当前位置:文档之家› 最新电气主接线讲义演示教学

最新电气主接线讲义演示教学

最新电气主接线讲义演示教学
最新电气主接线讲义演示教学

第五章电气主接线讲义

第一节电气主接线概述

一、电气主系统与电气主接线图

(一)电气主接线

电气主接线是由多种电气设备通过连接线,按其功能要求组成的汇聚和分配电能的电路,也称电气一次接线或电气主系统。

(二)电气主接线图

用规定的设备文字和图形符号将各电气设备,按连接顺序排列,详细表示电气设备的组成和连接关系的接线图,称为电气主接线图。

电气主接线图一般画成单线图。

二、电气主接线中的电气设备和主接线方式

(一)电气主接线中的电气设备

电气主接线中的主要电气设备包括:电力变压器、断路器、隔离开关、电压互感器、电流互感器、避雷器、母线、接地装置以及各种无功补偿装置等。(二)主接线方式

常用的主接线方式有:单母线接线、单母线分段接线、单母线分段带旁路母线接线、双母线接线、双母线带旁路母线接线、双母线分段接线、双母线分段带旁路母线接线、内桥接线、外桥接线、一台半断路器接线、单元接线、和角形接线等。

三、电气主接线的基本要求

电气主接线的选择正确与否对电力系统的安全、经济运行,对电力系统的稳

定和调度的灵活性,以及对电气设备的选择,配电装置的布置,继电保护及控制方式的拟定等都有重大的影响。在选择电气主接线时,应满足下列基本要求。

1. 保证必要的供电可靠性和电能的质量;

2. 具有一定的运行灵活性;

3. 操作应尽可能简单、方便;

4. 应具有扩建的可能性;

5. 技术上先进,经济上合理。

第二节电气主接线的基本接线形式

一、单母线接线

(一)单母线接线的优点

简单、清晰、设备少、投资小、运行操作方便,有利于扩建和采用成套配电装置。

(二)单母线接线的主要缺点

母线或母线隔离开关检修时,连接在母线上的所有回路都将停止工作;当母线或母线隔离开关上发生短路故障,装设母差保护时,所有断路器都将自动断开,造成全部停电;检修任一电源或出线断路器时,该回路必须停电。

二、单母线分段接线

出线回路数增多时,可用断路器或隔离开关将母线分段,成为单母线分段接线,如图所示。根据电源的数目和功率,母线可分为2~3段。

(一)单母线分段接线的优点

该接线方式由双电源供电,故供电可靠性高,同时具有接线简单、操作方便、投资少等优点。当一段母线发生故障时,分段断路器或隔离开关将故障切除,保证正常母线供电,重要用户分别取自不同母线,不会全停,提高了供电的可靠性。

(二)单母线分段接线的缺点

当一段母线或母线隔离开关故障或检修时,必须断开接在该分段上的全部电源和出线,并使该段单回路供电的用户停电;任一出线断路器检修时,该回路必须停止工作。

三、单母线带旁路母线接线

单母线带旁路母线接线方式的最大优点是供电可靠性高。断路器故障检修时,可不停电进行检修,供电可靠,运行灵活,适用于向重要用户供电,出线回路较多的变电所尤为适用,其接线方式如图,该接线方式仅适用于110kV及以下电压等级的母线。旁路断路器在同一时间只能代替一个线路断路器的工作。但母线出现故障或检修时,仍会造成整个主母线停止工作。

单母线分段带旁路母线接线这种接线方式兼顾了旁路母线和母线分段两方面的优点。为了减少投资,可不专设旁路断路器,而用母线分段断路器兼作旁路断路器,常用的接线如图8-5所示。供电可靠性高一般用在35kV~110kV的变电所母线。

四、双母线不分段接线

(一)双母线接线简述

每一电源和每一出线都经一台断路器和两组隔离开关分别与两组母线相连。两组母线之间通过母线联络断路器(简称母联断路器)连接。

(二)双母线接线优点

运行方式灵活,便于扩建;检修母线时,电源和出线都可以继续工作;检修任一回路母线隔离开关时,只需断开该回路;工作母线故障时,所有回路能迅速恢复工作;检修任一线路断路器时,可用母联断路器代替其工作。

(三)双母线接线缺点

当母线故障或检修时,需使用隔离开关进行倒闸操作,容易造成误操作;工作母线故障时,将造成短时(切换母线时间)全部进出线停电;开关检修时,改回路必须停电;使用的母线隔离开关数量较大,同时也增加了母线的长度,使得配电装置结构复杂,投资和占地面积增大。

为了弥补上述缺点,提高双母线接线的可靠性,可进行双母线分段和双母线带旁路两种方式的改进。

五、双母线分段和带旁路母线的接线方式

(一)双母线分段接线方式

用分段断路器将母线Ⅰ分段,每段用母联断路器与母线Ⅱ相连。这种接线具有单母线分段和双母线接线的特点,有较高的供电可靠性与运行灵活性,但所使用的电气设备较多,使投资增大。

(二)带旁路母线的双母线接线

采用带旁路母线的双母线接线,目的是为了不停电检修任一回路断路。

用母联断路器兼作旁路断路器几种形式当出线回路数较少时,为了减少断路器的数目,可不设专用的旁路断路器,而用母联断路器兼作旁路断路器。

110kva变电站电气主接线图分析

把变电站内的电气设备都要算上啊 一次设备:主变(中性点隔离开关、间隙保护、消弧线圈成套设备)、断路器(或开关柜、GIS等)、电压互感器(含保险)、电流互感器、避雷器、隔离开关、母线、母排、电缆、电容器组(电容、电抗、放电线圈等等),站用变压器(或接地变),有的变电站还有高频保护装置 二次设备:综合自动化、. 、逆变0000.、小电流接地选线、站用电、直流(蓄电池)、逆变、远动通讯等等 其他:支持瓷瓶、悬垂、导线、接地排、穿墙套管等等,消防装置、SF6在线监测装置等等 好像有点说多了,也可能有少点的,存在差异吧 35KV高压开关柜上一般都设有哪些保护各作用是什么? 过电流保护:1.速断电流保护:用于保护本开关以后的母排、电缆的短路故障。 2.定时限电流保护:用于下一电压级别的短路保护。 3.反时限电流保护:作用与2相同,但灵敏度比2高。 4.电压闭锁过电流保护:防止越级跳闸和误跳闸,提高供电可靠性。 5.纵联差动电流保护:专用于变压器内部故障保护。 6.长延时过负荷保护:用于保护专用设备或者电网的过负荷运行,首选发信,其次跳闸。 零序电流保护:1.零序电流速断保护:保护线路和线路后侧设备对地短路、严重漏电故障。 2.定时限零序电流保护:保护线路和线路后侧设备的轻微对地短路和小电流漏电,监测绝缘状况。可以选择作用于跳闸或发信。 过电压保护:1.雷电过电压保护。 2.操作过电压保护。1、2两种过电压通常都是用避雷器来保护,可防止线路或设备绝缘击穿。

