当前位置:文档之家› 第七章 直梁弯曲时的内力和应力

第七章 直梁弯曲时的内力和应力

第七章 直梁弯曲时的内力和应力
第七章 直梁弯曲时的内力和应力

第七章直梁弯曲时的内力和应力

一、填空题:

1、梁产生弯曲变形时的受力特点,是梁在过轴线的平面内受到外力偶的作用或者受到和梁轴线相___________的外力的作用。

2、车床上的三爪盘将工件夹紧之后,工件夹紧部分对卡盘既不能有相对移动,也不能有相对转动,这种形式的支座可简化为___________支座。

3、矩形截面梁弯曲时,其横截面上的剪力作用线必然________于外力并通过截面________。

4、梁弯曲时,其横截面上的剪力作用线必然__________于横截面。

5、梁弯曲时,任一横截面上的弯矩可通过该截面一侧(左侧或右侧)的外力确定,它等于该一侧所有外力对________力矩的代数和。

6、梁上某横截面弯矩的正负,可根据该截面附近的变形情况来确定,若梁在该截面附近弯成上_____下_______,则弯矩为正,反之为负。

7、用截面法确定梁横截面上的剪力时,若截面右侧的外力合力向上,则剪力为______。

8、以梁横截面右侧的外力计算弯矩时,规定外力矩是顺时针转向时弯矩的符号为_______。

9、将一悬臂梁的自重简化为均布载荷,设其载荷集度为q,梁长为L,由此可知在距固定端L/2处的横截面上的剪力为_________,固定端处横截面上的弯矩为__________。

10、在梁的集中力偶左、右两侧无限接近的横截面上,剪力相等,而弯矩则发生_______,_________值等于梁上集中力偶的力偶矩。

11、剪力图和弯矩图是通过________和___________的函数图象表示的。

12、桥式起重机横梁由左、右两车轮支承,可简化为简支梁,梁长为L,起吊重量为P,吊重位置距梁左、右两端长度分别为a、b,且a>b,由此可知最大剪力值为_______.

13、将一简支梁的自重简化为均布载荷作用而得出的最大弯矩值,要比简化为集中罚作用而的最大弯矩值__________

14、由剪力和载荷集度之间的微分关系可知,剪力图上的某点的_________等于对应于该点的载荷集度.

15、设载荷集度q(X)为截面位置X的连续函数,则q(X)是弯矩M(X)的_______阶导函数。

16、梁的弯矩图为二次抛物线时,若分布载荷方向向上,则弯矩图为向_________凸的抛物线。

17、弯矩图的凹凸方向可由分布载荷的_________符号确定。

18、在梁的某一段内,若无分布载荷q(X)的作用,则剪力图是__________于X轴的直线。

19、在梁的弯矩图上,某一横截面上的弯矩有极值(极大值或极小值),该极值必发生在对应于剪力___________的横截面上。

20、由于在梁的集中力作用处,其截面左、右两侧的剪力会有一突然变化,因此弯矩图在此处形成的是一个具有___________点的图形状。

21、梁在发生弯曲变形的同时伴有剪切变形,这种平面弯曲称为__________弯曲。

22、梁在纯弯曲时,其横截面仍保持为平面,且与变形后的梁轴线相___________。

23、在一纯弯曲梁段内,各横截面上的剪力等于_____________,而弯矩为常量。

24、梁在弯曲时的中性轴,就是梁的___________与横截面的交线。

25、梁弯曲时的中性轴必然通过其横截面上的___________那一点。

26、梁弯曲时,其横截面上的_________最终合成的结果为弯矩。

27、梁弯曲时,其横截面的_________按直线规律变化,而沿横截面的 ________ 则均匀分布。

28、梁弯曲时,横截面中性轴上各点的正应力等于零,而距中性轴________处的各正应力为最大。

29、梁弯曲变形后,以中性层为界,靠__________边的一侧纵向纤维受压力作用,而靠

__________边的一侧纵向纤维受拉应力作用。

30、梁弯曲时,在作用正弯矩的梁段内,其中性层以上的各纵向纤维将发生单向_______

变形。

31、等截面梁内的最大正应力总是出现在最大___________所在的横截面上。

32、矩形截面梁在横力弯曲时,其横截面上的剪应力沿截面高度按__________线规律分布。

33、矩形截面梁在横力弯曲时,其横截面上的剪应力所在的点上,其正应力为____________。

34、矩形截面梁弯曲时,其横截面上最大剪应力是平均剪应力的_____________倍。

35、一般情况下,弯曲时横截面上最大剪应力往往出现在____________上各点。

36、在横截面对称于中性轴的等截面梁内,弯曲的最大拉应力和最大压应力的绝对值

____________。

37、用抗拉强度和抗压强度不相等的材料,如铸铁等制成的梁,其横截面宜采用不对称于中性轴的形状,而使中性轴偏于受____________纤维一侧。

38、木梁或竹杆在横力弯曲时往往出现纵向裂纹,这表明梁的纵向截面上有___________应

力。

39、对于横截面高宽度比等于2的矩形截面梁,在当截面竖放时和横放时的抗弯能力之比和抗剪能力之比,分别为_____________和_____________。

40、面积相等的圆形、矩形和工字形截面的抗弯截面系数分别为W圆、W矩和W工,比较其值的大小,其结论应是W圆比W知_____________,W工比W矩___________。

41、由梁的弯曲正应力分布规律可知,为了充分利用材料,应尽可能将梁的材料聚集于离中性轴_____________处,从而提高梁的承载能力。

42、由弯曲正应力强度条件可知,设法降低梁内的最大弯矩,并尽可能提高梁截面的_______

______系数,即可提高梁的承能力。

43、梁的截面形状是否经济合理,其衡量标准在于梁截面的___________系数,即可提高梁的承载能力。

44、工程上用的鱼腹梁、阶梯轴等,其截面尺寸随弯矩大小而变,这种截面变化的梁,往往就是近似的___________梁。

二、判断题:

1、以弯曲为主要变形的杆件,只要外力均作用在过轴的纵向平面内,杆件就有可能发生平面弯曲。()

2、一正方形截面的梁,当外力作用在通过梁轴线的任一方位纵向平面内时,梁都将发生平面弯曲。()

3、梁发生平面弯曲时,其轴线必然弯成位于外力作用面内的平面曲线。()

4、通常将安装在车床刀架上的车刀简化为悬臂梁。()

5、梁横截面上的剪力,在数值上等于作用在此截面任一侧(左侧或右侧)梁上所有外力的代数和。()

6、用截面法确定梁横截面的剪力或弯矩时,若分别取截面以左或以右为研究对象,则所得到的剪力或弯矩的符号通常是相反的。()

7、研究梁横截面上的内力时,沿横截面假想地把梁横截为左段梁或右段两部份,由于原来的梁处于平衡状态,所以作用于左段或右段上的外力垂直于梁轴线方向的投影之和为零,即各外力对截面形心之矩可相互抵消。()

8、简支梁若仅作用一个集中力P,则梁的最大剪力值不会超过P值。()

9、梁的最大弯矩值必定出现在剪力为零的截面处。()

10、在简支梁上有一移动的集中载荷作用,要使梁内产生的弯矩为最大,此集中载荷并不一定作用在梁跨度中央。()

11、梁上某一横截面的弯矩等于作用于此截面任一侧(左侧或右侧)梁上所有外力对截面形心力矩的代数和,利用此规律,可不列出平衡方程,就能直接确定横截面弯矩值的大小。()12、两个简支梁的的跨度及所承受的载荷相同,但由于材料和横截面面积不同,故梁的内力剪力和弯矩就不一定相同。()

13、简支梁上有一集中力偶作用,绘出其剪力图,其图象一定以集中力偶作用的位置为对称。()

14、若梁某段内各横截面上的弯矩均为零,则该段内各横截面上的剪力也均为零。()

15、若梁某一段内的横截面只有弯矩而无剪力,则梁在此段内的弯矩、剪力和载荷集度之间的微分关系不一定成立。()

16、在梁的某一段内,若无载荷作用,即q(X)= 0,则由弯矩,剪力和载荷集度之间

的微分关系可知,弯矩图一定是一斜直线。()

17、在梁某一段内的各个横截面上的,若剪力均为零,则该段内的弯矩必为常量。()

18、在梁上作用的向下的均布载荷,即q为负值,则梁内的剪力Q也必为负值。()

19、在梁上某一段内的分布载荷方向向下(规定分布载荷方向向下不负),这说明弯矩图曲线向上凸,其弯矩值必为正值。()

20、梁的弯矩图上某一点的弯矩值为零,该点所对应的剪力图上的剪力值也一定为零。()

21、在梁上的剪力为零的地方,所对应的弯矩图的斜率也为零;反过来,若梁的弯矩图斜率为零,则所对应的梁上的剪力也为零。()

22、承受均布载荷的悬臂梁,其弯矩图为一条向上凸的二次抛物线,此曲线的顶点一定事在位于悬臂梁的自由端所对应的点处。()

23、从左向右检查所绘剪力图的正误时,可以看出,凡集中力作用处,剪力图发生突变,突变值的大小与方向和集中力相同,若集中力向上,则剪力图向上突变,突变值为集中力大小。()

24、在梁上集中力偶作用处,其弯矩图有突变,而所对应的剪力图为水平线,并由正值变为负值或由负值变为正值,但其绝对值是相同的。()

