当前位置:文档之家› 本田锋范轿车齿轮齿条转向器设计中期报告

本田锋范轿车齿轮齿条转向器设计中期报告

本田锋范轿车齿轮齿条转向器设计中期报告
本田锋范轿车齿轮齿条转向器设计中期报告

毕业设计(论文)中期报告

题目:本田锋范轿车齿轮齿条转向器设计

2014年3月12 日

本文由闰土服务机械外文文献翻译成品淘宝店整理

根据学校毕业论文设计进度安排,我在参加完开题答辩之后,便开始论文初稿的前期准备工作,并针对在开题答辩中到时指出的问题对论文的总体结构框架和行文安排进行了更改。以达到理清论文设计思路、完善论文结构的目的,为下一步论文中期研究做好铺垫。在完善论文框架的同时,逐步开始论文相关数据资料的收集和整理,并着手论文初稿的撰写工作。具体情况如下:

1.设计(论文)进展状况

(1)对转向器原理进行进一步深入探究。

(2)根据本田锋范轿车的各尺寸参数,完成了传动大部分的计算,如原地转向阻力矩,转向盘手力,齿条的受力分析,齿条杆部受拉压的强度计算,齿条齿部弯曲强度的计算,齿面接触疲劳强度计算等。

下面陈述部分计算过程及结果:

(2.1) 转向轮侧偏角计算

转向系统的性能从整车机动性着手,在最大转角时的最小转弯半径为轴距的2—2.5倍。此轻型车的轴距为2550mm,最小转弯半径R

取5100mm。分析如(图3-1)

min

所示。

图3-1 转向轮侧偏角分析图

arcsin(

)L

R a

α=-(3-1) 式中:α―转向轮外轮转角;

a ―主销偏移距,该值一般取-10—30mm, 设计取20mm ;

L ―汽车轴距。

arcsin(

)L R a α=-=2550arcsin()30510020

=-(3-2) 查得对应的最大内轮转角037=β,其综合转角为032。 (2.2) 转向器原地转向阻力矩计算

为了保证行驶安全,组成转向系的各零件应有足够的强度。欲验算转向系零件的

强度,需首先确定作用在各零件上的力。影响这些力的主要因素有转向轴的负荷、路面阻力和轮胎气压等。为转动转向轮要克服的阻力,包括转向轮绕主销转动的阻力、车轮稳定阻力、轮胎变形阻力和转向系中的内摩擦阻力等。

精确地计算出这些力是困难的。为此用足够精确的半经验公式来计算汽车在沥青或者混凝土路面上的原地转向阻力矩M R (N·mm )。

轮胎上的原地转动的阻力矩由经验公式得

p

G f M R 3

13

=

(3-3) 式中:f —轮胎和路面间的滑动摩擦因素,一般取0.7;

1G —为转向轴负荷(N );取前轴满载760kg ;

p —为轮胎气压(MPa )。取0.2MPa (一般为0.2~0.24MPa )。

p

G f

M R 3

13

=

=335.625N.m (3-4)

(2.3) 转向器角传动比与力传动比计算 (2.3.1) 角传动比与力传动比介绍

转向系的传动比由转向系的角传动比w i 和转向系的力传动比p i 组成。

力传动比:从轮胎接触地面中心作用在两个转向轮上的合力2w F 与作用在方向盘上的手力h F 之比称为力传动比p i 。

角传动比:方向盘的转角和驾驶员同侧的转向轮转角之比称为转向系角传动比

w i 。它又由转向器传动比w i 转向传动装置角传动比'

w i 所组成。

(2.3.2) 角传动比与力传动比确定

方向盘转动圈数取4n =圈,转向盘直径375sw D mm =,+=90%η转向正效率 转向节臂长1L =200mm 。

角传动比为

360436020.87()(3732)

W w K n i ωωαβ???

=

===+?+?(3-5) 作用在方向盘上的力

22335625

95.2937520.870.9

R h SW M F N D i ωη+?=

==??(3-6)

由公式

2h

h SW

M F D =

(3-7)

得作用在转向盘上的力矩

95.29375

17870=17.87N m 22

h SW h F D M N mm ?=

==??(3-8) 力传动比与转向系角传动比的关系

2w

p h

F i F =(3-9)

而W F 和作用在转向节上的转向阻力矩R M 有以下关系

w 1

F R

M L = (3-10)

作用在方向盘上的手力h

F 可由下式表示

2h

h SW

M F D =

(3-11)则力传动比为 1

R sw

p h M D i M L =

(3-12)又因为

w R

wo h k

M i M ωηω+==(3-13)由此力传动比 13750.9

20.8717.60922200

sw p w D i i L η+?=?

=?=?(3-14) (2.4) 齿轮齿条设计

(2.4.1) 齿轮齿条啮合传动的特点

齿条实际上是齿数为无穷的齿轮的一部分。当齿数为无穷时,齿轮的基圆直径也为无穷大,根据渐开线的形成过程可知,此时渐开线就变成了直线。所以齿条的齿廓为直齿廓(如图3-2所示),齿廓上各点的法线是平行的,而且在传动时齿条是平动的,齿廓上各点速度的大小和方向也相同,所以齿条齿廓上个点的压力角相同,大小等于齿廓的倾斜角。齿条上各齿同侧的齿廓是平行的,所以在任何与分度线平行的直线上,周节都相等。

图3-2 齿条的齿廓

齿轮齿条啮合传动时,根据小齿轮螺旋角与齿条齿倾角的大小和方向不同,可以构成不同的传动方案。当左旋小齿轮与右倾齿条相啮合而且齿轮螺旋角β1与齿条倾斜角β2角相等时,则轴交角θ=0°;若β1>β2,则θ=β1-β2;若β1<β2,则θ=β1-β2为负值,表示在齿条轴线的另一侧。当右旋小齿轮与右倾齿条或左旋小齿轮与左倾齿条相啮合时,其轴交角均为θ=β1+β2。

齿轮与齿条啮合传动时,齿轮的节圆始终与其分度圆重合。当小齿轮轴线与齿条轴线不垂直时,小齿轮齿廓与齿条齿廓间的接触为点接触,轮齿所受的压强较大,产生的接触应力也比较大,轮齿磨损很快,所以齿轮齿条转向器的传动比不能太大。

齿轮齿条传动的传动比只与齿条的齿倾角、小齿轮的法向模数和小齿轮的齿数有关。在设计时,只要合理的选取这几个参数就可以获得需要的传动比。但是小齿轮的模数不能太小,否则会使齿条齿廓在啮合时啮合点离齿顶太近,齿根的弯曲应力增大,

易产生崩齿。同时小齿轮的变位系数不能太大,否则会造成齿条齿顶平面与小齿轮齿根圆柱面的间隙过小,对润滑不利,而且容易造成转向器卡死的现象。

(2.4.2) 齿轮参数的选择

初选齿轮参数:齿轮齿条转向器的齿轮多采用斜齿轮,齿轮模数在2~3mm 之间,主动小齿轮齿数在5~7之间,压力角取20α=?,螺旋角在9~15??之间。故取小齿轮

16z =, 2.5n m =,10β=?右旋,压力角20α=?,齿轮的转速为10/min n r =,左旋,精度等级8级,转向器每天工作8小时,使用期限不低于5年。

材料选择:齿轮 16MnCr5,渗碳淬火,齿面硬度54-62HRC

齿条 45#,表面淬火,齿面硬度56HRC

分度圆直径

11 2.5615.2314cos cos10n m z d mm β?===?

