b a +-04.003.02.0 题型二:分数的系数变号 【例2】不改变分式的值,把下列分式的分子、分母的首项的符号变为正号. (1)y x y x --+-? (2)b a a --- ?(3)b a --- 题型三:化简求值题 【例3】已知: 511=+y x ,求 y xy x y xy x +++-2232的值. 提示:整体代入,①xy y x 3=+,②转化出 y x 1 1+.

《分式》典型例题分析

《分式》复习提纲 考点1. 分式的概念 1、下列各有理式 π y y x y x y x x y xy y x x x ,31),(23,,53,81,4,23,822++-+---中,分式的个数是( ) A. 3个 B. 4个 C. 5个 D. 6个 考点2. 分式的意义 分式:B A (A , B 都是整式,且B 中含有字母,B ≠0) ① 分式有意义? ;② 分式无意义? ;③ 分式值为零? 1、若分式3 2-x 有意义,则x__________ 2、 要使分式) 5)(32(23-+-x x x 有意义,则( ) A. x ≠23- B. x ≠5 C. x ≠23-且x ≠5 D. x ≠2 3-或x ≠5 ? 3、 当a 为任意有理数时,下列分式一定有意义的是( ) A . 112++a a B. 12+a a C. 112++a a D. 21a a + 4、分式324 x x +-当x 时有意义;当x 时分式没有意义;当x 时分式的值为零。 5、当x 时,分式2 52++x x 的值是零;当x 时,分式242--x x 的值是零; 当x 时,分式x x -+22 的值是零 考点3、最简公分母、最简分式 1、分式ac b b c a ab c 3,2,2--的最简公分母是 ;分式13x ,11x x +-,225(1)xy x -的最简公分母为________ 2、下列分式中是最简分式的是( ) A. 122+x x B. x 24 C. 1 12--x x D. 11--x x 3、下列分式中是最简分式的是( ) { A. 2 2 2)(y x y x -- B. 2x xy - C. xy x y x ++2 D. 22-+x x 考点4、分式的基本性质 1. 不改变分式的值,把下列各式的分子与分母中各项的系数都化为整数。

分式知识点及例题

分式 知识点一:分式的定义 一般地,如果A ,B 表示两个整数,并且B 中含有字母,那么式子 B A 叫做分式,A 为分子, B 为分母。 知识点二:与分式有关的条件 1、分式有意义:分母不为0(0B ≠) 2、分式值为0:分子为0且分母不为0(???≠=0 0B A ) 3、分式无意义:分母为0(0B =) 4、分式值为正或大于0:分子分母同号(?? ?>>00 B A 或? ??<<00B A ) 5、分式值为负或小于0:分子分母异号(?? ?<>00B A 或???><00B A ) 知识点三:分式的基本性质 分式的分子和分母同乘(或除以)一个不等于0的整式,分式的值不变。 字母表示:C B C ??=A B A ,C B C ÷÷=A B A ,其中A 、B 、C 是整式,C ≠0。 拓展:分式的符号法则:分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变,即 B B A B B --=--=--=A A A 注意:在应用分式的基本性质时,要注意 C ≠0这个限制条件和隐含条件B ≠0。 知识点四:分式的约分 定义:根据分式的基本性质,把一个分式的分子与分母的公因式约去,叫做分式的约分。 步骤:把分式分子分母因式分解,然后约去分子与分母的公因。 注意:①分式的分子与分母为单项式时可直接约分,约去分子、分母系数的最大公约数,然