25、运动员双臂平行地静悬于单杠(视为简支梁)时,无论两手握在杠的何处,只要两手的间矩不变,其两手间的杠段的变形总是纯弯曲.( )

26、梁弯曲时,不论梁产生的是纯弯曲还是横力弯曲,其变形前后的横截面始终都为平面。

( )

27、等截面直梁在纯弯曲时,横截面保持为平面,但其形状和尺寸略有变化。( )

28、梁产生纯弯曲变形后,其轴线即变成了一段圆弧线。( )

29、梁产生平面弯曲变形后,其轴线不会保持原长度不变。( )

30、梁弯曲时,梁内有一层既不受拉又不受压的纵向纤维就是中性层。( )

31、中性层是梁平面弯曲时纤维缩短区和纤维伸长区的分界面。( )

32、梁弯曲时,梁的中性必定是横截面的对称轴。 ( )

33、因梁产生的平面弯曲变形对称于纵向对称面,故中性层垂直于纵向对称面。( )

34、梁弯曲时,其横截面要绕中性轴旋转,而不会绕横截面的边缘旋转。 ( )

35、弯曲正应力公式是由矩形截面梁推导出的,故只适用于纯弯曲,而不适用于横力弯曲。( )

36、由于弯曲正应力公式是由矩形截面梁推导出的,所以用于非矩形截面梁时,则不能满足工程所需要的精度。( )

37、梁弯曲时,可以认为横截面上只有拉应力,并且均匀分布,其合成的结果将与截面边缘的一集中力组成偶,此力偶的内力偶矩即为弯矩。( )

38、梁的横截面上作用有负弯矩,其中性轴上侧各点作用的是拉应力,下侧各点作用的是压应力。( )

39、等截面梁弯曲时的最大拉应力和最大压应力在数值上必定是相等的。( )

40、等截面梁的最大弯曲正应力不一定发生在最大弯矩的横截面上距中性轴最远的各点处。( )

41、挑水时扁担在其中部折断,这是由于相应的横截面处的拉应力达到了极限值。( )

42、等截面梁的最大剪应力一定位于剪力最大的横截面上。 ( )

43、T 字形截面的铸铁梁,其最大打应力总发生在弯矩绝对值为最大的横截面上。( )

44、T 字形截面的铸铁梁,当在全长范围内作用有正弯矩时,其截面应倒放⊥形较为合理些。( )

45、一T 字形截面铸铁梁内的正弯矩最大值为M 1,负弯矩最大绝对值为,1M 且2M >M 1此时梁截面应正放成T 形才合理。( )

46、矩形截面梁的纯弯曲段内,甘横截面上各点的剪应力均等于零。( )

47、矩形截面梁在横力弯曲时,梁内正应力为零的点处,其剪应力一定为零。( )

48、矩形截面梁弯曲时,其最大正应力和最大剪应力的点不一定在同一个横截面上。()

49、矩形截面梁弯曲时,横截面上任意一眯处的剪应力方向均平行于横截面上剪力的方向。()

50、矩形截面梁的弯曲剪应力沿截面高度变化,但不一定按二次抛物线规律变化。()

51、等截面梁的最大弯曲剪应力不一定出现在剪力最大的横截面中性轴上。( )

52、对于横力弯曲的梁,若其跨度和截面高度之比不大于5,则用纯弯曲建立的弯曲正应力公式计算所得的正应力,较之梁的真实正应力的误差很小。( )

53、当梁内的最大拉应力和最大压应力的绝对值相等时,该梁的抗拉强度和抗压强度必定相等。 ( )

54、假设对脆性材料如铸铁等制成的T 字形截面梁进行强度校核,无论其受载情况如何,只要校核了危险点的压应力即可。( )

55、弯曲正应力强度条件中的许用正应力与轴向拉伸或压缩强度条件中的许用正应力是相同的。( )

56、弯曲剪应力强度条件中的许用剪应力与扭转强度条件中的许用剪应力是相同的。( )

57、对比用同一材料制成的实心圆截面梁和空心圆截面梁的强度,只要二者的外径相同,则它们承受外载或自重的能力一定都是相同的。( )

58、对于木梁,其顺纹方向的抗剪能力较差,但因最大剪应力发生在横截面中性轴上,故剪切破坏不会沿顺纹中性层发生。( )

59、一全长范围内有均布载荷作用的简支梁,若左、右两端支座各向内移动跨度的1/5,则可使梁的承载能力提高为原来的5倍.由此可知,左、右两端支座继续向内移时,梁的承载能力将不断提高。( )

60、为了提高矩形截面梁的抗弯强度,增大横截面的高度要比增大横截面的宽度有效得多。( )

三、选择题:

1、工程实际中产生弯曲变形的杆件,如火车机车轮轴、房屋建筑的楼板主梁,在得到计算简图时,需将其支承方式简化为:()

A、简支梁

B、轮轴为外伸梁,楼板主梁为简支梁;

C、外伸梁

D、轮轴为简支梁,楼板主梁为外伸梁。

2、用一截面将梁截为左、右两段,在同一截面上的剪力、弯矩数值是相等的,按静力学

作用与反作用公理,其符号是相反的,而按变形规定,则剪力、弯矩的符号()A、仍是相反的;B、是剪力相反,弯矩一致;

C、总是一致;

D、是剪力一致,弯矩相反。

3、在梁的集中力作用处,其左、右两侧无限接近的横截面上的弯矩()的

A、相同;

B、数值相等,符号相反;

C、不相同;

D、符号一致,数值不相等。

4、在梁的集中力作用处,其左、右两侧无限接近的横截面上的剪力()

A、大小相等,符号相反;

B、大小相等,符号相同;

C、符号有时都相同,有时不都相同;

D、有大小改变趋势,但符号不变。

5、指出图示简支梁(如图所示)m-n截面上的弯矩及其符号是()

A、-Pac/L;

B、Pac/L;

C、-Pbc/L;

D、Pbc/L

6、分析外伸梁ABC(如图所示)的内力时,所得的结果()是错误的。

A、AB段剪力为负值,BC段剪力为正值;

Q=2qa;

B、

m ax

C、除A、C两端点外,各段的弯矩均为负值;

M|=4q2a。

D、|

m ax

7、列出梁ABCDE(如图所示)各梁段的剪力方程和弯矩方程,其分段要求应是分为()

A、AC和CE段

B、A

C、CD和DE段

C、AB、BD和DE段

D、AB、BC、CD和DE段

8、悬臂梁(如图所示)在集中力1P 、2P 作用下的弯矩表达式为( )。

A 、M (x )=—1P x (0≤x ≥L );

B 、M (x )=—2P x (0≤x ≥L );

C 、M (x )=—1P x (0≤x ≥

2L ), M (x )=2P x -1P (2L +x ) (2

L ≤x ≥L ;) D 、M (x )=-(1P +2P )x (0≤x ≥L )。

9、外伸梁在均布载荷q 的作用(如图所示)下,指出内力的特点,其中( )是不正确的。

A、图对称于中央截面;

B、中央截面上Q=0;

C、图对称于中央截面;

D、中央截面上M=0。

10、简支梁AB受集中力偶作用(如图所示),通过内力分析,若认为(),则是对的。

A、集中力偶作用在A处或B处,杆内无剪力;

M|必出现在C处截面上;

B、集中力偶无论作用于何处,梁内的最大弯矩值|

m ax

C、集中力偶作用在A或B处,M图为矩形;

M|=m。

D、集中力偶无论作用于何处,梁内的最大弯矩值|

m ax

11、由梁上载荷、剪力图和弯矩图三者间的关系,可概括一些规律性结论,如()。

A、集中力作用处,M图发生转折;集中力偶作用处,Q图连续;

B、集中力作用处,M图连续;集中力偶作用处,M图不连续;

C、集中力偶作用处,Q图会有变化;

D、集中力偶作用处,所对应的M图在此处的左、右斜率将发生突变。

12、一多跨梁AB(如图所示),使所受的集中力P先后作用于C铰的左侧和右侧,并分别作出其内力图,经过比较,得出()的结论是对的。

A、Q、M图均不同;

B、Q图相同,M图不同;

C、Q图不同,M图相同;

D、Q、M图均相同。

13、向上吊起一钢筋混凝土梁(如图所示),梁长为L,在梁的自重作用下,若要保证梁内不产生正弯矩,则绳索所系位置x的最小值应为()。

A 、2L ;

B 、4L ;

C 、6L ;

D 、8

L 14、将一简支梁上的集中力P 分散成三种情况(如图所示),以1M 、2M 、3M 和4M 分别表示前后四种情况的最大弯矩值,你认为结论中( )是正确的。

A 、1M ﹥2M ﹦3M ﹥4M ;

B 、1M ﹥2M ﹥3M ﹥4M ;

C 、1M ﹥2M ﹥3M =4M

D 、1M ﹥2M ﹥4M ﹥3M 。

15、受受力偶作用的外伸梁ABC ,将外力偶m 从所作用的C 处移到D 处(如图所示)时,可能引起梁剪力和弯矩的最大值发生变化的情形( )才是正确的。

A、最大剪力相同,最大弯矩不相同;

B、最大剪力相同,最大弯矩相同;

C、最大剪力不相同,最大弯矩不相同;

D、最大剪力不相同,最大弯矩相同。

16、一悬臂梁,左端固定,长为4m,由其弯矩图(如图所示)可知剪力图为()。

A、矩形;

B、三角形;

C、梯形;