3.设备异常过电压保护:通过电压继电器和综保定值整定来实现跳闸或发信,用于保护设备在异常过压下运行造成的发热损坏。 低电压保护:瞬时低电压保护只发信不跳闸,用于避免瞬间短路或大负荷启动造成的正常设备误跳闸。俗称躲晃电。 非电量保护:1.重瓦斯保护:用于变压器内部强短路或拉弧放电的严重故障保护。选择跳闸。 2.轻瓦斯保护:用于变压器轻微故障的检测,选择发信报警。 3.温度保护:用于检测变压器顶层油温监测,轻超温发信报警,重超温跳闸。 以上都是针对一次侧设计的保护。 二次侧的保护:1.直流失压保护,用于变电所直流设备故障时防止设备在保护失灵状况下运行。一般设备通常选择发信报警。重要设备选择跳闸。 2.临柜直流消失保护,用于监测相邻高压柜的直流电压状态,选择发信报警。 随着技术的发展,继电保护的内容越来越多,供人们在不同情况下选用。 目前使用的微机型综合保护器内都设计了各种保护功能,可以通过控制字的设定很方便地选择所需要的保护功能组合。

电气主接线设计

摘要 电气主接线(main electrical connection scheme)按牵引变电所和铁路变、配电所(或发电所)接受(输送)电能和分溜配电能的要求,表征其主要电气设备相互之间连接关系的总电路。通常以单线图表示。电气主接线中表示的主要电气设备有电力变压器、发电机、断路器、隔离开关、电压互感器、电流互感器、避雷器、母线、接地装置以及p带旁路母线接线、桥型接线和双T接线(或T 形)分支接线等。电气主接线包括从电源进线侧到各级负荷电压侧的全部一次接线,有时还包括各类变、配电所(或发电所)的自用电部分、后者常称作自用电接线。电气主接线反应了牵引变电所和铁路变、配电所(发电所)的基本结构和功能。 关键词:电气主接线;方式;原则;展望与未来

第一部分,电气主接线 电气主接线是变电站电气部分的主体,是电力系统中电能传递通道的重要组成部分之一;其连接方式的确定对电力系统整体以及变电站本身的供电可靠性、运行灵活性、检修方便与否和经济合理性起着决定性作用,同时也对变电站电气设备的选择、配电装置的配置、继电保护和控制方式的拟定有着很大的影响。因此,正确处理好各方面的关系,全面分析相关影响因素,综合评价各项技术,合理确定主接线方案是十分重要的。本论文研究的电气主接线,主要针对高压配电网中110kv变电站高压电气主接线的设计。随着城市电网和农村电网的三年改造结束,目前220kv及以上电压级的骨干网架已基本形成,110kv变电站的地位大多数已变成了中间变电站和终端变电站,直接与用户相关联,是实现电能传递的关键环节,首先从探讨变电站电气主接线方式的分析原则入手,对常用110kv 中间变电站主接线方式进行分析:单母接线方式、内桥加跨条接线方式以及四角形接线方式。并且进行综合比较、评价,最后讨论了110kv变电站电气主接线方式的现状与展望。 一、研究的意义 电气主接线是变电站电气部分主体,是电力系统中电能传递通道的重要组成部分之一;其连接方式的确定对电力系统整体以及变电站本身的供电可靠性、运行灵活性、检修方便与否和经济合理性起着决定性的作用,同时也对变电站电气设备的选择、配电装置的布置、继电保护和控制方式的拟定有着很大的影响。因此,正确处理好各方面的关系,全面分析相关影响因素,综合评价各项技术,合理确定主接线方案是十分必要的。 本论文研究的电气主接线,主要针对高压配电网中110kv变电站高压电气主接线的设计。随着城市电网和农村电网的三年改造结束,目前220kv及以上电压级的骨干网架已基本形成,110kv变电站的地位大多数已变成了中间变电站和终端变电站,直接与用户关联,是实现电能传递的关键环节。其中,中间变电站规模基本统一为110kv两路进线或四路进线、主变压器建设两台或三台、 110kv/35kv/10kv三级电压或110kv/110kv两级电压的变电站;终端变电站规模大多为110kv两路进线、主变压器建设两台或三台、110kv/35kv/10kv三级电压或110kv/10kv两级电压的变电站。

某水电站电气主接线设计毕业设计(论文)word格式

前言 电力系统是由发电厂、变电站、线路和用户组成。变电站是联系发电厂和用户的中间环节,起着变换和分配电能的作用。为满足生产需要,变电站中安装有各种电气设备,并依照相应的技术要求连接起来。把变压器、断路器等按预期生产流程连成的电路,称为电气主接线。电气主接线是由高压电器通过连接线,按其功能要求组成接受和分配电能的电路,成为传输强电流、高电压的网络,故又称为一次接线或电气主系统。用规定的设备文字和图形符号并按工作顺序排列,详细地表示电气设备或成套装置的全部基本组成和连接关系的单线接线图,称为主接线电路图。 一、主接线的设计原则和要求 主接线代表了变电站电气部分主体结构,是电力系统接线的主要组成部分,是变电站电气设计的首要部分。它表明了变压器、线路和断路器等电气设备的数量和连接方式及可能的运行方式,从而完成变电、输配电的任务。它的设计,直接关系着全所电气设备的选择、配电装置的布置、继电保护和自动装置的确定,关系着电力系统的安全、稳定、灵活和经济运行。由于电能生产的特点是发电、变电、输电和用电是在同一时刻完成的,所以主接线设计的好坏,也影响到工农业生产和人民生活。因此,主接线的设计是一个综合性的问题。必须在满足国家有关技术经济政策的前提下,正确处理好各方面的关系,全面分析有关影响因素,力争使其技术先进、经济合理、安全可靠。 Ⅰ. 电气主接线的设计原则 电气主接线的基本原则是以设计任务书为依据,以国家经济建设的方针、政策、技术规定、标准为准绳,结合工程实际情况,在保证供电可靠、调度灵活、满足各项技术要求的前提下,兼顾运行、维护方便,尽可能地节省投资,就近取材,力争设备元件和设计的先进性与可靠性,坚持可靠、先进、适用、经济、美观的原则。 1.接线方式:对于变电站的电气接线,当能满足运行要求时,其高压侧应尽可能采用断路器较少或不用断路器的接线,如线路—变压器组或桥形接线等。若能满足继电保护要求时,也可采用线路分支接线。在110-220KV 配电装置中,当出线为2 回时,一般采用桥形接线;当出线不超过4 回时,一般采用分段单母线接线。在枢纽变电站中,当110-220KV 出线在4 回及以上时,一般采用双母接线。在大容量变电站中,为了限制6-10KV 出线上的短路电流,一般可采用下列措施:

