当前位置:文档之家› 《数值分析》习题解答 (6)

《数值分析》习题解答 (6)

《数值分析》习题解答 (6)
《数值分析》习题解答 (6)

第五章习题解答

1、给出数据点:0134

19156

i i x y =??

=?

(1)用012,,x x x 构造二次Lagrange 插值多项式2()L x ,并计算15.x =的近似值215(.)L 。 (2)用123,,x x x 构造二次Newton 插值多项式2()N x ,并计算15.x =的近似值215(.)N 。 (3)用事后误差估计方法估计215(.)L 、215(.)N 的误差。

解:(1)利用012013,,x x x ===,0121915,,y y y ===作Lagrange 插值函数

2

20

2

1303011915

01031013303152933

()()()()()()

()()()()()()()()

i i i x x x x x x L x l x y x x =------==

?+?+?-------++=

代入可得2151175(.).L =。

(2)利用123134,,x x x ===,1239156,,y y y ===构造如下差商表:

于是可得插值多项式:

229314134196()()()()()N x x x x x x =+-+---=-+-

代入可得215135(.).N =。

(3)用事后误差估计的方法可得误差为

150

1511751350656304

.(.)(..).R -=

-=-◆ 2,7,9,10,11,12

2、设Lagrange 插值基函数是

0012()(,,,,)n

j i j i j

j i

x x l x i n x x =≠-==-∏

试证明:①对x ?,有

1()n

i i l x ==∑

②00110001211()()(,,,)()()n

k

i i i n n k l x k n x x x k n =?=?==??-=+?

其中01,,,n x x x 为互异的插值节点。

证明:①由Lagrange 插值多项式的误差表达式10

1()()()()()!n n

i i f R x x x n ξ+==-+∏知,对于函数1()f x =进行插值,其误差为0,亦即0

()()n

i i

i f x l x f

==

∑精确成立,亦即

1()n

i i l x ==∑。

②分别取被插值函数()k

f x x =,当k n ≤时Lagrange 插值多项式的误差表达式

1001()()()()()!n n

i i f R x x x n ξ+==-=+∏,即0()()n i i i f x l x f ==∑,亦即0

()n

k k i i i l x x x ==∑,对于0k =,由①可知结论成立;对于12,,

,k n =时,特别地取0x =,则有0

00()n

k i i i l x ==∑;

而当1k n =+时知其Lagrange 插值误差为100

1()()()()()()!n n

n

i i i i f R x x x x x n ξ+===-=-+∏∏,于是有0

()()()n

i i

i f x l x f

R x ==

+∑,即1

1

()()n

n

k k i i

i i i x

l x x

x x ++===+-∑∏,特别取0x =可

120101

011()()()n

k n n i i n n i l x

x x x x x x ++==-=-∑,证毕。◆

3、试验证Newton 插值多项式满足22()()n N x f x =。

解:由Newton 插值多项式0010012()()[,]()[,,]n N x f x f x x x x f x x x =+-+

1

01010

()()[,,

,]()n n i i x x x x f x x x x x -=--+

+-∏

可知

20012001220211021102110

020*********()()[,]()[,,]()()

()()

()()()()()()()()

()()

n N x f x f x x x x f x x x x x x x f x f x f x f x f x f x x x x x f x x x x x x x x x x x f x =+-+-----

---=+-+----=◆

4、已知0101()()()()(,,,n i f x x x x x x x x i n =---=互异,),求函数()f x 的p

阶差商01[,,

,],p f x x x p n ≤。

解:由差商和函数值的关系式010

0,()

[,,

,]()

p

j p p

j j i i i j

f x f x x x x x ==≠=-∑

可知,当p n ≤时总有

010[,,,]p f x x x =

5、若()()()f x u x v x =,试证明:

01001011[,]()[,][,]()f x x u x v x x u x x v x =+

证明:由差商定义

101100

011010

11010100101010101010

001011()()()()()()[,]()()()()()()()()

()()()()

()()

()[,][,]()

f x f x u x v x u x v x f x x x x x x u x v x u x v x u x v x u x v x x x u x u x v x v x v x u x x x x x u x v x x u x x v x --=

=---+-=---=

+--=+ ◆

6、若已知2n n y =,求4n y ?和4

n y δ。

解:由向前差分、中心差分和函数值的关系可得

4

4

440432143211464242624222()***k k

n n k k n n n n n n n n n n n

y C y y y y y y +-=++++++++?=-=-+-+=-+-+=∑

4

4

420

211221122

1464242624222()***k k n n k

k n n n n n n n n n n n y C y y y y y y δ+-=++--++---=-=-+-+=-+-+=∑

7、考虑构造一个函数01()([,])x

f x e x =∈的等距节点函数表,要使分段线性插值的误差不大于

41

102

-?,最大步长h 应取多大? 解:由等距分段线性插值的误差表达式

222401110882

()

()max ()x h h R x f x e -≤≤≤=≤?

从而可得

2

00121.h -≤

8、考虑构造一个函数01()([,])x

f x e x =∈的等距节点函数表,要使分段Hermite 插值的

误差不大于

41

102

-?,最大步长h 应取多大? 解:由等距分段Hermite 插值的误差表达式

4444

401110423842

()()max ()!x h h R x f x e -≤≤≤=≤?

