当前位置:文档之家› 圆锥曲线常用解法、常规题型与性质概要

圆锥曲线常用解法、常规题型与性质概要

圆锥曲线常用解法、常规题型与性质概要
圆锥曲线常用解法、常规题型与性质概要

圆锥曲线八种解题方法、七种常规题型和性质

总论:常用的八种方法

1、定义法

2、韦达定理法

3、设而不求点差法

4、弦长公式法

5、数形结合法

6、参数法(点参数、K 参数、角参数)

7、代入法中的顺序

8、充分利用曲线系方程法 七种常规题型

(1)中点弦问题

(2)焦点三角形问题

(3)直线与圆锥曲线位置关系问题

(4)圆锥曲线的有关最值(范围)问题 (5)求曲线的方程问题

1.曲线的形状已知--------这类问题一般可用待定系数法解决。 2.曲线的形状未知-----求轨迹方程 (6) 存在两点关于直线对称问题 (7)两线段垂直问题

常用的八种方法

1、定义法

(1)椭圆有两种定义。第一定义中,r 1+r 2=2a 。第二定义中,r 1=ed 1 r 2=ed 2。 (2)双曲线有两种定义。第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。

(3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。

2、韦达定理法

因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。

3、设而不求法

解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有:

(1))0(122

22>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有

020

20=+k b

y a x 。(其中K 是直线AB 的斜率) (2))0,0(122

22>>=-b a b y a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有

020

20=-k b

y a x (其中K 是直线AB 的斜率) (3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p. (其中K 是直线AB 的斜率)

4、弦长公式法

弦长公式:一般地,求直线与圆锥曲线相交的弦AB 长的方法是:把直线方程y kx b =+代入圆锥曲线方程中,得到型如ax bx c 2

0++=的方程,方程的两根设为x A ,x B ,判别式为△,则||||AB k x x A B =+-=

12·|

|12a k △

·+,若直接用结论,能减少配方、开方等运算过程。 5、数形结合法

解析几何是代数与几何的一种统一,常要将代数的运算推理与几何的论证说明结合起来考虑问题,在解题时要充分利用代数运算的严密性与几何论证的直观性,尤其是将某些代数式子利用其结构特征,想象为某些图形的几何意义而构图,用图形的性质来说明代数性质。

如“2x+y ”,令2x+y=b ,则b 表示斜率为-2的直线在y 轴上的截距;如“x 2+y 2

”,令

d y x =+22,则d 表示点P (x ,y )到原点的距离;又如“

23+-x y ”,令2

3

+-x y =k ,则k 表示点P (x 、y )与点A (-2,3)这两点连线的斜率……

6、参数法

(1)点参数利用点在某曲线上设点(常设“主动点”),以此点为参数,依次求出其他相关量,再列式求解。如x 轴上一动点P ,常设P (t ,0);直线x-2y+1=0上一动点P 。除设P (x 1,y 1)外,也可直接设P (2y 1-1,y 1) (2)斜率为参数

当直线过某一定点P(x 0,y 0)时,常设此直线为y-y 0=k(x-x 0),即以k 为参数,再按命题要求依次列式求解等。

(3)角参数

当研究有关转动的问题时,常设某一个角为参数,尤其是圆与椭圆上的动点问题。 7、代入法中的顺序 这里所讲的“代入法”,主要是指条件的不同顺序的代入方法,如对于命题:“已知条件P 1,P 2求(或求证)目标Q ”,方法1是将条件P 1代入条件P 2,方法2可将条件P 2代入条件P 1,方法3可将目标Q 以待定的形式进行假设,代入P 1,P 2,这就是待定法。不同的代入方法常会

影响解题的难易程度,因此要学会分析,选择简易的代入法。

八、充分利用曲线系方程法

一、定义法【典型例题】

例1、(1)抛物线C:y 2=4x 上一点P 到点A(3,42)与到准线的距离和最小,则点 P 的坐标为______________

(2)抛物线C: y 2=4x 上一点Q 到点B(4,1)与到焦点F 的距离和最小,为 。

分析:(1)A 在抛物线外,如图,连PF ,则PF PH =当A 、P 、F 三点共线时,距离和最小。

(2)B 在抛物线内,如图,作QR ⊥l 交于R ,则当B 、Q 、R 距离和最小。

解:(1)(2,2)

连PF ,当A 、P 、F 三点共线时,PF AP PH AP +=+)1(1

30

24---=

x y 即 y=22(x-1),代入y 2=4x 得P(2,22),

(注:它为直线AF 与抛物线的另一交点,舍去)

(2)(

1,4

1

) 过Q 作QR ⊥l 交于R ,当B 、Q 、R 三点共线时,QR BQ QF BQ +=+最小,此时Q 点的纵坐标为1,代入y 2=4x 得x=

41,∴Q(1,4

1) 点评:这是利用定义将“点点距离”与“点线距离”互相转化的一个典型例题,请仔细

体会。

例2、F 是椭圆13

42

2=+y x 的右焦点,A(1,1)为椭圆内一定点,上一动点。

(1)PF PA +的最小值为 (2)PF PA 2+的最小值为

分析:PF 为椭圆的一个焦半径,常需将另一焦半径F P '解:(1)4-5

设另一焦点为F ',则F '(-1,0)连A F ',P F '

542)(22-='-≥-'-='-+=+F A a PA F P a F P a PA PF PA

当P 是F 'A 的延长线与椭圆的交点时, PF PA +取得最小值为4-5。 (2)作出右准线l ,作PH ⊥l 交于H ,因a 2=4,b 2=3,c 2=1, a=2,c=1,e=2

1, ∴PH PF PH PF ==

2,2

1

即 ∴PH PA PF PA +=+2

当A 、P 、H 三点共线时,其和最小,最小值为3142

=-=-A x c

a 例3、动圆M 与圆C 1:(x+1)2+y 2=36内切,与圆C 2:(x-1)2+y 2=4外切,轨迹方程。

分析:作图时,要注意相切时的“图形特征”:图中的A 、M 、C 共线,B 、D 、M 共线)径”(如图中的MD MC =)。

解:如图,MD MC =,

∴26-=--=-MB MA DB MB MA AC 即 ∴8=+MB MA (*)

∴点M 的轨迹为椭圆,2a=8,a=4,c=1,b 2

=15轨迹方程为

15

162

2+y x 点评:得到方程(*求解,即列出4)1()1(222

2=+-+

++y x y x 方程推导了一遍,较繁琐!

例4、△ABC 中,B(-5,0),C(5,0),且sinC-sinB=

5

3

sinA,求点A 的轨迹方程。 分析:由于sinA 、sinB 、sinC 的关系为一次齐次式,两边乘以2R (R 为外接圆半径),可转化为边长的关系。

解:sinC-sinB=

53sinA 2RsinC-2RsinB=53

·2RsinA ∴BC AC AB 5

3

=-

即6=-AC AB (*)

∴点A 的轨迹为双曲线的右支(去掉顶点) ∵2a=6,2c=10

∴a=3, c=5, b=4

所求轨迹方程为

116

92

2=-y x (x>3) 点评:要注意利用定义直接解题,这里由(*)式直接用定义说明了轨迹(双曲线右支) 例5、定长为3的线段AB 的两个端点在y=x 2上移动,AB 中点为M ,求点M 到x 轴的最短距离。

分析:(1)可直接利用抛物线设点,如设A(x 1,x 12),B(x 2,X 22),又设AB 中点为M(x 0y 0)用弦长公式及中点公式得出y 0关于x 0的函数表达式,再用函数思想求出最短距离。

(2)M 到x 轴的距离是一种“点线距离”,可先考虑M 到准线的距离,想到用定义法。 解法一:设A(x 1,x 12),B(x 2,x 22),AB 中点M(x 0,y 0)

则?????=+=+=-+-0

2

2210

212

2221221229)()(y x x x x x x x x x 由①得(x 1-x 2)2[1+(x 1+x 2)2]=9

即[(x 1+x 2)2-4x 1x 2]·[1+(x 1+x 2)2]=9 ④ 由②、③得2x 1x 2=(2x 0)2-2y 0=4x 02-2y 0 代入④得 [(2x 0)2-(8x 02-4y 0)]·[1+(2x 0)2]=9

∴2

2

00419

44x x y +=

-, 11

49)14(49442

02

0202

00-+++=+

=x x x x y ≥,5192=- 4

5

0≥

y 当4x 02+1=3 即 220±

=x 时,45)(min 0=y 此时)4

5

,22(±

M 法二:如图,222+=AA MM ∴232

≥MM , 即411≥+MM ① ② ③

∴4

5

1≥

MM , 当AB 经过焦点F 时取得最小值。 ∴M 到x 轴的最短距离为

4

5 点评:解法一是列出方程组,利用整体消元思想消x 1,x 2,从而形成y 0关于x 0的函数,这是一种“设而不求”的方法。而解法二充分利用了抛物线的定义,巧妙地将中点M 到x 轴的距离转化为它到准线的距离,再利用梯形的中位线,转化为A 、B 到准线的距离和,结合定义与三角形中两边之和大于第三边(当三角形“压扁”时,两边之和等于第三边)的属性,简捷地求解出结果的,但此解法中有缺点,即没有验证AB 是否能经过焦点F ,而且点M 的坐标也不能直接得出。

二、韦达定理法【典型例题】

例6、已知椭圆

)52(11

2

2≤≤=-+m m y m x 过其左焦点且斜率为1的直线与椭圆及准线从左到右依次交于A 、B 、C 、D 、设f(m)=CD AB -,(1)求f(m),(2)求f(m)的最值。 分析:此题初看很复杂,对f(m)的结构不知如何运算,因A 、B 来源于“不同系统”,A 在准线上,B 在椭圆上,同样C 在椭圆上,D “投影”到x 轴上,立即可得防

()(22)(2)()(D A B C D A B x x x x x x x m f ---=---= )()(2D A C B x x x x +-+=

)(2C B X x +=

此时问题已明朗化,只需用韦达定理即可。

解:(1)椭圆

11

2

2=-+m y m x 中,a 2=m ,b 2=m-1,c 2=1,左焦点则BC:y=x+1,代入椭圆方程即(m-1)x 2+my 2-m(m-1)=0 得(m-1)x 2+m(x+1)2-m 2+m=0 ∴(2m-1)x 2+2mx+2m-m 2=0

设B(x 1,y 1),C(x 2,y 2),则x 1+x 2=-

)52(1

22≤≤-m m m

1

2222)()(2)()(2)(2121-?