后约去分子分母相同因式的最低次幂。 ②分子分母若为多项式,约分时先对分子分母进行因式分解,再约分。 知识点四:最简分式的定义 一个分式的分子与分母没有公因式时,叫做最简分式。 知识点五:分式的通分 ① 分式的通分:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的 同分母分式,叫做分式的通分。 ② 分式的通分最主要的步骤是最简公分母的确定。 最简公分母的定义:取各分母所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母。 确定最简公分母的一般步骤: Ⅰ 取各分母系数的最小公倍数; Ⅱ 单独出现的字母(或含有字母的式子)的幂的因式连同它的指数作为一个因式; Ⅲ 相同字母(或含有字母的式子)的幂的因式取指数最大的。 Ⅳ 保证凡出现的字母(或含有字母的式子)为底的幂的因式都要取。 注意:分式的分母为多项式时,一般应先因式分解。 知识点六:分式的四则运算与分式的乘方 1、分式的乘除法法则: 分式乘分式,用分子的积作为积的分子,分母的积作为积的分母。式子表示为:d b c a d c b a ??=? 分式除以分式:式子表示为 c c ??=?=÷b d a d b a d c b a 2、分式的乘方:把分子、分母分别乘方。式子n n n b a b a =?? ? ?? 3、 分式的加减法则:

八年级数学下册第十六章分式知识点总结

第十六章 分式知识点及典型例子 一、分式的定义:如果A 、B 表示两个整式,并且B 中含有字母,那么式子B A 叫做分式。 例1.下列各式a π,11x +,15 x+y ,22a b a b --,-3x 2,0?中,是分式的有( )个。 二、 分式有意义的条件是分母不为零;【B ≠0】 分式没有意义的条件是分母等于零;【B=0】 分式值为零的条件分子为零且分母不为零。【B ≠0且A=0 即子零母不零】 例2.下列分式,当x 取何值时有意义。(1)2132 x x ++; (2)2323x x +-。 例3.下列各式中,无论x 取何值,分式都有意义的是( )。 A .121x + B .21x x + C .231x x + D .2221x x + 例4.当x______时,分式2134 x x +-无意义。当x_______时,分式2212x x x -+-的值为零。 例5.已知1x -1y =3,求5352x xy y x xy y +---的值。 三、分式的基本性质:分式的分子与分母同乘或除以一个不等于0的整式,分式的值不 变。 (0≠C ) 四、分式的通分和约分:关键先是分解因式。 例6.不改变分式的值,使分式115101139 x y x y -+的各项系数化为整数,分子、分母应乘以(? )。 例7.不改变分式2323523 x x x x -+-+-的值,使分子、分母最高次项的系数为正数,则是(? )。 例8.分式434y x a +,2411x x --,22x xy y x y -++,2222a ab ab b +-中是最简分式的有( )。 例9.约分:(1)22699x x x ++-; (2)2232m m m m -+- C B C A B A ??=C B C A B A ÷÷=

分式考点及典型例题分析(最全面)

分式考点及典型例题分析 1、分式的定义: 例:下列式子中,y x +15、8a 2b 、-239a 、y x b a --25、4322b a -、2-a 2、m 1、65xy x 1、21、212+x 、π xy 3、y x +3、m a 1+中分式的个数为( ) (A ) 2 (B ) 3 (C ) 4 (D) 5 练习题:(1)下列式子中,是分式的有 . ⑴275x x -+; ⑵ 123 x -;⑶25a a -;⑷22x x π--;⑸22b b -;⑹222xy x y +. (2)下列式子,哪些是分式? 5a -; 234x +;3y y ; 78x π+;2x xy x y +-;145 b -+. 2、分式有,无意义,总有意义: (1)使分式有意义:令分母≠0按解方程的方法去求解; (2)使分式无意义:令分母=0按解方程的方法去求解; 注意:(12 +x ≠0) 例1:当x 时,分式 51-x 有意义; 例2:分式x x -+212中,当____=x 时,分式没有意义 例3:当x 时,分式112-x 有意义。 例4:当x 时,分式12+x x 有意义 例5:x ,y 满足关系 时,分式x y x y -+无意义; 例6:无论x 取什么数时,总是有意义的分式是( ) A . 122+x x B.12+x x C.133+x x D.2 5x x - 例7:使分式2+x x 有意义的x 的取值围为( )A .2≠x B .2-≠x C .2->x D .2