(3-15)

取齿宽系数 1.2d ?= 齿条宽度

21 1.215.231418.278d b d mm ?==?=(3-16)

圆整取220b mm =; 则取齿轮齿宽

121030b b mm =+=(3-17)

所以取齿轮齿宽30mm ;齿条齿宽20mm 。 (2.4.3) 计算接触疲劳许用应力 确定许用应力

Hmin

N lim S Z ][H H σσ= (3-18)

Fmin

N

ST lim S Y Y ][F F σσ=

(3-19)

查表确定lim H σ

和lim

F σ

MPa H 15001lim =σMPa H 13002lim =σ MPa F 4251lim =σMPa F 3752lim =σ

查表确定寿命系数N Z 、N Y

12 1.32N N Z Z ==121N N Y Y == 查表确定安全系数

min 1H S =min 1.4F S = 计算接触疲劳许用应力

lim1N1

1Hmin

Z []S H H σσ=

=

MPa 1980132

.11500=? (3-20) lim2N2

2Hmin

Z []S H H σσ=

=

MPa 17161

32

.11300=? (3-21) 查表确定应力修正系数2=ST Y

lim1ST N1

1Fmin

Y Y []S F F σσ=

=

MPa 14.6074.11

2425=?? (3-22) lim2ST N2

2Fmin

Y Y []S F F σσ=

=

MPa 7.5354

.11

2375=?? (3-23) (2.4.4) 齿轮的齿根弯曲强度设计 参数查取:

初选4.1=t K ?=14β1Z =6 2Z =25 d Φ=0.8 εY =0.7 βY =0.89 当量齿数76.814cos /8cos /33=?==βZ Z V 复合齿形系数1 3.32FS Y = 初步计算齿轮模数n m 转矩117870h T M N mm ==?

闭式硬齿面传动,按齿根弯曲疲劳强度设计。 代入[]F σ较小的值

213

2

12cos []

t FS

nt d F K T Y Y Y m Z εβ

β?σ=

?

(3-24) =

23

22 1.417870cos 100.70.89 3.32

1.26535.7???????

?

1.631mm =

初取 2.5nt m mm = 确定载荷系数K 查表确定使用系数1A K =

11

3.14 2.5610

0.0079/601000cos 601000cos10nt t m z n v m s πβ

???=

=

=????

(3-25)

根据0.0079/t v m s =和8级精度,查表得4.0=V K

查表确定齿向载荷分布系数15.1=βK 查表确定齿间载荷分布系数 1.1H K = 所以

759

.015.11.14.01=???==βK K K K K H V A (3-26)

确定修正法向模数

33

0.759

2.5 2.03851.4

n nt t K m m mm K ==?=(3-27) 取 2.5n m mm =

(2.4.5) 确定齿轮主要参数和几何尺寸

齿轮参数:16z =, 2.5n m =,10β=?,压力角20α=?,左旋

取变位系数1n χ=1an h *=0.25n c *

=

齿顶高

()()2.5115a n an n h m h mm

χ*

=+=?+=(3-28)

齿根高

()()2.510.2510.625f n an n n h m h c mm

χ**=+-=?+-=(3-29)

齿高

50.625 5.625a f h h h mm =+=+=(3-30)

分度圆直径

11 2.56

15.231cos cos10n m z d mm β?=

==?(3-31)

齿顶圆直径

1215.2312525.231a a d d h mm =+=+?=(3-32)

齿根圆直径

1215.23120.62513.981f f d d h mm

=-=-?=(3-33)

基圆直径

1cos 15.231cos2014.312b d d mm α==?= (3-34)

齿轮中心到齿条基准线距离

115.2311 2.510.115522

n n d H m mm χ=+=+?=(3-35)

齿轮齿宽

1210201030b b mm =+=+=(3-36)

(2.4.6) 确定齿条主要参数和几何尺寸

因为齿轮与齿条要相互啮合,所以取齿条模数1 2.5n m mm = 又因为齿轮齿条线角传动比为

1 2.56 3.14

47.827cos cos10n m z i πβ??===?(3-37) 转向盘总转动圈数为4n =圈 又因为

1

L n i

=(3-38)

所以齿条长度

1447.827191.306L ni mm ==?=(3-39)

转向盘和车轮转角比

360436022.5232232n I ????

=

==????

(3-40)

式中:32?为综合转角

因为齿条齿形角等于压力角 所以齿条齿距

2 3.14 2.57.85n P m mm π==?=(3-41)

齿条齿数

12191.308

z 24.3707.85

L P ===(3-42)

所以取齿条齿数225z = 实际齿条长度

12257.85196.25L z P mm ==?=(3-43)

取齿条长度为200mm 。

齿条参数:225z =, 2.5n m =,10β=?,压力角20α=?,右旋。

取变位系数0n χ=1an h *=0.25n c *

=

齿顶高

()()22 2.510 2.5a n an n h m h mm

χ*=+=?+=(3-44)

齿根高

()()2.510.250 3.75f n an n n h m h c mm χ**=+-=?+-=(3-45)

齿条齿宽

21 1.215.23118.218d b d mm φ==?=(3-46)

取220b mm =。

(2.4.7 )齿面接触疲劳强度校核 校核公式为

121121

[]H E H H KT u Z Z Z Z b d u

εβ

σσ+=≤(3-47)

由上面计算得[]1980H MPa σ=

查取:

弹性系数180E Z MPa =区域系数 2.45H Z =

重合度系数0.91E ε=螺旋角系数cos cos100.99Z ββ==?=

12

1121

H E H KT u Z Z Z Z b d u

εβ

σ+=(3-48) 2

20.75917870

2.451800.910.99

23015.231

??=????? 1109.275[]H σ=<

经校核:合理

(3)根据本田锋范轿车的各尺寸参数和装配的相关规定及计算结果,完成齿轮齿条传动方案的布置和尺寸设计,完成总的设计图。

(4)查阅英文资料,通过整理,找出相关文献,并进行翻译,根据学校论文写作要

求,我通过网络、书籍等多种渠查阅了与论文相关的外文文献。在查阅的过程中,遇到不懂的,就向老师、同学请教,由于外语翻译要求较好的外语基础,因此,这一部分做的并不理想,但我将论文初稿之后,着重补充这一环节。使外语文献的翻译工作正在按预期进行,并与与论文的写作进度尽量保持一致。

(5)参考相关文献、访谈结果等完成开题报告、中期报告及实习报告并撰写论文初稿。通过近两个月的前期准备工作,我的论文初稿已完成大半部分的创作工作。(6)齿轮齿条转向器设计总图:

2.存在问题及解决措施

存在的问题:对于配件的设计计算和布置方案还有所欠缺,在设计中涉及到各种强度的计算需要花费大部分的时间,还有设计中还有涉及到非标准件的设计与选用有所不明。

解决措施:继续完善设计,多向导师和同组的同学请教,互相讨论,找出设计中问题的所在,多查阅参考资料,从图中改进,优化设计,以求更加的准确。

3.后期工作安排

(1)继续查阅相关资料,丰富完善论文内容;

(2)继续认真撰写初稿,并按期完成一稿,请指导老师予以修改;

(4)结合研究思路和老师的修改意见,并与同学沟通进行修改;