=+=+-+=---=-=m m x x x x x x x x x x CD AB m f C A C D A B

(2))1

21

1(2121122

)(-+=-+-=

m m m m f

∴当m=5时,92

10)(min =

m f 当m=2时,3

2

4)(max =

m f 点评:此题因最终需求C B x x +,而BC 斜率已知为1,故可也用“点差法”设BC 中点为M(x 0,y 0),通过将B 、C 坐标代入作差,得

01

00=?-+k m y

m x ,将y 0=x 0+1,k=1代入得01100=-++m x m x ,∴1

20--=m m x ,可见122--=+m m x x C B

当然,解本题的关键在于对CD AB m f -=)(的认识,通过线段在x 轴的“投影”发现C B x x m f +=)(是解此题的要点。

三、点差法

与圆锥曲线的弦的中点有关的问题,我们称之为圆锥曲线的中点弦问题。 解圆锥曲线的中点弦问题的一般方法是:联立直线和圆锥曲线的方程,借助于一元二次方程的根的判别式、根与系数的关系、中点坐标公式及参数法求解。

若设直线与圆锥曲线的交点(弦的端点)坐标为),(11y x A 、),(22y x B ,将这两点代入圆锥曲线的方程并对所得两式作差,得到一个与弦AB 的中点和斜率有关的式子,可以大大减少运算量。我们称这种代点作差的方法为“点差法”。 1.以定点为中点的弦所在直线的方程

例1、过椭圆

14

162

2=+y x 内一点)1,2(M 引一条弦,使弦被M 点平分,求这条弦所在直线的方程。

解:设直线与椭圆的交点为),(11y x A 、),(22y x B

)1,2(M 为AB 的中点 ∴421=+x x 221=+y y

又A 、B 两点在椭圆上,则1642121=+y x ,1642

222=+y x

两式相减得0)(4)(2

22

12

22

1=-+-y y x x 于是0))((4))((21212121=-++-+y y y y x x x x

2

1

244)(421212121-=?-=++-=--y y x x x x y y

即21-

=AB k ,故所求直线的方程为)2(2

1

1--=-x y ,即042=-+y x 。 例2、已知双曲线12

2

2

=-y x ,经过点)1,1(M 能否作一条直线l ,使l 与双曲线交于A 、B ,且点M 是线段AB 的中点。若存在这样的直线l ,求出它的方程,若不存在,说明理由。

策略:这是一道探索性习题,一般方法是假设存在这样的直线 ,然后验证它是否满足

题设的条件。本题属于中点弦问题,应考虑点差法或韦达定理。 解:设存在被点M 平分的弦AB ,且),(11y x A 、),(22y x B

则221=+x x ,221=+y y

12212

1=-y x ,12

2

22

2=-y x

两式相减,得

0))((21))((21212121=-+--+y y y y x x x x ∴22

12

1=--=x x y y k AB

故直线)1(21:-=-x y AB

由??

???=--=-12)

1(2122y x x y 消去y ,得03422=+-x x

∴ 08324)4(2<-=??--=?

这说明直线AB 与双曲线不相交,故被点M 平分的弦不存在,即不存在这样的直线l 。

评述:本题如果忽视对判别式的考察,将得出错误的结果,请务必小心。由此题可看到中点弦问题中判断点的M 位置非常重要。(1)若中点M 在圆锥曲线内,则被点M 平分的弦一

般存在;(2)若中点M 在圆锥曲线外,则被点M 平分的弦可能不存在。 2.过定点的弦和平行弦的中点坐标和中点轨迹

例3、已知椭圆

125

752

2=+x y 的一条弦的斜率为3,它与直线21=x 的交点恰为这条弦的中点M ,求点M 的坐标。

解:设弦端点),(11y x P 、),(22y x Q ,弦PQ 的中点),(00y x M ,则2

1

0=

x 12021==+x x x , 0212y y y =+

又 125752

12

1=+x

y ,125

752

22

2=+x y

两式相减得0))((75))((2521212121=-++-+x x x x y y y y 即0)(3)(221210=-+-x x y y y ∴

212123

y x x y y -

=-- 32

121=--=

x x y y k ∴ 323

0=-

y ,即210-=y ∴点M 的坐标为)2

1

,21(-。

例4、已知椭圆

125

752

2=+x y ,求它的斜率为3的弦中点的轨迹方程。 解:设弦端点),(11y x P 、),(22y x Q ,弦PQ 的中点),(y x M ,则

x x x 221=+, y y y 221=+

又 125752

12

1=+x

y ,125

752

22

2=+x y

两式相减得0))((75))((2521212121=-++-+x x x x y y y y 即0)(3)(2121=-+-x x x y y y ,即

y

x

x x y y 32121-=--

32

121=--=

x x y y k ∴33=-y x

,即0=+y x 由???

??=+=+125

75022x y y x ,得)235,235(-

P )235,235(-Q

点M 在椭圆内

∴它的斜率为3的弦中点的轨迹方程为)2

3

5235(0<<-

=+x y x 例1 已知椭圆2

212

x y +=,求斜率为2的平行弦中点的轨迹方程. 解 设弦的两个端点分别为()()1122,,,P x y Q x y ,PQ 的中点为(),M x y .

则22

1112x y +=,(1)222212

x y +=,(2) ()()12-得:

()2222121202x x y y -+-=,()1212

1212

02x x y y y y x x +-∴++=-. 又12

121212

2,2,

2y y x x x y y y x x -+=+==-,40x y ∴+=.

弦中点轨迹在已知椭圆内,∴所求弦中点的轨迹方程为40x y +=(在已知椭圆内). 例2

直线():50l ax y a --+=(a 是参数)与抛物线()2

:1f y x =+的相交弦

是AB ,则弦AB 的中点轨迹方程是 .

解 设()()1122,,A x y B x y 、,AB 中点(),M x y ,则122x x x +=.

()():150l a x y --+=,l ∴过定点()1,5N -,5

1

AB MN y k k x +∴==

-. 又()2

111y x =+,(1)()2

221y x =+,(2)

()()12-得:()

()()()2

2

12121212112y y x x x x x x -=+-+=-++,

12

1212

2AB y y k x x x x -∴=

=++-.

于是

5

221

y x x +=+-,即227y x =-. 弦中点轨迹在已知抛物线内,∴所求弦中点的轨迹方程为2

27y x =-(在已知抛物

线内).

3.求与中点弦有关的圆锥曲线的方程

例5、已知中心在原点,一焦点为)50,0(F 的椭圆被直线23:-=x y l 截得的弦的中点的

横坐标为

2

1

,求椭圆的方程。 解:设椭圆的方程为12222=+b

x a y ,则502

2=-b a ┅┅①

设弦端点),(11y x P 、),(22y x Q ,弦PQ 的中点),(00y x M ,则

210=

x ,2

1

2300-=-=x y ∴12021==+x x x ,12021-==+y y y 又122

122

1=+b x

a y ,122

222

2=+b

x a y 两式相减得0))(())((2121221212=-++-+x x x x a y y y y b 即0)()(212212=-+--x x a y y b

22

2121b

a x x y y =-- ∴ 322=

b a ┅┅② 联立①②解得752

=a ,252

=b

∴所求椭圆的方程是125

752

2=+

x y 例3 已知ABC ?的三个顶点都在抛物线232y x =上,其中()2,8A ,且ABC ?的重心

G 是抛物线的焦点,求直线BC 的方程.

解 由已知抛物线方程得()8,0G .设BC 的中点为()00,M x y ,则A G M 、、三点共

线,且2AG GM =,G ∴分AM 所成比为2,于是0

022812

82012

x y +?=??+?+?=??+,

解得0011

4

x y =??

=-?,()11,4M ∴-.

设()()1122,,,B x y C x y ,则128y y +=-. 又2

1132y x =,(1)2

2232y x =,(2)

()()12-得:()22121232y y x x -=-,1212123232

48

BC y y k x x y y -∴=

===--+-.

BC ∴所在直线方程为()4411y x +=--,即4400x y +-=.

例4 已知椭圆()22

2210x y a b a b

+=>>的一条准线方程是1x =,有一条倾斜角为4π的

直线交椭圆于A B 、两点,若AB 的中点为11,24C ??

-

??

?,求椭圆方程. 解 设()()1122,,A x y B x y 、,则12121

1,2x x y y +=-+=,且2211221x y a b +=,(1)

22

22221x y a b

+=,(2) ()()12-得:2222121222x x y y a b

--=-,()()2212122212121

12

b x x y y b x x a y y a +--∴

=-=-?-+, 2

1221221AB

y y b k x x a

-∴===-,222a b ∴=,

(3) 又21a c

=,2a c ∴=,(4)而222

a b c =+,(5) 由(3),(4),(5)可得2

211

,24

a b ==, 所求椭圆方程为2211124

x y +=.

