当前位置:文档之家› 天然气切割气用LNG瓶组气化站建设方案

天然气切割气用LNG瓶组气化站建设方案

天然气切割气用LNG瓶组气化站建设方案
天然气切割气用LNG瓶组气化站建设方案

XXXXXXX公司

天然气切割气用LNG瓶组气化站建设方案

2010年7月

1.项目情况介绍

1.1 客户情况简介

1.2 天然气切割气

工业和建筑行业中,气体火焰加工是一种普遍使用的金属加工工艺过程。乙炔就是一种最早的、目前仍被普遍使用的金属焊割气。尽管我国已禁止了小型乙炔发生器,但仍有大型的乙炔站在使用。使用乙炔弊端较多,首先乙炔生产耗能耗电,属高耗能产品。生产一吨乙炔需要4吨左右的电石。目前山东地区每吨乙炔气的价格已超过16000元/吨,使用成本高。其次乙炔是一种易燃易爆的危险物品。乙炔极易发生回火爆炸。而且长期以来,市场上充斥着大量不符合国家强制标准的乙炔气和溶解乙炔气瓶,相当数量的乙炔气钢瓶充气前均未按规定灌注丙酮,大批乙炔钢瓶或超期服役,或充气量严重不足,安全隐患大。同时乙炔在与氧气混合燃烧的过程中产生的黑烟中含有对人体健康有害的磷化物和硫化物等有毒气体。而且使用乙炔易发生切口上缘熔化,下缘挂渣不易清除等现象;当氧-乙炔火焰温度过高时,还会造成切割面硬化现象,不便于下一道工序的机加工和焊接,尤其是切割易淬火钢时,容易导致切口裂纹,造成加工质量不稳定。

丙烷也作为一种切割气体,在一些行业中普遍使用。但丙烷燃烧温度低,切割速速慢,氧气消耗量大,在厚板切割上有难度;且丙烷比重比空气大,易沉积,不宜在类似船仓等相对密闭的空间中使用;其次部分产品纯度不高,含有部分烯烃成分,气化不充分,容易堵塞管道;另外需要频繁更换钢瓶,劳动强度大;同时丙烷价格随石油产品价格定价,市场价格波动大。

所以,推动天然气、液化石油气、丙烷气等“绿色气体”的使用,使金属焊割气更清洁、安全、绿色、高效,就成为环境标志金属焊割气的导向目标。

下表给出了天然气、丙烷和乙炔作为工业燃气的物性比较。从中可以看出,天然气的有效热值比乙炔低,火焰能率比乙炔小,燃烧速度比乙炔慢,这给使用天然气切割造成一定的困难。另一方面,天然气在空气中的爆炸范围小,燃烧速度慢。因此,爆炸、回火的可能性比乙炔小,使用天然气的安全性比乙炔高。

天然气与丙烷、乙炔物性比较

由于以上天然气与乙炔工业燃气的不同特点,在使用过程中需要通过加入添加剂来改善天然气的性能。在加入了添加剂后,与氧混合的火焰温度达到3100℃以上,焊割性能和质量达到或超过乙炔气的水平,抗氧化、焊池好、熔深够、能渗透、成形好、强度高、易浮渣。同时切割断面光洁,预热时间平均比乙炔短,切割速度比乙炔快,并有利于切割大厚度钢材。

在某企业的前期试验中,进行了乙炔气和天然气(加入了添加剂)切割效果的比较。用气试验的项目包括:打孔、切割和熔断,结果显示使用天然气作为切割气,切面平滑,熔渣少(见图1~3)。天然气和乙炔气的切割速度和耗氧量大致相同,而天然气的耗气量比乙炔低37.5%。具体试验结果如下:

图1 切割坡口

图2 切割断面

图3 打孔图4 水中作业

与丙烷相比,由于天然气密度小、不易堆积,所以在船舱等密闭空间使用时更安全,而且还可以在水中作业(见图4)。

目前丙烷的价格随石油价格大幅增长,与之相对应我国天然气资源供应日趋丰富,价格低廉。随着西气东输工程的建成、LNG项目的发展,天然气在工业切割气的规模化应用将成为可能,并将产生较好的经济效益和社会效益。

1.3 天然气切割气生成工艺

天然气作为切割气前需要添加一定量的添加剂。对于小型用户,可以由供气厂商在工厂直接添加好后罐装供应用户,而对于工业气体大型用户来讲,更经济有效的方式是通过管道或LNG气化站供应天然气、再通过一定的装置完成添加剂的注入和混合,然后供应给现场切割使用。整个工艺的简图如下图。