(5)继续完善齿轮齿条转向器的转向设计,完成总的设计图和部分零件图;并撰写毕业论文,准备毕业答辩。

指导教师签字:年月日

齿轮齿条转向器

第一章引言 .................................. 错误!未定义书签。 1.1汽车转向装置的设计趋势 ................................................................ 错误!未定义书签。 1.2汽车转向装置的发展趋势 ................................................................ 错误!未定义书签。第二章齿轮齿条转向器设计方案选择 (1) 第三章传动比的计算 (4) 3.1 汽车方向盘(转向盘) (4) 3.1 转向阻力矩 (4) 3.3角传动比与力传动比 (4) 第四章齿轮设计 (6) 4.1 齿轮参数的选择[8] (6) 4.2 齿轮几何尺寸确定[2] (6) 4.3 齿根弯曲疲劳强度计算[11] (7) 4.3.1齿轮精度等级、材料及参数的选择 (7) 4.3.2齿轮的齿根弯曲强度设计。 (7) 4.3.3齿面接触疲劳强度校核 (8) 第五章齿条的设计 (9) 5.1齿条的设计[6] (9) 第六章齿轮轴的设计[4] (10) 第七章其他零件的选择[6] (11) 设计工作总结 ................................. 错误!未定义书签。参考文献............................................................................... 错误!未定义书签。致谢 ...................................................................... 错误!未定义书签。

齿轮齿条式转向器设计

3.3齿轮齿条式转向器的设计与计算 3.3.1 转向系计算载荷的确定 为了保证行驶安全,组成转向系的各零件应有足够的强度。欲验算转向系零件的强度, 需首先确定作用在各零件上的力。影响这些力的主要因素有转向轴的负荷、路面阻力和轮胎 气压等。为转动转向轮要克服的阻力,包括转向轮绕主销转动的阻力、车轮稳定阻力、轮胎 变形阻力和转向系中的内摩擦阻力等。 精确地计算出这些力是困难的。为此用足够精确的半经验公式来计算汽车在沥青或者混 凝土路面上的原地转向阻力矩M(N?mm)。 R 表3-1 原地转向阻力矩M的计算 R 设计计算和说明计算结果 33Gf0.710902.51f=0.7 M,,,627826.2N,mm R3p30.179 G=10902.5N 1式中 f——轮胎和路面间的滑动摩擦因数; p=0.179 MPaG——转向轴负荷,单位为N; 1 M=627826.2 N,mmRP——轮胎气压,单位为。 MPa 作用在转向盘上的手力F为: h 表3-2 转向盘手力F的计算 h 设计计算和说明计算结果 22,627826.2LM1R F,,,290.7Nh,,320,15,90%iLD2SWW M=627826.2 N,mmL式中——转向摇臂长, 单位为mm; R1 D=400mm M——原地转向阻力矩, 单位为N?mm SWR

iw=15 L——转向节臂长, 单位为mm; 2 =90% ,,D——为转向盘直径,单位为mm; SW F=290.7N Iw——转向器角传动比; h ,——转向器正效率。 + LL因齿轮齿条式转向传动机构无转向摇臂和转向节臂,故、不12 代入数值。 对给定的汽车,用上式计算出来的作用力是最大值。因此,可以用此值作为计算载荷。 L: 梯形臂长度的计算2 表3-3 梯形臂长度L的计算 2 设计计算和说明计算结果 R轮辋直径= 16in=16×25.4=406.4mm LW RLL梯形臂长度=×0.8/2= 406.4×0.8/2 =160mm LW22 L=162.6mm,取=160mm 2 轮胎直径的计算R: T 表3-4 轮胎直径R的计算 T 设计计算和说明计算结果 R,R,0.55,205=406.4+0.55×205=518.75mm TLWR=520mm TR 取=520mm T 转向横拉杆直径的确定: 表3-5 转向横拉杆直径的计算 设计计算和说明计算结果 44,627.83MR,3d,,,m,4.811mm 10,,,a[]0.16,,216d=15mm 取 minL[,],216MPa;M,627.83N,m=; a2R 初步估算主动齿轮轴的直径:

汽车齿轮齿条式转向器设计分解

汽车齿轮齿条式转向器 设计分解 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

汽车设计课程设计说明书题目:汽车齿轮齿条式转向器设计(3) 系别:机电工程系 专业:车辆工程 班级: 姓名: 学号: 指导教师: 日期: 2012年7月 汽车齿轮齿条式转向器设计

摘要 根据对齿轮齿条式转向器的研究以及资料的查阅,着重阐述了齿轮齿条式转向器类型选择,不同类型齿轮齿条式转向器的优缺点,和各种类型齿轮齿条式转向器应用状况。根据原有数据首先分析转向器的特点,确定总体的结构方案,并确定转向器的计算载荷以及转向器的主要参数,然后确定齿轮齿条的形式,接着对齿轮模数的选择确定,主动小齿轮齿数的确定、压力角的确定、齿轮螺旋角的确定,通过确定转向器的线传动比计算其力传动比以及齿轮齿条的结构参数,在以上的基础上选择主动齿轮、齿条的材料,受力分析,及对齿轮齿条的疲劳强度校核、齿根弯曲疲劳强度校核。修正齿轮齿条式转向器中不合理的数据。通过对齿轮齿条式转向器的设计,选取出相关的零件如:螺钉、轴承等,并在说明书中画出相关零件的零件图。通过说明书并画出齿轮齿条式转向器的零件图2张、装配图1张。 关键词:齿轮齿条,转向器,设计计算 目录

序言........................................................................................错误!未定义书签。 1.汽车转向装置的发展趋势 .....................................................错误!未定义书签。 2.课程设计目的........................................................................错误!未定义书签。 3.转向系统的设计要求 ............................................................错误!未定义书签。 4.齿轮齿条式转向器方案分析 .................................................错误!未定义书签。 5.确定齿轮齿条转向器的形式 .................................................错误!未定义书签。 6.齿轮齿条式转向器的设计步骤..............................................错误!未定义书签。 已知设计参数........................................................................ 错误!未定义书签。 齿轮模数的确定、主动小齿轮齿数的确定、压力角的确定、齿轮螺旋角的确定........................................................................................ 错误!未定义书签。 确定线传动比、转向器的转向比........................................ 错误!未定义书签。 小齿轮的设计........................................................................ 错误!未定义书签。 小齿轮的强度校核................................................................ 错误!未定义书签。 齿条的设计............................................................................ 错误!未定义书签。 齿条的强度计算.................................................................... 错误!未定义书签。 主动齿轮、齿条的材料选择................................................ 错误!未定义书签。 7.总结 ......................................................................................错误!未定义书签。参考文献..................................................................................错误!未定义书签。致谢........................................................................................错误!未定义书签。

汽车齿轮齿条式转向器课程设计

目录 一、设计方案选择 (5) 二、设计计算过程 (5) 1、转向轮侧偏角计算 (5) 2、转向器参数选取 (6) 3、选择齿轮齿条材料 (7) 4、强度校核 (7) 5、齿轮齿条的基本参数 (8) 三、齿轮轴的结构设计 (8) 四、轴承的选择 (8) 五、转向器的润滑方式和密封类型的选择 (8) 六、参考资料 (9) 七、设计总结 (10)