4.圆锥曲线上两点关于某直线对称问题

例6、已知椭圆13

42

2=+y x ,试确定的m 取值范围,使得对于直线m x y +=4,椭圆上总有不同的两点关于该直线对称。

解:设),(111y x P ,),(222y x P 为椭圆上关于直线m x y +=4的对称两点,),(y x P 为弦2

1P P 的中点,则12432

12

1=+y x ,12432

22

2=+y x 两式相减得,0)(4)(32

22

12

22

1=-+-y y x x 即0))((4))((321212121=-++-+y y y y x x x x

x x x 221=+,y y y 221=+,

4

1

2121-=--x x y y

∴x y 3= 这就是弦21P P 中点P 轨迹方程。

它与直线m x y +=4的交点必须在椭圆内

联立??

?+==m x y x y 43,得???-=-=m

y m x 3 则必须满足22

433x y -<,

即22

433)3(m m -<,解得13

13

213132<<-m 5. 求直线的斜率

例5 已知椭圆

221259x y +=上不同的三点()()11229,,4,,,5A x y B C x y ??

???

与焦点()4,0F 的距离成等差数列.(1)求证:128x x +=;(2)若线段AC 的垂直平分线与x 轴的交点为T ,求直线BT 的斜率k .

(1)证 略.

(2)解

128x x +=,∴设线段AC 的中点为()04,D y .

又A C 、在椭圆上,∴22111259x y +=,(1)22

221259x y +=,(2) ()()12-得:

22221212259x x y y --=-, ()()1212121200

998362525225x x y y x x y y y y +-∴

=-=-?=--+.

∴直线DT 的斜率02536DT y k =

,∴直线DT 的方程为()0

025436

y y y x -=-. 令0y =,得6425x =,即64,025T ??

???,∴直线BT 的斜率9

55644425

k -==-.

6. 确定参数的范围

例 6 若抛物线2

:C y x =上存在不同的两点关于直线():3l y m x =-对称,求实数

m 的取值范围.

解 当0m =时,显然满足.

当0m ≠时,设抛物线C 上关于直线():3l y m x =-对称的两点分别为()()1122,,P x y Q x y 、,且PQ 的中点为()00,M x y ,则211y x =,

(1)222y x =,(2)

()()12-得:221212y y x x -=-,1212120

11

2PQ y y k x x y y y -∴=

==

-+, 又1

PQ k m

=-

,02m y ∴=-.

中点()00,M x y 在直线():3l y m x =-上,()003y m x ∴=-,于是05

2

x =. 中点在抛物线2y x =区域内

M 200y x ∴<,即2

522m ??-< ???

,解得m <<综上可知,所求实数m

的取值范围是(. 7. 证明定值问题

例7 已知AB 是椭圆()22

2210x y a b a b

+=>>不垂直于x 轴的任意一条弦,P 是AB 的

中点,O 为椭圆的中心.求证:直线AB 和直线OP 的斜率之积是定值.

证明

设()()1122,,,A x y B x y 且12x x ≠,

则2211221x y a b +=,(1)22

22221x y a b +=,(2) ()()12-得:2222

121222x x y y a b

--=-,

()()2121221212b x x y y x x a y y +-∴=--+,()()

21212

2

1212AB b x x y y k x x a y y +-∴==--+. 又1212OP

y y k x x +=

+,221

AB OP

b k k a ∴=-?,22AB OP b k k a ∴?=-(定值). 8. 其它。看上去不是中点弦问题,但与之有关,也可应用。

例9,过抛物线)0(22

>=p px y 上一定点P (x y 00,)(y 00>),作两条直线分别交抛物

线于A (x y 11,),B (22,y x ). (1)求该抛物线上纵坐标为

p

2

的点到其焦点F 的距离; (2)当PA 与PB 的斜率存在且倾斜角互补时,求0

21y y y +的值,并证明直线AB 的斜

率是非零常数.

解(1)略(2):设A (y 12,y 1),B(y 22

,y 2),则 k AB =

1

22

1

2

2121

y y y y y y +=

--

∵k PA =

022

2202012012011

,1y y y y y y k y y y y y y PB +=--=+=-- 由题意,k AB =-k AC , ∴

0210

2012,11y y y y y y y -=++-=+则

则:k AB =0

21

y -为定值。

例10、抛物线方程,直线与轴的交点在抛物线准线的右边。y p x p x y t x 210=+>+=()() (1)求证:直线与抛物线总有两个不同交点

(2)设直线与抛物线的交点为A 、B ,且OA ⊥OB ,求p 关于t 的函数f(t)的表达式。

(1)证明:抛物线的准线为114:x p

=--

由直线x+y=t 与x 轴的交点(t ,0)在准线右边,得 t p

t p >--++>14

440,而 由消去得x y t

y p x y +==+???21()

x t p x t p 2220-++-=()()

?=+--()()2422t p t p =++>p t p ()440 故直线与抛物线总有两个交点。

(2)解:设点A(x 1,y 1),点B(x 2,y 2) ∴+=+=-x x t p x x t p 121222, 1-=?∴⊥O B O A k k OB OA Q 则x x y y 12120+= 又y y t x t x 1212=--()() ∴+=-+=x x y y t t p 1212220() ∴==+p f t t t ()22

又,得函数的定义域是p t p f t >++>0440() ()()-?+∞200,,

【同步练习】

1、已知:F 1,F 2是双曲线122

22=-b

y a x 的左、右焦点,过F 1作直线交双曲线左支于点

A 、

B ,若m AB =,△ABF 2的周长为( )

A 、4a

B 、4a+m

C 、4a+2m

D 、4a-m

2、若点P 到点F(4,0)的距离比它到直线x+5=0的距离小1,则P 点的轨迹方程是 ( )

A 、y 2=-16x

B 、y 2=-32x

C 、y 2=16x

D 、y 2=32x

3、已知△ABC 的三边AB 、BC 、AC 的长依次成等差数列,且AC AB >,点B 、C 的坐标分别为(-1,0),(1,0),则顶点A 的轨迹方程是( )

A 、

13422=+y x B 、)0(1342

2>=+x y x C 、)0(13422<=+x y x D 、)00(13

42

2≠>=+y x y x 且 4、过原点的椭圆的一个焦点为F(1,0),其长轴长为4,则椭圆中心的轨迹方程是

( )

A 、)1(49)2

1(2

2

-≠=

+-x y x B 、)1(49

)21(22-≠=++x y x C 、)1(49)21(22-≠=-+x y x D 、)1(4

9)21(22

-≠=++x y x

5、已知双曲线

116

92

2=-y x 上一点M 的横坐标为4,则点M 到左焦点的距离是 6、抛物线y=2x 2截一组斜率为2的平行直线,所得弦中点的轨迹方程是 7、已知抛物线y 2=2x 的弦AB 所在直线过定点p(-2,0),则弦AB 中点的轨迹方程是

8、过双曲线x 2-y 2=4的焦点且平行于虚轴的弦长为

9、直线y=kx+1与双曲线x 2-y 2=1的交点个数只有一个,则k=

10、设点P 是椭圆

19

252

2=+y x 上的动点,F 1,F 2是椭圆的两个焦点,求sin ∠F 1PF 2的最大值。

11、已知椭圆的中心在原点,焦点在x 轴上,左焦点到坐标原点、右焦点、右准线的距离依次成等差数列,若直线l 与此椭圆相交于A 、B 两点,且AB 中点M 为(-2,1),34=AB ,求直线l 的方程和椭圆方程。

12、已知直线l 和双曲线)0,0(122

22>>=-b a b

y a x 及其渐近线的交点从左到右依次为

A 、

B 、

C 、

D 。求证:CD AB =。

参考答案

1、C

a BF BF a AF AF 2,21212=-=-,

∴,24,42222m a AB BF AF a AB BF AF +=++=-+选C

2、C 点P 到F 与到x+4=0等距离,P 点轨迹为抛物线 p=8开口向右,则方程为y 2=16x ,选C

3、D

∵22?=+AC AB ,且AC AB >

∵点A 的轨迹为椭圆在y 轴右方的部分、又A 、B 、C 三点不共线,即y ≠0,故选D 。 4、A 设中心为(x ,y),则另一焦点为(2x-1,2y),则原点到两焦点距离和为4

得4)2()12(122=+-+y x ,∴4

9)21(2

2=

+-y x ①又c

)1(2

2<+-y x ∴(x-1)2+y 2<4 ②,由①,②得x ≠-1,选A

5、

329 左准线为x=-59,M 到左准线距离为529)59(4=--=d 则M 到左焦点的距离为329

52935=?=ed 6、)2

1

(21>=y x 设弦为AB ,A(x 1,y 1),B(x 2,y 2)AB 中点为(x ,y),则y 1=2x 12,

y 2=2x 22,y 1-y 2=2(x 12-x 22)

)(2212

121x x x x y y +=-- ∴2=2·2x ,21=x

将21=

x 代入y=2x 2得2

1

=y ,轨迹方程是21=

x (y>2

1

)

7、y 2=x+2(x>2)

设A(x 1,y 1),B(x 2,y 2),AB 中点M(x ,y),则

2)(),

(2,2,2212

12

1212

221222121=+?---=-==y y x x y y x x y y x y x y

∵20+-=

=x y k k MP AB ,∴

222

=?+y x y

,即y 2=x+2 又弦中点在已知抛物线内P ,即y 2<2x ,即x+2<2x ,∴x>2 8、4

22,8,4222====c c b a ,令22=x 代入方程得8-y 2=4 ∴y 2=4,y=

±2,弦长为4

9、12±±

或 ①???=?≠-0

12k 得10、解:a 2=25,设F 1、F 2设=11,PF r PF 则???-+=+2122212122r r r r r r θ ①2-②得2r 1r 2 ∴1+cos θ=21224r r b ∴1+cos θ的最小值为22