分式知识点总结和题型归纳

分式知识点总结和题型归纳 (一)分式定义及有关题型 题型一:考查分式的定义: 一般地,如果A ,B 表示两个整数,并且B 中含有字母,那么式子 B A 叫做分式,A 为分子,B 为分母。【例1】下列代数式中:y x y x y x y x b a b a y x x -++-+--1 , ,,21,2 2 π,是分式的有: . 题型二:考查分式有意义的条件 分式有意义:分母不为0(0B ≠) 分式无意义:分母为0(0B =) 【例1】当x 有何值时,下列分式有意义 (1) 44+-x x (2)232+x x (3)122-x (4)3||6--x x (5)x x 11- (2)使分式 53-+x x ÷79 -+x x 有意义的x 应满足 . (3)若分式3 21 +-x x 无意义,则x= . 题型三:考查分式的值为0的条件 分式值为0:分子为0且分母不为0(? ??≠=00 B A ) 【例1】当x 取何值时,下列分式的值为0. (1)3 1 +-x x (2) 4 2 ||2 --x x (3) 6 5322 2----x x x x 【例2】当x 为何值时,下列分式的值为零: (1)4 |1|5+--x x (2) 5 62522+--x x x 题型四:考查分式的值为正、负的条件 分式值为正或大于0:分子分母同号(?? ?>>00B A 或???<<00 B A ) 分式值为负或小于0:分子分母异号(???<>00B A 或? ??><00 B A ) (1)当x 为何值时,分式x -84为正; (2)当x 为何值时,分式2 )1(35-+-x x 为负;

分式运算的几种技巧

分式运算的几种技巧 分式运算的一般方法就是按分式运算法则和运算顺序进行运算。但对某些较复杂的题目,使用一般方法有时计算量太大,导致出错,有时甚至算不出来,下面列举几例介绍分式运算的几点技巧。 一、 整体通分法 例1 计算:2 11 ---a a a 【分析】本题是一个分式与整式的加减运算.如能把(-a -1)看作一个整体,并提取“-”后在通分会使运算更加简便.通常我们把整式看作分母是1的分式. 【解】2222(1)(1)(1)(1)11(1)111111 +--+---=-+=-==------a a a a a a a a a a a a a a a a 二、 先约分后通分法 例2 计算2221 2324+-++-+x x x x x x 分析:直接通分,极其繁琐,不过,各个分式并非最简分式,有化简的余地,显然,化简后再通分计算会方便许多。 解:原式=)2)(1(1+++x x x +)2)(2()2(+--x x x x =21 +x +2+x x =21++x x 三、 分组加减法 例3计算21-a +12 +a -12-a -21+a 分析:本题项数较多,分母不相同.因此,在进行加减时,可考虑分组.分组的原则是使各组运算后的结果能出现分子为常数、相同或倍数关系,这样才能使运算简便。 解:原式=(21-a -21+a )+(12 +a -12-a ) =44 2-a +142--a =)1)(4(1222--a a 四、 分离整数法 例4 计算 3 x 4x 4x 5x 2x 3x 1x 2x -----+++-++ 方法:当算式中各分式的分子次数与分母次数相同次数时,一般要先利用分裂整数法对分子降次后再通分;在解某些分式方程中,也可使用分裂整数法。 解:原式= (1)1(2)1(4)1(3)11243 ++++-----+-++--x x x x x x x x =1111(1)(1)(1)(1)1243 +-++---++--x x x x =11111243--+++--x x x x =。。。 五、 逐项通分法