D、零线(剪力为零的各点连线)。

17、从一长4m的简支梁弯矩图(如图所示)分析可知梁的受载情况为:()

A、在x=1m和x=3m处,各有集中力P=10kN向下作用;

B、在x=1m和x=3m处,各有集中力P=20kN向下作用;

C、在x=1m处,有集中力P=20kN向下作用,在x=3m处,各有集中力'P=20kN向上作用;

D、在x=1m处,有集中力P=10kN向下作用,在x=3m处,各有集中力'P=10kN向上作用;

18、分析简支梁(如图所示)的外力、内力和变形情况,可知结论()是错误的。

A、支座反力大小为P;

B、剪力图左、右对称;

C、梁中央截面上弯矩为零;

D、致变形状态是沿梁的轴向由凸到凹。

19、由一简支梁的弯矩图(如图所示)得出梁在左、中、右三段上的剪力大小和正负依次是( )。

A 、20kN 、0、—10kN ;

B 、10kN 、0、—20kN ;

C 、—10kN 、0、20kN ;

D 、—20kN 、0、10kN 。

20.有一承受分布载荷的简支梁,该梁在所取的坐标系Bxy (如图所示)中,弯矩M 、剪力Q 和载荷集度q 之间的微分关系为( )

A 、dx dQ =q ,dx dM =Q ;

B 、dx dQ =—q ,dx

dM =—Q ;

C 、dx dQ =—q ,dx dM =Q ;

D 、dx dQ =q ,dx

dM =—Q 。 21、一受力弯曲的简支梁(如图所示)产生纯弯曲变形的梁段应是( )

A 、A

B 段; B 、B

C 段;

C 、CB 段;

D 、不存在。

22、梁的纯弯曲可在材料试验机上实现,变形情况,可由表及里地推断:梁变形后,

保持为平面,且垂直于变形后的梁轴线,横截面只是绕( )

A 、梁的轴线;

B 、梁轴线的曲线率中心;

C 、中性轴;

D 、横截面自身的轮廓线。

23、梁在纯弯曲时,其横截面的正应力变化规律与纵向纤维应变的变化规律是( )的。

A 、相同;

B 、相反;

C 、相似;

D 、完全无联系。

24、梁在平面弯曲时,其中性轴与梁的纵向对称面是相互( )的。

A 、平行;

B 、垂直;

C 、成任意夹角。

25、梁在纯弯曲时,横截面上由微内力组成的一个垂直于横截面的( ),最终可简化为弯矩。

A 、平面平行力系;

B 、空间平行力系;

C 、平面力偶系。

26、梁弯曲时,横截面上离中性轴矩离相同的各点处正应力是( )的。

A 、相同;

B 、随截面形状的不同而不同;

C 、不相同;

D 、有的地方相同,而有的地方不相同。

27、一矩形截面悬梁自由端受到力P 的作用(如图所示),其上A 、B 两处的正应力关系为

( )。

A 、σA = 3σ

B ; B 、σA = 6σB ;

C 、σA = 2σB ;

D 、σA = 4σB 。

28、一矩形截面梁受力发生弯曲变形(如图所示)时,在梁的( )处横截面上将出现最大正应力。

A 、A ;

B 、B ;

C 、C ;

D 、D 。

29、一矩形截面梁受力弯曲(如图所示)后,未产生正应力的梁段应是( )。

A 、A

B 段; B 、B

C 段; C 、C

D 段; D 、不存在的。

30、一梁的横截面为对称的空心矩形(如图所示),其抗弯截面系数W Z 应为( )。

A .62BH ;

B 、

;662

2bh BH - C 、;6633bh BH h - D 、???

? ??-66133bh BH H 。 31、( )梁在平面弯曲时,其截面上的最大拉、压力绝对值

是不相等的。

A 、圆形截面;

B 、矩形截面;

C 、T 字形截面;

D 、热轧工字钢。

32、两根木当梁叠合在一起(拼接面无粘胶)时,左、右两端受到力偶的作用(如图所示),这时该组合梁的抗弯截面系数W 应为( )。

A 、;32bh

B 、;62bh

C 、;322bh

D 、63

bh 。

33、T ,由于截面不对称于中性轴(如

图所示),其上、下边到中性轴的距离 y 1≠y 2 ,抗弯截面系数有( ),故截面最大拉应力与最大压力不相等。

A 、W 1>W 2;

B 、W 1

C 、W 1=W 2。

34、倒放的T字形截面梁发生弯曲变形时(如图所示),认为( )是不对的。

A、梁截面的中性轴通过形心;

B、梁的最大压应力出现在截面的上边缘;

C、梁内最大压应力绝对值小于最大拉应力;

D、梁内最大压应力与最大拉应力数值不等。

35、横截面形状分别为矩形和T 字形的等截面简支梁受力后(如图所示),已知两截面对中性轴的惯性矩I Z1=I Z2,截面高度h1=h2,求得两截面上的最大拉、压应力的对应关系应为( ).

A、σ11=σ12 , σy2 =σy2 ;

B、σ11>σ12 , σy1 <σy2 ;

C、σ11< σ12 ,σy1>σy2 ;

D、σ11>σ12 ,σy1>σy2。

36、圆形截面的阶梯形悬臂梁(如图所示)的许用应力为[σ], BC段的横截面直径大小为

d

1=0.7d2 , 若在C端施加的力P就是由

A端截面按强度条件确定的最大许可载

荷,则可知( ).

A、梁是安全的;

B、因条件不全而无法判断梁是否安全;

C、梁是不安全的;

D、弯曲正应力强度条件不适用于这种变截面梁。

37、T字形截面梁(如图所示)的许用应力[σy]大于许用拉应力[σ1] , 而且[σ1]=2σ1] , 若梁内的最大压应力σymax=0.5[σy] , 则有( )。

A.σlmax >[σ1]; B 、σlmax =[σ1]; C 、σlmax >[σ1]。

38、将一槽形形截面外伸梁(如图所示)的截面槽口向上改为截面槽口向下,若分析A 端横截面上的应力的变化,则可知( )。

A 、最大拉、压应力都增大;

B 、最大拉、压应力都减小;

C 、最大拉应力减小,而最大压应力增大;

D 、最大拉应力增大,而最大压应力减小。

39、若将圆形截面梁的直径增大为原来的2倍,则允许的梁内的最大弯矩值将增大为原来的

( )倍。

A 、2;

B 、4;

C 、6;

D 、8。

40、一木梁发生弯曲破坏时,发现产生了纵向裂纹,因梁纵向截面并无正应力,而材料沿纵向的( )强度较弱,故本梁沿纵向开裂。

A 、剪切;

B 、拉伸;

C 、压缩;

D 、挤压。

41、对于T 字形、工字形及圆形的等截面梁,在应用弯曲剪应力公式 τ =

B I QS Z Z 计算剪应

力时,式中的常量b 应当是( )宽度。

A 、所求应力点处的截面;

B 、截面的最大;

C 、截面的最小;

D 、截面的平均。

42、为了充分发挥梁的抗弯作用,在选用梁的合理截面时,应尽可能使其截面的材料置于

( )的地方。

A 、离中性轴较近;

B 、离中性轴较远;

C 、形心周围;

D 、接近外力作用的纵向对称轴。

43、用四根角钢组成的梁,在受到铅垂平面内的外力作用而产生纯弯曲时,应将角钢组合成如图所示( )的形式即可得到最佳的弯曲强度。

44、龙门吊车的横梁通常是采取( )的方式平提高其承载能力。

A、将支座向内移;

B、适当布置载荷;

C、合理设计截面;

D、用变截面梁。

45、若将作用在简支梁中央的集中力分散为靠近支座的两个集中力(如图所示),则此时梁所能承受的集中力P2将增大为梁原来承受的集中力P1的( )倍.

A、0.5;

B、1;

C、2;

D、4.

四、利用弯矩、剪力和载荷集度之关系绘图示各梁的剪力图和弯矩图。

五、将厚度δ=2mm的弹簧钢片卷成直径D=800mm的圆形。若此时弹簧钢片内的应力仍保持在弹性范围以内,且已知材料的弹性模量E=206Gpa,求钢片内的最大正应力。

第七章-直梁弯曲时的内力和应力复习进程

第七章直梁弯曲时的内力和应力 一、填空题: 1、梁产生弯曲变形时的受力特点,是梁在过轴线的平面内受到外力偶的作用或者受到和梁轴线相___________的外力的作用。 2、车床上的三爪盘将工件夹紧之后,工件夹紧部分对卡盘既不能有相对移动,也不能有相对转动,这种形式的支座可简化为___________支座。 3、矩形截面梁弯曲时,其横截面上的剪力作用线必然________于外力并通过截面________。 4、梁弯曲时,其横截面上的剪力作用线必然__________于横截面。 5、梁弯曲时,任一横截面上的弯矩可通过该截面一侧(左侧或右侧)的外力确定,它等于该一侧所有外力对________力矩的代数和。 6、梁上某横截面弯矩的正负,可根据该截面附近的变形情况来确定,若梁在该截面附近弯成上_____下_______,则弯矩为正,反之为负。 7、用截面法确定梁横截面上的剪力时,若截面右侧的外力合力向上,则剪力为______。 8、以梁横截面右侧的外力计算弯矩时,规定外力矩是顺时针转向时弯矩的符号为_______。 9、将一悬臂梁的自重简化为均布载荷,设其载荷集度为q,梁长为L,由此可知在距固定端L/2处的横截面上的剪力为_________,固定端处横截面上的弯矩为__________。 10、在梁的集中力偶左、右两侧无限接近的横截面上,剪力相等,而弯矩则发生_______,_________值等于梁上集中力偶的力偶矩。 11、剪力图和弯矩图是通过________和___________的函数图象表示的。 12、桥式起重机横梁由左、右两车轮支承,可简化为简支梁,梁长为L,起吊重量为P,吊重位置距梁左、右两端长度分别为a、b,且a>b,由此可知最大剪力值为_______. 13、将一简支梁的自重简化为均布载荷作用而得出的最大弯矩值,要比简化为集中罚作用而的最大弯矩值__________ 14、由剪力和载荷集度之间的微分关系可知,剪力图上的某点的_________等于对应于该点的载荷集度. 15、设载荷集度q(X)为截面位置X的连续函数,则q(X)是弯矩M(X)的_______阶导函数。 16、梁的弯矩图为二次抛物线时,若分布载荷方向向上,则弯矩图为向_________凸的抛物线。

