当前位置:文档之家› DES加密算法实验报告

DES加密算法实验报告

DES加密算法实验报告
DES加密算法实验报告

网络安全作业

题目 DES 加密算法

学号

专业及班级网络工程0902班

姓名

日期 2012.04.14

一.DES简介:

DES是一个分组密码算法,使用64位密钥(除去8位奇偶校验,实际密钥长度为56位)对64比特的数据分组(二进制数据)加密,产生64位密文数据。DES是一个对称密码体制,加密和解密使用同意密钥,解密和加密使用同一算法(这样,在硬件与软件设计时有利于加密单元的重用)。DES的所有的保密性均依赖于密钥。

二.DES算法过程:

1.DES的加密过程:

第一阶段:初始置换IP。在第一轮迭代之前,需要加密的64位明文首先通过初始置换IP 的作用,对输入分组实施置换。最后,按照置换顺序,DES将64位的置换结果分为左右两部分,第1位到第32位记为L0,第33位到第64位记为R0。

第二阶段:16次迭代变换。DES采用了典型的Feistel结构,是一个乘积结构的迭代密码算法。其算法的核心是算法所规定的16次迭代变换。DES算法的16才迭代变换具有相同的结构,每一次迭代变换都以前一次迭代变换的结果和用户密钥扩展得到的子密钥Ki 作为输入;每一次迭代变换只变换了一半数据,它们将输入数据的右半部分经过函数f 后将其输出,与输入数据的左半部分进行异或运算,并将得到的结果作为新的有半部分,原来的有半部分变成了新的左半部分。用下面的规则来表示这一过程(假设第i次迭代所得到的结果为LiRi): Li = Ri-1; Ri = Li-1⊕f(Ri-1,Ki);在最后一轮左与右半部分并未变换,而是直接将R16 L16并在一起作为未置换的输入。

第三阶段:逆(初始)置换。他是初始置换IP的逆置换,记为IP-1。在对16次迭代的结果(R16 L16)再使用逆置换IP-1后,得到的结果即可作为DES加密的密文Y输出,即Y = IP-1 (R16 L16)。

2.DES解密过程:

DES的解密算法与其加密算法使用的算法过程相同。两者的不同之处在于解密时子密钥Ki的使用顺序与加密时相反,如果子密钥为K1K2…K16,那么解密时子密钥的使用顺序为K16K15…K1,即使用DES解密算法进行解密时,将以64位密文作为输入,第1次迭代运算使用子密钥K16,第2次迭代运算使用子密钥K15,……,第16 次迭代使用子密钥K1,其它的运算与加密算法相同。这样,最后输出的是64位明文。三.DES代码实现(程序):

1.新建头文件des_encode.H

内容如下:

Void EncodeMain(); //EncodeMain function

void DecodeMain(); //Sorry ,it has not used

void Decode(int *str,int *keychar); //decode :input 8 chars,8 keychars void Encode(int *str,int *keychar); //encode: input 8 chars,8 keychars void keyBuild(int *keychar); //create key array

void StrtoBin(int *midkey,int *keychar); //change into binary

void keyCreate(int *midkey2,int movebit,int i); //call by keyBuild

void EncodeData(int *lData,int *rData,int *srt); //encodedata function

void F(int *rData,int *key); //F function

void Expand(int *rData,int *rDataP); //Expand function

void ExchangeS(int *rDataP,int *rData); //S-diagram change

void ExchangeP(int *rData); //P change

void FillBin(int *rData,int n,int s);

void DecodeData(int *str,int *lData,int *rData); //DecodeData from binary

int IP1[]={58, 50, 42, 34, 26, 18, 10, 2, 60, 52, 44, 36, 28, 20, 12, 4, 62, 54, 46, 38, 30, 22, 14, 6, 64, 56, 48, 40, 32, 24, 16, 8, 57, 49, 41, 33, 25,

17, 9, 1, 59, 51, 43, 35, 27, 19, 11, 3, 61, 53, 45, 37, 29, 21, 13, 5, 63, 55,

47, 39, 31, 23, 15, 7 };

int IP2[]={40, 8, 48, 16, 56, 24, 64, 32, 39, 7, 47, 15, 55, 23, 63, 31,38, 6, 46,

14, 54, 22, 62, 30, 37, 5, 45, 13, 53, 21, 61, 29, 36, 4, 44, 12, 52, 20, 60, 28,

35, 3, 43, 11, 51, 19, 59, 27,34, 2, 42, 10, 50, 18, 58, 26, 33, 1, 41, 9, 49, 17,

57, 25 };