从而可得

121002899.h -≤≈ 9、对函数()f x ,取节点012,,x x x ,且已知001122''

(),(),()f x y f x y f x y ===;

①试对()f x 构造二次插值多项式

2001122'

()()()()P x h x y h x y h x y =++

确定上式中基函数012(),(),()h x h x h x 。

②若要使2()P x 存在且唯一,插值节点012,,x x x 应满足什么条件? 解:①依题意,二次多项式基函数012(),(),()h x h x h x 应分别满足:

000010200'

(),(),()h x y h x h x ===

(1)

101111200''

(),(),()h x h x y h x === (2) 202122200'(),(),()h x h x h x y ===

(3)

由(1)(2)(3)可得

2120

00210222()()()()()

x x x x x y h x x x x x x +--=

+--,

021

11022'

()()()()

x x x x y h x x x x --=

--, 0100

22012022()()()()()

x x x x x y h x x x x x x +--=

+--

②由(1)(2)(3)可知欲使2()P x 存在且唯一,只需且必须插值节点02,x x 互异且

02

12

x x x +≠

。 10、设3

01()[,],,[,]f x C a b x x a b ∈∈,证明:

101010

0210012

012

102'

()()()()()()()()()()

()()

()x x x x x x x x x f x f x f x x x x x x x f x R x x x ---+--=

+---+

+-

其中201011

6

'''()()()()()R x x x x x f x x ξξ=

--≤≤。

证明:令二次多项式

1010120

0210012

012

102'

()()()()()()()()()()

()

()x x x x x x x x x P x f x f x x x x x x x f x x x ---+--=

+---+

-

则易见2()P x 满足:200200211''

()(),()(),()()P x f x P x f x P x f x === 于是2()()()R x f x P x =-满足:0010'

()()()R x R x R x ===

因而201()()()()R x K x x x x x =--,引入辅助函数2

01()()()()()g t R t K x t x t x =---,

则()g t 共有01(,x x x 二重)

,四个零点,依广义Rolle 定理,存在01[,]x x ξ∈满足: 26660'''''''''''''''()()()()()()()()g R K x f P K x f K x ξξξξξ=-=--=-=

从而6'''()()f K x ξ=,20116

'''

()()()()R x x x x x f ξ=--。证毕。

11、设(),()i i h x h x 为Hermite 插值基函数,012(,,,,)i n =,试证明:

01()n

i i h x ==∑

(()())n

i

i

i i h x x

h x x =+=∑

证明:由Hermite 插值0

'

()()()()n n

i

i

i

i

i i f x h x y h x y

R x ===

++∑∑,其误差表达式

2220

22()()()()()!n n

i i f R x x x n ξ+==-+∏,故对于次数不高于一次的多项式函数()f x 有0()R x =,从而0

'

()()()n n

i

i

i

i

i i f x h x y h x y

===

+∑∑,特别地取1(),f x x =,分别可得

1()n

i i h x ==∑;②0

(()())n

i

i

i i h x x

h x x =+=∑

12、试构造一个Hermite 三次多项式3()H x 逼近函数()f x ,满足以下条件。

333

3000111

003110

'''

'()(),()()()(),()()H f H f H f H f ====???==-==??

解:取0101,x x ==,由H e r m i t e 插值1

1

'

()()()()i

i

i

i

i i f x h x y h x y

R x ===

++∑∑,

1

1

30

'()()()i i i i i i H x h x y h x y ===+∑∑,其中

2

2001122111001()()()x x h x x x --?

???=+=+- ???--????, 2

211012320110()()x x h x x x --????=+=- ???--????, 2

2010101()()()x h x x x x -??=-=- ?

-??

2

2101110()()()x h x x x x -??

=-=- ?

-??

代入可得32

3103593()()()H x h x h x x x x =-=-+-。

13、试判断下面函数是否为三次样条函数:

①3

3301001112[,)()[,)()[,]

x f x x

x x x x ∈-??=∈??+-∈?

②23

21

10221

01[,)()[,]

x x x f x x x x ?++∈-?=?++∈??

解:据三次样条函数的定义①中函数是三次样条函数,②中函数不是三次样条函数,因其在

内节点0处二阶导数不连续。 14、给出如下的数据:

1010132020'

''x y y y =-??=?

?=-?

?=?

①试用重节点差商法构造五次Hermite 插值多项式5()H x 满足所给条件,并给出插值误差式。

②若用Lagrange 型基本函数法,应如何构造节点基函数。

23323

554321

21101713118

1

21131788()()()()()()()

H x x x x x x x x x x x x =-+++-+++-+=---+-

插值误差为:62

35116()()()()()!

f R x x x x ξ=

+-

②若用Lagrange 型基本函数法,设基函数为012010(),(),(),(),(),()x x x x x x αααββγ,

2

1

5000

'''

()()()()i i j j i j H x x y x y x y αβγ===++∑∑

其中001201()(,,),()(,),()i j x i x j x αβγ==均为五次多项式且满足

00000001101011''''()()()()(),()αααααα==-==-=-=,

11111111101001''''()()()()(),()αααααα-==-==-==,

22222210101011''''()()()()(),()αααααα-==-==-==,

00000010101011''''()()()()(),()ββββββ-====-=-=,

11111110111001''''()()()()(),()ββββββ-===-=-==,

00000010110011''''()()()()(),()γγγγγγ-===-==-=。

15、已知数据对

0817********(,){(,),(,),(,),(,),(,)}x y =--

①给出自然边界条件040''

''

()()y y ==,试用三弯矩方程构造三次样条函数()S x ,并计算

25(.)f 的近似值。

②给出固定边界条件0044'

'

(),()y y ==,试用三转角方程构造三次样条函数()S x ,并计算25(.)f 的近似值。

解:①依三弯矩方程及自然边界条件040''

''

()()y y ==可得线性方程组

01234200052051805205

360520554020......M M M M M ??????