(完整版)梁的内力计算

第四章 梁的内力 第一节 工程实际中的受弯杆 受弯杆件是工程实际中最常见的一种变形杆,通常把以弯曲为主的杆件称为梁。图 4 — i 中列举了例子并画出了它们的计算简图。如图( a 表示的是房屋建筑中的板、梁、柱结 构,其中支撑楼板的大梁 AB 受到由楼板传递来的均布荷载 口;图(b )表示的是一种简易挡 水结构,其支持面板的斜梁 AC 受到由面板传递来的不均匀分布水压力; 图(c )表示的是- 小型公路桥,桥面荷载通过横梁以集中荷载的形式作用到纵梁上;图( d )表示的是机械中 的一种蜗轮杆传动装置,蜗杆受到蜗轮传递来的集中力偶矩 m 的作用。 1.1 梁的受力与变形特点 综合上述杆件受力可以看出: 当杆件受到垂直于其轴线的外力即横向力或受到位于轴线平面 内的外力偶作用时,杆的轴线将由直线变为曲线, 这种变形形式称为弯曲.。在工程实际中受 弯杆件的弯曲变形较为复杂,其中最简单的弯曲为平面弯曲。 1.2 平面弯曲的概念 工程中常见梁的横截面往往至少有一根纵向对称轴, 该对称轴与梁轴线组成一全梁的纵向对.. 称面(如图4 — 2),当梁上所有外力(包括荷载和反力)均作用在此纵向对称面内时,梁轴 线变形后的曲线也在此纵向对称面内, 这种弯曲称为平面弯曲.。它是工程中最常见也最基本 的弯曲问题。 1.3 梁的简化一一计算简图的选取 工程实际中梁的截面、支座与荷载形式多种多样, 较为复杂。为计算方便,必须对实际梁进 行简化,抽象出代表梁几何与受力特征的力学模型,即梁的计算简图...。 选取梁的计算简图时,应注意遵循下列两个原则:(1)尽可能地反映梁的真实受力情况;(2) 尽可能使力学计算简便。 a 房屋建筑中的大梁 c 小跨度公路桥地纵梁 图4-1 b 简易挡水结构中的斜梁

第11章梁的弯曲应力要点

第11章梁的弯曲应力 教学提示:梁纯弯曲和横力弯曲时横截面上的正应力;梁横力弯曲时横截面上的切应力;提高弯曲强度的若干措施、薄壁杆件的切应力流和弯曲中心。 教学要求:掌握梁纯弯曲时横截面上正应力计算公式的推导过程,理解横力弯曲正应力计算仍用纯弯曲公式的条件和近似程度。掌握中性层、中性轴和翘曲等基本概念和含义。熟练掌握弯曲正应力和剪应力强度条件的建立和相应的计算。了解什么情况下需要对梁的弯曲切应力进行强度校核。从弯曲强度条件出发,掌握提高弯曲强度的若干措施。 在外荷载作用下,梁截面上一般都有弯矩和剪力,相应地在梁的横截面上有正应力和剪应力。弯矩是垂直于横截面的分布内力的合力偶矩;而剪力是切于横截面的分布内力的合力。本章研究正应力σ和剪应力τ的分布规律,从而对平面弯曲梁的强度进行计算。 11.1梁的弯曲正应力 平面弯曲情况下,一般梁横截面上既 有弯矩又有剪力,如图11.1所示梁的AC、 DB段。而在CD段内,梁横截面上剪力等 于零,而只有弯矩,这种情况称为纯弯曲。 下面推导梁纯弯曲时横截面上的正应力公 式。应综合考虑变形几何关系、物理关系 和静力学关系等三个方面。 11.1.1 弯曲正应力一般公式 1、变形几何关系 为研究梁弯曲时的变形规律,可通过 试验,观察弯曲变形的现象。取一具有对 称截面的矩形截面梁,在其中段的侧面上, 画两条垂直于梁轴线的横线mm和nn,再 在两横线间靠近上、下边缘处画两条纵线 ab和cd,如图11.2(a)所示。然后按图 11.1(a)所示施加荷载,使梁的中段处于纯弯曲 状态。从试验中可以观察到图11 .2(b)情况: (1)梁表面的横线仍为直线,仍与纵线正 交,只是横线间作相对转动。

材料力学实验指导书(矩形截面梁纯弯曲正应力的电测实验)

矩形截面梁纯弯曲正应力的电测实验 一、实验名称 矩形截面梁纯弯曲正应力的电测实验。 二、实验目的 1.学习使用电阻应变仪,初步掌握电测方法; 2.测定矩形截面梁纯弯曲时的正应力分布规律,并与理论公式计算结果进行比较,验证弯曲正应力计算公式的正确性。 三、实验设备 1.WSG-80型纯弯曲正应力试验台 2.静态电阻应变仪 四、试样制备及主要技术指标 1、矩形截面梁试样 材料:20号钢,E=208×109Pa; 跨度:L=600mm,a=200mm,L1=200mm; 横截面尺寸:高度h=28mm,宽度b=10mm。

2.载荷增量 载荷增量ΔF=200N (砝码四级加载,每个砝码重10N 采用1:20杠杆比放大),砝码托作为初载荷,F0=26 N 。 3.精度 满足教学实验要求,误差一般在5%左右。 五、实验原理 如图1所示,CD 段为纯弯曲段,其弯矩为a 2 1 F M = , 则m N M ?=6.20,m N M ?=?20。根据弯曲理论,梁横截面上各点的正应力增量为: z I y M ?= ?理σ (1) 式中:y 为点到中性轴的距离;Iz 为横截面对中性轴z 的惯性矩,对于矩 形截面, 12 bh I 3 z = (2) 由于CD 段是纯弯曲的,纵向各纤维间不挤压,只产生伸长或缩短,所以各点均为单向应力状态。只要测出各点沿纵向的应变增量ε?,即可按胡克定律计算出实际的正应力增量实σ?。 εσ?=?E 实 (3) 在CD 段任取一截面,沿不同高度贴五片应变片。1片、5片距中性轴z 的 距离为h/2,2片、4片距中性轴z 的距离为h/4,3片就贴在中性轴的位臵上。 测出各点的应变后,即可按(3)式计算出实际的正应力增量实σ?,并画出正应力实σ?沿截面高度的分布规律图,从而可与(1)式计算出的正应力理论值理σ?进行比较。 六、实验步骤 1.开电源,使应变仪预热。

弯曲应力计算 (1)

第7章弯曲应力 引言 前一章讨论了梁在弯曲时的内力——剪力和弯矩。但是,要解决梁的弯曲强度问题,只了解梁的内力是不够的,还必须研究梁的弯曲应力,应该知道梁在弯曲时,横截面上有什么应力,如何计算各点的应力。 在一般情况下,横截面上有两种内力——剪力和弯矩。由于剪力是横截面上切向内力系的合力,所以它必然与切应力有关;而弯矩是横截面上法向内力系的合力偶矩, F时,就必然有切应力τ;所以它必然与正应力有关。由此可见,梁横截面上有剪力 Q 有弯矩M时,就必然有正应力 。为了解决梁的强度问题,本章将分别研究正应力与切应力的计算。 弯曲正应力 纯弯曲梁的正应力 由前节知道,正应力只与横截面上的弯矩有关,而与剪力无关。因此,以横截面上只有弯矩,而无剪力作用的弯曲情况来讨论弯曲正应力问题。 在梁的各横截面上只 有弯矩,而剪力为零的弯 曲,称为纯弯曲。如果在 梁的各横截面上,同时存 在着剪力和弯矩两种内 力,这种弯曲称为横力弯 曲或剪切弯曲。例如在图 7-1所示的简支梁中,BC 段为纯弯曲,AB段和CD 段为横力弯曲。 分析纯弯曲梁横截面 上正应力的方法、步骤与 分析圆轴扭转时横截面上 切应力一样,需要综合考 虑问题的变形方面、物理 方面和静力学方面。图7-1 变形方面为了研究与横截面上正应力相应的纵向线应变,首先观察梁在纯弯曲时的变形现象。为此,取一根具有纵向对称面的等直梁,例如图7-2(a)所示的矩形截面梁,并在梁的侧面上画出垂直于轴线的横向线m-m、n-n和平行于轴线的纵向线d-d、