ints[][4][16]={{{14,4,13,1,2,15,11,8,3,10,6,12,5,9,0,7},

{0,15,7,4,14,2,13,1,10,6,12,11,9,5,3,8},

{4,1,14,8,13,6,2,11,15,12,9,7,3,10,5,0},

{15,12,8,2,4,9,1,7,5,11,3,14,10,0,6,13}

},{

{15,1,8,14,6,11,3,4,9,7,2,13,12,0,5,10},

{3,13,4,7,15,2,8,14,12,0,1,10,6,9,11,5},

{0,14,7,11,10,4,13,1,5,8,12,6,9,3,2,15},

{13,8,10,1,3,15,4,2,11,6,7,12,0,5,14,9}

},{

{10,0,9,14,6,3,15,5,1,13,12,7,11,4,2,8},

{13,7,0,9,3,4,6,10,2,8,5,14,12,11,15,1},

{13,6,4,9,8,15,3,0,11,1,2,12,5,10,14,7},

{1,10,13,0,6,9,8,7,4,15,14,3,11,5,2,12}

},{

{7,13,14,3,0,6,9,10,1,2,8,5,11,12,4,15},

{13,8,11,5,6,15,0,3,4,7,2,12,1,10,14,9},

{10,6,9,0,12,11,7,13,15,1,3,14,5,2,8,4},

{3,15,0,6,10,1,13,8,9,4,5,11,12,7,2,14}

},{

{2,12,4,1,7,10,11,6,8,5,3,15,13,0,14,9},

{14,11,2,12,4,7,13,1,5,0,15,10,3,9,8,6},

{4,2,1,11,10,13,7,8,15,9,12,5,6,3,0,14},

{11,8,12,7,1,14,2,13,6,15,0,9,10,4,5,3}

},{

{12,1,10,15,9,2,6,8,0,13,3,4,14,7,5,11},

{10,15,4,2,7,12,9,5,6,1,13,14,0,11,3,8},

{9,14,15,5,2,8,12,3,7,0,4,10,1,13,11,6},

{4,3,2,12,9,5,15,10,11,14,1,7,6,0,8,13}

},{

{4,11,2,14,15,0,8,13,3,12,9,7,5,10,6,1},

{13,0,11,7,4,9,1,10,14,3,5,12,2,15,8,6},

{1,4,11,13,12,3,7,14,10,15,6,8,0,5,9,2},

{6,11,13,8,1,4,10,7,9,5,0,15,14,2,3,12}

},{

{13,2,8,4,6,15,11,1,10,9,3,14,5,0,12,7},

{1,15,13,8,10,3,7,4,12,5,6,11,0,14,9,2},

{7,11,4,1,9,12,14,2,0,6,10,13,15,3,5,8},

{2,1,14,7,4,10,8,13,15,12,9,0,3,5,6,11}

}};

Int Ex[48]={ 32,1,2,3,4,5,4,5,6,7,8,9,8,9,10,11,12,13,12,13,14,15,16,17,

16,17,18,19,20,21,20,21,22,23,24,25,24,25,26,27,28,29,28,29,30,31,32,1 };

int P[32]={16,7,20,21,29,12,28,17,1,15,23,26,5,18,31,10,2,8,24,14,32,27,3,9, 19,13,30,6,22,11,4,25};

int PC1[56]={57,49,41,33,25,17,9,1,58,50,42,34,26,18,10,2,59,51,43,35,27,

19,11,3,60,52,44,36,63,55,47,39,31,33,15,7,62,54,46,38,30,22,14,6,61,53,45,37,2 9,21,13,5,28,20,12,4};

intPC2[48]={14,17,13,28,15,6,21,10,23,19,12,4,26,8,16,7,27,20,13,2,41,52,31,37, 47,55,30,40,51,45,33,48, 44,49,39,56,34,53,46,42,50,36,29,32};

2.创建des.cpp

内容如下:

#include

#include

#include "aa.h"

int key[16][48];

char str[8];

void main() //main function

{

EncodeMain();

}

void EncodeMain() //EncodeMain function

{

int i;

char keychar[8];

int key2[8];

int strkey[8];

printf("请输入8个要加密的字符:\n");

for(i=0;i<8;i++)

scanf("%c",&str[i]);

getchar();

for(i=0;i<8;i++)

strkey[i]=str[i];

printf("\n输入明文的十六进制为:\n");

for(i=0;i<8;i++)

printf("%10x",strkey[i]);

printf("\n请输入密钥(8个字符):\n");

for(i=0;i<8;i++)

scanf("%c",&keychar[i]);

for(i=0;i<8;i++)

key2[i]=keychar[i];

getchar();

// printf("%c",keychar[i]);

Encode(strkey,key2);

printf("\n加密后十六进制密文是:\n");

for(i=0;i<8;i++)

printf("%10x",strkey[i]);

printf("\n\n清输入解密密码\n");

for(i=0;i<8;i++)

scanf("%c",&keychar[i]);

for(i=0;i<8;i++)

key2[i]=keychar[i];

Decode(strkey,key2);

for(i=0;i<8;i++)

printf("%10x",strkey[i]);

for(i=0;i<8;i++)

str[i]=strkey[i];

printf("\n明文为:\t");

for(i=0;i<8;i++)

printf("%c",str[i]);

printf("\n\n");

}

void keyBuild(int *keychar){ //create key array

int i,j;

int movebit[]={1,1,2,2,2,2,2,2, 1,2,2,2,2,2,2,1};

int midkey2[56];

int midkey[64];

StrtoBin(midkey,keychar);

for(i=0;i<56;i++)

midkey2[i]=midkey[PC1[i]-1];

for(i=0;i<16;i++)

keyCreate(midkey2,movebit[i],i);

}

void StrtoBin(int *midkey,int *keychar){ //change into binary int trans[8],i,j,k,n;

n=0;

for(i=0;i<8;i++){

j=0;

while(keychar[i]!=0){

trans[j]=keychar[i]%2;

keychar[i]=keychar[i]/2;

j++;

}

for(k=j;k<8;k++)trans[k]=0;

for(k=0;k<8;k++)

midkey[n++]=trans[7-k];

}

}

void keyCreate(int *midkey2,int movebit,int n){

int i,temp[4];

temp[0]=midkey2[0];

temp[1]=midkey2[1];

temp[2]=midkey2[28];

temp[3]=midkey2[29];

if(movebit==2){

for(i=0;i<26;i++){

midkey2[i]=midkey2[i+2];

midkey2[i+28]=midkey2[i+30];