汽车设计课程设计说明书 一、设计方案选择: 1、转向器类型的选择: 机械式转向器主要有齿轮齿条式、循环球式、蜗杆滚轮式、蜗杆指销式等,其中广泛应用的是齿轮齿条式和循环球式。 齿轮齿条式转向器○1 优点:结构简单、紧凑;壳体由铝合金或镁合金压铸而成,故质量比较小;传动效率高达90%;齿轮齿条之间因磨损出现间隙后,可利用装在齿条背部、靠近小齿轮的压紧力可以调节的弹簧自动消除齿间间隙,在提高系统刚度的同时也可防止工作时产生冲击和噪声;转向器占用体积小;没有转向摇臂和横拉杆,可以增大转向轮转角;制造成本低。 缺点:逆效率高,汽车在不平路面行使时会出现汽车方向控制难度增加还有可能出现打手现象。 循环球式转向器○2 优点:在螺杆和螺母之间有可以循环流动的钢球,将滑动摩擦转变为滚动摩擦,传动效率可达75%-85%;转向器传动比可以变化;工作平稳可靠;齿条齿扇间间隙调整工作容易进行;适合做整体式动力转向器。 缺点:逆效率高,结构复杂,制造困难,制造精度要求高。 通过对齿轮齿条式转向器和循环球式转向器的对比,选择采用齿轮齿条式转向器。 2、齿轮齿条式转向器布置和结构形式的选择: 考滤到原车采用的是循环球式转向器,故采用如图所示的布置形式。 同时考虑到原车是发动机前置后驱故采用如图所示的侧面输入两端输出的结构形式。 二、设计计算过程 1、转向轮侧偏角计算

汽车齿轮齿条式转向器设计分解

" 汽车设计课程设计说明书 题目:汽车齿轮齿条式转向器设计(3) - 系别:机电工程系 专业:车辆工程 班级: 姓名: 学号: 指导教师: 、 日期: 2012年7月

汽车齿轮齿条式转向器设计 摘要 根据对齿轮齿条式转向器的研究以及资料的查阅,着重阐述了齿轮齿条式转向器类型选择,不同类型齿轮齿条式转向器的优缺点,和各种类型齿轮齿条式转向器应用状况。根据原有数据首先分析转向器的特点,确定总体的结构方案,并确定转向器的计算载荷以及转向器的主要参数,然后确定齿轮齿条的形式,接着对齿轮模数的选择确定,主动小齿轮齿数的确定、压力角的确定、齿轮螺旋角的确定,通过确定转向器的线传动比计算其力传动比以及齿轮齿条的结构参数,在以上的基础上选择主动齿轮、齿条的材料,受力分析,及对齿轮齿条的疲劳强度校核、齿根弯曲疲劳强度校核。修正齿轮齿条式转向器中不合理的数据。通过对齿轮齿条式转向器的设计,选取出相关的零件如:螺钉、轴承等,并在说明书中画出相关零件的零件图。通过说明书并画出齿轮齿条式转向器的零件图2张、装配图1张。 关键词:齿轮齿条,转向器,设计计算 ^ 。

` 目录 序言............................................. 错误!未定义书签。 1.汽车转向装置的发展趋势........................... 错误!未定义书签。 2.课程设计目的..................................... 错误!未定义书签。 3.转向系统的设计要求............................... 错误!未定义书签。 4.齿轮齿条式转向器方案分析......................... 错误!未定义书签。… 5.确定齿轮齿条转向器的形式......................... 错误!未定义书签。 6.齿轮齿条式转向器的设计步骤....................... 错误!未定义书签。 已知设计参数.................................... 错误!未定义书签。 齿轮模数的确定、主动小齿轮齿数的确定、压力角的确定、齿轮螺旋角的确定.............................................. 错误!未定义书签。 确定线传动比、转向器的转向比.................... 错误!未定义书签。 小齿轮的设计.................................... 错误!未定义书签。 小齿轮的强度校核................................ 错误!未定义书签。 齿条的设计...................................... 错误!未定义书签。 ~ 齿条的强度计算.................................. 错误!未定义书签。 主动齿轮、齿条的材料选择........................ 错误!未定义书签。 7.总结............................................. 错误!未定义书签。参考文献........................................... 错误!未定义书签。致谢............................................. 错误!未定义书签。 $

汽车转向系设计说明书

汽车设计课程设计说明书 题目:重型载货汽车转向器设计 姓名:席昌钱 学号:5 同组者:严炳炎、孔祥生、余鹏、李朋超、郑大伟专业班级:09车辆工程2班 指导教师:王丰元、邹旭东

设计任务书 目录 1.转向系分析 (4) 2.机械式转向器方案分析 (8) 3.转向系主要性能参数 (9) 4.转向器设计计算 (14) 5.动力转向机构设计 (16) 6.转向梯形优化设计 (22) 7.结论 (24) 8.参考文献 (25)

1转向系设计 基本要求 1.汽车转弯行驶时,全部车轮应绕瞬时转向中心旋转。 2.操纵轻便,作用于转向盘上的转向力小于200N。 3.转向系的角传动比在23~32之间,正效率在60%以上,逆效率在50%以上。 4.转向灵敏。 5.转向器和转向传动机构中应有间隙调整机构。 6.转向系应有能使驾驶员免遭或减轻伤害的防伤装置。 基本参数 1.整车尺寸: 11976mm*2395mm*3750mm。 2.轴数/轴距 4/(1950+4550+1350)mm 3.整备质量 12000kg 4.轮胎气压 2.转向系分析 对转向系的要求[3] (1) 保证汽车有较高的机动性,在有限的场地面积内,具有迅速和小半径转弯的能力,同时操作轻便; (2) 汽车转向时,全部车轮应绕一个瞬时转向中心旋转,不应有侧滑; (3) 传给转向盘的反冲要尽可能的小; (4) 转向后,转向盘应自动回正,并应使汽车保持在稳定的直线行驶状态; (5) 发生车祸时,当转向盘和转向轴由于车架和车身变形一起后移时,转向系统最好有保护机构防止伤及乘员. 转向操纵机构 转向操纵机构包括转向盘,转向轴,转向管柱。有时为了布置方便,减小由于装置位置误差及部件相对运动所引起的附加载荷,提高汽车正面碰撞的安全性以及便于拆装,在转向轴与转向器的输入端之间安装转向万向节,如图2-1。采用柔性万向节可减少传至转向轴上的振动,但柔性万向节如果过软,则会影响转向系的刚度。采用动力转向时,还应有转向动力系统。但对于中级以下的轿车和前轴负荷不超过3t的载货汽车,则多数仅在用机械转向系统而无动力转向装置。

齿轮齿条式转向器(精选.)

齿轮齿条式转向器由与转向轴做成一体的转向齿轮和常与转向横拉杆做成一体的齿条组成。与其它形式转向器比较,齿轮齿条式转向器最主要的优点是:结构简单、紧凑;壳体采用铝合金或镁合金压铸而成,转向器的质量比较小;传动效率高达90%;齿轮与齿条之间因磨损出现间隙后,利用装在齿条背部、靠近主动小齿轮处的压紧力可以调节的弹簧,可自动消除齿间间隙,如图7—1所示,这不仅可以提高转向系统的刚度,还可以防止工作时产生冲击和噪声;转向器占用的体积小;没有转向摇臂和直拉杆,所以转向轮转角可以增大;制造成本低。 齿轮齿条式转向器的主要缺点是: 因逆效率高(60%~70%),汽车在不平路面上行驶时,发生在转向轮与路面之间的冲击力,大部分能传至转向盘,称之为反冲。反冲现象会使驾驶员精神紧张,并难以准确控制汽车行驶方向,转向盘突然转动又会造成打手,对驾驶员造成伤害。 根据输入齿轮位置和输出特点不同,齿轮齿条式转向器有四种形式:中间输入,两端输出(图7—2a);侧面输入,两端输出(图7—2b);侧面输入,中间输出(图7—2c);侧面输入,一端输出(图7—2d)。