2a

b ,即1+cos θ2518≥

cos θ257-

≥, 257arccos 0-≤≤πθ则当2

π

θ=时,sin θ取值得最大值1, 即sin ∠F 1PF 2的最大值为1。

11、设椭圆方程为)0(122

22>>=+b a b

y a x

由题意:C 、2C 、c c

a +2

成等差数列,

∴222

24c a c c

a c c =++=即,

∴a 2=2(a 2-b 2),∴a 2=2b 2

椭圆方程为1222

22=+b

y b x ,设A(x 1,y 1),B(x 2,y 2)

1222

12

21=+b

y b x ①

122

2

2

222=+b y b x ②

④ ⑤ ①-②得022

2

2

2122221=-+-b

y y b x x ∴

022

2=?+k b y b x m

m 即

02

2

=+-k ∴k=1 直线AB 方程为y-1=x+2即y=x+3, 代入椭圆方程即x 2+2y 2-2b 2=0得x 2+2(x+3)2-2b 2=0 ∴3x 2+12x+18-2b 2=0, 342)218(12123

1

112221=--=

+-=b x x AB 解得b 2

=12, ∴椭圆方程为

112

242

2=+y x ,直线l 方程为x-y+3=0 12、证明:设A(x 1,y 1),D(x 2,y 2),AD 中点为M(x 0,y 0)直线l 的斜率为k ,则

???????=-=-112

2

222222

12

21b y a x b y a x ①-②得02220

20=?-

k b

y a x ③ 设

),(),,(),,(002211

y x M BC y x C y x B '''''''中点为, 则???????=-=-0022

12

2

21222

112211b y a x b y a x ④-⑤得02221

021

=?-'k b

y a x ⑥

由③、⑥知M 、M '均在直线022:

22=?-'k b

y

a x l 上,而M 、M '又在直线l 上 , 若l 过原点,则B 、C 重合于原点,命题成立

若l 与x 轴垂直,则由对称性知命题成立

若l 不过原点且与x 轴不垂直,则M 与M '重合 ∴CD AB =

四、弦长公式法

若直线b kx y l +=:与圆锥曲线相交与A 、B 两点,),(),,2211y x B y x A (则 弦长221221)()(y y x x AB -+-= 221221)]([)(b kx b kx x x +-++-=

212

1x x k -+=

212212

4)(1x x x x k

-++= 同理:

① ②

|AB|=122

121224)(||11y y y y y y k

-+-+

特殊的,在如果直线AB 经过抛物线的焦点,则|AB|=?

一般地,求直线与圆锥曲线相交的弦AB 长的方法是:把直线方程y kx b =+代入圆锥曲线方程中,得到型如ax bx c 2

0++=的方程,方程的两根设为x A ,x B ,判别式为△,则

||||AB k x x A B =+-=12·|

|12a k △

·+,若直接用结论,能减少配方、开方等运算过程。

例 求直线x y -+=10被椭圆x y 22416+=所截得的线段AB 的长。

② 结合图形的特殊位置关系,减少运算 在求过圆锥曲线焦点的弦长时,由于圆锥曲线的定义都涉及焦点,结合图形运用圆锥曲线的定义,可回避复杂运算。

例题1:已知直线1+=x y 与双曲线14

:2

2

=-y x C 交于A 、B 两点,求AB 的弦长 解:设),(),,2211y x B y x A (

由??

???=-+=14122y x x y 得

224(1)40x x -+-=得23250x x --= 则有???

????-==+35322121x x x x 得,

23

8

320942

4)(1212212=+=-++=x x x x k AB 练习1:已知椭圆方程为

12

22

=+y x 与直线方程21:+=x y l 相交于A 、B 两点,求AB 的弦长

练习2:设抛物线x y 42

=截直线m x y +=2所得的弦长AB 长为53,求m 的值

圆锥曲线常见题型及答案

圆锥曲线常见题型归纳 一、基础题 涉及圆锥曲线的基本概念、几何性质,如求圆锥曲线的标准方程,求准线或渐近线方程,求顶点或焦点坐标,求与有关的值,求与焦半径或长(短)轴或实(虚)轴有关的角和三角形面积。此类题在考试中最常见,解此类题应注意: (1)熟练掌握圆锥曲线的图形结构,充分利用图形来解题;注意离心率与曲线形状的关系; (2)如未指明焦点位置,应考虑焦点在x 轴和y 轴的两种(或四种)情况; (3)注意2,2,a a a ,2,2,b b b ,2,2,c c c ,2,,2p p p 的区别及其几何背景、出现位置的不同,椭圆中 222b a c -=,双曲线中222b a c +=,离心率a c e =,准线方程a x 2±=; 例题: (1)已知定点)0,3(),0,3(21F F -,在满足下列条件的平面上动点P 的轨迹中是椭圆的是 ( ) A .421=+PF PF B .6 21=+PF PF C .1021=+PF PF D .122 2 2 1 =+PF PF (答:C ); (2) 方程8=表示的曲线是_____ (答:双曲线的左支) (3)已知点)0,22(Q 及抛物线4 2 x y =上一动点P (x ,y ),则y+|PQ|的最小值是_____ (答:2) (4)已知方程1232 2=-++k y k x 表示椭圆,则k 的取值范围为____ (答:11 (3,) (,2)22 ---); (5)双曲线的离心率等于25 ,且与椭圆14 922=+y x 有公共焦点,则该双曲线的方程_______(答:2 214x y -=); (6)设中心在坐标原点O ,焦点1F 、2F 在坐标轴上,离心率2=e 的双曲线C 过点)10,4(-P ,则C 的方程为 _______(答:226x y -=) 二、定义题 对圆锥曲线的两个定义的考查,与动点到定点的距离(焦半径)和动点到定直线(准线)的距离有关,有时要用到圆的几何性质。此类题常用平面几何的方法来解决,需要对圆锥曲线的(两个)定义有深入、细致、全面的理解和掌握。常用到的平面几何知识有:中垂线、角平分线的性质,勾股定理,圆的性质,解三角形(正弦余弦定理、三角形面积公式),当条件是用向量的形式给出时,应由向量的几何形式而用平面几何知识;涉及圆的解析几何题多用平面几何方法处理; 圆锥曲线的几何性质: (1)椭圆(以122 22=+b y a x (0a b >>)为例): ①范围:,a x a b y b -≤≤-≤≤; ②焦点:两个焦点(,0)c ±; ③对称性:两条对称轴0,0x y ==,一个对称中心(0,0),四个顶点(,0),(0,)a b ±±,其中长轴长为 2a ,短轴长为2b ; ④准线:两条准线2 a x c =±; ⑤离心率:c e a =,椭圆?01e <<,e 越小,椭圆越圆;e 越大,椭圆越扁。 p e c b a ,,,,

圆锥曲线解题技巧教案

圆锥曲线―概念、方法、题型、及应试技巧总结 1.圆锥曲线的两个定义: (1)第一定义中要重视“括号”内的限制条件:椭圆中,与两个定点F 1,F 2的距离的和等于常数2a ,且此常数2a 一定要大于21F F ,当常数等于21F F 时,轨迹是线段F 1F 2,当常数小于21F F 时,无轨迹;双曲线中,与两定点F 1,F 2的距离的差的绝对值等于常数2a ,且此常数2a 一定要小于|F 1F 2|,定义中的“绝对值”与2a <|F 1F 2|不可忽视。若2a =|F 1F 2|,则轨迹是以F 1,F 2为端点的两条射线,若2a ﹥|F 1F 2|,则轨迹不存在。若去掉定义中的绝对值则轨迹仅表示双曲线的一支。 如方程8=表示的曲线是_____(答:双曲线的左支) (2)第二定义中要注意定点和定直线是相应的焦点和准线,且“点点距为分子、点线距为分母”,其商即是离心率e 。圆锥曲线的第二定义,给出了圆锥曲线上的点到焦点距离与此点到相应准线距离间的关系,要善于运用第二定义对它们进行相互转化。 如已知点)0,22(Q 及抛物线4 2 x y =上一动点P (x ,y ),则y+|PQ|的最小值是_____(答2) 2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程): (1)椭圆:焦点在x 轴上时12222=+b y a x (0a b >>),焦点在y 轴上时22 22b x a y += 1(0a b >>)。方程22 Ax By C +=表示椭圆的充要条件是什么?(ABC ≠0,且A ,B , C 同号,A ≠B )。 如(1)已知方程1232 2=-++k y k x 表示椭圆,则k 的取值范围为____(答: 11 (3,)(,2)22 ---) ; (2)双曲线:焦点在x 轴上:2222b y a x - =1,焦点在y 轴上:22 22b x a y -=1 (0,0a b >>)。方程22 Ax By C +=表示双曲线的充要条件是什么?(ABC ≠0,且A , B 异号)。 如设中心在坐标原点O ,焦点1F 、2F 在坐标轴上,离心率2= e 的双曲线C 过点 )10,4(-P ,则C 的方程为_______(答:226x y -=) (3)抛物线:开口向右时22(0)y px p =>,开口向左时2 2(0)y px p =->,开口 向上时22(0)x py p =>,开口向下时2 2(0)x py p =->。 如定长为3的线段AB 的两个端点在y=x 2上移动,AB 中点为M ,求点M 到x 轴的最短距离。 4 5 3.圆锥曲线焦点位置的判断(首先化成标准方程,然后再判断): (1)椭圆:由x 2 ,y 2 分母的大小决定,焦点在分母大的坐标轴上。 1

圆锥曲线的几何性质及其解题应用

圆锥曲线的几何性质及其解题应用 一、正确掌握圆锥曲线的几何性质,提高解题效率 1、椭圆中一些线段的长度及其关系如: ①椭圆上的点到焦点最近的距离为AF a c =-,最近的距离为BF a c =+; ②Rt OFC ?中,2 2 2 a b c =+; ④△F PQ '的周长与菱形F CFD '的周长相等,为4a . 例题1、如下图,椭圆中心为O ,F 是焦点,A 、C ,P Q 在椭圆上且PD l ⊥于D ,QF OA ⊥于F ① PF PD ② QF BF ③ AO BO ④ AF BA ⑤ FO AO ⑥ OF FC 能作为椭圆的离心率的是 (填正确的序号)2① 12OB OB b ==;12OA OA a ==. ② 焦点F 向渐近线引垂线,垂足为P ,则 bc PF b c = = =, 又因为OF c =,故有OP a = ③ 由②可知2Rt OA Q Rt OPF ???. ⑥ A A B B ③当PQ x ⊥轴时,2 2b PQ a =?,叫椭圆的通径.