初中八年级的数学下册的分式学习知识点总结计划.docx

第十六章 分式 1. 分式的定义:如果 A 、 B 表示两个整式,并且 B 中含有字母,那么式子 A 叫做分式。 B 分式有意义的条件是分母不为零,分式值为零的条件分子为零且分母不为零。 2. 分式的基本性质:分式的分子与分母同乘或除以一个不等于 0 的整式,分式的值不变。 A A ?C A A C B B ?C B B C ( C 0) 3. 分式的通分和约分:关键先是分解因式 4. 分式的运算: 分式乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为分母。 分式除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。分式乘方法则:分式乘方要把分子、分母分别乘方。 a c ac a c a d ad ( a )n a n b ? ; ? d bd b d b c bc b b n 分式的加减法则:同分母的分式相加减,分母不变,把分子相加减。异分母的分式相加减, 先通分,变为同分母分式,然后再加减 a b a b , a c ad bc ad bc c c c b d bd bd bd 混合运算 : 运算顺序和以前一样。能用运算率简算的可用运算率简算。 5. 任何一个不等于零的数的零次幂等于 1, 即 a 1(a 0) ;当 n 为正整数时, a n 1 a n ( a 0) 6. 正整数指数幂运算性质也可以推广到 整数指数幂 . (m,n 是整数 ) ( 1)同底数的幂的乘法: a m ?a n a m n ; ( 2)幂的乘方: ( a m )n a mn ; ( 3)积的乘方: ( ab) n a n b n ; ( 4)同底数的幂的除法: a m a n a m n ( a ≠ 0) ; ( 5)商的乘方: ( a )n n a n ; (b ≠ 0) b b 7. 分式方程:含分式,并且分母中含未知数的方程——分式方程。

分式的基本性质-经典例题及答案

讲义编号: ______________ 副校长/组长签字:签字日期: 【考纲说明】 掌握分式的基本性质,灵活运用分式的基本性质进行约分和通分,本部分在中考中通常会以选择题的形式出现,占3--4分。 【趣味链接】 甲、乙两人分别从A、B两地同时出发相向而行,3小时后相遇. 尔后两人都用原来速度继续前进,结果甲达到B地比乙达到A地早1小时21分.已知甲每小时比乙多走1千米,求甲、乙两人的速度。 【知识梳理】 分式 1.分式的概念:形如(A、B是整式,且B中含有字母,B≠0)的式子叫做分式.其中,A叫分式的分子,B叫分式的分母. 2.分式有意义的条件:因为两式相除的除式不能为零,即分式的分母不能为零,所以,分式有意义的条件是:分式的分母必须不等于零,即B≠0,分式有意义.

3.分式的值为零的条件:分子等于0,分母不等于0,二者缺一不可. 有理式 有理式的分类:有理式 分式的基本性质 分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变. 用式子表示为:(其中M≠0) 约分和通分 1.分式的约分:把一个分式的分子与分母中的公因式约去叫约分. 2.分式的通分:把几个异分母的分式化成与原来的分式相等的同分母的分式叫通分. 最简分式与最简公分母: 约分后,分式的分子与分母不再有公因式,我们称这样的分式为最简分式.取各分母所有因式的最高次幂的积作为公分母,这样的公分母称为最简公分母. 【经典例题】 【例1】不改变分式的值,使分式的各项系数化为整数,分子、分母应乘以(? ) A.10 B.9 C.45 D.90 【例2】下列等式:①=-;②=;③=-; ④=-中,成立的是() A.①② B.③④ C.①③ D.②④ 【例3】不改变分式的值,使分子、分母最高次项的系数为正数,正确的是(? ) A. B. C. D. 【例4】分式,,,中是最简分式的有() A.1个 B.2个 C.3个 D.4个

分式方程学习知识点及典型例题.doc

第二讲分式方程 【知识要点】 1.分式方程的概念以及解法 ; 2.分式方程产生增根的原因 3.分式方程的应用题 【主要方法】 1. 分式方程主要是看分母是否有外未知数; 2.解分式方程的关健是化分式方程为整式方程; 方程两边同乘以最简公分母 3.解分式方程的应用题关健是准确地找出等量关系, 恰当地设末知数 . 题型一:用常规方法解分式方程 解下列分式方程 ( 1) 1 3 ( 2) 2 1 x 1 x x 3 x ( 3)x 1 4 1 ( 4) 5 x x 5 x 1 x2 1 x 3 4 x 题型二:特殊方法解分式方程解下列方程 (1)x4x 4 4 ;(2)x 7 x 9 x 10 x 6 x 1 x x 6 x 8 x 9 x 5 (3) 1 1 1 1 x 2 x 5 x 3 x 4 1