}

midkey2[26]=temp[0];midkey2[27]=temp[1];

midkey2[54]=temp[2];midkey2[55]=temp[3]; }

else

{ for(i=0;i<27;i++){

midkey2[i]=midkey2[i+1];

midkey2[i+28]=midkey2[i+29];

}

midkey2[27]=temp[0];midkey2[55]=temp[2];

}

for(i=0;i<48;i++)

key[n][i]=midkey2[PC2[i]-1];

}

void EncodeData(int *lData,int *rData,int *str){ //encodedata function int i,j,temp[8],lint,rint;//int h;

int data[64];

lint=0,rint=0;

for(i=0;i<4;i++){

j=0;

while(str[i]!=0){

temp[j]=str[i]%2;

str[i]=str[i]/2;

j++;

}

while(j<8)temp[j++]=0;

for(j=0;j<8;j++)

lData[lint++]=temp[7-j];

j=0;

while(str[i+4]!=0){

temp[j]=str[i+4]%2;

str[i+4]=str[i+4]/2;

j++;

}

while(j<8)temp[j++]=0;

for(j=0;j<8;j++)rData[rint++]=temp[7-j];

}

for(i=0;i<32;i++){

data[i]=lData[i];

data[i+32]=rData[i];

}

for(i=0;i<32;i++){ lData[i]=data[IP1[i]-1];//printf("P1:%5d:%5d,%5d\n",IP1 [i],lData[i],data[IP1[i]-1]);

rData[i]=data[IP1[i+32]-1];

}

}

void F(int *rData,int *key){ //F function

int i,rDataP[48];

Expand(rData,rDataP);

for(i=0;i<48;i++){

rDataP[i]=rDataP[i]^key[i];//

printf("%10d",rDataP[i]);if((i+1)%6==0)printf("\n");

}

ExchangeS(rDataP,rData);

ExchangeP(rData);

}

void Expand(int *rData,int *rDataP){ //Expand function

int i;

for(i=0;i<48;i++)

rDataP[i]=rData[Ex[i]-1];

}

void ExchangeS(int *rDataP,int *rData){ //S-diagram change

int i,n,linex,liney;

linex=liney=0;

for(i=0;i<48;i+=6){

n=i/6; //printf("%10d\n",(rDataP[i]<<1));

linex=(rDataP[i]<<1)+rDataP[i+5];

liney=(rDataP[i+1]<<3)+(rDataP[i+2]<<2)+(rDataP[i+3]<<1)+rDataP[i+4]; FillBin(rData,n,s[n][linex][liney]);

}

}

void ExchangeP(int *rData){ //P change

int i,temp[32];

for(i=0;i<32;i++)

temp[i]=rData[i];

for(i=0;i<32;i++)

rData[i]=temp[P[i]-1];

}

void FillBin(int *rData,int n,int s){ // data to binary;call by S-Diagram change function

int temp[4],i;

for(i=0;i<4;i++){

temp[i]=s%2;

s=s/2;

}

for(i=0;i<4;i++)

rData[n*4+i]=temp[3-i];

}

void DecodeData(int *str,int *lData,int *rData){ //DecodeData from binary

int i;int a,b;int data[64];

a=0,b=0;

for(i=0;i<32;i++){

data[i]=lData[i];

data[i+32]=rData[i];

}

for(i=0;i<32;i++){

lData[i]=data[IP2[i]-1];

rData[i]=data[IP2[i+32]-1];

}

for(i=0;i<32;i++){

a=(lData[i]&0x1)+(a<<1);

b=(rData[i]&0x1)+(b<<1);

if((i+1)%8==0){

str[i/8]=a;a=0;//printf("%d",i/8);

str[i/8+4]=b;b=0;//printf("%d",i/8+4);

}

}

void Encode(int *str,int *keychar){ //encode: input 8 chars,8 keychars int lData[32],rData[32],temp[32],rDataP[48];

int i,j;

keyBuild(keychar);

EncodeData(lData,rData,str);

for(i=0;i<16;i++){

for(j=0;j<32;j++)

temp[j]=rData[j];

F(rData,key[i]);

for(j=0;j<32;j++){

rData[j]=rData[j]^lData[j];

}

for(j=0;j<32;j++)

lData[j]=temp[j];

}

DecodeData(str,rData,lData);

}

void Decode(int *str,int *keychar){ //decode :input 8 chars,8 keychars int lData[32],rData[32],temp[32],rDataP[48];

int i,j;

keyBuild(keychar);

EncodeData(lData,rData,str); //这个位置

for(i=0;i<16;i++){

for(j=0;j<32;j++)

temp[j]=rData[j];

F(rData,key[15-i]);

for(j=0;j<32;j++){

rData[j]=rData[j]^lData[j];

}

for(j=0;j<32;j++){

lData[j]=temp[j];

}

}

DecodeData(str,rData,lData);

}

四.运行结果:

DES算法实验报告

DES算法实验报告 姓名:学号:班级: 一、实验环境 1.硬件配置:处理器(英特尔Pentium双核E5400 @ 2.70GHZ 内存:2G) 2.使用软件: ⑴操作系统:Windows XP 专业版32位SP3(DirectX 9.0C) ⑵软件工具:Microsoft Visual C++ 6.0 二、实验涉及的相关概念或基本原理 1、加密原理 DES 使用一个 56 位的密钥以及附加的 8 位奇偶校验位,产生最大 64 位的分组大小。这是一个迭代的分组密码,使用称为 Feistel 的技术,其中将加密的文本块分成两半。使用子密钥对其中一半应用循环功能,然后将输出与另一半进行“异或”运算;接着交换这两半,这一过程会继续下去,但最后一个循环不交换。DES 使用 16 个循环,使用异或,置换,代换,移位操作四种基本运算。 三、实验内容 1、关键代码 ⑴子密钥产生