电气主接线设计原则和设计程序讲课稿

电气主接线设计原则和设计程序 4.5.1电气主接线的设计原则 电气主接线的设计是发电厂或变电站电气设计的主体。它与电力系统、电厂动能参数、基本原始资料以及电厂运行可靠性、经济性的要求等密切相关,并对电气设备选择和布置、继电保护和控制方式等都有较大的影响。因此,主接线设计,必须结合电力系统和发电厂或变电站的具体情况,全面分析有关影响因素,正确处理它们之间的关系,经过技术、经济比较,合理地选择主接线方案。 电气主接线设计的基本原则是以设计任务书为依据,以国家经济建设的方针、政策、技术规定、标准为准绳,结合工程实际情况,在保证供电可靠、调度灵活、满足各项技术要求的前提下,兼顾运行、维护方便,尽可能地节省投资,就近取材,力争设备元件和设计的先进性与可靠性,坚持可靠、先进、适用、经济、美观的原则。 在工程设计中,经上级主管部门批准的设计任务书或委托书是必不可少的。它将根据国家经济发展及电力负荷增长率的规划,给出所设计电厂(变电站)的容量、机组台数、电压等级、出线回路数、主要负荷要求、电力系统参数和对电厂(变电站)的具体要求,以及设计的内容和范围。这些原始资料是设计的依据,必须进行详细的分析和研究,从而可以初步拟定一些主接线方案。国家方针政策、技术规范和标准是根据国家实际状况,结合电力工业的技术特点而制定的准则,设计时必须严格遵循。设计的主接线应满足供电可靠、灵活、经济、留有扩建和发展的余地。设计时,在进行论证分析阶段,更应合理地统一供电可靠性与经济性的关系,以便于使设计的主接线具有先进性和可行性。 4.5.2 电气主接线的设计程序 电气主接线的设计伴随着发电厂或变电站的整体设计进行,即按照工程基本建设程序,历经可行性研究阶段、初步设计阶段、技术设计阶段和施工设计阶段等四个阶段。在各阶段中随要求、任务的不同,其深度、广度也有所差异,但总的设计思路、方法和步骤基本相同。 电气主接线的设计步骤和内容如下: 1.对原始资料分析 (1)工程情况,包括发电厂类型(凝汽式火电厂,热电厂,或者堤坝式、引水

600MW机组电气主接线的概念与基本要求

600MW机组电气主接线的概念与基本要求 发电厂电气主接线是由多种电气设备通过连接线,按其功能要求组成的接受和分配电能的电路,也称一次接线或电气主接线系统。用规定的设备文字和图形符号将发电机、变压器、母线、开关电器、测量电器、保护电器、输电线路等有关电气设备,按工作顺序排列,详细表示电气设备的组成和连接关系的单线接线图,称为电气主接线图。表1-1为电气设备在电气主接线图中的代表符号。 电气主接线的选择正确与否对电力系统的安全、经济运行,对电力系统的稳定和调度的灵活性,以及对发电厂的电气设备选择,配电装置的布置,继电保护及控制方式的拟定等都有重大的影响。在选择电气主接线时,应注意发电厂在电力系统中的地位、进出线回路数、电压等级、设备特点及负荷性质等条件,并应满足下列基本要求。 一、运行的可靠性 发、供电的安全可靠性,是电力生产和分配的第一要求,主接线必须首先给予满足。因为电能的发、送、用必须在同一

时刻进行,所以电力系统中任何一个环节故障,都将影响到整体。事故停电不仅是电力部门的损失,更严重的是会造成国民经济各部门的损失;此外,一些部门的停电还会造成人员伤亡;重要发电厂发生事故时,在严重情况下可能会导致全系统性事故。所以,主接线若不能保证安全可靠地工作,发电厂就很难完成生产和输送数量和质量均符合要求的电能。 主接线的可靠性并不是绝对的,同样形成的接线对某些发电厂来说是可靠的,但对另一些发电厂就不一定能满足可靠性要求。所以在分析主接线的可靠性时,不能脱离发电厂 质荷的用以作位的统在系中地、用及户负性等。 衡量主接线的可靠性可以从以下几个方面去分析: 1.断路器检修时是否影响供电; 2.设备或线路故障或检修时,停电线路数目的多少和停电时间的长短,以及能否保证对重要用户的供电; 3.有没有使发电厂全部停止工作的可能性; 4.运行人员对系统主接线熟悉性。

电气主接线设计原则和设计程序

电气主接线设计原则和设计程序 4.5.1电气主接线的设计原则 电气主接线的设计是发电厂或变电站电气设计的主体。它与电力系统、电厂动能参数、基本原始资料以及电厂运行可靠性、经济性的要求等密切相关,并对电气设备选择和布置、继电保护和控制方式等都有较大的影响。因此,主接线设计,必须结合电力系统和发电厂或变电站的具体情况,全面分析有关影响因素,正确处理它们之间的关系,经过技术、经济比较,合理地选择主接线方案。 电气主接线设计的基本原则是以设计任务书为依据,以国家经济建设的方针、政策、技术规定、标准为准绳,结合工程实际情况,在保证供电可靠、调度灵活、满足各项技术要求的前提下,兼顾运行、维护方便,尽可能地节省投资,就近取材,力争设备元件和设计的先进性与可靠性,坚持可靠、先进、适用、经济、美观的原则。 在工程设计中,经上级主管部门批准的设计任务书或委托书是必不可少的。它将根据国家经济发展及电力负荷增长率的规划,给出所设计电厂(变电站)的容量、机组台数、电压等级、出线回路数、主要负荷要求、电力系统参数和对电厂(变电站)的具体要求,以及设计的内容和范围。这些原始资料是设计的依据,必须进行详细的分析和研究,从而可以初步拟定一些主接线方案。国家方针政策、技术规范和标准是根据国家实际状况,结合电力工业的技术特点而制定的准则,设计时必须严格遵循。设计的主接线应满足供电可靠、灵活、经济、留有扩建和发展的余地。设计时,在进行论证分析阶段,更应合理地统一供电可靠性与经济性的关系,以便于使设计的主接线具有先进性和可行性。 4.5.2 电气主接线的设计程序 电气主接线的设计伴随着发电厂或变电站的整体设计进行,即按照工程基本建设程序,历经可行性研究阶段、初步设计阶段、技术设计阶段和施工设计阶段等四个阶段。在各阶段中随要求、任务的不同,其深度、广度也有所差异,但总的设计思路、方法和步骤基本相同。 电气主接线的设计步骤和内容如下: 1.对原始资料分析 (1)工程情况,包括发电厂类型(凝汽式火电厂,热电厂,或者堤坝式、引