采用侧面输入、中间输出方案时,由图7—3可见,与齿条固连的左、右拉杆延伸到接近汽车纵向对称平面附近。由于拉杆长度增加,车轮上、下跳动时拉杆摆角减小,有利于减少车轮上、下跳动时转向系与悬架系的运动干涉。拉杆与齿条用螺栓固定联接(图7—3),因此,两拉杆与齿条同时向左或右移动,为此在转向器壳体上开有轴向方向的长槽,从而降低了它的强度。 采用两端输出方案时,由于转向拉杆长度受到限制,容易与悬架系统导向机构产生运动干涉。 侧面输入、一端输出的齿轮齿条式转向器,常用在乎头微型货车上。 如果齿轮齿条式转向器采用直齿圆柱齿轮与直齿齿条啮合,则运转平稳性降低,冲击大,工作噪声增加。此外,齿轮轴线与齿条轴线之间的夹角只能是直角,为此因与总体布置不适应而遭淘汰。采用斜齿圆柱齿轮与斜齿齿条啮合的齿轮齿条式转向器,重合度增加,运转平稳,冲击与工作噪声均下降,而且齿轮轴线与齿条轴线之间的夹角易于满足总体设计的要求。 齿条断面形状有圆形(图7—1)、V形(图7—4)和Y形(图7—5)三种。圆形断面齿条制作工艺比较简单。V形和Y形断面齿条与圆形断面比较,消耗的材料少,约节省20%,故质量小;位于齿下面的两斜面与齿条托座接触,可用来防止齿条绕轴线转动;Y形断面齿条的齿宽可

转向器的结构型式选择及其设计计算

5.2转向器的结构型式选择及其设计计算 根据所采用的转向传动副的不同,转向器的结构型式有多种。常见的有齿轮齿条式、循环球式、球面蜗杆滚轮式、蜗杆指销式等。 对转向其结构形式的选择,主要是根据汽车的类型、前轴负荷、使用条件等来决定,并要考虑其效率特性、角传动比变化特性等对使用条件的适应性以及转向器的其他性能、寿命、制造工艺等。中、小型轿车以及前轴负荷小于1.2t 的客车、货车,多采用齿轮齿条式转向器。球面蜗杆滚轮式转向器曾广泛用在轻型和中型汽车上,例如:当前轴轴荷不大于2.5t 且无动力转向和不大于4t 带动力转向的汽车均可选用这种结构型式。循环球式转向器则是当前广泛使用的一种结构,高级轿车和轻型及以上的客车、货车均多采用。轿车、客车多行驶于好路面上,可以选用正效率高、可逆程度大些的转向器。矿山、工地用汽车和越野汽车,经常在坏路或在无路地带行驶,推荐选用极限可逆式转向器,但当系统中装有液力式动力转向或在转向横拉杆上装有减振器时,则可采用正、逆效率均高的转向器,因为路面的冲击可由液体或减振器吸收,转向盘不会产生“打手”现象。 关于转向器角传动比对使用条件的适应性问题,也是选择转向器时应考虑的一个方面。对于前轴负荷不大的或装有动力转向的汽车来说,转向的轻便性不成问题,而主要应考虑汽车高速直线行驶的稳定性和减小转向盘的总圈数以提高汽车的转向灵敏性。因为高速行驶时,很小的前轮转角也会导致产生较大的横向加速度使轮胎发生侧滑。这时应选用转向盘处于中间位置时角传动比较大而左、右两端角传动比较小的转向器。对于前轴负荷较大且未装动力转向的汽车来说,为了避免“转向沉重”,则应选择具有两端的角传动比较大、中间较小的角传动比变化特性的转向器。 下面分别介绍几种常见的转向器。 5.2.1循环球式转向器 循环球式转向器又有两种结构型式,即常见的循环球-齿条齿扇式和另一种即循环球-曲柄销式。它们各有两个传动副,前者为:螺杆、钢球和螺母传动副以及落幕上的齿条和摇臂轴上的齿扇传动副;后者为螺杆、钢球和螺母传动副以及螺母上的销座与摇臂轴的锥销或球销传动副。两种结构的调整间隙方法均是利用调整螺栓移动摇臂轴来进行调整。 循环球式转向器的传动效率高、工作平稳、可靠,螺杆及螺母上的螺旋槽经渗碳、淬火及磨削加工,耐磨性好、寿命长。齿扇与齿条啮合间隙的调整方便易行,这种结构与液力式动力转向液压装置的匹配布置也极为方便。 5.2.1.1循环球式转向器的角传动比w i 由循环球式转向器的结构关系可知:当转向盘转动?角时,转向螺母及其齿条的移动量应为 t s )360/(?= (5-21) 式中t ——螺杆或螺母的螺距。 这时,齿扇转过β角。设齿扇的啮合半径w r ,则β角所对应的啮合圆弧长应等于s ,即 s r w =?πβ2)360/( (5-22) 由以上两式可求得循环球式转向器的角传动比w i 为

齿轮齿条式汽车转向器设置

齿轮齿条式汽车转向器设计第1页共20页 齿轮齿条式汽车转向器设计 作者储指导老师:陈迎春 (安徽农业大学工学院07级机制专业合肥230036) 摘要:汽车转向器是转向系的减速传动装置,是将司机对转向盘的转动变为转向摇臂的摆动(或齿条沿转向车轴轴向的移动),并按一定的角传动比和力传动比进行传递的机构。也是决定汽车主动安全性的关键总成,它的质量优劣直接影响着汽车的操纵稳定性。现代社会随着汽车工业的发展,汽车转向器也在不断的得到改进,虽然电子转向器已开始应用,但机械式转向器仍然广泛地被世界各国汽车及汽车零部件生产厂商所采用。而在机械式转向器中,齿轮齿条式转向器是由与转向轴做成一体的转向齿轮和常与横向拉杆做成一体的齿条组成,其具有结构简单紧凑、质量轻、刚性大、转向灵敏、成本低制造容易、正逆效率都高以及便于布置等诸多优点被应用于各级各类的汽车上。本文主要研究汽车转向器的组成分类、数据确定以及齿轮齿条式转向器的设计过程。 关键词:汽车转向器操作稳定性传动 1绪论 汽车在行驶过程中,需按驾驶员的意志经常改变其行驶方向,即所为汽车转向。就轮式汽车而言,实现汽车转向的方法是驾驶员通过一套专设的机构,是汽车转向桥上的车轮相对于汽车中轴线偏转一定角度,在汽车直线行驶时,转向轮往往也会受到路面侧向干扰力的作用,自动偏转而改变行驶方向,驾驶员也可以利用这套机构式转向轮向相反的方向偏转,从而使汽车恢复原来的行驶方向。这一套用来改变或恢复汽车行驶方向的专设机构,成为汽车转向系。因此,汽车转向系统的功用就是保证汽车能按驾驶员的意志而进行转向行驶。 齿轮齿条式转向器主要是由齿轮和齿条相啮合而实现传动的,齿轮齿条式转向器。它是一种最常见的转向器。其基本结构是一对相互啮合的小齿轮和齿条。转向轴带动小齿轮旋转时,齿条便做直线运动。有时,靠齿条来直接带动横拉杆,就可使转向轮转向。所以,这是一种最简单的转向器。它的优点是结构简单,成本低廉,转向灵敏,体积小,可以直接带动横拉杆。在汽车上得到广泛应用。另外还有一些其他的辅件,如下图所示就是齿轮齿条式转向器的基本原理图