? ? ? ? ? ? ? ? ?= ? ? ? ? ? ?

? ? ?????

?? 解得012340642861028572442860,.,.,.,M M M M M =====,于是可得

2573304(.).f ≈

②依固定边界条件0044'

'

(),()y y ==可得

f (.). 2557589

数值分析典型习题

特别声明:考试时需带计 算器作辅助计算 1.2015x *=是经四舍五入得到的近似值,则其相对误差* r e ≤-31 104 ?. 2. 01(),(), ,()n l x l x l x 是以01,, ,n x x x 为节点的拉格朗日插值基函数,则 3.设(0)1(1)3(2)4(3)2f =,f =,f =,f =,[0123]f =,,,1 3 - . 4. 利用Simpson 公式求?2 1 2dx x = 7.3 5. 设求积公式1 0()d (),(1)n k k k f x x A f x n ≈≥∑?=是Gauss 型求积公式,则3 n k k k A x == ∑1 .4 6. 数值微分公式(2)(2) ()i i i f x h f x h f x h +≈ --'的截断误差为 2().O h 7. 设1101A ?? = ??? ,则A 的谱半径()A ρ= 1 ,A 的条件数1cond ()A = 4. 8. 用牛顿下山法求解方程3 03 x x -=根的迭代公式是 2 13 3(1),3n n n n x x x x x λ+-=-- 下山条件是 1()().n n f x f x +< 9.对任意初始向量(0)x 及任意向量f ,线性方程组的迭代公式(1)()(0,1,2,)k k k +=+=x Bx f ,迭代序列()k x 收敛于方程组的精确解x *的充分必要条件是()1.ρ

数值分析试题及答案汇总

数值分析试题 一、 填空题(2 0×2′) 1. ?? ????-=? ?????-=32,1223X A 设x =是精确值x *=的近似值,则x 有 2 位 有效数字。 2. 若f (x )=x 7-x 3+1,则f [20,21,22,23,24,25,26,27]= 1 , f [20,21,22,23,24,25,26,27,28]= 0 。 3. 设,‖A ‖∞=___5 ____,‖X ‖∞=__ 3_____, ‖AX ‖∞≤_15_ __。 4. 非线性方程f (x )=0的迭代函数x =?(x )在有解区间满足 |?’(x )| <1 ,则使用该迭代 函数的迭代解法一定是局部收敛的。 5. 区间[a ,b ]上的三次样条插值函数S (x )在[a ,b ]上具有直到 2 阶的连续导数。 6. 当插值节点为等距分布时,若所求节点靠近首节点,应该选用等距节点下牛顿差商 公式的 前插公式 ,若所求节点靠近尾节点,应该选用等距节点下牛顿差商公式的 后插公式 ;如果要估计结果的舍入误差,应该选用插值公式中的 拉格朗日插值公式 。 7. 拉格朗日插值公式中f (x i )的系数a i (x )的特点是:=∑=n i i x a 0)( 1 ;所以当 系数a i (x )满足 a i (x )>1 ,计算时不会放大f (x i )的误差。 8. 要使 20的近似值的相对误差小于%,至少要取 4 位有效数字。 9. 对任意初始向量X (0)及任意向量g ,线性方程组的迭代公式x (k +1)=Bx (k )+g (k =0,1,…)收 敛于方程组的精确解x *的充分必要条件是 ?(B)<1 。 10. 由下列数据所确定的插值多项式的次数最高是 5 。 11. 牛顿下山法的下山条件为 |f(xn+1)|<|f(xn)| 。 12. 线性方程组的松弛迭代法是通过逐渐减少残差r i (i =0,1,…,n )来实现的,其中的残差 r i = (b i -a i1x 1-a i2x 2-…-a in x n )/a ii ,(i =0,1,…,n )。 13. 在非线性方程f (x )=0使用各种切线法迭代求解时,若在迭代区间存在唯一解,且f (x )