题型三:求待定字母的值 ( 1)若关于 x 的分式方程 2 1 m 有增根,求 m 的值 . x 3 x 3 ( 2)若分式方程 2 x a 1 的解是正数,求 a 的取值范围 . x 2 ( 3)若分式方程 x 1 m 无解,求 m 的值。 x 2 2 x ( 4)若关于 x 的方程 x k 2 x 不会产生增根,求 k 的值。 x 1 x 2 1 x 1 ( 5)若关于 x 分式方程 1 k x 2 3 有增根,求 k 的值。 x 2 x 2 4 题型四:解含有字母系数的方程 解关于 x 的方程 (1 ) x a c (c d 0) (2) 1 1 2 (b 2a) ; b x d a x b 2

1a1 b ( 3)(a b) . 题型五:列分式方程解应用题 一、工程类应用性问题 1、一项工程,甲、乙、丙三队合做 4 天可以完成,甲队单独做 15 天可以完成,乙队单独做 12 天可以完成,丙队单独做几天可以完成? 2、某市为治理污水,需要铺设一段全长3000 米的污水输送管道,为了尽量减少施工对城 市交通造成的影响,实际施工时每天的工效比原计划增加25%,结果提前30 天完成了任务,实际每天铺设多长管道? 二、行程中的应用性问题 2、甲、乙两地相距828km,一列普通快车与一列直达快车都由甲地开往乙地,直达快车 的平均速度是普通快车平均速度的 1.5 倍.直达快车比普通快车晚出发2h,比普通快车早 4h 到达乙地,求两车的平均速度. 3

八年级数学下册分式知识点总结.doc

第十六章 分式 1.分式的定义:如果 A 、 B 表示两个整式,并且 B 中含有字母,那么式子 A 叫做分式。 B 分式有意义的条件是分母不为零,分式值为零的条件分子为零且分母不为零。 2.分式的基本性质:分式的分子与分母同乘或除以一个不等于 0 的整式,分式的值不变。 A A C A A C B B C B B ( C 0) C 3.分式的通分和约分:关键先是分解因式 4.分式的运算: 分式乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为分母。 分式除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。 分式乘方法则:分式乘方要把分子、分母分别乘方。 a c ac ; a c a d ad ( a )n a n b d bd b d b c bc b b n 分式的加减法则:同分母的分式相加减,分母不变,把分子相加减。异分母的分式相加减, 先通分,变为同分母分式,然后再加减 a b a b , a c ad bc ad bc c c c b d bd bd bd 混合运算 :运算顺序和以前一样。能用运算率简算的可用运算率简算。 5. 任何一个不等于零的数的零次幂等于 1, 即 a 1(a 0) ;当 n 为正整数时, a n 1 a n ( a 0) 6.正整数指数幂运算性质也可以推广到 整数指数幂 .(m,n 是整数 ) ( 1)同底数的幂的乘法: a m a n a m n ; ( 2)幂的乘方: ( a m )n a mn ; ( 3)积的乘方: ( ) n n n ; ab a b ( 4)同底数的幂的除法: a m a n a m n ( a ≠ 0) ; ( 5)商的乘方: ( a ) n n a n ; (b ≠ 0) b b 7. 分式方程:含分式,并且分母中含未知数的方程——分式方程。 解分式方程的过程,实质上是将方程两边同乘以一个整式(最简公分母) ,把分式方程转化 为整式方程。 解分式方程时, 方程两边同乘以最简公分母时, 最简公分母有可能为0, 这样就产生了增根,因 此分式方程一定要验根。 解分式方程的步骤 : (1) 能化简的先化简 (2) 方程两边同乘以最简公分母, 化为整式方程; (3)解整式方程; (4) 验根. 增根应满足两个条件:一是其值应使最简公分母为 0,二是其值应是去分母后所的整式方 程的根。 分式方程检验方法:将整式方程的解带入最简公分母,如果最简公分母的值不为 0,则整式 方程的解是原分式方程的解;否则,这个解不是原分式方程的解。 列方程应用题的步骤是什么? (1) 审; (2) 设; (3) 列; (4) 解; (5) 答.