例题2.已知双曲线22 214x y b -=的右焦点与抛物线x y 122=的焦点重合,则该双曲线的 焦点到其渐近线的距离等于 . 【解析】双曲线的焦点到其渐近线的距离等于b ,由抛物线方程x y 122 =易知其焦点坐标 为)0,3(,又根据双曲线的几何性质可知2234=+b ,所以5= b . 【点评】平时如果能理解并记住一些有用的结论,可以在考试中节省许多宝贵的时间. 3、抛物线中一些线段的长度及其关系如: ① 通过焦点且垂直对称轴的直线,与抛物线相交于两点,连接这两点的线段AB 叫做抛物线的通径,且2AB p =. ② 2DF p =,几何意义知道吗? ③ 由①②易知Rt ADF ? ④ 题目中涉及到焦点F 虑定义PF PQ =这个性质.

圆锥曲线知识点整理

高二数学圆锥曲线知识整理 解析几何的基本问题之一:如何求曲线(点的轨迹)方程。它一般分为两类基本题型:一是已知轨迹类型求其方程,常用待定系数法,如求直线及圆的方程就是典型例题;二是未知轨迹类型,此时除了用代入法、交轨法、参数法等求轨迹的方法外,通常设法利用已知轨迹的定义解题,化归为求已知轨迹类型的轨迹方程。因此在求动点轨迹方程的过程中,一是寻找与动点坐标有关的方程(等量关系),侧重于数的运算,一是寻找与动点有关的几何条件,侧重于形,重视图形几何性质的运用。 在基本轨迹中,除了直线、圆外,还有三种圆锥曲线:椭圆、双曲线、抛物线。 1、三种圆锥曲线的研究 (1)统一定义,三种圆锥曲线均可看成是这样的点集:? ?????>=0e ,e d |PF ||P ,其中 F 为定点,d 为P 到定直线的距离,如图。 因为三者有统一定义,所以,它们的一些性质,研究它们的一些方法都具有规律性。 当01时,点P 轨迹是双曲线;当e=1时,点P 轨迹是抛物线。 (2)椭圆及双曲线几何定义:椭圆:{P||PF 1|+|PF 2|=2a ,2a>|F 1F 2|>0,F 1、F 2为定点},双曲线{P|||PF 1|-|PF 2||=2a ,|F 1F 2|>2a>0,F 1,F 2为定点}。 (3)圆锥曲线的几何性质:几何性质是圆锥曲线内在的,固有的性质,不因为位置的改变而改变。 定性:焦点在与准线垂直的对称轴上 椭圆及双曲线中:中心为两焦点中点,两准线关于中心对称;椭圆及双曲线关于长轴、短轴或实轴、虚轴成轴对称,关于中心成中心对称。 (4)圆锥曲线的标准方程及解析量(随坐标改变而变) 举焦点在x 轴上的方程如下: 椭 圆 双 曲 线 抛 物 线 标准方程 1b y a x 2 22 2=+ (a>b>0) 1b y a x 2 22 2=- (a>0,b>0) y 2=2px (p>0) 顶 点 (±a ,0) (0,±b ) (±a ,0) (0,0) 焦 点 (±c ,0) ( 2 p ,0) 准 线 X=±c a 2 x=2 p - 中 心 (0,0) 焦半径 P(x 0,y 0)为圆锥曲线上一点,F 1、F 2分别为左、右焦点 |PF 1|=a+ex 0 |PF 2|=a-ex 0 P 在右支时: |PF 1|=a+ex 0 |PF 2|=-a+ex 0 P 在左支时: |PF 1|=-a-ex 0 |PF 2|=a-ex 0 |PF|=x 0+ 2 p

第五讲 圆锥曲线及其几何性质

回顾复习五:圆锥曲线及其几何性质 ☆考点梳理 1.圆锥曲线的轨迹定义与统一定义. 2.圆锥曲线的标准方程及其推导. 3.圆锥曲线的几何性质:范围、对称性、焦点、离心率、准线、渐近线.☆基础演练 1.如图,椭圆中心为O,A、B为左右顶点,F为左焦点, 左准线l交x轴于C,点P、Q在椭圆上,PD⊥l于D, QF⊥OA于F.给出下列比值: 其中为离心率的有_________________. 2.若 12 ,F F为椭圆 22 1 25 x y m +=的焦点,且 12 8 F F=,则m的 值为. 3.过抛物线的焦点F作直线交其于A、B两点,A、B在抛物线准线上的射影分别为A1、 B1,则 11 A FB ∠=____________. 4.经过两点() 143 ,, ?? - ? ? ?? 的圆锥曲线的标准方程是________________. 5.过双曲线 22 22 1 x y a b -=的右焦点F作一条渐近线的垂线分别交于A、B两点,O为坐标 原点,若OA、AB、OB成等差数列,且BF,FA u u u r u u u r 同向,则离心率e=_________. 6.椭圆 22 1 2516 x y +=的两个焦点为F1、F2,弦AB过F1,若 2 ABF ?的内切圆周长为π, ()() 1122 A x,y, B x,y,则 12 y y -=____________. ☆典型例题 1.椭圆的定义 例1.如图,已知E,F为平面上的两个定点,G为动点, 610 EF,FG, ==点P为线段EG的中垂线与GF的交点. ⑴建立适当的平面直角坐标系求出点P的轨迹方程; ⑵若点P的轨迹上存在两个不同的点A、B,且线段AB 的中垂线与EF(或EF的延长线)相交于一点C,线段EF 的中点为O,证明: 9 5 OC<. 2.中点弦问题 例3.直线l交椭圆 22 1 2016 x y +=于M,N两点,点() 04 B,,若⊿BMN的重心恰为椭圆 右焦点,则直线l的方程是_________________. 3.椭圆的几何性质 例2.已知 1 F、 2 F分别是椭圆() 22 22 10 x y a b a b +=>>的左右焦点,右准线l,离心率e. ⑴若P为椭圆上的一点,且 12 F PF ∠=θ,则 12 PF F S ? =_____________. ⑵若椭圆上存在一点P,使得 12 PF PF ⊥,则e的范围是_____________. ⑶若椭圆上存在一点P,使得 12 PF ePF =,则e的范围是_____________. ⑷若在l上存在一点P,使得线段 1 PF的中垂线经过 2 F,则e的范围是___________. ⑸若P为椭圆上的一点,线段 2 PF与圆222 x y b +=相切于中点Q,则e=________. ⑹过F且斜率为k的直线交椭圆于A、B两点,且3 AF FB = u u u r u u u r ,若 2 e=,则k=___. 4.最值问题 例4.已知动点P在椭圆 22 1 1612 x y +=上,(,(2,0) A B. ⑴若2 PA PB +取最小值,则点P的坐标为____________; ⑵若动点M满足||1 BM= u u u u r ,且0 PM BM= u u u u r u u u u r g,则| |的最小值是; ⑶PA PB +的取值范围是________________________. 例5.椭圆W的中心在原点,焦点在x轴上,离心率为 3 两条准线间的距离为6.椭 圆W的左焦点为F,过左准线与x轴的交点M任作一条斜率不为零的直线l与椭圆W 交于不同的两点A、B,点A关于x轴的对称点为C. ⑴求椭圆W的方程;⑵求证:CF FB λ = u u u r u u u r ;⑶求MBC ?面积S的最大值. ☆方法提炼 1.椭圆的标准方程有两种形式,有时需要就焦点位置进行讨论. 2.椭圆有两种定义方式,解题时要学会“回到定义去”. 3.椭圆有两个焦点、两条准线,解题时建议联系起来考虑. 4.解解析几何问题,“画个图”是个好建议;中点弦问题利用“点差法”可简化运算. 5.在处理直线与椭圆相结合的问题时,要学会利用韦达定理整体处理. P H E F G 第 1 页

圆锥曲线常见综合题型整理(供参考)

【知识点梳理】 一、直线与圆锥曲线的位置关系 注意:直线与椭圆、抛物线联立后得到的方程一定是一元二次方程(二次项系数a 不为0),但直线与双曲线联立后得到的不一定是一元二次方程,因此需分类讨论。 即: 1. 一次方程,只有一个解,说明直线与双曲线相交,只有一个交点,此时直线与渐进性平行; 2. 二次方程,?? ???>?=??≠且a 此外,在设直线方程时,要注意直线斜率不存在的情况。 二、直线与圆锥曲线相交的弦长公式 设直线l :y=kx+n ,圆锥曲线:F(x,y)=0,它们的交点为P 1 (x 1,y 1),P 2 (x 2,y 2), 且由???+==n kx y y x F 0),(,消去y →ax 2+bx+c=0(a ≠0),Δ=b 2 -4ac >0。 则弦长公式为: 4)(1 ||1||212212122x x x x k x x k AB ?-+?+=-?+=。 三、用点差法处理弦中点问题 设直线与圆锥曲线的交点(弦的端点)坐标为),(11y x A 、),(22y x B ,将这两点代入圆锥曲线的方程并对所得两式作差,得到一个与弦AB 的中点和斜率有关的式子,可以大大减少运算量。我们称这种代点作差的方法为“点差法”。 【典型例题】 题型一 直线与圆锥曲线的交点问题 例 1 k 为何值时,直线2y kx =+和曲线22 236x y +=有两个公共点?有一个公共点?没有公共点?