⑵F函数以及加密16轮迭代 2、DES加密算法的描述及流程图 ⑴子密钥产生 在DES算法中,每一轮迭代都要使用一个子密钥,子密钥是从用户输入的初始密钥产生的。K是长度为64位的比特串,其中56位是密钥,8位是奇偶校验位,分布在8,16,24,32,40,48,56,64比特位上,可在8位中检查单个错误。在密钥编排计算中只用56位,不包括这8位。子密钥生成大致分为:置换选择1(PC-1)、循环左移、置换选择2(PC-2)等变换,分别产生16个子密钥。 DES解密算法与加密算法是相同的,只是子密钥的使用次序相反。 ⑵DES加密算法 DES密码算法采用Feistel密码的S-P网络结构,其特点是:加密和解密使用同一算法、

现代密码学实验报告

现代密码学 实验报告 学生姓名 学号 专业班级计算机科学与技术指导教师段桂华 学院信息科学与工程学院完成时间2016年4月

实验一密码算法实验 [实验目的] 1.掌握密码学中经典的对称密码算法AES、RC4的算法原理。 2.掌握AES、RC4的算法流程和实现方法。 [实验预备] 1.AES算法的基本原理和特点。 2.流密码RC4的密钥流生成以及S盒初始化过程。 [实验内容] 1. 分析AES、RC4的实现过程。 2. 用程序设计语言将算法过程编程实现。 3. 完成字符串数据的加密运算和解密运算 输入十六进制明文:11223344556677889900AABBCCDDEEFF 输入十六进制密钥:13579BDF02468ACE1234567890ABCDEF [实验步骤] 1. 预习AES、RC4算法。 2. 写出算法流程,用程序设计语言将算法过程编程实现。 3. 输入指定的明文、密钥进行实验,验证结果。 4. 自己选择不同的输入,记录输出结果。 写出所编写程序的流程图和运行界面、运行结果。 一、AES算法 1、AES算法简介 AES 是一种可用来保护电子数据的新型加密算法。特别是,AES 是可以使用128、192 和 256 位密钥的迭代式对称密钥块密码,并且可以对 128 位(16 个字节)的数据块进行加密和解密。与使用密钥对的公钥密码不同的是,对称密钥密码使用同一个密钥来对数据进行加密和解密。由块密码返回的加密数据与输入数据具有相同的位数。迭代式密码使用循环结构来针对输入数据反复执行排列和置换运算。 2、算法实现及流程 以加密函数为例,如下所示,首先对密钥进行预处理密钥扩展,然后明文进行Nr(Nr与密钥长度有关)次迭代运算,包括字节替换SubBytes、移位行运算ShiftRows、混合列运算MixColumns、以及轮秘钥加密AddRoundKey。

实验报告_密码学

信息安全实验报告 学号: 学生姓名: 班级:

实验三密码学实验 一、古典密码算法实验 一、实验目的 通过编程实现替代密码算法和置换密码算法,加深对古典密码体制的了解,为深入学习密码学奠定基础。 二、编译环境 运行windows 或linux 操作系统的PC 机,具有gcc(linux)、VC (windows)等C语言编译环境。 三、实验原理 古典密码算法历史上曾被广泛应用,大都比较简单,使用手工和机械操作来实现加密和解密。它的主要应用对象是文字信息,利用密码算法实现文字信息的加密和解密。下面介绍两种常见的具有代表性的古典密码算法,以帮助读者对密码算法建立一个初步的印象。 1.替代密码 替代密码算法的原理是使用替代法进行加密,就是将明文中的字符用其它字符替代后形成密文。例如:明文字母a、b、c、d ,用D、E、F、G做对应替换后形成密文。 替代密码包括多种类型,如单表替代密码、多明码替代密码、多字母替代密码、多表替代密码等。下面我们介绍一种典型的单表替代密码,恺撒(caesar)密码,又叫循环移位密码。它的加密方法,就是将明文中的每个字母用此字符在字母表中后面第k个字母替代。它的加密过程可以表示为下面的函数:E(m)=(m+k) mod n 其中:m 为明文字母在字母表中的位置数;n 为字母表中的字母个数;k 为密钥;E(m)为密文字母在字母表中对应的位置数。例如,对于明文字母H,其在字母表中的位置数为8,设k=4,则按照上式计算出来的密文为L:E(8) = (m+k) mod n = (8+4) mod 26 = 12 = L

2.置换密码 置换密码算法的原理是不改变明文字符,只将字符在明文中的排列顺序改 变,从而实现明文信息的加密。置换密码有时又称为换位密码。 矩阵换位法是实现置换密码的一种常用方法。它将明文中的字母按照给的 顺序安排在一个矩阵中,然后用根据密钥提供的顺序重新组合矩阵中字母,从而 形成密文。例如,明文为attack begins at five,密钥为cipher,将明文按照每行 6 列的形式排在矩阵中,形成如下形式: a t t a c k b e g i n s a t f i v e 根据密钥cipher中各字母在字母表中出现的先后顺序,给定一个置换: 1 2 3 4 5 6 f = 1 4 5 3 2 6 根据上面的置换,将原有矩阵中的字母按照第 1 列,第 4 列,第 5 列,第 3 列, 第2列,第 6 列的顺序排列,则有下面形式: a a c t t k b i n g e s a I v f t e 从而得到密文:abatgftetcnvaiikse 其解密的过程是根据密钥的字母数作为列数,将密文按照列、行的顺序写出,再根据由密钥给出的矩阵置换产生新的矩阵,从而恢复明文。 四、实验内容和步骤 1、根据实验原理部分对替代密码算法的介绍,自己创建明文信息,并选择 一个密钥k,编写替代密码算法的实现程序,实现加密和解密操作。 2、根据实验原理部分对置换密码算法的介绍,自己创建明文信息,并选择一个密钥,编写置换密码算法的实现程序,实现加密和解密操作。 五、总结与思考 记录程序调试过程中出现的问题,分析其原因并找出解决方法。记录最终实现的程序执行结果。