主接线设计的基本要求

主接线设计的基本要求 根据我国能源部关于《220~500kV变电所设计技术规程》SDJ2—88规定:“变电所的电气主接线应根据该变电所在电力系统中的地位,变电所的规划容量、负荷性质、线路、变压器连接元件总数、设备特点等条件确定。并应综合考虑供电可靠、运行灵活、操作检修方便、投资节约和便于过渡或扩建等要求。” 1、可靠性 所谓可靠性是指主接线能可靠的工作,以保证对用户不间断的供电。衡量可靠性的客观标准是运行实践。经过长期运行实践的考验,对以往所采用的主接线,经过优先,现今采用主接线的类型并不多。主接线的可靠性是它的各组成元件,包括一、二部分在运行中可靠性的综合。因此,不仅要考虑一次设备对供电可靠性的影响,还要考虑继电保护二次设备的故障对供电可靠性的影响。同时,可靠性不是绝对的而是相对的。一种主接线对某些变电所是可靠的,而对另一些变电所可能是不可靠的。评价主接线可靠性的标志是: (1)断路器检修时是否影响供电; (2)线路、断路器、母线故障和检修时,停运线路的回数和停运时间的长短,以及能否保证对理要用户的供电; (3)变电所全部停电的可能性; (4)有些国家以每年用户不停电时间的百分比业表示供电可靠性,先进的指标都在99.9%以上。 2、灵活性 主接线的灵活性有以下几方面要求: (1)调度要求。可以灵活的投入和切除变压器、线路,调配电源和负荷;能够满足系统在事故运行方式下、检修方式下以及特殊运行方式下的调度要求。 (2)检修要求。可以方便的停运断路器、母线及其继电保护设备进行安全检修,且不致影响对用户的供电。 (3)扩建要求。可以容易的从初期过渡到终期接线,使在扩建时,无论一次和二次设备改造量最小。 3、经济性 经济性主要是投资省、占地面积小、能量损失小。 电气主接线是由电气设备通过连接线,按其功能要求组成接受和分配电能的电路,成为传输强电流、高电压的网络,故又称为一次接线或电气主系统,变电站的主接线是实现电能输送和分配的一种电气接线。

电气主接线基本形式

电气主接线基本形式 第一节单母线接线 一单母线接线 1.接线特点 单母线接线如图10-1所示 单母线接线的特点是每一回路均经过一台断路器QF 和隔离开关QS 接于一组母线上。断路器用于在正常或故障情况下接通与断开电路。断路器两侧装有隔离开关,用于停电检修断路器时作为明显断开点以隔离电压,靠近母线侧的隔离开关称母线侧隔离开关(如11QS ),靠近引出线侧的称为线路侧隔离开关(如13QS )。在主接线设备编号中隔离开关编号前几位与该支路断路器编号相同,线路侧隔离开关编号尾数为3,母线侧隔离开关编号尾数为1(双母线时是1和2)。在电源回路中,若断路器断开之后,电源不可能向外送电能时,断路器与电源之间可以不装隔离开关,如发电机出口。若线路对侧无电源,则线路侧可不装设隔离开关。 二、单母线分段接线 1.接线特点 单母线分段接线,如图10-2所示。 图10-1 单母线接线 L1 1QF 4QF 13QS 11QS 2QF

正常运行时,单母线分段接线有两种运行方式: (1)分段断路器闭合运行。正常运行时分段断路器0QF 闭合,两个电源分别接在两段母线上;两段母线上的负荷应均匀分配,以使两段母线上的电压均衡。在运行中,当任一段母线发生故障时,继电保护装置动作跳开分段断路器和接至该母线段上的电源断路器,另一段则继续供电。有一个电源故障时,仍可以使两段母线都有电,可靠性比较好。但是线路故障时短路电流较大。 (2)分段断路器0QF 断开运行。正常运行时分段断路器0QF 断开,两段母线上的电压可不相同。每个电源只向接至本段母线上的引出线供电。当任一电源出现故障,接该电源的母线停电,导致部分用户停电,为了解决这个问题,可以在0QF 处装设备自投装置,或者重要用户可以从两段母线引接采用双回路供电。分段断路器断开运行的优点是可以限制短路电流。 三、单母线分段带旁路母线接线 图10-2 单母线分段接线 L1 1QF 0QF 01QS I 段 Ⅱ段 13QS 11QS 2QF 02QS

电气主接线设计论文

电气主接线设计论文

第一章设计要求及任务 1.1目的要求 通过本设计,进一步熟悉变电站的相关知识。并且,随着国内经济的发展和相关科学技术的进步,国家电网的规划日渐成熟,与此同时带来一个关键性问题:越来越多的相关工作人员对变电站,尤其是对输电技术低端110/35/10Kv 降压变电站电气设计部分概念模糊,难以掌握其设计步骤。本次设计依据110kv 变电站设计要求,针对主电路部分给出较为详细的设计步骤,以填补现阶段该方面的知识空白。 1.2课程设计使用的原始资料(数据)及设计要求 1.2.1原始资料 (二)变电站环境条件 气象条件: (1)最热月平均最高温度35℃; (2)土壤中0.7~1 米深处一年中最热月平均温度为20℃; (3)年雷暴日为31天; (4)土壤冻结深度为0.75米; (5)夏季主导风向为南风。 地质及水文条件: 根据工程地质勘探资料获悉,厂区地质为耕地,地势平坦,地层为砂质粘土为主,地质条件较好,地下水位为2.8~5.3 米,抵制压力为20吨/平方米。(三)变电站负荷情况 负荷分布如下表:

工业和民业用户同时系数均取0.75。 1.2.2设计要求 该110 kV 变电站地处城市郊区,通过两条110 kV 架空线与系统相连,其中一回距离本站50km ,另一回距离变电站35km ,线路阻抗为0.4Ω/km 。变电站分别用35kV 和10kV 向工业和民用负荷供电,35kV 和10kV 线路的功率因数都为 cos =0.8。站用电为160kVA 。供电系统在最大运行方式下三相短路容量为2200 MVA ,最小运行方式下三相短路容量为1750MVA 。电业部门要求110kV 配出线路定时限过流保护装置的整定时间为2秒,变电站不应大于1.5秒。 1.2.3成果形式 (1)设计说明书一份。(2)电气主接线图一张。(A3图样) 负荷类别 与变电站的距离(km ) 负荷(MW ) 工业负荷 预制板厂 5 8.8 纺织厂 9 11.7 拖拉机厂 7 9.2 电缆厂 6 20.6 民用负荷 民用1 5 2.2 民用2 4 1.1 民用3 5 1.2 民用4 3 3.1 民用5 2 5.1 民用6 3 3.2 民用7 4 0.6 民用8 5 1.5 民用9 2 0.8

电气主接线图使用分析.