1.4 本项目LNG气源解决方案

由于本项目所在地目前尚无天然气管线,所以采用LNG作为气源是最佳方式。

目前,国内LNG的生产有新疆,内蒙,山西,山东,河南,四川,重庆,江苏,青海等地区的十几个厂家,同时广东,福建等地也建有进口LNG接收站.国内LNG的供应已经很丰富。用户可以灵活选择合适的供气单位。

2.技术方案

2.1遵循的主要标准、规范

《城镇燃气设计规范》GB50028-2006;

《建筑设计防火规范》GBJ16-87(2001版);

《爆炸和火灾危险环境电力装置设计规范》GB50058-92。

2.2设计原则

1、严格执行国家及建设部关于城镇燃气设计的标准和规范,工艺设计上以安全为首要考虑前提。

2、工程设计必须满足技术先进可靠,生产工艺简单,生产稳定的要求,并尽可能节约投资。

3、坚持节能的原则,做好能源的综合利用,提高效率,力求取得良好的经济效益、社会效益和环境效益。

2.3 建设规模

用户日消耗乙炔40-50瓶,按每瓶充装3-4Kg乙炔计,日最大乙炔消耗量约为200Kg (参照国内几种燃气增效剂供应厂家的试验数据,增效天然气与乙炔可进行等质量换算,即重量比为1:1)。天然气消耗量也为200Kg,按标况密度0.7Kg/m3计,日消耗天然气285m3,约合0.48m3(480L)LNG。综合用气量、气源供应、储存周期、高峰时段等因素,本方案以LNG瓶组气化站进行天然气供应。按日均工作8小时,小时计算流量约为36Nm3,高峰小时用量按100Nm3计。

2.4储存量及储存周期

本瓶组站设计采用6只410L低温钢瓶(杜瓦瓶)做LNG储存容器,总存液量为2460L,气态体积约为1500Nm3。钢瓶编为两组,每组四只,一用一备,按照每天居民用气量,每组钢瓶更换周期约为2.5天。

2.5建设用地

1、安全间距

LNG瓶组站选址应按照《城镇燃气设计规范》(GB50028-2006)以下表格内容考虑安全间距的要求:

结合规范要求,理想占地面积约2亩,长宽均衡,且四周有一侧临路。

2.6设计内容、范围

LNG瓶组站设计范围包括LNG工艺系统(气化加热、BOG处理、安全泄放、调压加臭、等工艺)、消防防火、仪表、辅助设施(值班室、瓶组站基础)等所有专业的施工图设计。

2.7工艺流程

LNG钢瓶在母站灌装后运抵瓶组站。使用状况下,通过钢瓶自增压系统将LNG输送至空温式气化器,与空气换热后转化为温度符合输送要求的气态NG。当空温式气化器出口的天然气温度达不到5℃以上时,通过水浴加热器升温,最后经调压、加臭后送入燃气管道,供用户使用。工艺流程概念图如下:

2.8主要工艺设备

1. 储存设备

储存设备为6台410L LNG低温钢瓶(杜瓦瓶),带自增压系统。

2.主气化设备

本系统主气化设备为2台空温式气化器,气化量100Nm3/h,一用一备,设计压力1.6MPa。

3.NG加热设备

NG加热设备采用电加热水浴式换热器,(如有采暖管道,可考虑连接采暖管道进行加热)。

4.BOG处理设备

瓶组站BOG加热器采用空温式,设计流量为50Nm3/h,设计压力为1.6MPa。

5. EAG处理设备

安全排放的低温气体不容易扩散,需对气体进行加热达到小于空气密度。瓶组站设50Nm3/h空温式加热器一台,设计压力为1.6MPa。

6.调压设备

气化后的天然气,经调压后进入管道,调压采用单路加旁通型式。通过最大流量为1500Nm3/h。

7.计量设备

计量设备选用一台涡轮流量计,为保证计量的准确性,加装温压补偿仪,并具备通讯模块。

8.加臭设备

采用自动加臭机,滴入量控制在15~20mg/m3。

9.加药设备

采用自动加药机,通过单片机依据流量信号进行定量加药。

2.9方案建议

本方案建议采用撬装站技术,即将气化,加热,调压,计量,加臭部分成撬。

采用撬装化模块化的设备进行成套,此种技术、设计、设备较传统厂站设计、采购、安装方式有很大不同,有以下显著特点:

a.集成度高:撬装装置的集约性决定了此类产品设计和生产须充分利用有限的空间去达到最佳的配置效果,因此撬装装置结构紧凑,比传统的安装方式可减少占地。

b.可靠性高:撬装设备的生产、组装在工厂内完成,相对于现场来说组装环境情况良好;可以充分利用设备制造商工厂的先进生产设备;可以充分利用设备制造商工厂内的先进的检测设备。

c.节约投资:撬装化的生产方式使LNG站的批量化生产成为了可能,批量化生产将大大降低撬装设备的成本,包括组成设备的购置成本、材料使用量的节约成本、安装成本,为最终的用户节约了投资。同时撬装化的安装方式,大大节省了安装费用。

d.缩短建设周期:撬装设备将使现场的安装量减少到最小,大大缩短了项目建设周期。安装周期可较少约一半时间。

e.安装简便:撬装瓶组站的系统化设计将使各撬装设备模块的现场安装和组对极为简便。

f.操作简便:撬装设备的设计、生产的可控制性,可充分简化其操作程序。有利于运营中的安全生产。

g.拆卸移动方便:模块化设计,便于整体搬迁转移。

AGA8—92DC计算方法天然气压缩因子计算(最漂亮的)

AGA8—92DC计算方法天然气压缩因子计算 摘要:按照GB/T 17747.2—1999《天然气压缩因子的计算第2部分:用摩尔组成进行计算》,采用AGA8—92DC计算方法,用VB编程计算了天然气压缩因子。用二分法求解状态方程,精度满足工程需要。 关键词:压缩因子;AGA8—92DC计算方法;二分法 1概述 工作状态下的压缩因子是天然气最重要的物性参数之一,涉及到天然气的勘探、开发、输送、计量和利用等各个方面。实测天然气压缩因子所需的仪器设备价格高,不易推广,因此计算方法发展很快,主要为经验公式和状态方程计算方法。1992年6月26日,国际标准化组织(ISO)天然气技术委员会(TC193)及分析技术分委员会(TC193/SC1)在挪威斯泰万格(Stavanger)召开了第四次全体会议,会上推荐了两个精度较高的计算工作状态下天然气压缩因子的方程,目 PAGA8-92DC方程、SGERG-88方程[1]。随后,国际标准化组织于1994年形成了国际标准草案[2]。 AGA8-92DC方程来自美国煤气协会(AGA)。美国煤气协会在天然气压缩因子和超压缩因子表的基础上,开展了大量研究,于1992年发表了以状态方程为基础计算压缩因子的AGA No.8报告及AGA8-92DC方程[2]。 1994年,四川石油管理局天然气研究所遵照中国石油天然气总公司技术监督局的指示,对国际标准化组织1992年挪威斯泰万格会议推荐的AGA8-92DC 方程、SGERG-88方程进行验证研究,于1996年底基本完成[2]。1999年,四川石油管理局天然气研究院(前身为四川石油管理局天然气研究所)起草的《天然气压缩因子的计算》GB/T 17747.1~3—1999被批准、发布。 《天然气压缩因子的计算》GB/T 17747.1~3—1999包括3个部分:《天然气压缩因子的计算第1部分:导论和指南》GB/T 17747.1—1999,《天然气压缩因子的计算第2部分:用摩尔组成进行计算》GB/T 17747.2—1999,《天然气压缩因子的计算第3部分:用物性值进行计算》GB/T 17747.3—1999。GB/T 17747.1等效采用ISO 12213—1:1997《天然气压缩因子的计算导论和指南》。GB/T 17747.2等效采用ISO 12213-2:1997《天然气压缩因子的计算用摩尔组成进行计算》,给出了用已知的气体的详细的摩尔组成计算压缩因子的方法,目PAGA8—92DC计算方法。GB/T 17747.3等效采用ISO 12213-3:1997《天然气压缩因子的计算用物性值进行计算》,给出了用包括可获得的高位发热量(体积基)、相对密度、C02含量和H2含量(若不为零)等非详细的分析数据计算压缩因子的方法,即SGERG-88计算方法。笔者在输气管道和城镇高压燃气管道水力计算中,按照GB/T 17747.2采用AGA8-92DC计算方法进行天然气压缩因子计算,效果良好。本文对其中的一些问题进行探讨,受篇幅所限,一些内容文中适当省略,详见GB/T 17747.2。 2AGA8—92DC方法的计算过程 2.1已知条件、待求量、计算步骤 2.1.1已知条件 按照GB/T 17747.2的要求,以CH4、N2、CO2、C2H6、C3H8、H2O、H2S、H2、