RSA算法实验报告

实验二非对称密码算法RSA 一、实验目的 通过实际编程了解非对称密码算法RSA的加密和解密过程,加深对非对称密码算法的认识。 二、实验环境 运行Windows或Linux操作系统的PC机,具有JDK1.6版本的Java语言编译环境。 三、实验内容和步骤 1. 对RSA算法的理解 RSA算法(公开密钥算法)的原理: (1).选择两个大的素数p和q(典型情况下为1024位) (2).计算n = p * q 和z =(p-1)*(q-1). (3).选择一个与z互素的数,将它称为d (4).找到e,使其满足e*d = 1 mod z 提前计算出这些参数以后,我们就可以开始执行加密了。首先将明文分成块,使得每个明文消息P落在间隔0*P

数据加密实验报告

实验报告 课程:计算机保密_ _ 实验名称:数据的加密与解密_ _ 院系(部):计科院_ _ 专业班级:计科11001班_ _ 学号: 201003647_ _ 实验日期: 2013-4-25_ _ 姓名: _刘雄 _ 报告日期: _2013-5-1 _ 报告评分:教师签字:

一. 实验名称 数据加密与解密 二.运行环境 Windows XP系统 IE浏览器 三.实验目的 熟悉加密解密的处理过程,了解基本的加密解密算法。尝试编制基本的加密解密程序。掌握信息认证技术。 四.实验内容及步骤 1、安装运行常用的加解密软件。 2、掌握加解密软件的实际运用。 *3、编写凯撒密码实现、维吉尼亚表加密等置换和替换加解密程序。 4、掌握信息认证的方法及完整性认证。 (1)安装运行常用的加解密软件,掌握加解密软件的实际运用 任务一:通过安装运行加密解密软件(Apocalypso.exe;RSATool.exe;SWriter.exe等(参见:实验一指导))的实际运用,了解并掌握对称密码体系DES、IDEA、AES等算法,及非对称密码体制RSA等算法实施加密加密的原理及技术。 ?DES:加密解密是一种分组加密算法,输入的明文为64位,密钥为56位,生成的密文为64位。 ?BlowFish:算法用来加密64Bit长度的字符串或文件和文件夹加密软件。 ?Gost(Gosudarstvennyi Standard):算法是一种由前苏联设计的类似DES算法的分组密码算法。它是一个64位分组及256位密钥的采用32轮简单迭代型加密算法. ?IDEA:国际数据加密算法:使用128 位密钥提供非常强的安全性; ?Rijndael:是带有可变块长和可变密钥长度的迭代块密码(AES 算法)。块长和密钥长度可以分别指定成128、192 或256 位。 ?MISTY1:它用128位密钥对64位数据进行不确定轮回的加密。文档分为两部分:密钥产生部分和数据随机化部分。 ?Twofish:同Blowfish一样,Twofish使用分组加密机制。它使用任何长度为256比特的单个密钥,对如智能卡的微处理器和嵌入在硬件中运行的软件很有效。它允许使用者调节加密速度,密钥安装时间,和编码大小来平衡性能。 ?Cast-256:AES 算法的一种。 (同学们也可自己下载相应的加解密软件,应用并分析加解密过程) 任务二:下载带MD5验证码的软件(如:https://www.doczj.com/doc/b4839674.html,/downloads/installer/下载(MySQL):Windows (x86, 32-bit), MSI Installer 5.6.11、1.5M;MD5码: 20f788b009a7af437ff4abce8fb3a7d1),使用MD5Verify工具对刚下载的软件生成信息摘要,并与原来的MD5码比较以确定所下载软件的完整性。或用两款不同的MD5软件对同一文件提取信息摘要,而后比较是否一致,由此可进行文件的完整性认证。

1密码学-DES实验报告

南京信息工程大学实验(实习)报告实验(实习)名称对称密码实验(实习)日期得分指导教师 系计软院专业网络工程年2011 班次 1 姓名学号20111346026 一.实验目的 1.理解对称加密算法的原理和特点 2.理解DES算法的加密原理 二.实验内容 第一阶段:初始置换IP。在第一轮迭代之前,需要加密的64位明文首先通过初始置换IP 的作用,对输入分组实施置换。最后,按照置换顺序,DES将64位的置换结果分为左右两部分,第1位到第32位记为L0,第33位到第64位记为R0。 第二阶段:16次迭代变换。DES采用了典型的Feistel结构,是一个乘积结构的迭代密码算法。其算法的核心是算法所规定的16次迭代变换。DES算法的16才迭代变换具有相同的结构,每一次迭代变换都以前一次迭代变换的结果和用户密钥扩展得到的子密钥Ki作为输入;每一次迭代变换只变换了一半数据,它们将输入数据的右半部分经过函数f后将其输出,与输入数据的左半部分进行异或运算,并将得到的结果作为新的有半部分,原来的有半部分变成了新的左半部分。用下面的规则来表示这一过程(假设第i次迭代所得到的结果为LiRi): Li = Ri-1; Ri = Li-1⊕f(Ri-1,Ki);在最后一轮左与右半部分并未变换,而是直接将R16 L16并在一起作为未置换的输入。 第三阶段:逆(初始)置换。他是初始置换IP的逆置换,记为IP-1。在对16次迭代的结果(R16 L16)再使用逆置换IP-1后,得到的结果即可作为DES加密的密文Y输出,即Y = IP-1 (R16 L16) 三.流程图&原理图