电气主接线图使用分析 王霞 电气1202班,电气工程及自动化,水利与能源动力工程学院,2013.11.5 摘要:电气主接线是由各种电气设备如发电机、变压器、断路器、隔离开关、互感器、母线、电缆、线路等按照一定的要求和顺序连接起来,完成电能的输送和分配的电路。电气主接线是传输强电流、高电压的网络,故又称为一次接线或电气主系统。当用国家统一规定的图形和文字符号表示各种电气设备,并按工作顺序排列,详细地表示电气主接线的全部基本组成和连接关系的接线图,称为主接线图。电气主接线的选择,直接影响着电气设备的选择和配电装置的布置,也在一定程度上决定了这些设备和装置运行的可靠性和经济性。现就发配电技术中的电气主接线图的基本形式进行分析研究。 一.对一次主接线的要求 1.安全性 对电气主接线的安全性,主要体现在:隔离开关的正确配置和隔离开关接线的正确绘制。隔离开关的主要用途是将检修部分与电源隔离,以保证检修人员的安全。在电气主接线图中,凡是应该安装隔离开关的地方都必须配置隔离开关,不能有遗漏之处,也不可以为乐节省投资而不装。在绘制隔离开关时,电源应接在通过瓷瓶与隔离开关的刀片联结,因为这样安装在打开和合上隔离开关时,刀片端的带电时间较短,这样可以保证操作人员的安全。 2.可靠性 电气主接线的可靠性不是绝对的。同样的形式在一些发电厂或变电所来说是可靠的,但对另一些发电厂或变电所则不一定能满足可靠性要求。所以在分析主接线图时,要考虑发电厂或变电所在整个系统中的地位和作用,也要考虑用户的负荷性质和类别。 (1)在分析电气主接线可靠性时,根据负荷性质,可按以下几个方面进行: 1)各断路器检修时,停电的范围和时间; 2)母线故障或检修时,停电范围和时间; 3)有没有使发电厂或变电所全部停电的可能。 电气主接线可靠性的高低直接决定着经济损失的大小,可靠性越高停电时的经济损失越少,反之,则越多。 (2)按重要性的不同,将负荷分为三类: Ⅰ类负荷——停电后将造成人员伤亡和重大设备损坏的最重要负荷。如机场和军事设施等电力

浅析电气主接线设计

浅析电气主接线设计 发表时间:2014-12-15T09:44:30.280Z 来源:《科学与技术》2014年第10期下供稿作者:苏楠[导读] 明确电力负荷的等级根据对供电可靠性的要求及中断供电在政治、经济上所造成的损失或影响的程度,电力负荷分为三级。 贵阳铝镁设计研究院有限公司苏楠摘要:概述了电气主接线的基本概念,介绍了电气主接线的设计原则、基本要求和基本形式,论述了技术经济比较所涉及的内容。关键词:主接线,原则,要求,形式,技术经济比较1.引言电气主接线是发电厂、变电所电气设计中的重要组成部分,也是电力系统中电能传递的重要环节。电气主接线是指在电力系统中,把发电机、变压器、断路器和隔离开关等高压电气设备按照一定的要求和顺序连接,为满足电能输送及分配的要求而设计的,实现发电、变电、输配电任务的电路。 2.电气主接线设计的原则电气主接线设计的原则是以设计任务书为依据,以国家政策、电力行业的技术规范、标准为准绳,按照负荷性质、容量、地区供电条件,根据工程实际情况和发展规划,确定技术经济合理的设计方案。为此,在进行电气主接线设计时,应遵循的原则如下。 2.1 明确电力负荷的等级根据对供电可靠性的要求及中断供电在政治、经济上所造成的损失或影响的程度,电力负荷分为三级。每一级负荷对供电可靠性的要求不同,则变压器容量、台数以及出线回路数等配置就不一致。因此,首先要明确电力负荷的等级,确认电力负荷在电力系统中的作用和地位,才能初步确定主接线的设计方案。 2.2 考虑近期和远期的发展关系电气主接线设计应考虑近期和远期的发展关系,做到远近期结合,以近期为主,适当考虑发展的可能,按照负荷的性质、用电容量、地区供电条件,合理确定电气主接线形式、电源进线的数量和出线回路数。 2.3 主变压器容量的选择如果主变压器的容量选择过大、台数过多,则会增加建设资金、占地面积、运行费用和检修工作量,不能充分发挥供电设备的经济效益;如果主变压器的容量选择过小、台数过少,则不具备可扩展性,无法满足今后的发展需要,影响供电的灵活性和可靠性。因此,主变压器容量的选择除依据负荷计算外,还取决于主变压器的运行方式、负荷的增长速度等因素,其容量可按投运后5~10 年的预期负荷选择,并适当考虑到远期10~20 年的负荷发展。 2.4 主变压器的运行方式根据负荷等级对供电可靠性和灵活性的要求,存在多种主变压器的运行方式可供选择,例如:当配置一台主变压器时,该台主变压器独立运行,则应满足全部负荷的用电需求,并且留有15~25%的裕量;当配置两台及以上主变压器时,每台主变压器独立运行且互为备用,当断开一台时,其余主变压器的容量应能保证一、二级负荷的全部用电需求。 2.5 合理确定电压等级电压等级与用电负荷的大小、电源点至用电负荷的距离、用电设备的电压等级、用电负荷的分布情况以及地方电网可能供给的电压等因素有关,需经过多方案技术经济比较后,与电力部门共同协商确定。 3.电气主接线设计的基本要求3.1 安全性安全性是电气主接线基本要求的第一要素,是整个供电系统的核心。因为只有在保证人身安全和设备安全的前提下,才能确保整个供电系统的正常运行。否则,即使设备再先进也无法正常投入使用。 3.2 可靠性重要负荷的停电往往会给政治、经济上带来巨大的损失和影响,因此,供电可靠性是电气主接线的最基本要求,是满足各级电力负荷持续不间断供电的基本保障。评价电气主接线可靠性的标志如下:(1)一级负荷应由两个电源供电,当一个电源因故障中断供电时,另一个电源不应同时受到损坏,并且对于特别重要的一级负荷还需增设应急电源。二级负荷应由两回线路供电,做到当发生故障时,不致中断供电或中断后能够迅速恢复。(2)母线或断路器故障、母线或隔离开关检修时,应尽量减少停电的回路数和停电时间,并保证对重要负荷的供电。(3)优先选用经过长期实践考验的电气主接线形式,并选择使用可靠性高,性能先进的电气设备。 3.3 灵活性电气主接线系统无论是在正常运行中、发生事故时、需要检修时还是其他运行方式下,都应能灵活地投入和切除某些机组、变压器或线路,满足调度运行的要求,不影响电力系统的正常运行,不中断向用户的供电,达到分配电源和负荷的目的。 3.4 可扩展性根据发展的需要,在进行扩建时,可在预留的空间内进行设备的布置,并且在不影响连续供电或允许停电时间较短的情况下,对于投入的新机组、变压器或线路能够安全快速地与原有系统进行连接组网,满足扩建要求。 3.5 经济性电气主接线系统应在保证运行操作的方便以及满足技术条件的要求下,做到经济合理。一般从以下三个方面考虑:(1)节省投资电气主接线的一次系统应力求简单,尽可能简化二次回路的继电保护系统,以此节省一次和二次设备的投资,并且采取限制短路电流的措施,以便选择分断能力较小的电气设备和截面较小的导体。(2)节约用地同一电压等级下,选择不同的电气主接线方案,其占地面积有很大差别,应在保证技术要求和防火要求的前提下,充分利用地形地质紧凑合理的对主接线进行布置,并且应尽量不占或少占耕地。(3)减少电能损耗首先,根据用电负荷的大小、等级和发展需要,合理选择变压器容量和台数,以实现其经济运行;其次,尽量缩短输电线路,减少线路损耗;最后,通过技术手段提高用电系统的功率因数,加强对电气设备、线路的维护和管理,降低电能损耗。 4.电气主接线的基本形式电气主接线的基本形式分为有汇流母线和无汇流母线两种,其中有汇流母线通常包括单母线接线、单母线分段接线、双母线接线、单母线分段带旁路母线接线、一台半断路器接线等形式;无汇流母线通常包括桥型接线、多边形接线、线路变压器组接线等形式。下面就几种常用的主接线形式分析如下。 4.1 单母线接线