天然气物性参数及管线压降与温降的计算

整个计算过程的公式包括三部分: 一.天然气物性参数及管线压降与温降的计算 二.天然气水合物的形成预测模型 三.注醇量计算方法 一.天然气物性参数及管线压降与温降的计算 天然气分子量 标准状态下,1kmol 天然气的质量定义为天然气的平均分子量,简称分子量。 ∑=i i M y M (1) 式中 M —气体的平均分子量,kg/kmol ; y i —气体第i 组分的摩尔分数; M i —气体第i 组分的分子量,kg/kmol 。 天然气密度 混合气体密度指单位体积混合气体的质量。按下面公式计算: 0℃标准状态 ∑= i i M y 14.4221ρ (2) 20℃标准状态 ∑ = i i M y 055 241.ρ (3) 任意温度与压力下 ∑∑= i i i i V y M y ρ (4) 式中 ρ—混合气体的密度,kg/m 3 ; ρi —任意温度、压力下i 组分的密度,kg/m 3; y i —i 组分的摩尔分数; M i —i 组分的分子量,kg/kmol ; V i —i 组分摩尔容积,m 3 /kmol 。 天然气密度计算公式 g pM W ZRT ρ= (5) 天然气相对密度 天然气相对密度Δ的定义为:在相同温度,压力下,天然气的密度与空气密度之比。 a ρρ?= (6) 式中 Δ—气体相对密度; ρ—气体密度,kg/m 3; ρa —空气密度,kg/m 3,在P 0=101.325kPa ,T 0=273.15K 时,ρa =1.293kg/m 3; 在P 0=101.325kPa ,T 0=273.15K 时,ρa =1.293kg/m 3。

因为空气的分子量为28.96,固有 28.96 M ?= (7) 假设,混合气和空气的性质都可用理想气体状态方程描述,则可用下列关系式表示天然气的相对密度 28.96g g g a a pM W M W M W RT pM W M W RT ?= == (8) 式中 MW a —空气视相对分子质量; MW g —天然气视相对分子质量。 天然气的虚拟临界参数 任何气体在温度低于某一数值时都可以等温压缩成液体,但当高于该温度时,无论压力增加到多大,都不能使气体液化。可以使气体压缩成液态的这个极限温度称为该气体的临界温度。当温度等于临界温度时,使气体压缩成液体所需压力称为临界压力,此时状态称为临界状态。混合气体的虚拟临界温度、虚拟临界压力和虚拟临界密度可按混合气体中各组分的摩尔分数以及临界温度、临界压力和临界密度求得,按下式计算。 ∑=i ci i c T y T (9) ∑ =i ci i c P y P (10) ∑= i ci i c y ρρ (11) 式中 T c —混合气体虚拟临界温度,K ; P c —混合气体虚拟临界压力(绝),Pa ; ρc —混合气体虚拟临界密度,kg/m 3; T ci —i 组分的临界温度,K ; P ci —i 组分的临界压力(绝),Pa ; ρci —i 组分的临界密度,kg/m 3; y i —i 组分的摩尔分数。 天然气的对比参数 天然气的压力、温度、密度与其临界压力、临界温度和临界密度之比称为天然气对比压力、对比温度和对比密度。 c r P P P = (12) c r T T T = (13)