流程图

DES原理图

AES加密算法实验报告

四川大学计算机学院、软件学院实验报告 学号::专业:班级:第10 周

在程序运行读取需要加密的图片时,需要进行图片的选取,本次实验中使用在弹窗中选取文件的方式,使用头文件commdlg.h来实现在文件夹中选择需要的文件的选取。 三、加密算法流程 AES加密算法流程如下 字节代替:用一个S盒完成分组的字节到字节的代替; 行移位:进行一次行上的置换; 列混合:利用有限域GF(28)上的运算特性的一个代替; 轮密钥加:当前分组和扩展密钥的一部分进行按位异或。

四、代码实现 cryptograph.h #include #include class plaintext { public: plaintext(); static void createplaintext(unsigned char a[]); static void SubBytes(unsigned char p[16]); static void inSubBytes(unsigned char p[16]); static void ShiftRows(unsigned char e[]); static void inShiftRows(unsigned char e[]); static void MatrixToByte(unsigned char e[]); static void inMatrixToByte(unsigned char e[]); static unsigned char FFmul(unsigned char a, unsigned char b); static void KeyAdding(unsigned char state[16], unsigned char k[][4]); static void KeyExpansion(unsigned char* key, unsigned char w[][4][4]); ~plaintext(); private: }; cryptograph.cpp #include"cryptography.h" using namespace std; static unsigned char sBox[] = {};/定义加密S盒/ unsigned char insBox[256] ={};//定义解密S盒 plaintext::plaintext() {

网络安全RSA算法的实现实验报告

网络安全基础教程报告 题目:RSA加密算法 学号:1108040205 专业及班级:计网1102班 姓名:雪飞 日期:2013.11.26

一、RSA算法介绍与应用现状 RSA公开密钥加密算法自20世纪70年代提出以来,已经得到了广泛认可和应用。发展至今,电子安全领域的各方面已经形成了较为完备的国际规。RSA作为最重要的公开密钥算法,在各领域的应用数不胜数。RSA在硬件方面,以技术成熟的IC应用于各种消费类电子产品。 RSA在软件方面的应用,主要集中在Internet上。加密连接、数字签名和数字证书的核心算法广泛使用RSA。日常应用中,有比较著名的工具包Open SSL(SSL,Security Socket Layer,是一个安全传输协议,在Internet上进行数据保护和身份确认。Open SSL是一个开放源代码的实现了SSL及相关加密技术的软件包,由加拿大的Eric Yang等发起编写的。Open SSL应用RSA实现签名和密钥交换,已经在各种操作系统得到非常广泛的应用。另外,家喻户晓的IE浏览器,自然也实现了SSL协议,集成了使用RSA技术的加密功能,结合MD5和SHA1,主要用于数字证书和数字签名,对于习惯于使用网上购物和网上银行的用户来说,几乎天天都在使用RSA技术。 RSA更出现在要求高度安全稳定的企业级商务应用中。在当今的企业级商务应用中,不得不提及使用最广泛的平台j2ee。事实上,在j2se的标准库中,就为安全和加密服务提供了两组API:JCA和JCE。JCA (Java Cryptography Architecture)提供基本的加密框架,如证书、数字签名、报文摘要和密钥对产生器;JCA由几个实现了基本的加密技术功能的类和接口组成,其中最主要的是java.security包,此软件包包含的是一组核心的类和接口,Java中数字签名的方法就集中在此软件包中。JCE(Java Cryptography Extension) 在JCA的基础上作了扩展,JCE也是由几个软件包组成,其中最主要的是javax.crypto包,此软件包提供了JCE加密技术操作API。javax.crypto中的Cipher类用于具体的加密和解密。在上述软件包的实现中,集成了应用RSA算法的各种数据加密规(RSA算法应用规介绍参见:.rsasecurity./rsalabs/node.asp?id=2146 ,这些API部支持的算法不仅仅只有RSA,但是RSA是数字签名和证书中最常用的),用户程序可以直接使用java标准库中提供的API 进行数字签名和证书的各种操作。 二、算法原理 1.选择两个不同的大素数p、q (目前两个数的长度都接近512bit是安全的); 2. 计算n = p*q。 3. 计算n的欧拉函数t=(p-1)(q-1)。 4. 选择整数e作为公钥,使e与t互素,且1

DES加密算法实验报告

苏州科技学院 实验报告 学生姓名:杨刘涛学号:1220126117 指导教师:陶滔 刘学书1220126114 实验地点:计算机学院大楼东309 实验时间:2015-04-20 一、实验室名称:软件实验室 二、实验项目名称:DES加解密算法实现 三、实验学时:4学时 四、实验原理: DES算法由加密、子密钥和解密的生成三部分组成。现将DES算法介绍如下。1.加密 DES算法处理的数据对象是一组64比特的明文串。设该明文串为m=m1m2…m64 (mi=0或1)。明文串经过64比特的密钥K来加密,最后生成长度为64比特的密文E。其加密过程图示如下:

图2-1:DES算法加密过程 对DES算法加密过程图示的说明如下: 待加密的64比特明文串m,经过IP置换(初始置换)后,得到的比特串的下标列表如下: 表2-1:得到的比特串的下标列表

该比特串被分为32位的L0和32位的R0两部分。R0子密钥K1(子密钥的生成将在后面讲)经过变换f(R0,K1)(f变换将在下面讲)输出32位的比特串 f1,f1与L0做不进位的二进制加法运算。运算规则为: f1与L0做不进位的二进制加法运算后的结果赋给R1,R0则原封不动的赋给L1。L1与R0又做与以上完全相同的运算,生成L2,R2……一共经过16次运算。最后生成R16和L16。其中R16为L15与f(R15,K16)做不进位二进制加法运算的结果,L16是R15的直接赋值。 R16与L16合并成64位的比特串。值得注意的是R16一定要排在L16前面。R16与L16合并后成的比特串,经过置换IP-1(终结置换)后所得比特串的下标列表如下: 表2-2:置换后所得比特串的下标列表 经过置换IP-1后生成的比特串就是密文e。 变换f(Ri-1,Ki): 它的功能是将32比特的输入再转化为32比特的输出。其过程如图2-2所示:

密码学实验报告(AES,RSA)

华北电力大学 实验报告| | 实验名称现代密码学课程设计 课程名称现代密码学 | | 专业班级:学生姓名: 学号:成绩: 指导教师:实验日期:

[综合实验一] AES-128加密算法实现 一、实验目的及要求 (1)用C++实现; (2)具有16字节的加密演示; (3)完成4种工作模式下的文件加密与解密:ECB, CBC, CFB,OFB. 二、所用仪器、设备 计算机、Visual C++软件。 三. 实验原理 3.1、设计综述 AES 中的操作均是以字节作为基础的,用到的变量也都是以字节为基础。State 可以用4×4的矩阵表示。AES 算法结构对加密和解密的操作,算法由轮密钥开始,并用Nr 表示对一个数据分组加密的轮数(加密轮数与密钥长度的关系如表2所示)。AES 算法的主循环State 矩阵执行1 r N 轮迭代运算,每轮都包括所有 4个阶段的代换,分别是在规范中被称为 SubBytes(字节替换)、ShiftRows(行位移变换)、MixColumns(列混合变换) 和AddRoundKey ,(由于外部输入的加密密钥K 长度有限,所以在算法中要用一个密钥扩展程序(Keyexpansion)把外部密钥 K 扩展成更长的比特串,以生成各轮的加密和解密密钥。最后执行只包括 3个阶段 (省略 MixColumns 变换)的最后一轮运算。 表2 AES 参数 比特。

3.2、字节代替(SubBytes ) AES 定义了一个S 盒,State 中每个字节按照如下方式映射为一个新的字节:把该字节的高4位作为行值,低4位作为列值,然后取出S 盒中对应行和列的元素作为输出。例如,十六进制数{84}。对应S 盒的行是8列是4,S 盒中该位置对应的值是{5F}。 S 盒是一个由16x16字节组成的矩阵,包含了8位值所能表达的256种可能的变换。S 盒按照以下方式构造: (1) 逐行按照升序排列的字节值初始化S 盒。第一行是{00},{01},{02},…,{OF}; 第二行是{10},{l1},…,{1F}等。在行X 和列Y 的字节值是{xy}。 (2) 把S 盒中的每个字节映射为它在有限域GF(k 2)中的逆。GF 代表伽罗瓦域,GF(82) 由一组从0x00到0xff 的256个值组成,加上加法和乘法。 ) 1(] [2)2(3488++++= x x x x X Z GF 。{00}被映射为它自身{00}。 (3) 把S 盒中的每个字节记成),,,,,,,,(012345678b b b b b b b b b 。对S 盒中每个字节的每位 做如下变换: i i i i i i c b b b b b i b ⊕⊕⊕⊕⊕='++++8mod )7(8mod )6(8mod )5(8mod )4( 上式中i c 是指值为{63}字节C 第i 位,即)01100011(),,,,,,,,(012345678=c c c c c c c c c 。符号(')表示更新后的变量的值。AES 用以下的矩阵方式描述了这个变换: ?? ? ?? ? ? ? ? ? ??? ? ????????????+???????????????????????????????????????? ????????????=??????????????????????????0110001111111000011111000011111000011111100011111100011111100011111100017654321076543210b b b b b b b b b b b b b b b b 最后完成的效果如图:

AES加密算法实验报告

实验报告 学号:姓名:专业:班级:第10周

简介 #in elude vstri ng> #in elude class pla in text { public : plai ntext(); static void createplaintext( unsigned char a[]); 实验内容(算法、 程 序、 步骤 和方 法)

static void SubBytes( unsigned char p[16]); static void inSubBytes( unsigned char p[16]); static void ShiftRows( unsigned char e[]); static void inShiftRows( unsigned char e[]); static void MatrixToByte( unsigned char e[]); static void inMatrixToByte( unsigned char e[]); static unsigned char FFmul( unsigned char a, unsigned char b); static void KeyAdding( unsigned char state[16], unsigned char k[][4]); static void KeyExpansion( unsigned char* key, unsigned char w[][4][4]); ~plai ntext(); private : }; #in elude "" using namespacestd; static unsigned char sBox[] = {}; /定义加密S盒/ unsigned char insBox[256] ={}; //定义解密S盒 pla in text ::plai ntext() { unsigned int p[16]; for (int j = 0; j<200; j++) { p[i] = a[i]; a[i] = a[i + 16]; } void pla in text ::createpla in text( un sig ned char a[]) // 仓U建明文 int i = 0; if ( a[j] == 0) for (; i<16; i++)