汽车齿轮齿条式转向器设计分解

汽车设计课程设计说明书题目:汽车齿轮齿条式转向器设计(3) 系别:机电工程系 专业:车辆工程 班级: 姓名: 学号: 指导教师: 日期:2012年7月 汽车齿轮齿条式转向器设计

摘要 根据对齿轮齿条式转向器的研究以及资料的查阅,着重阐述了齿轮齿条式转向器类型选择,不同类型齿轮齿条式转向器的优缺点,和各种类型齿轮齿条式转向器应用状况。根据原有数据首先分析转向器的特点,确定总体的结构方案,并确定转向器的计算载荷以及转向器的主要参数,然后确定齿轮齿条的形式,接着对齿轮模数的选择确定,主动小齿轮齿数的确定、压力角的确定、齿轮螺旋角的确定,通过确定转向器的线传动比计算其力传动比以及齿轮齿条的结构参数,在以上的基础上选择主动齿轮、齿条的材料,受力分析,及对齿轮齿条的疲劳强度校核、齿根弯曲疲劳强度校核。修正齿轮齿条式转向器中不合理的数据。通过对齿轮齿条式转向器的设计,选取出相关的零件如:螺钉、轴承等,并在说明书中画出相关零件的零件图。通过说明书并画出齿轮齿条式转向器的零件图2张、装配图1张。 关键词:齿轮齿条,转向器,设计计算 目录

序言 (1) 1.汽车转向装置的发展趋势 (2) 2.课程设计目的 (4) 3.转向系统的设计要求 (5) 4.齿轮齿条式转向器方案分析 (7) 5.确定齿轮齿条转向器的形式 (8) 6.齿轮齿条式转向器的设计步骤 (11) 6.1已知设计参数 (11) 6.2齿轮模数的确定、主动小齿轮齿数的确定、压力角的确定、齿轮螺旋角 的确定 (12) 6.3确定线传动比、转向器的转向比 (12) 6.4小齿轮的设计 (14) 6.5小齿轮的强度校核 (16) 6.6齿条的设计 (18) 6.7齿条的强度计算 (19) 6.8主动齿轮、齿条的材料选择 (22) 7.总结 (23) 参考文献 ........................................................................................错误!未定义书签。致谢.. (25)

汽车设计转向系统

第一节概述 转向系是用来保持或者改变汽车行驶方向的机构,在汽车转向行驶时,保证各转向轮之间有协调的转角关系。 机械转向系依靠驾驶员的手力转动转向盘,经转向器和转向传动机构使转向轮偏转。有些汽车还装有防伤机构和转向减振器。采用动力转向的汽车还装有动力系统,并借助此系统来减轻驾驶员的手力。 对转向系提出的要求有: 1)汽车转弯行驶时,全部车轮应绕瞬时转向中心旋转,任何车轮不应有侧滑。不满足这项要求会加速轮胎磨损,并降低汽车的行驶稳定性。 2)汽车转向行驶后,在驾驶员松开转向盘的条件下,转向轮能自动返回到直线行驶位置,并稳定行驶。 3)汽车在任何行驶状态下,转向轮不得产生自振,转向盘没有摆动。 4)转向传动机构和悬架导向装置共同工作时,由于运动不协调使车轮产生的摆动应最小。 5)保证汽车有较高的机动性,具有迅速和小转弯行驶能力。 6)操纵轻便。 7)转向轮碰撞到障碍物以后,传给转向盘的反冲力要尽可能小。 8)转向器和转向传动机构的球头处,有消除因磨损而产生间隙的调整机构。 9)在车祸中,当转向轴和转向盘由于车架或车身变形而共同后移时,转向系应有能使驾驶员免遭或减轻伤害的防伤装置。 10)进行运动校核,保证转向盘与转向轮转动方向一致。 正确设计转向梯形机构,可以使第一项要求得到保证。转向系中设置有转向减振器时,能够防止转向轮产生自振,同时又能使传到转向盘上的反冲力明显降低。为了使汽车具有良好的机动性能,必须使转向轮有尽可能大的转角,并要达到按前外轮车轮轨迹计算,其最小转弯半径能达到汽车轴距的2~2.5倍。通常用转向时驾驶员作用·在转向盘上的切向力大小和转向盘转动圈数多少两项指标来评价操纵轻便性。没有装置动力转向的轿车,在行驶中转向,此力应为50—100N;有动力转向时,此力在20—50N。当货车从直线行驶状态,以10km /h速度在柏油或水泥的水平路段上转入沿半径为12m的圆周行驶,且路面干燥,若转向系内没有装动力转向器,上述切向力不得超过250N;有动力转向器时,不得超过120N。轿车转向盘从中间位置转到每一端的圈数不得超过2.0圈,货车则要求不超过3.0圈。·近年来,电动、电控动力转向器已得到较快发展,不久的将来可以转入商品装车使用。电控动力转向可以实现在各种行驶条件下转动转向盘的力都轻便。

齿轮齿条转向器讲义

齿轮齿条转向器讲义 一、齿轮齿条转向器原理 齿轮齿条转向器主要包括机械式齿轮齿条转向器和液压助力式齿轮齿条转向器二种。液压助力式转向器由控制阀、机械式转向器、助力缸三大部分组成。主要应用于乘用车(包括小轿车、农用车、皮卡、小型SUV),今后有被电动转向器(EPS)取代的趋势。 乘用车转向器系统如下:

整个转向系统包括方向盘、油泵、油箱、动力转向器、油管。其液压回路图如下: 液压助力转向器由控制阀(类似于M型机能三位四通换向阀)、机械式转向器(类似于齿轮齿条装置)、助力缸(类似于双作用油缸)三大部分组成。如下图:

其原理是:方向盘带动转阀左转、右转或保持在中间位置,对应于助力缸的动作则是:助力缸左腔进油,右腔回油;助力缸右腔进油,左腔回油;左右腔压力一致这三种状态,双作用油缸活塞杆通过连杆装置分别驱动汽车左右驱动轮转向。 见下图:

二、液压助力齿轮齿条转向器密封组成 除防尘圈、O型圈等常规密封之外,液压助力齿轮齿条转向器的主要密封包括输入轴密封、转阀密封、活塞封、输出轴密封。如下图: 1.输入轴密封: 形式为低压骨架油封。主要功能是防尘以及防止泄漏油外溢,最高耐压:2MPa,每个转向器输入轴用一道密封。

2.转阀密封: 类似于液压用的轴用旋转格莱圈,每个转向器用四道,用于分隔P、T、A、B油腔,如果失效会导致转向卡阻,下面图片显示的是12MPa和13MPa的阀密封。 3.助力缸活塞封: 类似于液压用的孔用格莱圈,每个转向器用一道,如果失效会导致转向无力。 4.输出端齿条轴密封: 形式为高压骨架油封,类似于油缸杆密封,输出轴直线运动,密封最高耐压8MPa,每个转向器用两道,左右输出各用一只。