压缩因子计算

天然气压缩因子的计算 气田上大多数在高压下生产,为控制其流动需要安装节流阀。当气流经过节流阀时,气体产生膨胀,其温度降低。如果气体温度变得足够低,将形成水合物 (一种固体结晶状的冰雪物质)。这就会导致管道和设备的堵塞。【1】从而,在天 然气的集输过程当中,不管对天然气或天然气管道进行怎样的处理,都离不开气体的三个状态参数:压力P 、体积V、温度T。而根据真实气体状态方程PV ZnRT =可知,在确定某个状态参数的时候需要先计算一个压缩因子Z。如果能够更精确的确定压缩因子,从而确定气体的状态参数,对于研究天然气的收集、预处理和输送等问题具有重要意义。下面简要介绍下压缩因子及其计算方法。 真实气体是实实在在的气体,它是为了区别于理想气体而引人的。真实气体占有一定空间,分子之间存在作用力,因此真实气体性质与理想气体性质就有偏离。压缩因子就是反映这种真实气体对理想气体的偏离程度大小。在温度比临界温度高的多、压力很小时,偏离不太显著;反之偏离就很显著。下面将介绍一种计算压缩因子的方法(Dranchuk-Purvis-Robinson 法)。 压缩因子的关系式如下: 563521437383 1()()()(1)exp()pr pr pr pr pr A A A A A Z A A T T T T A A A T =++++++++-52pr pr pr 222 pr pr pr ρρρρρρ (1) 式中A 1到A 8都是常数,具体数据可到参考文献上查阅,ρ pr 为无因次拟对比密 度,它和压缩因子满足关系式: 0.27pr pr pr p ZT ρ= (2) 其中p pr 和T pr 分别为拟对比压力和拟对比温度。 由于式(2)为非线性方程,欲计算Z ,可采用牛顿迭代法(Newton-Raphson )。在已知p pr 和T pr 的情况下,需经过迭代过程求解ρpr ,其公式如下: ( )( 1)()'( )() ()i pr i i pr pr i pr f f ρρρρ+=- (3) 迭代求得拟对比密度ρpr ,即可易求得压缩因子。【2】 参考文献: [1] 曾自强,张育芳.天然气集输工程.北京:石油工业出版社,2001.1 [2] 严铭卿,廉乐明.天然气输配工程.北京:中国建筑工业出版社,2005.32

天然气物性参数及管线压降与温降的计算

整个计算过程的公式包括三部分: 一. 天然气物性参数及管线压降与温降的计算 二. 天然气水合物的形成预测模型 三. 注醇量计算方法 .天然气物性参数及管线压降与温降的计算 20 C 标准状态 1 y i M i 24.055 任意温度与压力下 Y i M i 式中厂混合气体的密度, P —任意温度、压力下i 组分的密度,kg/m 3; y i — i 组分的摩尔分数; M i —i 组分的分子量, V i —i 组分摩 尔容积, 天然气密度计算公式 pMW g ZRT 天然气相对密度 天然气相对密度△的定义为:在相同温度,压力下,天然气的密度与空气密 度之比。 天然气分子量 标准状态下,Ikmol 天然气的质量定义为天然气的平均分子量, Y i M i M 式中 M —气体的平均分子量,kg/kmol ; y i — 气体第i 组分的摩尔分数; M —气体第i 组分的分子量,kg/kmol 天然气密度 混合气体密度指单位体积混合气体的质量。 0 °C 标准状态 按下面公式计算: 1 22.414 y i M i 简称分子量。 (1) kg/m 3; kg/kmol ;

⑹ 式中 △—气体相对密度; 厂气体密度,kg/m 3; p —空气密度,kg/m 3,在 P o =1O1.325kPa, T o =273.15K 时,p =1.293kg/m 3; 在 P o =1O1.325kPa T O =273.15K 时,p =1.293kg/m 3。 因为空气的分子量为28.96,固有 28.96 假设,混合气和空气的性质都可用理想气体状态方程描述,则可用下列关系 式表示天然气的相对密度 天然气的虚拟临界参数 任何气体在温度低于某一数值时都可以等温压缩成液体,但当高于该温度时, 无论压力增加到多大,都不能使气体液化。可以使气体压缩成液态的这个极限温 度称为该气体的临界温度。当温度等于临界温度时,使气体压缩成液体所需压力 称为临界压力,此时状态称为临界状态。混合气体的虚拟临界温度、虚拟临界压 力和虚拟临界密度可按混合气体中各组分的摩尔分数以及临界温度、临界压力和 临界密度求得,按下式计算。 T c Y i T ci i (9) P c Y i P ci i (10 ) c Y i ci (11) i 式中T c —混合气体虚拟临界温度,K ; P c —混合气体虚拟临界压力(绝),Pa ; P —混合气体虚拟临界密度,kg/m 3 ; T ci —i 组分的临界温度,K ; P ci —i 组分的临界压力(绝),Pa ; P —i 组分的临界密度,kg/m 3; y i —i 组分的摩尔分数。 天然气的对比参数 式中 pMW j RT pMW a RT MW a —空气视相对分子质量; MW g —天然气视相对分子质量。 MW g MW a MW g 28.96 (8)