电气主接线设计

电气主接线设计 摘要 电气主接线(mai n electrical conn ection scheme)按牵引变电所和铁路变、

配电所(或发电所)接受(输送)电能和分溜配电能的要求,表征其主要电气设备相互之间连接关系的总电路。通常以单线图表示。电气主接线中表示的主要电气设备有电力变压器、发电机、断路器、隔离开关、电压互感器、电流互感器、避雷器、母线、接地装置以及p带旁路母线接线、桥型接线和双T接线 (或T形)分支接线等。电气主接线包括从电源进线侧到各级负荷电压侧的全部一次接线,有时还包括各类变、配电所(或发电所)的自用电部分、后者常称作自用电接线。电气主接线反应了牵引变电所和铁路变、配电所(发电所)的基本结构和功能。 关键词:电气主接线;方式;原则;展望与未来

第一部分,电气主接线 电气主接线是变电站电气部分的主体,是电力系统中电能传递通道的重要组成部分之 一;其连接方式的确定对电力系统整体以及变电站本身的供电可靠性、运行灵活性、检修方便与否和经济合理性起着决定性作用,同时也对变电站电气设备的选择、配电装置的配置、继电保护和控制方式的拟定有着很大的影响。因此,正确处理好各方面的关系,全面分析相关影响因素,综合评价各项技术,合理确定主接线方案是十分重要的。本论文研究的电气主接线,主要针对高压配电网中110kv变电站高压电气主接线的设计。随着城市电网和农村 电网的三年改造结束,目前220kv及以上电压级的骨干网架已基本形成,110kv 变电站的地位大多数已变成了中间变电站和终端变电站,直接与用户相关联,是实现电能传递的关键环节,首先从探讨变电站电气主接线方式的分析原则入手,对常用110kv中间变电站主接线方式进行分析:单母接线方式、内桥加跨条接线方式以及四角形接线方式。并且进行综合比较、评价,最后讨论了110kv 变电站电气主接线方式的现状与展望。 一、研究的意义 电气主接线是变电站电气部分主体,是电力系统中电能传递通道的重要组成部分之一;其连接方式的确定对电力系统整体以及变电站本身的供电可靠性、运行灵活性、检修方便与否和经济合理性起着决定性的作用,同时也对变电站电气设备的选择、配电装置的布置、继电保护和控制方式的拟定有着很大的影响。因此,正确处理好各方面的关系,全面分析相关影响因素,综合评价各项技术,合理确定主接线方案是十分必要的。 本论文研究的电气主接线,主要针对高压配电网中110kv变电站高压电气主接线的设计。随着城市电网和农村电网的三年改造结束,目前220kv及以上电 压级的骨干网架已基本形成,110kv变电站的地位大多数已变成了中间变电站和终端变电站,直接与用户关联,是实现电能传递的关键环节。其中,中间变电站规模基本统一为 110kv两路进线或四路进线、主变压器建设两台或三台、110kv/35kv/10kv 三级电压或 110kv/110kv两级电压的变电站;终端变电站规模大多为110kv两路进线、主变压器建设两 台或三台、110kv/35kv/10kv三级电压或110kv/10kv两级电压的变电站。 根据“ 35kv-110kv变电所设计规范”【1】110kv终端变电站的高压电气主 接线宜采用线路一变压器组接线和桥型接线;110kv中间变电站宜采用单母线接线、单母分段接线以及扩大的桥型接线;采用8F6断路器的主接线不宜设置旁

对电气主接线的基本要求

对电气主接线的基本要求 电气主接线主要是指在发电厂、变电所、电力系统中,为满足预定的功率传送和运行等要求而设计的、表明高压电气设备之间相互连接关系的传送电能的电路。电路中的高压电气设备包括发电机、变压器、母线、断路器、隔离刀闸、线路等。它们的连接方式对供电可靠性、运行灵活性及经济合理性等起着决定性作用。一般在研究主接线方案和运行方式时,为了清晰和方便,通常将三相电路图描绘成单线图。在绘制主接线全图时,将互感器、避雷器、电容器、中性点设备以及载波通信用的通道加工元件(也称高频阻波器)等也表示出来。 对一个电厂而言,电气主接线在电厂设计时就根据机组容量、电厂规模及电厂在电力系统中的地位等,从供电的可靠性、运行的灵活性和方便性、经济性、发展和扩建的可能性等方面,经综合比较后确定。它的接线方式能反映正常和事故情况下的供送电情况。电气主接线又称电气一次接线图。 电气主接线应满足以下几点要求: 1)运行的可靠性:主接线系统应保证对用户供电的可靠性,特别是保证对重要负荷的供电。 2)运行的灵活性:主接线系统应能灵活地适应各种工作情况,特别是当一部分设备检修或工作情况发生变化时,能够通过倒换开关的运