b -b 。然后在梁的两端加一对大小相等、方向相反的力偶e M ,使梁产生纯弯曲。此时 可以观察到如下的变形现象。 纵向线弯曲后变成了弧线''a a 、''b b , 靠顶面的aa 线缩短了,靠底面的bb 线伸长 了。横向线m -m 、n -n 在梁变形后仍为直线,但相对转过了一定的角度,且仍与弯曲 了的纵向线保持正交,如图7-2(b)所示。 梁内部的变形情况无法直接观察,但根据梁表面的变形现象对梁内部的变形进行 如下假设: (1) 平面假设 梁所有的横截面变形后仍为平面.且仍垂直于变形后的梁的轴线。 (2) 单向受力假设 认为梁由许许多多根纵向纤维组成,各纤维之间没有相互挤压, 每根纤维均处于拉伸或压缩的单向受力状态。 根据平面假设,前面由实验观察到的变形现象已经可以推广到梁的内部。即梁在 纯弯曲变形时,横截面保持平面并作相对转动,靠近上面部分的纵向纤维缩短,靠近 下面部分的纵向纤维伸长。由于变形的连续性,中间必有一层纵向纤维既不伸长也不 缩短,这层纤维称为中性层(图7-3)。中性层与横截面的交线称为中性轴。由于外力偶 作用在梁的纵向对称面内因此梁的变形也应该对称于此平面,在横截面上就是对称于 对称轴。所以中性轴必然垂直于对称轴,但具体在哪个位置上,目前还不能确定。 考察纯弯曲梁某一微段dx 的变形(图7-4)。设弯曲变形以后,微段左右两横截面 的相对转角为d ?,则距中性层为y 处的任一层纵向纤维bb 变形后的弧长为 式中,ρ为中性层的曲率半径。该层纤维变形前的长度与中性层处纵向纤维OO 长度 相等,又因为变形前、后中性层内纤维OO 的长度不变,故有 由此得距中性层为y 处的任一层纵向纤维的线应变 ρ y θρθρθy)(ρbb bb b'b'ε=-+=-=d d d (a) 上式表明,线应变ε?随y 按线性规律变化。 物理方面 根据单向受力假设,且材料在拉伸及压缩时的弹性模量E 相等,则由 虎 克定律,得 ρ y E E εσ== (b) 式(b)表明,纯弯曲时的正应力按线性规律变化,横截面上中性轴处,y =0,因而 ?=0,中性轴两侧,一侧受拉应力,另一侧受压应力,与中性轴距离相等各点的正应 力数值相等(图7-5)。 静力学方面 虽然已经求得了由式(b)表示的正应力分布规律,但因曲率半径?和 中性轴的位置尚未确定,所以不能用式(b)计算正应力,还必须由静力学关系来解决。 在图7-5中,取中性轴为z 轴,过z 、y 轴的交点并沿横截面外法线方向的轴为x 轴,作用于微面积dA 上的法向微内力为dA σ。在整个横截面上,各微面积上的微内

工程力学第九章梁的应力及强度计算

课时授课计划 掌握弯曲应力基本概念; 掌握弯曲正应力及弯曲剪应力的计算;掌握弯曲正应力的强度计算; 掌握弯曲剪应力强度校核。

I D (d

根据[M],用平衡条件确定许用外载荷。 在进行上列各类计算时,为了保证既安全可靠又节约材料的原则,设计规范还规定梁内的最大正应力允许稍大于[σ],但以不超过[σ]的5%为限。即 3、进行强度计算时应遵循的步骤 (1)分析梁的受力,依据平衡条件确定约束力,分析梁的内力(画出弯矩图)。(2)依据弯矩图及截面沿梁轴线变化的情况,确定可能的危险截面:对等截面梁,弯矩最大截面即为危险截面。 (3)确定危险点 (4)依据强度条件,进行强度计算。 第三节梁的剪应力强度条件 一、概念 梁在横弯曲作用下,其横截面上不仅有正应力,还有剪应力。 对剪应力的分布作如下假设: (1)横截面上各点处剪应力均与剪力Q同向且平行; (2)横截面上距中性轴等距离各点处剪应力大小相。 根据以上假设,可推导出剪应力计算公式: 式中:τ—横截面上距中性轴z距离为y处各点的剪应力; Q—该截面上的剪力; b—需求剪应力作用点处的截面宽度; Iz—横截面对其中性轴的惯性矩; Sz*—所求剪应力作用点处的横线以下(或以上)的截面积A*对中性轴的面积矩。 剪应力的单位与正应力一样。剪应力的方向规定与剪力的符号规定一样。 二、矩形截面横梁截面上的剪应力 如图所示高度h大于宽度b的矩形截面梁。横截面上的剪力Q沿y轴方向作用。 将上式带入剪应力公式得: 上式表明矩形截面横梁截面上的剪应力,沿截面高度呈抛物线规律变化。 在截面上、下边缘处y=±h/2,则=0;在中性轴上,y=0,剪应力值最大,

最新梁弯曲时横截面上的正应力教程文件

梁弯曲时横截面上的正应力 在确定了梁横截面的内力之后,还需要进一步研究横截面上的应力与截面内力之间的定量关系,从而建立梁的强度设计条件,进行强度计算。 1、纯弯曲与横力弯曲 从火车轴的力学模型为图2-53a所示的外伸梁。画其剪力、弯矩图(见图2-53b、c),在其AC、BD段内各横截面上有弯矩M和剪力同时存在,故梁在这些段内发生弯曲变形的F Q 同时还会发生剪力变形,这种变形称为剪力弯曲,也称为横力弯曲。在其CD段内各段截面, ,梁的这种弯曲称为纯只有弯矩M而无剪力F Q 弯曲。 2、梁纯弯曲时横截面上的正应力 如图2-54a所示,取一矩形截面梁,弯曲前在其表面两条横向线m—m和n—n,再画两条纵向线a—a和b—b,然后在其两端外力偶矩M,梁将发生平面纯弯曲变形(见图2-54b)。此时可以观察到如下变形现象:

⑴横向线m —m 和n —n 任为直线且与正向线正交,但绕某点相对转动了一个微小角度。 ⑵纵向线a —a 和b —b 弯成了曲线,且a —a 线缩短,而b —b 线伸长。 由于梁内部材料的变化无法观察,因此假设横截面在变形过程中始终保持为平面,这就是纯梁弯曲时的;平面假设。可以设想梁由无数条纵向纤维组成,且纵向纤维间无相互的挤压作用,处于单向受拉或受压状态。 从图2-54b 中可以看出,;梁春弯曲时,从凸边纤维伸长连续变化到凹边纤维缩短,期间必有一层纤维既不伸长也不缩短,这一纵向纤维层称为中性层(见图2-54c )。中性层与横截面的交线称为中性轴。梁弯曲时,横截面绕中心轴绕动了一个角度。 由上述分析可知,矩形截面梁弯曲时的应力分布有如下特点: ⑴中性轴的线应变为零,所以其正应力也为零。 ⑵距中性轴距离相等的各点,其线应变相等。根据胡克定律,它们的正应力也必相等。 ⑶在图2-54b 所示的受力情况下,中性轴上部分各点正应力为压应力(即负值),中性轴下部分各点正应力为拉应力(即正值)。 ⑷横截面上的正应力沿y 轴呈线性分布,即ky =σ(k 为特定常数),如图2-55、图2-56所示。最大正应力(绝对值)在离中性轴最远的上、下边缘处。 由于距离中性层上、下的纵向纤维的线应变与到中性层的距离y 成正比,当其正应力不超过材料的比例极限时,由胡克定律可知 y E y E E ?=?=?=ρρεσ 2-24 对于指定的横截面,ρE 为常数(即为上述k 的值)看,由于此时梁轴线的曲率

梁弯曲时横截面上的正应力

在确定了梁横截面的内力之后,还需要进一步研究横截面上的应力与截面内力之间的定量关系,从而建立梁的强度设计条件,进行强度计算。 1、纯弯曲与横力弯曲 从火车轴的力学模型为图2-53a 所示的外伸梁。画其剪力、弯矩图(见图2-53b 、c ),在其AC 、BD 段内各横截面上有弯矩M 和剪力F Q 同时存在,故梁在这些段内 发生弯曲变形的同时还会发生剪力变形,这种变形称为剪力弯曲,也称为横力弯曲。在其CD 段内各段截面,只有弯矩M 而无剪力F Q ,梁的这种弯曲称为纯弯曲。 2、梁纯弯曲时横截面上的正应力 如图2-54a 所示,取一矩形截面梁,弯曲前在其表面两条横向线m —m 和n —n ,再画两条纵向线a —a 和b —b ,然后在其两端外力偶矩M ,梁将发生平面纯弯曲变形(见图2-54b)。此时可以观察到如下变形现象: ⑴横向线m —m 和n —n 任为直线且与正向线正交,但绕某点相对转动了一个微小角度。 ⑵纵向线a —a 和b —b 弯成了曲线,且a —a 线缩短,而b —b 线伸长。 由于梁内部材料的变化无法观察,因此假设横截面在变形过程中始终保持为平面,这就是纯梁弯曲时的;平面假设。可以设想梁由无数条纵向纤维组成,且纵向纤维间无相互的挤压作用,处于单向受拉或受压状态。 从图2-54b 中可以看出,;梁春弯曲时,从凸边纤维伸长连续变化到凹边纤维缩短,期间必有一层纤维既不伸长也不缩短,这一纵向纤维层称为中性层(见图2-54c )。中性层与横截面的交线称为中性轴。梁弯曲时,横截面绕中心轴绕动了一个角度。 由上述分析可知,矩形截面梁弯曲时的应力分布有如下特点: ⑴中性轴的线应变为零,所以其正应力也为零。 ⑵距中性轴距离相等的各点,其线应变相等。根据胡克定律,它们的正应力也必相等。 ⑶在图2-54b 所示的受力情况下,中性轴上部分各点正应力为压应力(即负值),中性轴下部分各点正应力为拉应力(即正值)。 ⑷横截面上的正应力沿y 轴呈线性分布,即ky =σ(k 为特定常数),如图2-55、图2-56所示。最大正应力(绝对值)在离中性轴最远的上、下边缘处。 由于距离中性层上、下的纵向纤维的线应变与到中性层的距离y 成正比,当其正应力不超过材料的比例极限时,由胡克定律可知 y E y E E ?=?=?=ρρεσ 2-24 对于指定的横截面,ρE 为常数(即为上述k 的值)看,由于此时梁轴线的曲率 半径ρ还是一个未知量,通过静力学平衡关系∑z F )(=0,可得 图2-55 正应力分布图 图2-56 梁纯弯曲时横截面上的