天然气压缩因子计算

1.天然气相关物性参数计算 密度计算: T ZR PM m =ρ ρ——气体密度,Kg/m 3; P ——压力,Pa ; M ——气体千摩尔质量,Kg/Kmol ; Z ——气体压缩因子; T ——气体温度,K ; R m ——通用气体常数,8314.4J/Kmol·K 。 2.压缩因子计算: 已知天然气相对密度?时。 96 .28M =? M ——天然气的摩尔质量。 ?+=62.17065.94pc T 510)05.493.48(??-=pc P ;pc pr P P P = pc pr T T T =; P ——工况下天然气的压力,Pa ;T ——工况下天然气的温度,k ;P Pc —临界压力;T Tc ——临界温度。 对于长距离干线输气管道,压缩因子常用以下两式计算: 668.34273.01--=pr pr T P Z 320107.078.068.110241.01pr pr pr pr T T T P Z ++-- = 对于干燥天然气也可用经验公式估算: 15.1117.0100100P Z +=

标况流量和工况流量转换。为了控制Welas 的5L/min 既 0.3立方米每小时的工况流量。 Q 2------流量计需要调节的流量值 P 2------0.1Mpa T 2------293.15K (20℃ ) Z 2------标况压缩因子 Q 1------0.3m 3/h P 1------ 工况压力(绝对压力MPa ) T 1------开尔文K Z 1-------工况压缩因子 转换公式为 12221211 p T Z Q Q p T Z

Matlab编程天然气压缩因子计算模型

1程序目的 利用AGA8-92DC模型计算天然气的压缩因子,该程序主要应用于在输气和配气正常进行的压力P和温度T围的管输气的压缩因子计算 2数学模型:AGA8-92DC模型 2.1模型介绍 此模型是已知气体详细的摩尔分数组成和相关压力、温度来计算气体压缩因子。 输入变量包括绝对压力、热力学温度和摩尔组成。 摩尔组成是以摩尔分数表示下列组分:CO 2、N 2 、H 2 、CO、CH 4 、C 2 H 6 、C 3 H 8 、 i-C 4H 10 、n-C 4 H 10 、i-C 5 H 12 、n-C 5 H 12 、n-C 6 H 14 、n-C 7 H 16 、n-C 8 H 18 。 2.2 模型适用条件 绝对压力:0MPa<P<12MPa 热力学温度:263K≤T≤338K 高位发热量:30MJ·m-3≤H S ≤45 MJ·m-3 相对密度:0.55≤d≤0.80 天然气中各组分的摩尔分数应在以下围: CH4:0.7≤x CH4 ≤1.0 N2:0≤x N2 ≤0.20 CO2:0≤x CO2 ≤0.20 C2H6:0≤x C2H6 ≤0.10 C3H8:0≤x C3H8 ≤0.035 C4H10:0≤x C4H10 ≤0.015 C5H12:0≤x C5H12 ≤0.005 C6H14:0≤x C6H14 ≤0.001 C7H16:0≤x C7H16 ≤0.0005 C8H18和更高碳数烃类: C8H18:0≤x C8H18 ≤0.0005 H2:0≤x H2 ≤0.10

CO :0≤x CO ≤0.03 如果已知体积分数组成,则应将其换算成摩尔分数组成。所有摩尔分数大于0.00005的组分都不可忽略。 2.3 模型描述 2.3.1 已知条件 绝对压力P 、热力学温度T 、组分数N ; 各组分的摩尔分数,i = 1~N ; 查附表1、2、3得到的以下数据: 58种物质的状态方程参数,, ,,,,,,, ; 14种识别组分的特征参数,,,,,,, ; 14种识别组分的二元交互作用参数, , , 。 2.3.2 待求量 压缩因子 Z 2.3.3 计算步骤 a) 第二维利系数B 的计算: 318 *2 111 B (K K ) n N N u n i j ij i j n i j a T x x B -====∑∑∑ 11*2 2(G 1g )(1)(F F 1f )(S S 1s )(WW 1w )n n n n n g q f s w nij ij n i j n i j n i j n i j n B QQ q =+-+-+-+-+-二元参数E ij 和G ij ,由以下两式计算: 1* 2 (E E )ij ij i j E E = *()/2 ij ij i j G G G G =+ b) 计算系数,n = 13~58 *2(1)()(1)n n n n n g q f u u n n n n n C a G g Q Q q F f U T -=+-+-+- 用以下方程求解混合方程,计算混合物参数U ,G ,Q 。 555 25 22 11 11 (2(1)())i i ij N N N i i j i i j U x E U E E -===+=+-∑∑∑ 1 *1 11 2(1)()N N N i i i j ij i j i i j i G x G x x G G G -===+=+-+∑∑ ∑