行方式,做到调度灵活,不中断向用户的供电。在扩建时应能很方便的从初期建设到最终接线。 3)主接线系统还应保证运行操作的方便以及在保证满足技术条件的要求下,做到经济合理,尽量减少占地面积,节省投资。 电气主接线图 电气主接线应满足下列基本要求: ①牵引变电所、铁路变电所电气主接应综合考虑电源进线情况(有无穿越通过)、负荷重要程度、主变压器容量和台数,以及进线和馈出线回路数量、断路器备用方式和电气设备特点等条件确定,并具有相应的安全可靠性、运行灵活和经济性。 ②具有一级电力负荷的牵引变电所,向运输生产、安全环卫等一级电力负荷供电的铁路变电所,城市轨道交通降压变电所(见电力负荷、电力牵引负荷)应有两回路相互独立的电源进线,每路电源进线应能

(完整版)设计电气主接线的依据和基本要求

设计电气主接线的依据和基本要求 3.1.1主接线的选择应注意 (1)主接线的设计,直接关系到全站电气设备的选择、配电装置的布置、继电保护和自动装置的确定,关系着电力系统的安全、稳定、灵活和经济运行。 (2)对于220KV电压等级的配电装置的接线,一般分为两大类:其一为母线类(包括单母线、单母线分段、双母线分段和增设旁路母线的接线);其二为无母线类(包括单元接线、桥型接线和多角型接线等)。应根据出线的回路数酌情选用。 (3)以设计任务书为依据,以国家的经济建设方针、政策、技术规定、标准为准绳,结合工程实际情况,在保证供电可靠、调度灵活、满足各项技术要求的前提下、兼顾运行、维护方便,尽可能的节省投资,就近取材,力争设备元件和设计的先进性与可靠性,坚持可靠、先进、适用、经济、美观的原则。 3.1.2主接线设计的基本要求 主接线应满足可靠性、灵活性和经济性三项基本要求。 1.可靠性 (1)断路器检修时,不宜影响对系统的供电。 (2)断路器母线故障时以及母线检修时,尽量减少停运的回路数和停电时间,并要保证对一级负荷及全部或大部分二级负荷供电。 (3)尽量避免发电厂、变电所全部停电的可能性。 (4)大机组超高压电气主接线应满足可靠性的特殊要求。 2.灵活性 主接线应满足在调度、检修及扩建时的灵活性。 (1)调度时,应可以灵活地投入和切除发电机、变压器和线路,调整电源和负荷,满足系统在事故运行方式,检修运行以及特殊运行方式下系统调度的要求。 (2)检修时,可以方便地停运断路器,母线及其继电保护设备,运行安全检修而不影响电力网的运行和对用户的供电。 (3)扩建时,可以的从初期接线过度到最终接线。 3.经济性 主接线在满足可靠性、灵活性的前提下作到经济合理。 (1)投资省 (2)占地面积小 (3)电能损耗少 电气主接线是由高压电器通过连接线,按其功能要求组成接受和分配电能的电路,成为传输强电流,高电压的网络,它要求用规定的设备文字和图形符号,并按工作顺序排列,详细地表示电气设备或成套装置全部基本组成和连接关系,代表该变电站电气部分的主体结构,是电力系统结构网络的重要组成部分。 第三节主接线设计步骤 电气主接线的选择原则是根据国家规定现行的“安全可靠、经济适用、符合国情”的电力建设与发展方针,按照技术规定和标准,结合实际的特点步骤: 1.原始资料分析根据任务书的要求,在分析基本资料的同时各级电压可拟订

电气主接线讲义

第五章电气主接线讲义 第一节电气主接线概述 一、电气主系统与电气主接线图 (一)电气主接线 电气主接线是由多种电气设备通过连接线,按其功能要求组成的汇聚和分配电能的电路,也称电气一次接线或电气主系统。 (二)电气主接线图 用规定的设备文字和图形符号将各电气设备,按连接顺序排列,详细表示电气设备的组成和连接关系的接线图,称为电气主接线图。 电气主接线图一般画成单线图。 二、电气主接线中的电气设备和主接线方式 (一)电气主接线中的电气设备 电气主接线中的主要电气设备包括:电力变压器、断路器、隔离开关、电压互感器、电流互感器、避雷器、母线、接地装置以及各种无功补偿装置等。(二)主接线方式 常用的主接线方式有:单母线接线、单母线分段接线、单母线分段带旁路母线接线、双母线接线、双母线带旁路母线接线、双母线分段接线、双母线分段带旁路母线接线、内桥接线、外桥接线、一台半断路器接线、单元接线、和角形接线等。 三、电气主接线的基本要求 电气主接线的选择正确与否对电力系统的安全、经济运行,对电力系统的稳定和调度的灵活性,以及对电气设备的选择,配电装置的布置,继电保护及控制方式的拟定等都有重大的影响。在选择电气主接线时,应满足下列基本要求。 1. 保证必要的供电可靠性和电能的质量; 2. 具有一定的运行灵活性; 3. 操作应尽可能简单、方便; 4. 应具有扩建的可能性; 5. 技术上先进,经济上合理。

第二节 电气主接线的基本接线形式 一、单母线接线 (一) 单母线接线的优点 简单、清晰、设备少、投资小、运行操作方便,有利于扩建和采用成套配电装置。 (二) 单母线接线的主要缺点 母线或母线隔离开关检修时,连接在母线上的所有回路都将停止工作;当母线或母线隔离开关上发生短路故障,装设母差保护时,所有断路器都将自动断开,造成全部停电;检修任一电源或出线断路器时,该回路必须停电。 二、单母线分段接线 出线回路数增多时,可用断路器或隔离开关将母线分段,成为单母线分段接线,如图所示。根据电源的数目和功率,母线可分为2~3段。 (一)单母线分段接线的优点 该接线方式由双电源供电,故供电可靠性高,同时具有接线简单、操作方便、投资少等优点。当一段母线发生故障时,分段断路器或隔离开关将故障切除,保证正常母线供电,重要用户分别取自不同母线,不会全停,提高了供电的可靠性。 (二)单母线分段接线的缺点 当一段母线或母线隔离开关故障或检修时,必须断开接在该分段上的全部电源和出线,并使该段单回路供电的用户停电;任一出线断路器检修时, 该回路