西南交通大学数值分析题库

考试目标及考试大纲 本题库的编纂目的旨在给出多套试题,每套试题的考查范围及难度配置均基于“水平测试”原则,按照教学大纲和教学内容的要求,通过对每套试题的解答,可以客观公正的评定出学生对本课程理论体系和应用方法等主要内容的掌握水平。通过它可以有效鉴别和分离不同层次的学习水平,从而可以对学生的学习成绩给出客观的综合评定结果。 本题库力求作到能够较为全面的覆盖教学内容,同时突显对重点概念、重点内容和重要方法的考查。考试内容包括以下部分: 绪论与误差:绝对误差与相对误差、有效数字、误差传播分析的全微分法、相对误差估计的条件数方法、数值运算的若干原则、数值稳定的算法、常用数值稳定技术。 非线性方程求解:方程的近似解之二分法、迭代法全局收敛性和局部收敛定理、迭代法误差的事前估计法和事后估计法、迭代过程的收敛速度、r 阶收敛定理、Aitken加速法、Ne w to n法与弦截法、牛顿局部收敛性、Ne w to n收敛的充分条件、单双点割线法(弦截法)、重根加速收敛法。 解线性方程组的直接法:高斯消元法极其充分条件、全主元消去法、列主元消去法、高斯-若当消元法、求逆阵、各种消元运算的数量级估计与比较、矩阵三角分解法、Doolittle 和Crout三角分解的充分条件、分解法的手工操作、平方根法、Cholesky分解、改进的平方根法(免去开方)、可追赶的充分条件及适用范围、计算复杂性比较、严格对角占优阵。 解线性方程组迭代法:向量和矩阵的范数、常用向量范数的计算、范数的等价性、矩阵的相容范数、诱导范数、常用范数的计算;方程组的性态和条件数、基于条件数误差估计与迭代精度改善方法;雅可比(Jacobi)迭代法、Gauss-Seidel迭代法、迭代收敛与谱半径的关系、谱判别法、基于范数的迭代判敛法和误差估计、迭代法误差的事前估计法和事后估计法;严格对角占优阵迭代收敛的有关结论;松弛法及其迭代判敛法。 插值法:插值问题和插值法概念、插值多项式的存在性和唯一性、插值余项定理;Lagrange插值多项式;差商的概念和性质、差商与导数之间的关系、差商表的计算、牛顿(Newton)插值多项式;差分、差分表、等距节点插值公式;Hermite插值及其插值基函数、误差估计、插值龙格(Runge)现象;分段线性插值、分段抛物插值、分段插值的余项及收敛性和稳定性;样条曲线与样条函数、三次样条插值函数的三转角法和三弯矩法。 曲线拟合和函数逼近:最小二乘法原理和多项式拟合、函数线性无关概念、法方程有唯一解的条件、一般最小二乘法问题、最小二乘拟合函数定理、可化为线性拟合问题的常见函数类;正交多项式曲线拟合、离散正交多项式的三项递推法。最佳一致逼近问题、最佳一致逼近多项式、切比雪夫多项式、切比雪夫最小偏差定理、切比雪夫多项式的应用(插值余项近似极小化、多项式降幂)。本段加黑斜体内容理论推导可以淡化,但概念需要理解。 数值积分与微分:求积公式代数精度、代数精度的简单判法、插值型求积公式、插值型求积公式的代数精度;牛顿一柯特斯(Newton-Cotes)公式、辛卜生(Simpson)公式、几种低价牛顿一柯特斯求积公式的余项;牛顿一柯特斯公式的和收敛性、复化梯形公式及其截断误差、复化Simpson公式及其截断误差、龙贝格(Romberg)求积法、外推加速法、高斯型求积公式、插值型求积公式的最高代数精度、高斯点的充分必要条件。正交多项式的构造方法、高斯公式权系数的建立、Gauss-Legendre公式的节点和系数。本段加黑斜体内容理论推导可以淡化,但概念需要理解。 常微分方程数值解:常微分方程初值问题数值解法之欧拉及其改进法、龙格—库塔法、阿当姆斯方法。

数值分析习题集及答案[1].(优选)

数值分析习题集 (适合课程《数值方法A 》和《数值方法B 》) 长沙理工大学 第一章 绪 论 1. 设x >0,x 的相对误差为δ,求ln x 的误差. 2. 设x 的相对误差为2%,求n x 的相对误差. 3. 下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指出 它们是几位有效数字: *****123451.1021,0.031,385.6,56.430,7 1.0.x x x x x =====? 4. 利用公式(3.3)求下列各近似值的误差限: ********12412324(),(),()/,i x x x ii x x x iii x x ++其中**** 1234 ,,,x x x x 均为第3题所给的数. 5. 计算球体积要使相对误差限为1%,问度量半径R 时允许的相对误差限是多少? 6. 设028,Y =按递推公式 1n n Y Y -=( n=1,2,…) 计算到100Y .27.982(五位有效数字),试问计算100Y 将有多大误差? 7. 求方程2 5610x x -+=的两个根,使它至少具有四位有效数字27.982). 8. 当N 充分大时,怎样求2 1 1N dx x +∞+?? 9. 正方形的边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝2 ? 10. 设 212S gt = 假定g 是准确的,而对t 的测量有±0.1秒的误差,证明当t 增加时S 的绝对 误差增加,而相对误差却减小. 11. 序列 {}n y 满足递推关系1101n n y y -=-(n=1,2,…),若0 1.41y =≈(三位有效数字), 计算到 10y 时误差有多大?这个计算过程稳定吗? 12. 计算6 1)f =, 1.4≈,利用下列等式计算,哪一个得到的结果最好? 3 -- 13. ()ln(f x x =,求f (30)的值.若开平方用六位函数表,问求对数时误差有多大?若

数值分析典型例题

第一章典型例题 例3 ln2=0.…,精确到10-3的近似值是多少 解 精确到10-3=,即绝对误差限是=, 故至少要保留小数点后三位才可以。ln2 第二章典型例题 例1 用顺序消去法解线性方程组 ??? ??1 -=4+2+4=+2+31 -=4++2321 321321x x x x x x x x x 解 顺序消元 ?? ?? ??????---???→???????????---????→???????????--=-?+-?+-?+1717005.555.00141 25.025.105.555.001412142141231412]b A [)3()2/1()2/3(231312r r r r r r M 于是有同解方程组 ?? ? ??-==--=++17175.555.0142332321x x x x x x 回代得解 x 3=-1, x 2=1,x 1=1,原线性方程组的解为X =(1,1,-1)T 例2 取初始向量X (0)=(0,0,0)T ,用雅可比迭代法求解线性方程组 ??? ??5 =+2+23=++1=2-2+321 321321x x x x x x x x x 解 建立迭代格式 ???????+--=+--=++-=+++5223122) (2)(1)1(3 ) (3)(1)1(2 ) (3)(2)1(1k k k k k k k k k x x x x x x x x x (k =1,2,3,…)