高二数学 圆锥曲线的几何性质练习

圆锥曲线的几何性质 一、选择题(' ' 6636?=) 1. .设22221(0)x y a b a b +=>>为 黄金椭圆,F 、A 分别是它的左焦点和右端点,B 是它的短轴的一个端点,则ABF ∠=( ) A ,60 B ,75 C ,90 D ,120 2.已知双曲线22 221(0,0)x y a b a b -=>>右焦点为F ,右准线为l ,一直线交双曲线于P ,Q 两点,交l 于R 点,则( ) A ,PFR QFR ∠>∠ B ,PFR QFR ∠=∠ C ,PFR QFR ∠<∠ D ,PFR ∠与QFR ∠的大小不确定 3.已知点A(0,2)和抛物线24y x =+上两点B 、C ,使得AB BC ⊥,当点B 在抛物线上移动时,点C 的纵坐标的取值范围是 ( ) A ,(,0][4,)-∞+∞ B ,(,0]-∞ C ,[4,)+∞ D ,[0,4,] 4.设椭圆方程2 213 x y +=,(0,1)A -为短轴的一个端点,M ,N 为椭圆上相异两点。若总存在以MN 为底边的等腰AMN ?,则直线MN 的斜率k 的取值范围是 ( ) A ,(1,1)- B ,[1,1]- C ,(1,0]- D ,[0,1] 5.已知12,F F 分别为双曲线22 221(0,0)x y a b a b -=>>的左、右焦点,P 为双曲线右支上的任 意一点,若 2 12 PF PF 的最小值为8a ,则双曲线的离心率e 的取值范围是 ( ) A ,(1,)+∞ B ,(1,2] C , D ,(1,3] 6.已知P 为抛物线2 4y x =上一点,记P 到此抛物线的准线的距离为1d ,P 到直线 2120x y +-=的距离为2d ,则12d d +的最小值为 ( )

圆锥曲线方程知识点总结

§8.圆锥曲线方程 知识要点 一、椭圆方程. 1. 椭圆方程的第一定义:为端点的线段 以无轨迹方程为椭圆21212121212121,2, 2, 2F F F F a PF PF F F a PF PF F F a PF PF ==+=+=+ ⑴①椭圆的标准方程:i. 中心在原点,焦点在x 轴上:)0(12 222 b a b y a x =+ . ii. 中心在原点,焦点在y 轴上:)0(12 22 2 b a b x a y =+ . ②一般方程:)0,0(122 B A By Ax =+. ③椭圆的标准方程:122 2 2=+ b y a x 的参数方程为?? ?==θ θsin cos b y a x (一象限θ应是属于20π θ ). ⑵①顶点:),0)(0,(b a ±±或)0,)(,0(b a ±±. > ②轴:对称轴:x 轴,y 轴;长轴长a 2,短轴长b 2. ③焦点:)0,)(0,(c c -或),0)(,0(c c -. ④焦距:2221,2b a c c F F -==. ⑤准线:c a x 2±=或c a y 2 ±=. ⑥离心率:)10( e a c e =. ⑦焦点半径: i. 设),(00y x P 为椭圆 )0(12222 b a b y a x =+ 上的一点,21,F F 为左、右焦点,则 》 ii.设),(00y x P 为椭圆)0(12 22 2 b a a y b x =+ 上的一点,21,F F 为上、下焦点,则 由椭圆第二定义可知:)0()(),0()(0002 200201 x a ex x c a e pF x ex a c a x e pF -=-=+=+=归结起来为“左加右减”. 注意:椭圆参数方程的推导:得→)sin ,cos (θθb a N 方程的轨迹为椭圆. ⑧通径:垂直于x 轴且过焦点的弦叫做通经.坐标:),(222 2a b c a b d -=和),(2a b c ⑶共离心率的椭圆系的方程:椭圆 )0(12 22 2 b a b y a x =+的离心率是)(22b a c a c e -== ,方程t t b y a x (2 22 2=+是大于0的参数,)0 b a 的离心率也是a c e = 我们称此方程为共离心率的椭圆系方程. ⑸若P 是椭圆: 12 22 2=+b y a x 上的点.21,F F 为焦点,若θ=∠21PF F ,则21F PF ?的面积为2 tan 2θ b (用 ? -=+=0201,ex a PF ex a PF ? -=+=0201,ey a PF ey a PF

圆锥曲线题型归纳经典含答案

椭圆题型总结 一、 椭圆的定义和方程问题 (一) 定义: 1. 命题甲:动点P 到两点B A ,的距离之和);,0(2常数>=+a a PB PA 命题乙: P 的轨迹是以A 、B 为焦 点的椭圆,则命题甲是命题乙的 ( B ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分又不必要条件 2. 已知1F 、2F 是两个定点,且421=F F ,若动点P 满足421=+PF PF 则动点P 的轨迹是( D ) A.椭圆 B.圆 C.直线 D.线段 3. 已知1F 、2F 是椭圆的两个焦点, P 是椭圆上的一个动点,如果延长P F 1到Q ,使得2PF PQ =,那么动 点Q 的轨迹是( B ) A.椭圆 B.圆 C.直线 D.点 4. 椭圆 19 252 2=+y x 上一点M 到焦点1F 的距离为2,N 为1MF 的中点,O 是椭圆的中心,则ON 的值是 4 。 5. 选做:F 1是椭圆15 92 2=+y x 的左焦点,P 在椭圆上运动,定点A (1,1),求||||1PF PA +的最小值。 解:26||2||2||||||221-=-≥-+=+AF a PF a PA PF PA (二) 标准方程求参数范围 1. 试讨论k 的取值范围,使方程1352 2=-+-k y k x 表示圆,椭圆,双曲线。 (略) 2. 轴上的椭圆”的表示焦点在”是“方程“y ny mx n m 102 2=+>>( C ) A.充分而不必要条件 B.必要不充分条件 C.充要条件 D.既不充分又不必要条件 3. 若方程1cos sin 2 2 =+ααy x 表示焦点在y 轴上的椭圆,α所在的象限是( A ) A.第一象限 B. 第二象限 C. 第三象限 D. 第四象限 4. 方程2 31y x -=所表示的曲线是 椭圆的右半部分 . 5. 已知方程22 2 =+ky x 表示焦点在X 轴上的椭圆,则实数k 的范围是 k>1 (三) 待定系数法求椭圆的标准方程 1. 根据下列条件求椭圆的标准方程: (1)两个焦点的坐标分别为(0,5)和(0,-5),椭圆上一点P 到两焦点的距离之和为26; (2)长轴是短轴的2倍,且过点(2,-6); (3)已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点)2,3(),1,6(21--P P ,求椭圆方程. 2. 简单几何性质 1. 求下列椭圆的标准方程(1) 32,8= =e c ; (2)过(3,0)点,离心率为 36 = e 。 (3)椭圆的对称轴为坐标轴上,短轴的一个端点与两个焦点组成一个正三角形,焦点到椭圆的最近距离是3。 (4)椭圆短轴的一个端点到一个焦点的距离为5,焦点到椭圆中心的距离为3,则椭圆的标准方程为 (5)已知P 点在以坐标轴为对称轴的椭圆上,点P 到两焦点的距离分别为 354和3 52,过P 作长轴的

圆锥曲线的概念与几何性质

第十六单元圆锥曲线的概念与几何性质 考点一椭圆的标准方程和几何性质 1.(2017年全国Ⅰ卷)设A,B是椭圆C:+=1长轴的两个端点.若C上存在点M满足∠AMB=120°,则m的取值范围是(). A.(0,1]∪[9,+∞) B.(0,]∪[9,+∞) C.(0,1]∪[4,+∞) D.(0,∪[4,+∞) 【解析】当03时,焦点在y轴上, 要使C上存在点M满足∠AMB=120°, 则≥tan 60°=,即≥,解得m≥9. 故m的取值范围为(0,1]∪[9,+∞). 故选A. 【答案】A 2.(2014年大纲卷)已知椭圆C:+=1(a>b>0)的左,右焦点为F1,F2,离心率为,过F2的直线l交C于A,B两点.若△AF1B的周长为4,则C的方程为(). A.+=1 B.+y2=1 C.+=1 D.+=1 【解析】因为△AF1B的周长为4,所以|AF1|+|AB|+|BF1|=|AF1|+|AF2|+|BF1|+|BF2|=4a=4,所以a=.又因为椭圆的离心率e==,所以c=1,所以b2=a2-c2=3-1=2,所以椭圆C的方程为+=1,故选A. 【答案】A 3.(2013年全国Ⅱ卷)设椭圆C:+=1(a>b>0)的左,右焦点分别为F1,F2,P是C上的点,PF2⊥F1F2,∠PF1F2=30°,则C的离心率为(). A. B. C. D.