齿轮齿条式转向器设计和计算

转向器的结构型式选择及其设计计算 根据所采用的转向传动副的不同,转向器的结构型式有多种。常见的有齿轮齿条式、循环球式、球面蜗杆滚轮式、蜗杆指销式等。 对转向其结构形式的选择,主要是根据汽车的类型、前轴负荷、使用条件等来决定,并要考虑其效率特性、角传动比变化特性等对使用条件的适应性以及转向器的其他性能、寿命、制造工艺等。中、小型轿车以及前轴负荷小于的客车、货车,多采用齿轮齿条式转向器。球面蜗杆滚轮式转向器曾广泛用在轻型和中型汽车上,例如:当前轴轴荷不大于且无动力转向和不大于4t带动力转向的汽车均可选用这种结构型式。循环球式转向器则是当前广泛使用的一种结构,高级轿车和轻型及以上的客车、货车均多采用。轿车、客车多行驶于好路面上,可以选用正效率高、可逆程度大些的转向器。矿山、工地用汽车和越野汽车,经常在坏路或在无路地带行驶,推荐选用极限可逆式转向器,但当系统中装有液力式动力转向或在转向横拉杆上装有减振器时,则可采用正、逆效率均高的转向器,因为路面的冲击可由液体或减振器吸收,转向盘不会产生“打手”现象。 关于转向器角传动比对使用条件的适应性问题,也是选择转向器时应考虑的一个方面。对于前轴负荷不大的或装有动力转向的汽车来说,转向的轻便性不成问题,而主要应考虑汽车高速直线行驶的稳定性和减小转向盘的总圈数以提高汽车的转向灵敏性。因为高速行驶时,很小的前轮转角也会导致产生较大的横向加速度使轮胎发生侧滑。这时应选用转向盘处于中间位置时角传动比较大而左、右两端角传动比较小的转向器。对于前轴负荷较大且未装动力转向的汽车来说,为了避免“转向沉重”,则应选择具有两端的角传动比较大、中间较小的角传动比变化特性的转向器。(转向盘转角增量与相应的转向摇臂转角增量之比iω1称为转向器角传动比。) 二、两侧转向轮偏转角之间的理想关系式 汽车转向行驶时,为了避免车轮相对地面滑动而产生附加阻力,减轻轮胎磨损,要求转向系统能保证所有车轮均作纯滚动,即所有车轮轴线的延长线都要相交于一点。 cotα=cotβ+B/L 其中α、β分别是内外侧转向轮的偏转角,B是两侧主销轴线与地面相交点之间的距离;L是汽车轴距。 如果是多轴汽车转向,转向轮转角间的关系与双轴汽车基本相同。

齿轮齿条转向器设计计算说明书

车辆工程课程设计任务书 1.课程设计题目:汽车齿轮齿条式转向器设计及零件加工工艺制定2.课程设计目的:此课程设计是《汽车设计》、《汽车制造工艺学》课 程教学重要实践环节,其目的是: 1)培养学生理论联系实际的设计思想,巩固和加强所学的相关专业课程的知识; 2)熟悉和掌握车辆设计和制造工艺制定的一般过程和方法,提高综合运用所学的知识进行车辆设计与制造的能力; 3)熟练掌握和运用设计资料(指导书、图册、标准和规范等)以及经验数据进行设计的能力,培养学生机械制图、设计计算和编写技 术文件等的基本技能。 3.课程设计时间:2010年8月30日~2010年9月23日(4周)4.整车性能参数: 车型:一汽佳宝(面包车) 基本参数(网络搜索得到): 5.汽车齿轮齿条式转向器设计的基本要求: 1)技术参数: 线角传动比:41.8mm/rad 齿轮法向模数:2.2 方向盘总圈数:3.5 齿条行程:61.5mm 2)设计要求:仅设计转向器部分。 6.齿轮齿条式转向器的零件加工制造工艺部分的要求零件名称:齿轮 1)生产纲领:1000~10000件,生产类型:批量生产;应保证零件的加工质量,尽量提高生产率和降低消耗率。

2)尽量降低工人的劳动强度,使其有良好的工作条件;在充分利用现 有生产条件的基础上,采用国内外先进工艺技术;主要的工艺要进 行必要的分析论证和计算。 7.提交的文件资料: 1)装配图1张(A1)、零件图2张(A3); 2)零件毛配图1张(A3); 3)零件加工工艺过程卡片1套、零件加工工序卡片1套; 4)课程设计说明书1份(20页左右)(A4)。 一.齿轮齿条转向器的优缺点: 齿轮齿条转向器是由转向轴做成一体的转向齿轮和常与转向横拉杆做成一体的齿条组成。 优点:结构简单、紧凑;壳体采用铝合金或镁合金压铸而成,转向器质量比较小,传动效率高达90%;齿轮与齿条之间因磨损而出现间隙后,利用装在齿条背部的、靠近主动小齿轮的处的压紧弹簧能自动消除间隙,不仅可以提高转向系统的刚度,还可以防止工作时产生冲击和噪声;转向器占用体积小,没有转向摇臂和直拉杆,所以转向转角可以增大,制造成本低。 缺点:齿轮齿条转向器因逆效率高(60%~70%),汽车在不平路面上行驶时,发生在转向轮与路面之间冲击力的大部分能传至方向盘,称之反冲现象。反冲会使驾驶员精神紧张,并难以准确控制汽车的行驶方向,转向盘突然转动又会造成打手,同时对驾驶员造成伤害。 二.齿轮齿条转向器的输入形式及特点: 1.侧面输入,中间输出:与齿条固连的左右拉杆延伸到接近汽车纵向对称平面附近,由于拉杆长度增加,车轮上下跳动时拉杆摆角减小,有利于减少车轮的上下跳动时转向系与悬架系的运动干涉,拉杆与齿条用螺栓固连在一起,因此,两拉杆与齿条同时向左或向右移动,为此在转向器壳体上开有轴向的长槽,从而降低了他的强度。 2.采用两端输出方案时,由于转向拉杆长度受到限制,容易与悬架系统导向机构产生运动干涉。 3.侧面输入,一端输出的齿轮齿条转向器,常用在平头车上。 齿轮齿条转向器采用斜齿圆柱齿轮与斜齿齿条啮合,增加运转平稳性,降低冲击和噪声。齿条断面有圆形、V形和Y形三种。圆形断面制造简单;V形和Y形节约材料,质量小而且位于齿条下面的两斜面与齿条托坐接触,可以用来防止齿条绕轴线转动。 三.齿轮齿条转向器计算载荷的确定。 1、引言:为了保证行驶安全,组成转向器的各零部件有足够的强度,欲 验算转向器各零件的强度,首先需要确定各零件所承受的力及扭矩, 影响这些力的主要因素为轴向载荷、路面阻力和轮胎胎压等。为转动 各转向轮需克服阻力,包括主销传动阻力和车轮稳定阻力、轮胎变形

机械式转向器的设计和计算

第四节 机械式转向器的设计与计算 一、转向系计算载荷的确定 为了保证行驶安全,组成转向系的各零件应有.足够的强度。欲验算转向系零件的强度,需首先确定作用在各零件上的力。影响这些力的主要因素有转向轴的负荷、路面阻力和轮胎气压等。为转动转向轮要克服的阻力,包括转向轮绕主销转动的阻力、车轮稳定阻力、轮胎变形阻力和转向系中的内摩擦阻力等。 精确地计算出这些力是困难的。为此推荐用足够精确的半经验公式来计算汽车在沥青或者混凝土路面上的原地转向阻力矩R M (mm N ?) p G f M R 313 = (7-9)