第1次迭代,k =0 X (0)=0,得到X (1)=(1,3,5)T 第2次迭代,k =1 ???????-=+?-?-=-=+--==+?+?-=3 532123 351515232)2(3) 2(2)2(1x x x X (2)=(5,-3,-3)T 第3次迭代,k =2 ???????=+-?-?-==+---==+-?+-?-=1 5)3(2521 3)3(511)3(2)3(2)2(3) 3(2)3(1x x x X (3)=(1,1,1)T 第4次迭代,k =3 ???????=+?-?-==+--==+?+?-=1 512121 311111212)2(3) 2(2)2(1x x x X (4)=(1,1,1)T 例4 证明例2的线性方程组,雅可比迭代法收敛,而高斯-赛德尔迭代法发散。 证明 例2中线性方程组的系数矩阵为 A =?? ?? ? ?????-122111221 于是 D =?? ?? ??????100010001 D -1=D ??????????=022001000L ~ ????? ?????-=000100220U ~ 雅可比迭代矩阵为

数值分析作业思考题汇总

¥ 数值分析思考题1 1、讨论绝对误差(限)、相对误差(限)与有效数字之间的关系。 2、相对误差在什么情况下可以用下式代替 3、查阅何谓问题的“病态性”,并区分与“数值稳定性”的不同点。 4、取 ,计算 ,下列方法中哪种最好为什么(1)(3 3-,(2)(2 7-,(3) ()3 1 3+ ,(4) ()6 1 1 ,(5)99- , 数值实验 数值实验综述:线性代数方程组的解法是一切科学计算的基础与核心问题。求解方法大致可分为直接法和迭代法两大类。直接法——指在没有舍入误差的情况下经过有限次运算可求得方程组的精确解的方法,因此也称为精确法。当系数矩阵是方的、稠密的、无任何特殊结构的中小规模线性方程组时,Gauss消去法是目前最基本和常用的方法。如若系数矩阵具有某种特殊形式,则为了尽可能地减少计算量与存储量,需采用其他专门的方法来求解。 Gauss消去等同于矩阵的三角分解,但它存在潜在的不稳定性,故需要选主元素。对正定对称矩阵,采用平方根方法无需选主元。方程组的性态与方程组的条件数有关,对于病态的方程组必须采用特殊的方法进行求解。 数值计算方法上机题目1 1、实验1. 病态问题 实验目的: 算法有“优”与“劣”之分,问题也有“好”和“坏”之别。所谓坏问题就是问题本身的解对数据变化的比较敏感,反之属于好问题。希望读者通过本实验对此有一个初步的体会。 数值分析的大部分研究课题中,如线性代数方程组、矩阵特征值问题、非线性方程及方程组等都存在病态的问题。病态问题要通过研究和构造特殊的算法来解决,当然一般要付出一些代价(如耗用更多的机器时间、占用更多的存储空间等)。 $ r e x x e x x ** * ** - == 141 . ≈)61

数值分析典型习题资料

数值分析典型习题

特别声明:考试时需带计 算器作辅助计算 1.2015x *=是经四舍五入得到的近似值,则其相对误差* r e ≤ -31 104 ?. 2. 01(),(),,()n l x l x l x L 是以01,,,n x x x L 为节点的拉格朗日插值基函数,则 3.设(0)1(1)3(2)4(3)2f =,f =,f =,f =,[0123]f =,,,1 3 - . 4. 利用Simpson 公式求?2 1 2dx x = 7.3 5. 设求积公式1 0()d (),(1)n k k k f x x A f x n ≈≥∑?=是Gauss 型求积公式,则3 n k k k A x == ∑1 .4 6. 数值微分公式(2)(2) ()i i i f x h f x h f x h +≈ --'的截断误差为 2().O h 7. 设1101A ?? = ??? ,则A 的谱半径()A ρ= 1 ,A 的条件数1cond ()A = 4. 8. 用牛顿下山法求解方程3 03 x x -=根的迭代公式是 2 13 3(1),3n n n n x x x x x λ+-=-- 下山条件是 1()().n n f x f x +< 9.对任意初始向量(0)x 及任意向量f ,线性方程组的迭代公式(1)()(0,1,2,)k k k +=+=L x Bx f ,迭代序列()k x 收敛于方程组的精确解x *的充分必要条件是()1.ρ

华南理工大学数值分析试题-14年下-C

华南理工大学研究生课程考试 《数值分析》试卷C (2015年1月9日) 1. 考前请将密封线内各项信息填写清楚; 所有答案请按要求填写在本试卷上; 课程代码:S0003004; 4. 考试形式:闭卷; 5. 考生类别:硕士研究生; 本试卷共八大题,满分100分,考试时间为150分钟。 一、(12分)解答下列问题: 1)设近似值0x >,x 的相对误差为δ,试证明ln x 的绝对误差近似为δ。 2)利用秦九韶算法求多项式 542()681p x x x x x =-+-+ 在3x =时的值(须写出计算形式),并统计乘法次数。 (12分)解答下列问题: 1)设()235f x x =+,求[]0,1,2f 和[]0,1,2,3f 。 2)利用插值方法推导出恒等式: 33220,0[]j j i i x j i x i j =≠=-=-∑∏ 。