【解析】(法一)由题意可设|PF2|=m,结合条件可知|PF1|=2m,|F1F2|=m,故离心率e=====. (法二)由PF2⊥F1F2可知点P的横坐标为c,将x=c代入椭圆方程可解得y=±,所以|PF2|=.又由∠PF1F2=30°可得 |F1F2|=|PF2|,故2c=·,变形可得(a2-c2)=2ac,等式两边同除以a2,得(1-e2)=2e,解得e=或e=-(舍去). 【答案】D 4.(2017年全国Ⅲ卷)已知椭圆C:+=1(a>b>0)的左,右顶点分别为A1,A2,且以线段A1A2为直径的圆与直线bx-ay+2ab=0相切,则C的离心率为(). A.B.C.D. 【解析】由题意知以A1A2为直径的圆的圆心坐标为(0,0),半径为a. ∵直线bx-ay+2ab=0与圆相切, ∴圆心到直线的距离d==a,解得a=b, ∴=, ∴e==- =-= -=.故选A. 【答案】A 考点二双曲线的标准方程和几何性质 5.(2016年全国Ⅰ卷)已知方程- - =1表示双曲线,且该双曲线两焦点间的距离为4,则n的取值范围是(). A.(-1,3) B.(-1,) C.(0,3) D.(0,) 【解析】若已知方程表示双曲线,则(m2+n)(3m2-n)>0,解得-m20,b>0)的一条渐近线方程为y=x,且与椭圆+=1有公共焦点,则C的方程为(). A.-=1 B.-=1 C.-=1 D.-=1 【解析】因为双曲线C的渐近线方程为y=±x,所以=.又因为椭圆与双曲线的焦点为(±3,0),即c=3,且c2=a2+b2,所以a2=4,b2=5,故双曲线C的方程为-=1. 【答案】B 7.(2017年全国Ⅱ卷)若双曲线C:-=1(a>0,b>0)的一条渐近线被圆(x-2)2+y2=4所截得的弦长为2,则C的离心率为().

圆锥曲线常见题型解法80915

【知识要点】 圆锥曲线常见的题型有求圆锥曲线的方程、几何性质、最值、范围、直线与圆锥曲线的关系、圆锥曲线与圆锥曲线的关系、轨迹方程、定点定值问题等. 【方法讲评】 题型一求圆锥曲线的方程 解题方法一般利用待定系数法解答. 【例1】已知椭圆 22 22 1 x y a b +=(0 a b >>)的左、右焦点为 12 , F F,点A2)在椭圆上,且 2 AF 与x轴垂直. (1)求椭圆的方程; (2)过A作直线与椭圆交于另外一点B,求AOB ?面积的最大值.

综上所求:当AB 斜率不存在或斜率存在时:AOB ?面积取最大值为2. 【点评】(1)求圆锥曲线的方程,一般利用待定系数法,先定位,后定量.(2)本题用到了椭圆双曲 线的通径公式22b d a =,这个公式很重要,大家要记熟. 【反馈检测1】已知椭圆M :22 221x y a b +=(0a b >>)的离心率为23,且椭圆上一点与椭圆的两 个焦点构成的三角形的周长为642+

(1)求椭圆M 的方程; (2)设直线l 与椭圆M 交于A 、B 两点,且以AB 为直径的圆过椭圆的右顶点C ,求△ABC 面积的最大值. 题型二 圆锥曲线的几何性质 解题方法 利用圆锥曲线的几何性质解答. 【例2】已知椭圆()22 2210x y a b a b +=>>的左顶点和上顶点分别为A B 、,左、右焦点分别是12,F F , 在线段AB 上有且只有一个点P 满足12PF PF ⊥,则椭圆的离心率的平方为( ) A . 3 B .31- C .5 D .51 - 【点评】求值一般利用方程的思想解答,所以本题的关键就是找到关于e 的方程. 学科.网 【反馈检测2】已知双曲线22 221x y a b -=(0,0a b >>)的左、右焦点分别为12,F F 以12F F 为直径的 圆被直线 1x y a b +=6a ,则双曲线的离心率为( ) A .3 B .2 C 3 D 2

圆锥曲线几何性质总汇

圆锥曲线的几何性质 一、椭圆的几何性质 (以22a x +22 b y =1(a ﹥b ﹥0)为例) 1、⊿ABF 2的周长为4a(定值) 证明:由椭圆的定义 12121212242AF AF a AF AF BF BF a BF BF a +=?? ?+++=?+=?? 即2 4ABF C a = 2、焦点⊿PF 1F 2中: (1)S ⊿PF1F2=2 tan 2θ?b (2)(S ⊿PF1F2)max = bc (3)当P 在短轴上时,∠F 1PF 2最大 证明:(1)在 12AF F 中 ∵ 2 2 21212 4cos 2PF PF c PF PF θ+-=? ∴ () 2 1212 122cos 2PF PF PF PF PF PF θ?=+-?∴ 2 1221cos b PF PF θ ?=+ ∴ 12 22112sin cos tan 21cos 2 PF F b S b θθθθ-=??=?+ (2)(S ⊿PF1F2)max = max 1 22 c h bc ??= (3 ()()() 2 2 22 2 2 22 12002 2222 2 212 00 4444cos 12222PF PF c a ex a ex c a c PF PF a e x a e x θ+-++---= = =-?-+ 当0x =0时 cos θ有最小值22 2 2a c a - 即∠F 1PF 2最大 3、 过点F 1作⊿PF 1F 2的∠P 的外角平分线的垂线,垂足为M 则M 的轨迹是x 2+y 2=a 2 证明:延长1F M 交2F P 于F ,连接OM x x x

圆锥曲线基本题型总结

圆锥曲线基本题型总结:提纲: 一、定义的应用: 1、定义法求标准方程: 2、涉及到曲线上的点到焦点距离的问题: 3、焦点三角形问题: 二、圆锥曲线的标准方程: 1、对方程的理解 2、求圆锥曲线方程(已经性质求方程) 3、各种圆锥曲线系的应用: 三、圆锥曲线的性质: 1、已知方程求性质: 2、求离心率的取值或取值范围 3、涉及性质的问题: 四、直线与圆锥曲线的关系: 1、位置关系的判定: 2、弦长公式的应用: 3、弦的中点问题:

4、韦达定理的应用: 一、定义的应用: 1. 定义法求标准方程: (1)由题目条件判断是什么形状,再由该形状的特征求方程:(注意细节的处 理) 1.设F1, F2 为定点,|F1F2| =6,动点M满足|MF1| + |MF2| = 6,则动点M的轨 迹是() A.椭圆 B.直线 C.圆 D.线段【注:2a>|F1 F2| 是椭圆,2a=|F1 F2|是线段】 2. 设 B - 4,0) , C4,0),且厶ABC的周长等于18,则动点A的轨迹方程为) x2 y2 y2 x2 A.25+ -9 = i y z0) B.25^9 = 1 徉0) x2 y2 y2 x2 C.^+16= 1 y z 0) D£+_9 = 1 y z 0) 【注:检验去点】 3. 已知A0, - 5)、B0,5) ,|PA| - |PB| = 2a,当a= 3 或 5 时,P点的轨迹为) A. 双曲线或一条直线 B. 双曲线或两条直线 C. 双曲线一支或一条直线

D. 双曲线一支或一条射线【注:2av|F1 F2|是双曲线,2a=|F1 F2|是射线,注意一支与两支的判断】

圆锥曲线的定义及几何性质

圆锥曲线的定义及几何性质 1. 椭圆 222 2 1x y a b + =和 222 2 x y k a b + =(0)k >一定具有( ) A .相同的离心率 B .相同的焦点 C .相同的顶点 D .相同的长轴长 2. 已知1F 、2F 是椭圆的两个焦点,过1F 且与椭圆长轴垂直的直线交椭圆于A 、B 两点,若2 ABF ?是正三角形,则这个椭圆的离心率是( ) A . 2 B . 3 C 2 D 3 3. 已知1F 、2F 是椭圆的两个焦点,满足120M F M F ?= 的点M 总在椭圆内部,则椭圆离心率的 取值范围是( )A .(01), B .1(0]2 , C .(02 D .1)2 4. 过椭圆 222 2 1(0) x y a b a b + =>>的左焦点1F 作x 轴的垂线交椭圆于点P ,2F 为右焦点,若 1260F PF ∠=°,则椭圆的离心率为( ) A . 2 B . 3 C .12 D .1 3 5. 已知椭圆 2222 1x y a b +=的左、 右焦点分别为1F 、2F ,且12||2F F c =,点A 在椭圆上,1120AF F F ?= ,2 12AF AF c ?= ,则椭圆的离心率e = ( ) A . 3 B . 2 C 2 D 2 6. 已知P 是以12F F ,为焦点的椭圆 222 2 1(0)x y a b a b + =>>上的一点,若 120 PF PF ?= , 121tan 2 PF F ∠= ,则此椭圆的的离心率为( ) A . 12 B . 23 C .1 3 D 3 7. 已知椭圆 2 2 15 x y m + = 的离心率e 5 =m 的值为( ) A .3 B . 253 或3 C . D 8. 椭圆的长轴为12A A ,B 为短轴的一个端点,若∠012120A BA =,则椭圆的离心率为( ) A . 12 B 3 C 3 D 2 9. 椭圆 222 2 1(0)x y a b a b + =>>的四个顶点为A 、B 、C 、D ,若四边形ABC D 的内切圆恰好过椭 圆的焦点,则椭圆的离心率是( ) A . 2 B . 4 C 2 D 4 10. 设12F F ,分别是椭圆 222 2 1x y a b + =(0a b >>)的左、右焦点,若在直线2 :a l x c = 上存在P (其 中c =),使线段1PF 的中垂线过点2F ,则椭圆离心率的取值范围是( ) A .0, 2? ?? B .0, 3? ? ? C .,12????? D .,13? ???? 11. 椭圆上一点A 看两焦点的视角为直角,设1AF 的延长线交椭圆于B ,又2||||AB AF =,则椭圆的 离心率e =( ) A .2-+ B . C 1- D 12. 椭圆() 222 2 10x y a b a b + =>>的右焦点F ,其右准线与x 轴的交点为A ,在椭圆上存在点满足线 段AP 的垂直平分线过点F ,则椭圆离心率的取值范围是( ) 13. A .02? ? ? B .102? ? ?? ?, C .)11 , D .112 ???? ??, 14. 已知椭圆() 222 2 10x y a b a b + =>>,A 是椭圆长轴的一个端点,B 是椭圆短轴的一个端点,F 为 椭圆的一个焦点. 若AB BF ⊥,则该椭圆的离心率为 ( ) 224416. 在ABC △中,A B B C =,7cos 18 B =- .若以A B ,为焦点的椭圆经过点C ,则该椭圆的离 心率e = . 17. 在平面直角坐标系xOy 中,设椭圆 222 2 1(0) x y a b a b +=>>的焦距为2c ,以点O 为圆心,a 为 半径作圆M .若过点20a P c ?? ? ?? ,作圆M 的两条切线互相垂直,则椭圆的离心率为 . 18. 直线:220l x y -+=过椭圆的左焦点1F 和一个顶点B ,该椭圆的离心率为_________. 19. 设12(0)(0)F c F c -,,,是椭圆 222 2 1(0) x y a b a b + =>>的两个焦点,P 是以12F F 为直径的圆与椭 圆的一个交点,若12 21 2PF F PF F ∠=∠,则椭圆的离心率等于________. 20. 椭圆 222 2 1(0)x y a b a b + =>>的半焦距为c ,若直线2y x =与椭圆一个交点的横坐标恰为c ,椭圆 的离心率为_________ 21. 已知1F ,2F 是椭圆的两个焦点,过1F 且与椭圆长轴垂直的直线交椭圆于A B ,两点,若 2ABF △是正三角形,则这个椭圆的离心率是_________.