分式经典题型分类练习题

分式的运算 (一)、分式定义及有关题型 题型一:考查分式的定义 【例1】下列代数式中:y x y x y x y x b a b a y x x -++-+--1 , ,,21,2 2 π,是分式的有: . 题型二:考查分式有意义的条件 【例2】当x 有何值时,下列分式有意义 (1) 44+-x x (2)232+x x (3)122-x (4)3||6--x x (5)x x 1- 题型三:考查分式的值为0的条件 【例3】当x 取何值时,下列分式的值为0. (1)3 1 +-x x (2) 4 2||2--x x (3) 6 53222----x x x x 题型四:考查分式的值为正、负的条件 【例4】(1)当x 为何值时,分式 x -84 为正; (2)当x 为何值时,分式2 )1(35-+-x x 为负; (3)当x 为何值时,分式 3 2 +-x x 为非负数. 练习: 1.当x 取何值时,下列分式有意义: (1) 3 ||61 -x (2) 1 )1(32++-x x (3) x 111+ 2.当x 为何值时,下列分式的值为零: (1)4 | 1|5+--x x (2) 5 62522+--x x x 3.解下列不等式 (1) 01 2 ||≤+-x x (2) 03 252 >+++x x x (二)分式的基本性质及有关题型 1.分式的基本性质:M B M A M B M A B A ÷÷= ??= 2.分式的变号法则: b a b a b a b a =--=+--=-- 题型一:化分数系数、小数系数为整数系数 【例1】不改变分式的值,把分子、分母的系数化为整数. (1)y x y x 4 1313221+- (2) b a b a +-04.003.02.0

北师大版八年级数学下册分式知识点归纳总结及习题精练

分式及其运算知识点归纳总结 一、知识点归纳 1、分式的概念:一般地,如果A ,B 表示两个整式,B 中含有字母且B 不等于0,那么式子 B A 叫做分式. 需要注意的四点: (1)分式的分母中必须含有字母; (2)分式的分母的值不能为0; (3)分式是写成两式相除的形式,中间以分数线隔开; (4)判断分式需要看最初的形式 2、分式有无意义的条件: 两个整式相除,除数不能为0,故分式有意义的条件是分母不为0, 分母为0时,分式无意义 3、分式的值: (1)分式的值为0,满足 000≠=?=B A B A 且 (2)分式的值为1,满足 01≠=?=B A B A (3)分式的值为-1,满足 01≠-=?-=B A B A (4)分式的值为正,满足 ?? ?<>?>00000B A B A B A 或 (5)分式的值为负,满足?? ?>?<0 0000B A B A B A 或 4、分式的基本性质: 分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变. )0(,≠÷÷==m m b m a b a bm am b a ,前提条件是0≠m ,强调是同时 5、分式的符号:y y y x x x -- ==-(符号调整时注意不要改变分式的值). 6、约分和最简分式: 把一个分式的分子和分母的公因式约去,这种变形称为分式的约分.对分式进行约分化

简时,通常要使结果成为最简分式(即分子和分母已没有公因式)或者整式. 通分:最简公分母 7、分式的乘除运算 乘法法则:分式乘以分式,用分子的积作为积的分子,分母的积作为积的分母. 除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘. 分式的加减运算 同分母的分式相加减,分母不变_,把分子相加减; 异分母的分式相加减,先通分,化成同分母的分式,然后再加减. 在进行分式的运算前,要先把分式的分子和分母分解因式 分式的乘除要约分,加减要通分,最后的结果要化成最简. 有时进行分项化简 分式及其运算的题型总结 题型一:分式的定义及有无意义 1、下列各式是分式的有_________________.(填写序号) ①1π;②2x x ;③(3)(1)x x +÷-;④2 10xy -;⑤242x x --;⑥109x y +. 2、当x 取何值时,下列分式有意义 (1) ax x ; (2)2 3 9 x x +- (3 (4)2 x -. 3、当x =______分式212x x x ---=0,当x =________时,216(3)(4)x x x --+=0 4、已知当2x =-时,分式 x b x a --无意义,当4x =时,该分式的值为0,则a b +=___________. 5、若分式 224x x x m ++不论x 取何实数总有意义,则m 的取值范围

相关主题
文本预览
相关文档 最新文档