(1)设{}∞ =0)(k k x q 是区间[]1,0上带权1=ρ而最高次项系数为1的正交多项式族,其中1)(0=x q ,求1()q x 和2()q x 。 (2)求形如2y a bx =+的经验公式,使它与下列数据拟合: 四、(14分)对积分()10I f x dx = ?,试 (1)构造一个以012113,,424 x x x ===为节点的插值型求积公式; (2)指出所构造公式的代数精度; (3)用所得数值求积公式计算积分1 203x dx ?的精确值; (4)指出所得公式与一般的Newton-Cotes 型公式在形式上的重要区别。

(1)设?? ????=4321A ,计算1A 、()Cond A ∞和()A ρ。 (2)用列主元Gauss 消去法解方程组: 12312315410030.112x x x ????????????=????????????-?????? 六、(13分)对2阶线性方程组 11112212112222 a x a x b a x a x b +=??+=? (11220a a ≠ ) (1)证明求解此方程组的Jacobi 迭代与Gauss-Seidel 迭代同时收敛或同时发散; (2)当同时收敛时,试比较它们的收敛速度。

数值分析典型例题

第一章典型例题 例3…,精确到10-3的近似值是多少? 解 精确到10-3=,即绝对误差限是?=, 故至少要保留小数点后三位才 可以。ln2? 第二章典型例题 例1 用顺序消去法解线性方程组 解 顺序消元 于是有同解方程组 回代得解 x 3=-1, x 2=1,x 1=1,原线性方程组的解为X =(1,1,-1)T 例2 取初始向量X (0)=(0,0,0)T ,用雅可比迭代法求解线性方程组 解 建立迭代格式 ??? ????+--=+--=++-=+++5223122)(2)(1)1(3) (3)(1)1(2 )(3)(2)1(1k k k k k k k k k x x x x x x x x x (k =1,2,3,…) 第1次迭代,k =0 X (0)=0,得到X (1)=(1,3,5)T 第2次迭代,k =1 X (2)=(5,-3,-3)T 第3次迭代,k =2 X (3)=(1,1,1)T 第4次迭代,k =3

X (4)=(1,1,1)T 例4 证明例2的线性方程组,雅可比迭代法收敛,而高斯-赛德尔迭 代法发散。 证明 例2中线性方程组的系数矩阵为 A =?? ?? ? ?????-122111221 于是 D =?? ?? ??????100010001 D -1 =D ?? ?? ? ?????=022001000L ~ ?? ?? ? ?????-=000100220U ~ 雅可比迭代矩阵为 B 0=?? ?? ? ?????--=??????????-??????????-=+--022101220022101220100010001)U ~L ~(D 1 得到矩阵B 0的特征根03,2,1=λ,根据迭代基本定理4,雅可比迭代法收敛。 高斯-赛德尔迭代矩阵为 G =-U ~ )L ~D (1-+ =-?? ?? ??????----=??????????-??????????---=??????????-??????????-2003202200001002201200110010001002201220110011 解得特征根为?1=0,?2,3=2。由迭代基本定理4知,高斯-赛德尔迭代发散。 例5 填空选择题: 1. 用高斯列主元消去法解线性方程组 作第1次消元后的第2,3个方程分别为 。

数值分析推荐书目

第一类:教材匹配阅读 ?数值分析复习与考试指导,李庆扬编,高等教育出版社; ?数值分析(第四版)导教·导学·导考,封建湖等编,西北工业大学出版社; ?数值分析,孙志忠编,东南大学出版社; ?数值分析简明教程(第二版),王能超编,高等教育出版社; ?数值分析全真试题解析,孙志忠编,东南大学出版社; ?数值分析学习辅导习题解析,李宏、徐长发编,华中科技大学出版社; 第二类:实验教材匹配阅读 ?数值分析及其MATLAB实验,姜健飞等编,科学出版社; ? MATLAB数值计算,Cleve B.Moler, 机械工业出版社; ?数值分析与实验,薛毅,北京工业出版社; ?高等应用数学问题的MATLAB求解(第二版),薛定宇,陈阳泉著,清华大学出版社; ? MATLAB数值分析与应用,宋叶志等编著,机械工业出版社; 第三类:扩展阅读 ?现代科学与工程计算,孟大志,刘伟编著,高等教育出版社; ?计算数学简明教程,何旭初等编,高等教育出版社; ?计算方法导论,徐萃薇编,高等教育出版社; ?计算方法(第二版),邓建中、刘之行编,西安交通大学出版社; ?数值分析学习辅导习题解析,李宏、徐长发编,华中科技大学出版社; ?计算方法,邓建中、葛仁杰、程正兴编,西安交通大学出版社; ?数值计算方法,孙淑英张圣丽编,山东大学出版社; ?数值分析,.M.奥特加著,张丽君等译,高等教育出版社; ?有限元方法及其理论基础,姜礼尚庞之垣著,人民教育出版社; < ?微分方程数值解法,李荣华、冯国忱编,高等教育出版社; ?偏微分方程数值解法,李荣华编,高等教育出版社; ?非线性方程组的数值解法,李庆扬、莫孜中、祁力群编,科学出版社; ?非线性方程组解法,王德人编,人民教育出版社; < ?数值分析基础,关治、陆金甫编,高等教育出版社; ?数值线性代数,徐树方、高立、张平文编,北京大学出版社; ?数值线性代数,曹志浩编著,复旦大学出版社;