圆锥曲线几何性质总汇

,. 圆锥曲线的几何性质 一、椭圆的几何性质 (以22a x +22 b y =1(a ﹥b ﹥0)为例) 1、⊿ABF 2的周长为4a(定值) 证明:由椭圆的定义 12121212242AF AF a AF AF BF BF a BF BF a +=?? ?+++=?+=?? 即24ABF C a =< 2、焦点⊿PF 1F 2中: (1)S ⊿PF1F2=2 tan 2θ?b (2)(S ⊿PF1F2)max = bc (3)当P 在短轴上时,∠F 1PF 2最大 证明:(1)在12AF F <中 ∵ 2 2 2 1212 4cos 2PF PF c PF PF θ+-= ? ∴ () 2 1212 122cos 2PF PF PF PF PF PF θ?=+-?- ∴ 21221cos b PF PF θ ?=+ ∴ 12 22112sin cos tan 21cos 2 PF F b S b θθθθ-=??=?+ (2)(S ⊿PF1F2)max = max 1 22 c h bc ??= ()()2 2 2 2 2222 12004444PF PF c a ex a ex c a c +-++---x x

,. 当0x =0时 cos θ有最小值22 2 2a c a - 即∠F 1PF 2最大 3、 过点F 1作⊿PF 1F 2的∠P 的外角平分线的垂线,垂足为M 则M 的轨迹是x 2+y 2=a 2 证明:延长1F M 交2F P 于F ,连接OM 由已知有 1PF FP = M 为1 F F 中点 ∴ 212OM FF = =()121 2 PF PF +=a 所以M 的轨迹方程为 2 2 2 x y a += 4、以椭圆的任意焦半径为直径的圆,都与圆x 2+y 2=a 2内切 证明:取1PF 的中点M ,连接OM 。令圆M 的直径1PF ,半径为∵ OM =()211111 2222 PF a PF a PF a r =-=-=- ∴ 圆M 与圆O 内切 ∴ 以椭圆的任意焦半径为直径的圆,都与圆x 2+y 2=a 2内切 5、任一焦点⊿PF 1F 2的内切圆圆心为I ,连结PI 延长交长轴于则 ∣IR ∣:∣IP ∣=e 证明:证明:连接12,F I F I 由三角形内角角平分线性质有 ∵ 1212121222F R F R F R F R IR c e PI PF PF PF PF a +=====+ x x y x

圆锥曲线常见题型解法42140

高中数学常见题型解法归纳及反馈检测第81讲; 圆锥曲线常见题型解法 【知识要点】 圆锥曲线常见的题型有求圆锥曲线的方程、几何性质、最值、范围、直线与圆锥曲线的关 系、圆锥曲 与x 轴垂直. (1)求椭圆的方程; (2)过A 作直线与椭圆交于另外一点 B ,求 AOB 面积的最大值. 【解析】⑴有已知h u 二土,—二近一二b 扛、*: = 4; 故驱方曲訐才" 心)当一毎斜率不存険h £*^ =;工〉匝乂2 = 2忑, 当曲斜率存在吋;设其方程为:了―C = 耳技工半" > = + 4C^5-2jt)Ax+2(^-2jfc)*-8=0 , jc _ +2>" =& 由已知:A = 16(^2 -2Q 2it 2-8<2^ + 1)[(<5-4]= 8(2t 十?V nO, 线与圆锥曲线的关系、轨迹方程、定点定值问题等 【方法讲2 x 【例1】已知椭圆— a 2 占1 ( a b 0 )的左、右焦点为 R , F ?,点A (2, .. 2)在椭圆上,且AF 2 b

O 到直线的距离:才」 二 Ss 弓|屈逅口- .'.2P + 1E [14U (2’S, 二 2-養吕 €[-24)1102), 二此时临, 综上所求:当 AB 斜率不存在或斜率存在时: AOB 面积取最大值为 2 2 ? (1)求椭圆M 的方程; A 、B 两点,且以AB 为直径的圆过椭圆的右顶点 C ,求△ ABC 面积的 最大值. 【例2】已知椭圆 2 2 务占1 a b a b 0的左顶点和上顶点分别为 A 、 B ,左、右焦点分别是F 1,F 2 , 在线段AB 上有且只有一 个点 P 满足PF 1 PF ?,则椭圆的离心率的平方为( ) A.乜 B 巧1 V 5 C . D . .5 1 2 2 3 2 【点评】(1) 求圆锥曲线的方程,一般利用待定系数法,先定位,后定量 .(2)本题用到了椭圆双曲 线的通径公式d 竺,这个公式很重要,大家要记熟 a 【反馈检测1】已知椭圆 2 2 a 2 b 2 1 (a b 0)的离心率为 晋,且椭圆上一点与椭圆的两 个焦点构成的三角形的周长为 4.2 ? (2)设直线I 与椭圆M 交于

圆锥曲线常见题型归纳

圆锥曲线常见题型归纳 一、基础题 涉及圆锥曲线的基本概念、几何性质,如求圆锥曲线的标准方程,求准线或渐近线方程,求顶点或焦点坐标,求与有关的值,求与焦半径或长(短)轴或实(虚)轴有关的角和三角形面积。此类题在考试中最常见,解此类题应注意: (1)熟练掌握圆锥曲线的图形结构,充分利用图形来解题;注意离心率与曲线形状的关系; (2)如未指明焦点位置,应考虑焦点在x 轴和y 轴的两种(或四种)情况; (3)注意2,2,a a a ,2,2,b b b ,2 ,2,c c c ,2,,2p p p 的区别及其几何背景、出现位置的不同,椭圆中222b a c -=,双曲线中222b a c +=,离心率a c e =,准线方程a x 2±=; 二、定义题 对圆锥曲线的两个定义的考查,与动点到定点的距离(焦半径)和动点到定直线(准线)的距离有关,有时要用到圆的几何性质。此类题常用平面几何的方法来解决,需要对圆锥曲线的(两个)定义有深入、细致、全面的理解和掌握。常用到的平面几何知识有:中垂线、角平分线的性质,勾股定理,圆的性质,解三角形(正弦余弦定理、三角形面积公式),当条件是用向量的形式给出时,应由向量的几何形式而用平面几何知识;涉及圆的解析几何题多用平 p e c b a ,,,,

面几何方法处理; 三、直线与圆锥曲线的关系题 (1)写直线方程时,先考虑斜率k 存在,把直线方程设为b kx y +=的形式,但随后应对斜率k 不存在的情况作出相应说明,因为k 不存在的情况很特殊,一般是验证前面的结论此时是否成立; (2)联立直线方程和圆锥曲线方程,消去x 或消去y ,得到方程02=++c bx ax ① 或02=++c by ay ②,此方程是后一切计算的基础,应确保不出错。 (3)当方程①或②的二次项系数0=a 时,方程是一次方程,只有唯一解,不能用判别式,这种情况是直线与双曲线的渐近线平行或直线与抛物线的对称轴平行;(过抛物线外一点作与抛物线只有一个公共点的直线有三条,过双曲线含中心的区域内一点(不在渐近线上)作与双曲线只有一个公共点的直线有四条;) (4)当方程①或②的二次项系数0≠a 时,判别式△0<、△0=、△0>,与之相对应的是,直线与圆锥曲线分别相离、相切、相交。如直线与圆锥曲线有公共点,应用△0≥来求斜率k 的范围; (5)直线与圆锥曲线相交成弦(前提0≠a ,△0>),记为AB ,其中),(11y x A ,),(2 2y x B ,AB 的坐标可由方程①或

相关主题
文本预览
相关文档 最新文档