弯曲时的内力和应力

第七章 弯曲时的内力和应力※ 说明: 本文档仅限练习。与考试无任何联系。 如答案有误请自行修改。如仍有疑问咨询相关教师。Q群125207914 一、填空题: 1、梁产生弯曲变形时的受力特点,是梁在过轴线的平面内受到外力偶的作用或者受到和梁轴线相___________的外力的作用。 3、矩形截面梁弯曲时,其横截面上的剪力作用线必然________于外力并通过截面________。 5、梁弯曲时,任一横截面上的弯矩可通过该截面一侧(左侧或右侧)的外力确定,它等于该一侧所有外力对________力矩的代数和。 7、用截面法确定梁横截面上的剪力时,若截面右侧的外力合力向上,则剪力为______。 9、将一悬臂梁的自重简化为均布载荷,设其载荷集度为q,梁长为L,由此可知在距固定端L/2处的横截面上的剪力为_________,固定端处横截面上的弯矩为__________。 10、在梁的集中力偶左、右两侧无限接近的横截面上,剪力相等,而弯矩则发生_______,_________值等于梁上集中力偶的力偶矩。 11、剪力图和弯矩图是通过________和___________的函数图象表示的。 18、在梁的某一段内,若无分布载荷q(X)的作用,则剪力图是 __________于X轴的直线。 19、在梁的弯矩图上,某一横截面上的弯矩有极值(极大值或极小值),该极值必发生在对应于剪力___________的横截面上。 21、梁在发生弯曲变形的同时伴有剪切变形,这种平面弯曲称为 __________弯曲。 24、梁在弯曲时的中性轴,就是梁的___________与横截面的交线。28、梁弯曲时,横截面中性轴上各点的正应力等于零,而距中性轴 ________处的各正应力为最大。 29、梁弯曲变形后,以中性层为界,靠__________边的一侧纵向纤维受压力作用,而靠__________边的一侧纵向纤维受拉应力作用。 31、等截面梁内的最大正应力总是出现在最大___________所在的横截面上。 32、在平面弯曲的情况下,梁变形后的轴线将成为一条连续而光滑的平面曲线,此曲线被称为_______。 33、梁在平面弯曲变形时的转角,实际上是指梁的横截面绕其________

纯弯曲梁的正应力实验参考书报告

《纯弯曲梁的正应力实验》实验报告 一、实验目的 1.测定梁在纯弯曲时横截面上正应力大小和分布规律 2.验证纯弯曲梁的正应力计算公式 二、实验仪器设备和工具 3.XL3416 纯弯曲试验装置 4.力&应变综合参数测试仪 5.游标卡尺、钢板尺 三、实验原理及方法 在纯弯曲条件下,梁横截面上任一点的正应力,计算公式为 σ= My / I z 式中M为弯矩,I z 为横截面对中性轴的惯性矩;y为所求应力点至中性轴的距离。 为了测量梁在纯弯曲时横截面上正应力的分布规律,在梁的纯弯曲段沿梁侧面不同高度,平行于轴线贴有应变片。 实验采用半桥单臂、公共补偿、多点测量方法。加载采用增量法,即每增加等量的载荷△P,测出各点的应变增量△ε,然后分别取各点应变增量的平均值△ε实i,依次求出各点的应变增量 σ实i=E△ε实i 将实测应力值与理论应力值进行比较,以验证弯曲正应力公式。 四、实验步骤 1.设计好本实验所需的各类数据表格。 2.测量矩形截面梁的宽度b和高度h、载荷作用点到梁支点距离a及各应变 片到中性层的距离y i 。见附表1 3.拟订加载方案。先选取适当的初载荷P 0(一般取P =10%P max 左右),估 算P max (该实验载荷范围P max ≤4000N),分4~6级加载。 4.根据加载方案,调整好实验加载装置。

5. 按实验要求接好线,调整好仪器,检查整个测试系统是否处于正常工作状态。 6. 加载。均匀缓慢加载至初载荷P 0,记下各点应变的初始读数;然后分级 等增量加载,每增加一级载荷,依次记录各点电阻应变片的应变值εi ,直到最终载荷。实验至少重复两次。见附表2 7. 作完实验后,卸掉载荷,关闭电源,整理好所用仪器设备,清理实验现场,将所用仪器设备复原,实验资料交指导教师检查签字。 附表1 (试件相关数据) 附表2 (实验数据) 载荷 N P 500 1000 1500 2000 2500 3000 △P 500 500 500 500 500 各 测点电阻应变仪读数 με 1 εP -33 -66 -99 -133 -166 △εP -33 -33 -34 -33 平均值 -33.25 2 εP -16 -3 3 -50 -67 -83 △εP -17 -17 -17 -16 平均值 16.75 3 εP 0 0 0 0 0 △εP 0 0 0 0 平均值 0 4 εP 1 5 32 47 63 79 △εP 17 15 1 6 16 平均值 16 5 εP 32 65 9 7 130 163 △εP 33 32 33 33 平均值 32.75 五、实验结果处理 1. 实验值计算 根据测得的各点应变值εi 求出应变增量平均值△εi ,代入胡克定律计算 各点的实验应力值,因1με=10-6ε,所以 各点实验应力计算: 应变片至中性层距离(mm ) 梁的尺寸和有关参数 Y 1 -20 宽 度 b = 20 mm Y 2 -10 高 度 h = 40 mm Y 3 0 跨 度 L = 620mm (新700 mm ) Y 4 10 载荷距离 a = 150 mm Y 5 20 弹性模量 E = 210 GPa ( 新206 GPa ) 泊 松 比 μ= 0.26 惯性矩I z =bh 3/12=1.067×10-7m 4 =106667mm 4

单一材料梁的弯曲正应力实验

单一材料梁的弯曲正应力实验 一、实验目的 1.用电测法测量单一材料的矩形截面梁在纯弯曲状态时其横截面上正应力的大小及分布规律,并与理论计算值比较,从而验证梁的弯曲正应力理论公式。 2.初步掌握电测法原理和静态电阻应变仪的使用方法。 二、预习思考要点 1.本实验装置是如何实现使梁的某一区段处于纯弯曲状态的? 2.梁处于纯弯曲状态时其内力分布有何特征? 3.梁处于纯弯曲状态时,若要测取其上某一点的线应变为何只需在该点布设一枚应变计,且平行于梁的轴线方向? 三、实验装置和仪器 1.纯弯曲实验装置 本实验采用低碳钢或中碳钢制成的矩形截面梁,测试其正应力分布规律的实验装置如图1-26(a)所示,所加的砝码重量通过杠杆以一定的放大比例作用于加载辅梁的中央,设作用于辅梁中央的载荷为F,由于载荷对称,支承条件对称,则通过两个挂杆作用于待测梁上C、D处的载荷各为F/2。由待测梁的内力图可知CD段上的剪力Q=0, 弯矩为一常量M= 2a F ,即梁的CD段处于纯弯曲状态。 图1-26 弯曲正应力实验装置及试样贴片位置图 2.静态电阻应变仪 3.游标卡尺、钢直尺 四、实验原理 由于矩形截面梁的CD段处于纯弯曲状态,当梁发生变形其横截面保持平面的假设