数值分析习题集及答案Word版

数值分析习题集 (适合课程《数值方法A 》和《数值方法B 》) 长沙理工大学 第一章 绪 论 1. 设x >0,x 的相对误差为δ,求ln x 的误差. 2. 设x 的相对误差为2%,求n x 的相对误差. 3. 下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指 出它们是几位有效数字: *****123451.1021,0.031,385.6,56.430,7 1.0.x x x x x =====? 4. 利用公式(3.3)求下列各近似值的误差限: ********12412324(),(),()/,i x x x ii x x x iii x x ++其中**** 1234 ,,,x x x x 均为第3题所给的数. 5. 计算球体积要使相对误差限为1%,问度量半径R 时允许的相对误差限是多少? 6. 设028,Y =按递推公式 1n n Y Y -=…) 计算到100Y .27.982(五位有效数字),试问计算100Y 将有多大误差? 7. 求方程2 5610x x -+=的两个根,使它至少具有四位有效数字27.982). 8. 当N 充分大时,怎样求2 1 1N dx x +∞+?? 9. 正方形的边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝2 ? 10. 设 212S gt = 假定g 是准确的,而对t 的测量有±0.1秒的误差,证明当t 增加时S 的绝对 误差增加,而相对误差却减小. 11. 序列 {}n y 满足递推关系1101n n y y -=-(n=1,2,…),若0 1.41y =≈(三位有效数字), 计算到 10y 时误差有多大?这个计算过程稳定吗? 12. 计算6 1)f =, 1.4≈,利用下列等式计算,哪一个得到的结果最好? 3 -- 13. ()ln(f x x =,求f (30)的值.若开平方用六位函数表,问求对数时误差有多大?

数值分析典型例题

数值分析典型例题 例1 对下列各数写出具有5位有效数字的近似值。236.478, 0.00234711, 9.000024, 9.0000343 10?. 解:按照定义,以上各数具有5位有效数字的近似值分别为:236.478, 0.0023471, 9.0000, 9.0000310?。 注意: *x =9.000024的5位有效数字是9.0000而不是9,因为9 是1位有效数字。 例2 指出下列各数具有几位有效数字。2.0004, -0.00200, -9000, 9310?, 23 10-?。 解:按照定义,以上各数的有效数字位数分别为5, 3, 4,1,1 例3 已测得某物体行程* s 的近似值s=800m ,所需时间* s 的近似值为t=35s ,若已知m s s s t t 5.0||,05.0||**≤-≤-,试求平均速度v 的绝对误差和相对误差限。 解:因为t s v /=,所以)()(1)()()(2t e t s s e t t e t v s e s v v e -=??+??≈ 从 而 05.00469.035 800 5.0351|)(||||)(|1|)(|22≤≈+?≤+≤t e t s s e t v e 同样v v e v e r )()(≈)()()()(t e s e t e v t t v s e v s s v r r r -=??+??= 所以00205.035 05 .08005.0|)(||)(||)(|≈+≤+≤t e s e v e r r r 因此绝对误差限和相对误差限分别为0.05和0.00205。 例4试建立积分20,,1,05 =+=n dx x x I n n 的递推关系,并研究它的误差 传递。 解:151 --= n n I n I ……………………………………………..…...(1) 5ln 6ln 0-=I ,计算出0I 后可通过(1)依次递推计算出1I ,…,20I 。 但是计算0I 时有误差0e ,由此计算出的1I ,…,20I 也有误差,由(1)可 知近似值之间的递推关系为 151 --= n n I n I ……………………………………………….…..(2) (1)-(2)可得 01)5(5e e e n n n -=-=-,由0I 计算n I 时误差被放大了n 5倍。所以(1)不稳 定。 (1) 可以改写为 n I I n n 51 511+ -=- ……………………………………… (3) 如果能先求出20I ,则依次可以求出19I ,…,0I ,计算20I 时有误差,这样根据(3)计算19I ,…,0I 就有误差,误差传播为 n n n e e ?? ? ??-=-511 ,误差依次减少。 例5 用二分法求解方程012)(23=+--=x x x x f 在区间[0,1]内的1个实根,要求有3为有效数字。 解:因为0)1()0(> newton('f','df',1.2,10^(-6),20) 3.实验结果

p0 = 1.2000 k =1 p1=1.1030 err=0.0970 y=0.0329 k= 2 p1=1.0524 err=0.0507 y=0.0084 k =3 p1=1.0264 err=0.0260 y=0.0021 k =4 p1=1.0133 err=0.0131 y=5.2963e-004 k =5 p1=1.0066 err=0.0066 y=1.3270e-004 k =6 p1=1.0033 err=0.0033 y=3.3211e-005 k =7 p1=1.0017 err=0.0017 y=8.3074e-006 k =8 p1=1.0008 err=8.3157e-004 y = 2.0774e-006 k =9 p1=1.0004 err=4.1596e-004 y =5.1943e-007 k=10 p1=1.0002 err=2.0802e-004 y= 1.2987e-007 k=11 p1=1.0001 err=1.0402e-004 y =3.2468e-008 k=12 p1=1.0001 err=5.2014e-005 y=8.1170e-009 k=13 p1=1.0000 err=2.6008e-005 y= 2.0293e-009 k=14 p1=1.0000 err=1.3004e-005 y=5.0732e-010 k=15 p1 =1.0000 err=6.5020e-006 y=1.2683e-010 k=16 p1 =1.0000 err=3.2510e-006 y=3.1708e-011 k=17 p1 =1.0000 err=1.6255e-006 y =7.9272e-012 k=18 p1 =1.0000 err =8.1279e-007 y= 1.9820e-012 ans = 1.0000 结果说明:经过18次迭代得到精确解为1,误差为8.1279e-007。