发电厂电气主接线课程设计

发电厂电气主接线课程设计

发电厂电气主接线课程设计 题目: 2*30 0MW 火电 厂主 接线 设计 学生姓名: 学号: 专业: 班级: 指导教师:

摘要 随着我国经济发展,对电的需求也越来越大。电作为我国经济发展最重要的一种能源,主要是可以方便、高效地转换成其它能源形式。电力工业作为一种先进的生产力,是国民经济发展中最重要的基础能源产业。而火力发电是电力工业发展中的主力军,截止2006年底,火电发电量达到48405万千瓦,越占总容量77.82%。由此可见,火力电能在我国这个发展中国家的国民经济中的重要性。 电气主接线是发电厂、变电所电气设计的首要部分,也是构成电力系统的重要环节。主接线的确定对电力系统整体及发电厂、变电所本身的运行的可靠性、灵活性和经济性密切相关。并且对电气设备选择、配电装置配置、继电保护和控制方式的拟定有较大的影响。 本文将针对某火力发电厂的设计,主要是对电气方面进行研究。对配有2台300MW汽轮发电机的火电厂一次部分的初步设计,主要完成了电气主接线的设计。包括电气主接线的形式的比较、选择;主变压器、启动/备用变压器和高压厂用变压器容量计算、台数和型号的选择;短路电流计算和高压电气设备的选择与校验; 并作了变压器保护。通过对本次的设计设计,掌握了一些基本的设计方法,在设计过程中更加稳固了理论知识。

关键词:发电厂;火电厂;电气主接线; 目录 摘要 (2) 发电厂课程设计任务书 (4) 第一章引言 (5) 1.1研究背景及意义 (5) 1.2电气主接线的基本要求及形式 (6) 第二章电气主接线设计 (8) 2.1设计步骤 (8) 2.2设计方案 (8) 2.3方案分析 (8) 第三章厂用电设计 (10) 3.1厂用电 (10) 3.2厂用电分类 (10) 3.3厂用电设计原则 (11) 3.4厂用电源选择 (11) 3.5厂用电接线形式 (12) 第四章电气设备的选择 (13) 4.1电气设备选择的一般规则 (13) 4.2按正常工作条件选择电器 (13)

电气主接线的设计毕业设计

电气主接线的设计毕业设计

目录 1 引言 (1) 2 电气主接线的选择 (2) 2.1电气主接线的设计依据和基本要求 (2) 2.2电气主接线的选择 (3) 2.3发电机及主变压器的确定 (8) 3 短路电流计算 (10) 3.1实用计算中,计算短路电流的具体步骤: (10) 3.2母线短路 (11) 3.3发电机出口短路 (13) 4 电气设备的配置方案 (16) 4.1隔离开关的配置 (16) 4.2电流互感器的配置 (17) 4.3电压互感器的具体配置 (20) 4.4避雷器的配置 (21) 4.5断路器的配置 (22) 5 高压配电装置设计 (25) 5.1配电装置的基本要求 (25) 5.2配电装置设计的基本步骤 (26) 5.3配电装置的型式选择 (26) 5.4配电装置的安全净距 (27) 5.5屋外配电装置的布置原则 (28) 6 单相500KV变压器保护整定计算 (30) 6.1发电机纵差保护整定计算 (30) 6.2发电机过负荷保护整定计算 (31) 总结 (31) 参考文献 (33) 致谢 (34) 附录 ......................................................................................................................... 错误!未定义书签。

1 引言 电能的开发和应用是人类征服自然过程中所取得的具有划时代意义的光辉成就。自重有了电,消除了黑夜对人类生活和生产劳动的限制,大大延长了人类用于创造财富的劳动时间,改善了劳动条件,丰富了人们的生活,在现代文明中,电被视为空气和水一样重要,这不仅是因为电可以使愉快的家庭晚餐和谐,使电视机成生活中不可缺少的部分;而且可使电气火车奔驰,让工厂机器轰轰转动。可以想象,如果没有了电能,现代文明社会将不复存在。 电是能量的一种表现形式,电力已成为工农业生产不可缺少的动力,并广泛应用到一切生产部门和日常生活方面。由于近几年经济的发展,对电的需求量不断增加,电的生产已经到了供不应求的地步,一些经济发达地区已经出现了“电荒”的情况,严重的制约了经济的发展。所以最近几年国家大力发展电力工业,不但一些原有电厂纷纷扩建加大发电能力,同时其他地方陆续兴建大型电厂,来适应经济的快速发展,所以近一段时期将是电力工业发展的高峰期。

详细解读电力系统主接线的基本要求、基本形式和接线方式

详细解读电力系统主接线的基本要求、基本形式和接线方式导读 主接线是实现电能输送和分配的一种电气接线。变配电站的主接线是由各主要电气设备(包括变压器、开关电器、母线、互感器及连接线路等)按一定顺序连接而成的、接受和分配电能的总电路。本期专题将详细解读电力系统主接线的基本要求、基本形式和接线方式。 主接线一般需符合电力系统对本电站在供电可靠性和电能质量方面的要求,技术先进,经济合理,接线简单、清晰,操作维护方便和具有一定的灵活性,并能适应工程建设不同阶段的要求。 对主接线的要求 电气主接线应满足下列基本要求: 1)牵引变电所、铁路变电所电气主接应综合考虑电源进线情况(有无穿越通过)、负荷重要程度、主变压器容量和台数,以及进线和馈出线回路数量、断路器备用方式和电气设备特点等条件确定,并具有相应的安全可靠性、运行灵活和经济性。 2)具有一级电力负荷的牵引变电所,向运输生产、安全环卫等一级电力负荷供电的铁路变电所,城市轨道交通降压变电所(见电力负荷、电力牵引负荷)应有两回路相互独立的电源进线,每路电源进线应能保证对全部负荷的供电。没有一级电力负荷的铁路变、配电所,应有一回路可靠的进线电源,有条件时宜设置两回路进线电源。 3)主变压器的台数和容量能满足规划期间供电负荷的需要,并能满足当变压器故障或检修时供电负荷的需要。在三相交流牵引变电所和铁路变电所中,当出现三级电压且中压或低压侧负荷超过变压器额定容量的15%时,通常应采用三绕组变压器为主变压器。 4)按电力系统无功功率就地平衡的要求,交流牵引变电所和铁路变、配电所需分层次装设并联电容补偿设备与相应主接线配电单元。为改善注入电力系统的谐波含量,交流牵引变电所牵引电压侧母线,还需要考虑接入无功、谐波综合并联补偿装置回路(见并联综合补偿装置)。对于直流制干线电气化铁路,为减轻直流12相脉动电压牵引网负荷对沿线平

相关主题
文本预览
相关文档 最新文档