成立,又可将梁视作由一层一层的纵向纤维叠合而成且假设纵向纤维间无挤压作用,此时纯弯曲梁上的各点处于单向应力状态,且弯曲正应力的方向平行于梁的轴线方向,所以若要测量纯弯曲状态下梁的横截面上的正应力的分布规律,可在梁的CD 段任一截面上沿不同高度处平行于梁的轴线方向布设若干枚电阻应变计,为简便计算,本实验的布片方案如图1-26(b )所示,一枚布设在梁的中性层上,其余四枚分别布设在距中性层h/4或h/2处(h 为梁矩形截面的高度),此外还布设了一枚温度补偿片。 当梁受载后,电阻应变计随梁的弯曲变形而产生伸长或缩短,使自身的电阻改变。通过力学量的电测法原理,利用电阻应变仪即可测出梁横截面上各测点的应变值ε实。由于本实验梁的变形控制在线弹性范围内,所以依据单向虎克定律即可求解相应各测点的应力值,即σ实=E ·ε实,E 为梁材料的弹性模量。 实验采用“等增量法”加载,即每增加等量的载荷ΔF ,测定一次各点相应的应变增量Δε实,并观察各点应变增量的线性程度。载荷分为3—5级,最终载荷的选取,应依据梁上的最大应力σmax <(0.7-0.8)σs (σs 为材料的屈服极限)。当加载至最后一级,测完各应变值后即卸载,最后算出各测点应变增量的算术平均值实ε?,依次求出各点的应力增量Δσ实。 Δσ实=E· 实ε? (1-43) 把Δσ实与理论公式计算的应力增量 Δσ理= z I y M ?? (1-44) 进行比较,算出截面上各测点的应力增量实验值与理论值的相对误差,即 %100???-?= 理 理 实σσση (1-45) 从而验证梁的弯曲正应力公式的正确性。 五、实验步骤 1.用游标卡尺和钢直尺测量梁的矩形截面的宽度b 和高度h ,载荷作用点到梁支点的距离a 。 2.根据梁的截面尺寸和支承条件,材料的σs 值,确定分级加载的载荷增量和级次,(每级加载应使梁上各点的应变有较明显的变化),最终载荷值。 3.本实验采用多点半桥公共补偿测量法,将5枚应变测量计和公共温度补偿计分别接入静态电阻应变仪的相邻桥臂上,根据电阻应变计所给出的灵敏系数k 值调好电阻

梁的弯曲应力

第8章梁得弯曲应力 梁在荷载作用下,横截面上一般都有弯矩与剪力,相应地在梁得横截面上有正应力与剪应力。弯矩就是垂直于横截面得分布内力得合力偶矩;而剪力就是切于横截面得分布内力得合力。所以,弯矩只与横截面上得正应力σ相关,而剪力只与剪应力τ相关。本章研究正应力σ与剪应力τ得分布规律,从而对平面弯曲梁得强度进行计算。并简要介绍一点得应力状态与强度理论。 8.1梁得弯曲正应力 平面弯曲情况下,一般梁横截面上既有弯 矩又有剪力,如图8、1所示梁得AC、DB 段。而在CD段内,梁横截面上剪力等于零,而 只有弯矩,这种情况称为纯弯曲。下面推导梁 纯弯曲时横截面上得正应力公式。应综合考虑 变形几何关系、物理关系与静力学关系等三个 方面。 8.1.1弯曲正应力一般公式 1、变形几何关系 为研究梁弯曲时得变形规律,可通过试验, 观察弯曲变形得现象。取一具有对称截面得矩 形截面梁,在其中段得侧面上,画两条垂直于梁 轴线得横线mm与nn,再在两横线间靠近上、 下边缘处画两条纵线ab与cd,如图8、2(a)所 示。然后按图8、1(a)所示施加荷载,使梁得 中段处于纯弯曲状态。从试验中可以观察到图 8、2(b)情况: (1)梁表面得横线仍为直线,仍与纵线正交,只 就是横线间作相对转动。 (2)纵线变为曲线,而且靠近梁顶面得纵线缩 短,靠近梁底面得纵线伸长。 (3)在纵线伸长区,梁得宽度减小,而在纵线 缩短区,梁得宽度则增加,情况与轴向拉、压时得 变形相似。 根据上述现象,对梁内变形与受力作如下假设: 变形后,横截面仍保持平面,且仍与纵线正交;同时, 梁内各纵向纤维仅承受轴向拉应力或压应力。前 者称为弯曲平面假设;后者称为单向受力假设。 根据平面假设,横截面上各点处均无剪切变形,因此,纯弯时梁得横截面上不存在剪应力。 根据平面假设,梁弯曲时部分纤维伸长,部分纤维缩短,由伸长区到缩短区,其间必存在一长度不变得过渡层,称为中性层,如图8、2(c)所示。中性层与横截面得交线称为中性轴。对于具有对称截面得梁,在平面弯曲得情况下,由于荷载及梁得变形都对称于纵向对称面,因而中性轴必与截面得对称轴垂直。

纯弯曲梁的正应力实验

纯弯曲梁的正应力实验 一、实验目的: 1.测定梁在纯弯曲时横截面上正应力大小和分布规律 2.验证纯弯曲梁的正应力公式 二、实验设备及工具: 1.材料力学多功能试验台中的纯弯曲梁实验装置 2.数字测力仪、电阻应变仪 三、实验原理及方法: 在纯弯曲条件下,根据平面假设和纵向纤维间无挤压的假设,可得到梁横截面上任意一点的正应力,计算公式:z M y I σ?= 为测量梁横截面上的正应力分布规律,在梁的弯曲段沿梁侧面不同高度,平行于轴线贴有应变片。贴法:中性层一片,中性层上下1/4梁高处各一片,梁上下两侧各一片,共计五片。 采用增量法加载,每增加等量荷载△P (500N )测出各点的应变增量△ε,求的各点应变增量的平均值△ε实i ,从而求出应力增量: σ实i =E △ε实i 将实验应力值与理论应力值进行比较,已验证弯曲正应力公式。 四、原始数据:

五、实验步骤: 1. 打开应变仪、测力仪电源开关 2.连接应变仪上电桥的连线,确定第一测点到第五测点在电桥通道上的序号。 3. 检查测力仪,选择力值加载单位N或kg,按动按键直至显示N上的红灯亮起。按清零键,使测力计显示零。 4.应变仪调零。按下“自动平衡”键,使应变仪显示为零。 5.转动手轮,按铭牌指示加载,加力的学生要缓慢匀速加载,到测力计上显示500N,读数的学生读下5个测点的应变值,(注意记录下正、负号)。用应变仪右下角的通道切换键来显示第5测点的读数。以后,加力每次500N,到3000N为止。 6.读完3000N应变读数后,卸下载荷,关闭电源。 六、实验结果及处理:

1.各点实验应力值计算 根据上表数据求得应变增量平均值△εPi,带入胡克定律计算各点实验值: σ实i=E△εPi×10-6 2.各点理论应力值计算 载荷增量△P = 500N 弯矩增量△M = △P/2×L P 应力理论值计算(验证的就是它) 3.绘出实验应力值和理论应力值的分布图 以横坐标表示各测点的应力σ 实和σ 理 ,以纵坐标表示各测点距梁中性层的位置。 将各点用直线连接,实测用实线,理论用虚线。 σ y 4.实验值与理论值比较,验证纯弯曲梁的正应力公式

纯弯曲正应力分布实验报告

竭诚为您提供优质文档/双击可除纯弯曲正应力分布实验报告 篇一:弯曲正应力实验报告 一、实验目的 1、用电测法测定梁纯弯曲时沿其横截面高度的正应变(正应力)分布规律; 2、验证纯弯曲梁的正应力计算公式。 3、初步掌握电测方法,掌握1/4桥,1/2桥,全桥的接线方法,并且对试验结果及误差进行比较。 二、实验仪器和设备 1、多功能组合实验装置一台; 2、Ts3860型静态数字应变仪一台; 3、纯弯曲实验梁一根。 4、温度补偿块一块。三、实验原理和方法 弯曲梁的材料为钢,其弹性模量e=210gpa,泊松比μ =0.29。用手转动实验装置上面的加力手轮,使四点弯上压 头压住实验梁,则梁的中间段承受纯弯曲。根据平面假设和纵向纤维间无挤压的假设,可得到纯弯曲正应力计算公式为:?? m

yIx 式中:m为弯矩;Ix为横截面对中性轴的惯性矩;y为所求应力点至中性轴的距离。由上式可知,沿横截面高度正应力按线性规律变化。 实验时采用螺旋推进和机械加载方法,可以连续加载,载荷大小由带拉压传感器的电子测力仪读出。当增加压力?p 时,梁的四个受力点处分别增加作用力?p/2,如下图所示。 为了测量梁纯弯曲时横截面上应变分布规律,在梁纯弯曲段的侧面各点沿轴线方向布置了3片应变片,各应变片的粘贴高度见弯曲梁上各点的标注。此外,在梁的上表面和下表面也粘贴了应变片。 如果测得纯弯曲梁在纯弯曲时沿横截面高度各点的轴 向应变,则由单向应力状态的虎克定律公式??e?,可求出各点处的应力实验值。将应力实验值与应力理论值进行比较,以验证弯曲正应力公式。 σ实=eε 式中e是梁所用材料的弹性模量。 实 图3-16 为确定梁在载荷Δp的作用下各点的应力,实验时,可采用“增量法”,即每增加等量的载荷Δp测定各点相应的应变增量一次,取应变增量的平均值Δε

第六章直梁弯曲

第六章直梁弯曲 课题:第一节平面弯曲与梁得形式 第二节梁得内力(一):弯矩剪力概念符号 [教学目标] 一、知识目标: 掌握平面弯曲、剪力与弯矩得概念,熟悉梁得形式,弯矩剪力符号。 二、能力目标: 熟练掌握剪力与弯矩得概念 三、素质目标: 概念清晰,认真仔细,灵活应用 [教学重点] 梁得形式,剪力与弯矩得概念 [难点分析] 剪力与弯矩得概念比较抽象 [学生分析] 此节内容概念较抽象,学生掌握起来有一定困难,将概念形象化。 [辅助教学手段] 通过举生活及工程中得实例加深学生对剪力与弯矩及各种梁得认识,通过提问、讨论帮助学生掌握知识 [课时安排] 2课时 [教学内容] 新课讲解 第一节平面弯曲与梁得形式 1.复习扭转变形构件得受力特点及变形特点: 2.通过举例(如教室得主梁、次梁)引入本节内容: 一、平面弯曲: 1、受力特点:杆件受到通过杆轴线平面内得力偶作用,或受到垂直于杆轴线得横向力作用。 2、变形特点:杆件得轴线由直线变成曲线,发生平面弯曲。 简单介绍纵向对称平面。