天然气流量计算公式

(1)差压式流量计 差压式流量计是以伯努利方程和流体连续性方程为依据,根据节流原理,当流体流经节流件时(如标准孔板、标准喷嘴、长径喷嘴、经典文丘利嘴、文丘利喷嘴等),在其前后产生压差,此差压值与该流量的平方成正比。在差压式流量计中,因标准孔板节流装置差压流量计结构简单、制造成本低、研究最充分、已标准化而得到最广泛的应用。孔板流量计理论流量计算公式为: 式中, qf 为工况下的体积流量, m3/s ; c 为流出系数, 无量钢; β =d/D , 无量钢; d 为工况下孔板径, mm

D 为工况下上游管道径, mm ; ε 为可膨胀系数,无 量钢; Δ p 为孔板前后的差压值, Pa ; ρ 1 为工况下流体的密度, kg/m3 。 对于天然气而言,在标准状态下天然气积流量的实用计算公式为: 式中, qn 为标准状态下天然气体积流量, m3/s

As 为秒计量系数,视采用计量单位而定, 此式 As=3.1794×10 -6 ; c 为流出系数; E 为渐近速度系数; d 为工况 下孔板径, mm ; FG 为相对密度系数, ε 为可膨胀系数; FZ 为超压缩因子; FT 为流动湿度系数;

为孔板上游侧取压孔气流绝对静压, MPa ; Δ p 为气流流经 孔板时产生的差压, Pa 。 差压式流量计一般由节流装置(节流件、测量管、直管段、流动调整器、取压管 路) 和差压计组成, 对工况变化、 准确度要求高的场合则需配置压力计 (传感器 或变送器)、温度计(传感器或变送器)流量计算机,组分不稳定时还需要配置 在线密度计(或色谱仪)等。 ( 2 )速度式流量计

天然气压缩因子的计算 第3部分:用物性值进行计算(标准状态:现行)

I C S75.060 E24 中华人民共和国国家标准 G B/T17747.3 2011 代替G B/T17747.3 1999 天然气压缩因子的计算 第3部分:用物性值进行计算 N a t u r a l g a s C a l c u l a t i o no f c o m p r e s s i o n f a c t o r P a r t3:C a l c u l a t i o nu s i n gp h y s i c a l p r o p e r t i e s (I S O12213-3:2006,MO D) 2011-12-05发布2012-05-01实施中华人民共和国国家质量监督检验检疫总局

G B/T17747.3 2011 目次 …………………………………………………………………………………………………………前言Ⅰ1范围1………………………………………………………………………………………………………2规范性引用文件1…………………………………………………………………………………………3术语和定义1………………………………………………………………………………………………4计算方法1…………………………………………………………………………………………………附录A(规范性附录)符号和单位6 ………………………………………………………………………附录B(规范性附录)S G E R G-88计算方法描述9 ………………………………………………………附录C(规范性附录)计算示例17 ………………………………………………………………………… …………………………………………………………………………附录D(规范性附录)换算因子18附录E(资料性附录)管输气规范21 ………………………………………………………………………附录F(资料性附录)更宽范围的应用效果24 ……………………………………………………………

天然气高压物性参数

2 计算方法介绍 2.1 天然气临界参数计算 2.1.1 天然气平均分子量 天然气是混合气体,分子量不是一成不变的,其平均分子量按Key 规则计算: g i i M y M =∑ (2.1) 式中 M g —天然气的平均分子量kg/mol ; M i 、y i —天然气中i 组分的分子量和摩尔分数。 2.1.2 天然气的相对密度 首先假定空气和天然气都取同一标准状态,天然气的相对密度可用下式表示: 28.97 29g g g g g a i r a i r M M M r M ρρ= ==≈ (2.2) 式中 r g —天然气的相对密度; g ρair ρ—同一标准状态下,天然气、空气的密度kg/m 3; g M air M —天然气、空气的平均分子量kg/mol 。 2.1.3 拟临界压力P PC 和拟临界温度T PC ① 组分分析方法 p c i c i p y p =∑ p c i ci T y T =∑ (2.3) g i i M y M =∑ 式中 ci p —— 天然气组分i 的临界压力(绝),MPa ; ci T —— 天然气组分i 的临界温度,(273+t)°K 。 ② 相关经验公式方法 在缺乏天然气组分分析数据的情况下,可引用Standing 在1941年发表的相关经