式中,f 为轮胎和路面间的滑动摩擦因数,一般取O.7; 1G 为转向轴负荷(N);p 为轮胎气压(a MP )。 作用在转向盘上的手力为 + ωη= i D L M L F sw R h 212 (7-10) 式中,1L 为转向摇臂长;2L 为转向节臂长;sw D 为转向盘直径;ωi 为转向器角传动比;+η为转向器正效率。 对给定的汽车,用式(7-10)计算出来的作用力是最大值。因此,可以用此值作为计算载荷。然而,对于前轴负荷大的重型货车,用上式计算的力往往超过驾驶员生理上的可能,在此情况下对转向器和动力转向器动力缸以前零件的计算载荷,应取驾驶员作用在转向盘轮缘上的最大瞬时力,此力为700N 。 二、齿轮齿条式转向器的设计 齿轮齿条式转向器的齿轮多数采用斜齿圆柱齿轮。齿轮模数取值范围多在2~3mm 之间。主动小齿轮齿数多数在5~7个齿范围变化,压力角取20o,齿轮螺旋角取值范围多为 9o~1 5o。齿条齿数应根据转向轮达到最大偏转角时,相应的齿条移动行程应达到的值来确定。变速比的齿条压力角,对现有结构在12o~35o范围内变化。此外,设计时应验算齿轮的抗弯强度和接触强度。 主动小齿轮选用16MnCr5或15CrNi6材料制造,而齿条常采用45钢制造。为减轻质量,壳体用铝合金压铸。

齿轮齿条式转向器设计

中图分类号:TH 文献标识码:A 文章编号:1007-0745(2013)10-0149-02 孙炜 (河北省机械科学研究设计院050051)齿轮齿条式转向器设计 摘要:转向器是转向系中的重要总成,是用来保持或改变汽车行驶方向的机构。本文分析不同形式转向器的优缺点,对齿轮齿条式 转向器进行必要的设计和计算,包括强度计算和结构设计。关键词:机械式转向器齿轮齿条一、方案介绍和选择1、转向器类型的选择 机械式转向器主要有齿轮齿条式、循环球式、蜗杆滚轮式、蜗杆指销式等,其中广泛应用的是齿轮齿条式和循环球式。 齿轮齿条式转向器优点:结构简单、紧凑;壳体由铝合金或镁合金压铸而成,故质量比较小;传动效率高达90%;齿轮齿条之间因磨损出现间隙后,可利用装在齿条背部、靠近小齿轮的压紧力可以调节的弹簧自动消除齿间间隙,在提高系统刚度的同时也可防止工作时产生冲击和噪声;转向器占用体积小;没有转向摇臂和横拉杆,可以增大转向轮转角;制造成本低。 缺点:逆效率高,汽车在不平路面行使时会出现汽车方向控制难度增加还有可能出现打手现象。 循环球式转向器优点:在螺杆和螺母之间有可以循环流动的钢球,将滑动摩擦转变为滚动摩擦,传动效率可达75%-85%;转向器传动比可以变化;工作平稳可靠;齿条齿扇间间隙调整工作容易进行;适合做整体式动力转向器。 缺点:逆效率高,结构复杂,制造困难,制造精度要求高。通过对齿轮齿条式转向器和循环球式转向器的对比,选择采用齿轮齿条式转向器。 2、齿轮齿条式转向器布置和结构形式的选择考滤到原车采用的是循环球式转向器,故采用转向器位于前轴后方,后置梯形的布置形式。 同时考虑到原车是发动机前置后驱故采用侧面输入两端输出的结构形式。 二、设计计算过程 1、sin α 2750=0.39855 α=29.3607°tin =27506900×cos α-1440 =0.56257 =29.3607° 通过作图计算可得转向齿条左右移动的最大距离为 180。 2、转向器参数选取 齿轮齿条转向器的齿轮多采用斜 齿轮 , 齿轮模 数 在 2~3 之间,主动小齿轮齿数在5~7之间,压力角取α=20°,螺旋角在9°~15°之间。故取小齿轮z 1=6,=2.5,=10°右旋,压力角α=20°,精度等级8级。 转向节原地转向阻力矩: 方向盘转动圈数: 角传动比: 方向盘上的手力: 力传动比: 取齿宽系数, 齿条宽度2=d 1=1.2×15.2314=18.278圆整取2=20,则取齿轮齿宽1=2+10=30 3、选择齿轮齿条材料小齿轮:40Cr C-N 共渗淬火、回火43—53HRC 齿条:45调质处理229—286HBS 4、强度校核(1)校核齿轮接触疲劳强度选取参数,按ME 级质量要求取值σHlim1=1500MPa ,σHlim2=650MPa ;S Hlim1=1.5,S Hlim2=1.3Z N1=Z N2=1 σHlim2<σHlim1故以σHlim2计算σHp σHp =σHlim2Z N2S Hlim2=650×11.3 =500MPa 查得:A =1.35,V =1.05,α=1.1,=1.1;=A V α=1.7152 H =2.46,E =189.8,=0.92,=10°则=12.5 齿轮接触疲劳强度合格(2)校核齿轮弯曲疲劳强度 选取参数,按ME 级质量要求取值 (下转第147页)

汽车齿轮齿条式转向器设计

本科学生毕业设计 汽车齿轮齿条式转向器设计 院系名称:汽车与交通工程学院 专业班级: 学生姓名: 指导教师: 职称: 黑龙江工程学院 二○一一年六月

The Graduation Design for Bachelor's Degree Design of Car Rack and Pinion Steering Gear Candidate: Specialty: Class : Supervisor: Heilongjiang Institute of Technology 2011-06·Harbin

摘要 汽车转向器是汽车的重要组成部分,也是决定汽车主动安全性的关键总成,它的质量严重影响汽车的操纵稳定性。随着汽车工业的发展,汽车转向器也在不断的得到改进,虽然电子转向器已开始应用,但机械式转向器仍然广泛地被世界各国汽车及汽车零部件生产厂商所采用。而在机械式转向器中,齿轮齿条式转向器由于其自身的特点被广泛应用于各级各类汽车上。 本次设计主要对一汽佳宝的转向器进行设计。首先对转向器进行了结构上的设计,此转向器选用的是侧面输入,两端输出的齿轮齿条式转向器。其优点为:结构简单、紧凑;壳体由铝合金或镁合金压铸而成,故质量比较小;传动效率高达90%;齿轮齿条之间因磨损出现间隙后,可利用装在齿条背部、靠近小齿轮的压紧力可以调节的弹簧自动消除齿间间隙,在提高系统刚度的同时也可防止工作时产生冲击和噪声;转向器占用体积小;没有转向摇臂和直拉杆,可以增大转向轮转角;制造成本低。 关键词:转向器;弹簧;横拉杆;设计;校核

ABSTRACT Auto steering gear is the important part of automobile. Also the key assembly of vehicle active safety. Its’ quality seriously effecting manipulating stability,with the develop ment of automobile’industry,steering gear is improved gradually. Although electronic steering gear began application, but mechanical steering gear is widely used by automobile and parts manufacturer all over the world. In the mechanical steering gear. The rack and pinion steering gear were widely used in all kinds of Auto factories due to its own characteristics. This design is mainly focus on FAW Jiabao. First, design the steering gear’s structure. This steering gear applied beside input. Two terminal output rack and pinion steering. Its’advantages is simple configuration and compact. Shell is pressurized carging by aluminium alloy or magnesium ally. So the weight is relatively low. Transmitting efficient can reach 90%. If gap appears between rack and pinion. It can be eliminated by the spring which is located back of rack adjustable to pinion,and spring pressure can be ajusted .Simproving the sy sten’s stiffness.It also can prevent the impact and noise when it works .Steering gear occupy. Little volume have no steering arm and tie rod. Steering wheel angle can be increased;manufacturing cost is low. Keywords: steering;spring; horizontal bars;design;check .

相关主题
文本预览
相关文档 最新文档