3.举工程实例:梁 4.梁得形式:矩形、工字形、T形等。 二、梁得形式: (在学习梁得形式得同时,将几种梁得受力图分析画出) 1、简支梁(图a)(路旁座椅、单杠、双杠等) 2、外伸梁(图b) 3、悬臂梁(雨棚、阳台)(图c)

第二节梁得内力(一) 一、复习截面法: 切开,代替,平衡。 二、剪力与弯矩得概念 剪力:与横截面相切得内力V叫剪力 弯矩:外力作用平面内得力偶,其力偶矩M叫弯矩。 三、剪力、弯矩正负号得规定: 剪力得符号:左上右下为正

弯矩得符号:下凸为正,上凸为负(下面受拉上面受压为正,上面受拉下面受压为负) 课题:第二节梁得内力(二) [教学目标] 一、知识目标: 计算剪力与弯矩 二、能力目标: 熟练掌握剪力与弯矩得计算方法(截面法,规律) 三、素质目标: 概念清晰,认真仔细,灵活应用 [教学重点] 剪力与弯矩得计算 [难点分析] 计算剪力与弯矩得规律 [学生分析] 此节内容涉及计算较多,学生掌握起来难度较大,建议加强练习。 [辅助教学手段] 通过大量练习使学生能达到熟能生巧,掌握相关知识 [课时安排] 2课时 [教学内容] 新课讲解 第二节梁得内力 1、复习在轴向拉压杆中计算内力得方法及步骤: 截面法; 切开、代替、平衡。 2、复习在圆轴扭转变形中计算内力得方法及步骤: 截面法; 切开、代替、平衡。 3、引入本节内容:

第七章梁弯曲时变形

第七章 梁弯曲时的变形 §7?1 概 述 图7?1所示的简支梁,任一横截面的形心即轴线上的点在垂直于x 轴方向的线位移,称为挠度,用y 表示;横截面绕中性轴转动的角度,称为该截面的转角,用θ表示,如图中C 截面转过的角度θ即为C 截面的转角。 )(x f y = (7?1) 称为挠曲线方程。 )(d d tan x f x y '== ≈θθ (7?2) 称为转角方程。 §7?2 梁的挠曲线近似微分方程及其积分 在小变形情况下,梁的挠曲线为一平坦的曲线,挠曲线近似微分方程为 EI x M x y )(d d 2 2± = (7?3) 式中的正负号取决于2 2d d x y 与)(x M 的正负号的规定。在如图11?2所示的坐标系中,y 轴以向下为正,当M (x )>0时,梁的挠曲 的符号关系如图11?2所示。这样,在图示坐标系中,)(x M 与2 2d d x y 的符号总是相反,所以式(7?3)中应取负号,即:

EI x M x y ) (d d 2 2- = (7?4) 对该挠曲线近似微分方程进行积分,可求得任一截面的挠度及转角。 当梁为等截面直梁时,弯曲刚度EI 为常数,对式(7?4)积分一次,得 []?+-== C x x M EI x y d )(1d d θ (7?5) 再积分一次,可得 ()[]??++- =D Cx x x M EI y 2 d 1 (7?6) 以上两式中,C 、D 为积分常数,可通过梁的边界条件及变形连续条件确定。例如在简支梁(图7?3a )中,A 、B 支座处的挠度都等于零;在悬臂梁(图7?3b )中,固定端处挠度和转角都等于零。积分常数C 、D 确定后,代入式(7?5)、(7?6),便可求得梁的转角方程和挠曲线方程,进而可求得梁上任一横截面的转角和挠度。 EI ,试 解b ),弯矩方程为: (a ) (2)建立梁的挠曲线近似微分方程 由式(7?4)得: EI x l F EI x M x y ) ()(d d 2 2-= -= (b ) (3)对微分方程二次积分 积分一次,得: ??? ??+-== C Fx Flx EI x y 2211d d θ (c ) 再积分一次,得: ? ?? ??++-= D Cx Fx Flx EI y 32 61211 (d ) (4)利用梁的边界条件确定积分常数 在梁的固定端,横截面的转角和挠度都等于零,即: 0=x 时,0=y ,0=θ 代入式(c )、(d ),求得C =0,D =0。

第9章 弯曲应力与弯曲变形综述

Engineering Mechanics (第3版) 普通高等教育“十一五”国家级规划教材 高等教育出版社

第9章弯曲应力与弯曲变形 9.1 纯弯曲时梁横截面上的正应力 9.2 横力弯曲时梁横截面上的正应力 9.3 弯曲切应力简介 9.4 弯曲变形的概念 9.5 梁的挠曲线近似微分方程 9.6 用积分法求弯曲变形 9.7 用叠加法求弯曲变形 9.8 梁的刚度校核 9.9 提高梁强度和刚度的措施 小结 思考题

第9章 弯 曲 应 力 与 弯 曲 变 形 9.1 纯弯曲时梁横截面上的正应力 9.1.1 梁的纯弯曲 前一章讨论了梁弯曲时梁横截面上的内力——剪力和弯矩。但要解决梁的强度问题,必须进一步了解横截面上应力的分布规律。剪力和弯矩是横截面上分布内力的 合成结果。切应力对应的内力为剪力,正应力对应的内力为弯矩。 梁(或某段梁)的各个横截面上仅有弯矩而无剪力,从而仅有正应力而无切应力的弯曲,称为纯弯曲。而横截面上同时存在弯矩和剪力,即既有正应力又有切应力的弯曲称为横力弯曲或剪切弯曲。 例如,图9 - 1a 所示简支梁。由图可知梁的CD 段为纯弯曲,AC 和DB 段为横力弯曲。 图9 – 1 y a a F F B x z A C (a) D x F S F F (c) a a F F B C D (b) A F A F B (d) Fa M x

9.1.2 纯弯曲时梁横截面上的正应力 研究纯弯曲时梁横截面上的正应力,需从几何、物理和静力关系等三方面考虑。 由以上试验结果可作如下假设:原为平面的横截面变形后仍保持为平面,且仍垂直于变形后梁的轴线,只是绕横截面内某一轴旋转一角度。这就是弯曲变形的平面假设。 1. 变形几何关系 取截面具有纵向对称轴(例如矩形截面)的等直梁,在其侧面画两条横向直线mm 及nn ,并在横向线间靠近顶面和底面画两条纵向线段aa 与 bb (图9 – 2a )。然后在梁的纵向对称面内两端施加一对等值、 反向的力偶,作梁的纯弯曲变形试验(图9 – 2b )。 a a b b m m n n (a) (b) m m n n y ρ M e M e O' O' b' b' a' a' d θy y z b' 中性轴 中性层 对称轴 (c) 图9 – 2 b' a a '' b b ''可观察到: (1)横向直线变形后仍为直线,且仍然垂直于已经变成弧线的 和 ,只是相对旋转了一个角度。 (2)靠近顶面的纵向线段aa 缩短,靠近底面的纵向线段bb 伸长。

梁的纯弯曲正应力实验

梁的纯弯曲正应力实验 一、 实验目的 1.了解电阻应变测试技术的基本原理,学会使用应力 / 2.测定矩形截面梁纯弯曲时横截面上的正应力分布规律,验证梁的平面弯曲正应力公式。 3.测定材料的泊松比。 二、实验仪器 1.CLDT - C 2.XL -2118B 应力/ 三、实验原理 在平面弯曲时,梁横截面上正应力公式为: 式中:M 为作用在横截面上的弯矩;I 为梁横截面对中性轴的惯性矩; y 为中性轴到测点之距; 实验装置: 弯曲试验装置图 电阻应变测量技术原理: I y M ?= σ εK R =?()43214433221144εεεε-+-=??? ?-+-=?R R R R U DB A

测试仪器:XL -2118B 应力/应变综合参数测试仪 ? 由测量各应变片应变值 ? 由虎克定律求各测点的应力值: 式中:E 为材料的弹性模量。E =206 GPa ? 为提高测量精度,采用“增量法”,每增加一次载荷ΔP = 500N ,测出相应应变的增量,最后 取应变增量的平均值?ε,求出各测点的应力增量值: ?σ实=E ??ε ? 把由实验得到的?σ实,与由理论计算得到的 ?σ理=?M ?y/I 进行比较,以验证弯曲正应力公式 的正确性。 四、实验步骤 1.确定梁的尺寸b, h, l, a ;计算I ;检查梁支点,加载点位置是否正确。 2.接线:将六个应变片和温度补偿片接入应变仪各测点。其中工作片接AB ,补偿片接BC(公共补偿)。 3.打开XL -2118B 应力/应变综合参数测试仪,按“N/kg”转换键使力显示单位为N ,检查螺旋加载装置,确认无力作用后按“清零”键。 4.预调平衡:按单点平衡键,对各测点进行桥路平衡。 5.加载测量(逆时针旋转为加载,每次加载500N ,最大载荷2kN ):记录各测点应变片的读数εi 。 6. 卸载,数据经教师审阅后方可离开。 ) 6,5,4,3,2,1( =?=i E i i εσ

相关主题
文本预览
相关文档 最新文档