验公式 对于干气 2pc 2 pc 4.6660.1030.2593.31817g g g g p T γγγγ=+-=+- (2.4) 对于湿气 2pc 2 pc 4.8680.35639.7103.9183.339.7g g g g p T γγγγ=+-=+- (2.5) 也可以用下面经验关系式进行计算 对于干气 pc pc pc pc 4.88150.386192.2222176.66670.74.77800.248292.2222176.66670.7 g g g g g g p T p T γγγγγγ=-=+≥=-=+< (2.6) 对于湿气 pc pc pc pc 5.10210.6895132.2222176.66670.74.77800.2482106.1111152.22220.7 g g g g g g p T p T γγγγγγ=-=+≥=-=+< (2.7) 注意:上式是对于纯天然气适用,而对于含非烃CO 2 、H 2S 等可以用Wichert 和Aziz 修正。修正常数的计算公式为: ()() () ()() 2222 2 22pc pc 4.75460.21020.03 1.158310 3.06121084.9389188.49440.9333 1.4944g CO N H S g CO N p T γφφφγφφ--=-+-?+?=+-- (2.8) 2.1.4 拟对比压力P Pr 和拟对比温度T Pr 的计算 对比参数就是指某一参数与其应对应的临界参数之比:即 pr pc p p p = Pr pc T T T = (2.9)

天然气物性参数(新)

2.1 天然气临界参数计算 2.1.1 天然气平均分子量 天然气是混合气体,分子量不是一成不变的,其平均分子量按Key 规则计算: g i i M y M =∑ (2.1) 式中 M g —天然气的平均分子量kg/mol ; M i 、y i —天然气中i 组分的分子量和摩尔分数。 2.1.2 天然气的相对密度 首先假定空气和天然气都取同一标准状态,天然气的相对密度可用下式表示: 28.9729g g g g g a i r a i r M M M r M ρρ== =≈ (2.2) 式中 r g —天然气的相对密度; g ρair ρ—同一标准状态下,天然气、空气的密度kg/m 3; g M air M —天然气、空气的平均分子量kg/mol 。 2.1.3 拟临界压力P PC 和拟临界温度T PC ① 组分分析方法 p c i c i p y p =∑ p c i ci T y T =∑ (2.3) g i i M y M =∑ 式中 ci p —— 天然气组分i 的临界压力(绝),MPa ; ci T —— 天然气组分i 的临界温度,(273+t)°K 。 ② 相关经验公式方法 在缺乏天然气组分分析数据的情况下,可引用Standing 在1941年发表的相关经验公式 对于干气

2pc 2 pc 4.6660.1030.2593.31817g g g g p T γγγγ=+-=+- (2.4) 对于湿气 2pc 2 pc 4.8680.35639.7103.9183.339.7g g g g p T γγγγ=+-=+- (2.5) 也可以用下面经验关系式进行计算 对于干气 pc pc pc pc 4.88150.386192.2222176.66670.74.77800.248292.2222176.66670.7 g g g g g g p T p T γγγγγγ=-=+≥=-=+< (2.6) 对于湿气 pc pc pc pc 5.10210.6895132.2222176.66670.74.77800.2482106.1111152.22220.7 g g g g g g p T p T γγγγγγ=-=+≥=-=+< (2.7) 注意:上式是对于纯天然气适用,而对于含非烃CO 2 、H 2S 等可以用Wichert 和Aziz 修正。修正常数的计算公式为: ()() () ()() 2222 2 22pc pc 4.75460.21020.03 1.158310 3.06121084.9389188.49440.9333 1.4944g CO N H S g CO N p T γφφφγφφ--=-+-?+?=+-- (2.8) 2.1.4 拟对比压力P Pr 和拟对比温度T Pr 的计算 对比参数就是指某一参数与其应对应的临界参数之比:即 pr pc p p p = Pr pc T T T = (2.9)

相关主题
文本预览
相关文档 最新文档