数值分析试题1

数值分析试卷1 一、填空题(每空2分,共30分) 1. 近似数231.0=*x 关于真值229.0=x 有____________位有效数字; 2. 设)(x f 可微,求方程)(x f x =根的牛顿迭代格式是_______________________________________________; 3. 对1)(3++=x x x f ,差商=]3,2,1,0[f _________________; =]4,3,2,1,0[f ________; 4. 已知??? ? ??-='-=1223,)3,2(A x ,则=∞||||Ax ________________,=)(1A Cond ______________________ ; 5. 求解线性方程组?????=+=+045 11532121x x x x 的高斯—赛德尔迭代格式为_______________________________________;该迭代格式迭代矩阵的谱半径=)(G ρ_______________; 二、(12分)(1)设LU A =,其中L 为下三角阵,U 为单位上三角阵。已知 ?????? ? ??------=2100121001210012A ,求L ,U 。 (2)设A 为66?矩阵,将A 进行三角分解:LU A =,L 为单位下三角阵,U 为上三角阵,试写出L 中的元素65l 和U 中的元素56u 的计算公式。 三、给定数据表如下 x 0.20.40.60.81 1.2f(x)212523202124 (1) 用三次插值多项式计算f ( 0.7 ) 的近似值; (2) 用二次插值多项式计算f ( 0.95 ) 的近似值: (3) 用分段二次插值计算 f ( x ) )2.12.0(≤≤x 的近似值能保证有几位有

西南交通大学2018-2019数值分析Matlab上机实习题

数值分析2018-2019第1学期上机实习题 f x,隔根第1题.给出牛顿法求函数零点的程序。调用条件:输入函数表达式() a b,输出结果:零点的值x和精度e,试取函数 区间[,] ,用牛顿法计算附近的根,判断相应的收敛速度,并给出数学解释。 1.1程序代码: f=input('输入函数表达式:y=','s'); a=input('输入迭代初始值:a='); delta=input('输入截止误差:delta='); f=sym(f); f_=diff(f); %求导 f=inline(f); f_=inline(f_); c0=a; c=c0-f(c0)/f_(c0); n=1; while abs(c-c0)>delta c0=c; c=c0-f(c0)/f_(c0); n=n+1; end err=abs(c-c0); yc=f(c); disp(strcat('用牛顿法求得零点为',num2str(c))); disp(strcat('迭代次数为',num2str(n))); disp(strcat('精度为',num2str(err))); 1.2运行结果: run('H:\Adocument\matlab\1牛顿迭代法求零点\newtondiedai.m') 输入函数表达式:y=x^4-1.4*x^3-0.48*x^2+1.408*x-0.512 输入迭代初始值:a=1 输入截止误差:delta=0.0005 用牛顿法求得零点为0.80072 迭代次数为14 精度为0.00036062 牛顿迭代法通过一系列的迭代操作使得到的结果不断逼近方程的实根,给定一个初值,每经过一次牛顿迭代,曲线上一点的切线与x轴交点就会在区间[a,b]上逐步逼近于根。上述例子中,通过给定初值x=1,经过14次迭代后,得到根为0.80072,精度为0.00036062。

数值分析教案

数值分析教案 土建学院 工程力学系 2014年2月 一、课程基本信息 1、课程英文名称:Numerical Analysis

2、课程类别:专业基础课程 3、课程学时:总学时32 4、学分:2 5、先修课程:《高等数学》、《线性代数》、《C 语言》 6、适用专业:工程力学 二、课程的目的与任务: 数值分析是工程力学专业的重要理论基础课程,是现代数学的一个重要分支。其主要任务是介绍进行科学计算的理论方法,即在计算机上对来自科学研究和工程实际中的数学问题进行数值计算和分析的理论和方法。通过本课程的学习,不仅使学生初步掌握数值分析的基本理论知识,而且使学生具备一定的科学计算的能力、分析问题和解决问题的能力,为学习后继课程以及将来从事科学计算、计算机应用和科学研究等工作奠定必要的数学基础。 三、课程的基本要求: 1.掌握数值分析的常用的基本的数值计算方法 2.掌握数值分析的基本理论、分析方法和原理 3.能利用计算机解决科学和工程中的某些数值计算应用问题,增强学生综合运用知识的能力 4.了解科学计算的发展方向和应用前景 四、教学内容、要求及学时分配: (一) 理论教学: 引论(2学时) 第一讲(1-2节) 1.教学内容: 数值分析(计算方法)这门课程的形成背景及主要研究内容、研究方法、主要特点;算法的有关概念及要求;误差的来源、意义、及其有关概念。数值计算中应注意的一些问题。 2.重点难点: 算法设计及其表达法;误差的基本概念。数值计算中应注意的一些问题。3.教学目标: 了解数值分析的基本概念;掌握误差的基本概念:误差、相对误差、误差限、相对误差限、有效数字;理解有效数字与误差的关系。学会选用相对较好的数值计算方法。

相关主题
文本预览