DES实验报告

DES加密算法 一、实验目的 1、理解对称加密算法的原理和特点 2、理解DES算法的加密原理 二、实验步骤 第一阶段:64位明文进行初始置换IP(initial permutation) 第二阶段:在密钥控制下16轮迭代 第三阶段:交换左右32比特 IP 第四阶段:初识逆置换1 三、实验原理 对称密钥机制即对称密钥体系,也称为单钥密码体系和传统密码体系。对称密码体系通常分为两大类,一类是分组密码(如DES、AES算法),另一类是序列密码(如RC4算法)。对称密码体系加密和解密时所用的密钥是相同的或者是类似的,即由加密密钥可以很容易地推导出解密密钥,反之亦然。同时在一个密码系统中,我们不能假定加密算法和解密算法是保密的,因此密钥必须保密。发送信息的通道往往是不可靠的或者不安全的,所以在对称密码系统中,必须用不同于发送信息的另外一个安全信道来发送密钥。 四、实验内容 第一阶段:置换规则如下矩阵,即将输入的第58位换到第一位,第50位换到第2位,...,依此类推,最后一位是原来的第7位。L0、R0则是换位输出后的两部分,L0是 输出的左32位,R0 是右32位,例:设置换前的输入值為D1D2D3 (64) 则经过初始置换后的结果為:L0=D550...D8;R0=D57D49 (7) 第二阶段: 1、变换密钥 取得64位的密钥,每个第8位作为奇偶校验位,舍弃64位密钥中的奇偶校验位,根据下表PC-1进行密钥变换得到56位的密钥。将变换后的密钥分为两个部分,开始的28位称为C0,最后的28位成为D0。然后同时将C0、D0循环左移1位形成C1、D1。C1D1经过PC-2从56位中选出48位输出,即为K1。循环左移LSi(i=1,2,……,16)分别是: 1 1 2 2 2 2 2 2 1 2 2 2 2 2 2 1C1、D1分别循环左移LS2位,再合并,经过PC-2,生成子密钥K2。依次类推直至K16形成。 2、加密数据 将32位的RI-1按下表(E)扩展为48位的EI-1: 异或Ei-1和Ki,即E[i-1] XOR K[i],将异或后的结果分为8个6位长的部分,第1

DES算法实验报告

DES算法实验报告 导读:就爱阅读网友为您分享以下“DES算法实验报告”的资讯,希望对您有所帮助,感谢您对https://www.doczj.com/doc/b4839674.html,的支持! 实验报告 姓名:xxxx 学号:0XXXXX 班级:XXXXXXX 日期:2013/11/* 题目:DES算法实验 一、实验环境 1.硬件配置: 处理器:Inter(R) Core(TM) i5-2430M CPU @ 2.40GHz (4

CPUs) ,~2.4GHz 内存:2048MB RAM 2.使用软件: (1) 操作系统:win7 旗舰版 (2) 软件工具: Microsoft Visual c++ 6.0 二、实验涉及的相关概念或基本原理 DES是一个分组密码算法,使用64位密钥(除去8位奇偶校验,实际密钥长度为56位)对64比特的数据分组(二进制数据)加密,产生64位密文数据。DES是一个对称密码体制,加密和解密使用同意密钥,解密和加密使用同一算法(这样,在硬件与软件设计时有利于加密单元的重用)。DES 的所有的保密性均依赖于密钥。 DES的加密过程可分为加密处理,加密变换和子密钥生成几个部分组成。 1.加密处理过程(1)初始置换IP。加密处理首先要对64位的明文按表1所示的初始换位表IP进行变换。表中的数值表示输入位被置换后的新位置。

(2)加密处理。上述换位处理的输出,中间要经过16轮加密变换。初始置换的64位的输出作为下一次的输入,将64位分为左、右两个32位,分别记为L0和R0,从L0、R0到L16、R16,共进行16轮加密变换。其中,经过i轮处理后的点左右32位分别为Li和Ri则可做如下定义: Li=Ri-1 Ri=Li-1 ⊕F(Ri-1,K) 其中,F为F变换 (3)最后换位。进行16轮的加密变换之后,将L16和R16合成64位的数据,再按照表2所示的最后换位表进行IP-1的换位,得到64位的密文,这就是DES算法加密的结果。 2.加密变换过程 64位的密钥先由置换选择1减少至56六位,进行循环左移,然后通过置换选择2减少至48位。而通过扩展运算将32位按表3扩展换位表扩展为48位的右半部分通过异或操作和48位的密钥结合,并分成6位的8个分组,通过8个S-盒

AES加密算法实验报告

实验报告 姓名:陈清扬学号:2051313 班级:信息安全日期:2011-04-23 AES加密算法 一、实验环境 1.硬件配置:酷睿i3cpu ,2G内存 2.使用软件: (1) 操作系统:windows7旗舰版 (2) 软件工具:visualc++6.0 二、AES涉及的相关概念或基本原理 简介: 密码学中的高级加密标准(Advanced Encryption Standard,AES),又称Rijndael加密法,是美国联邦政府采用的一种区块加密标准。这个标准用来替代原先的DES,已经被多方分析且广为全世界所使用。经过五年的甄选流程,高级加密标准由美国国家标准与技术研究院(NIST)于2001年11月26日发布于FIPS PUB 197,并在2002年5月26日成为有效的标准。2006年,高级加密标准已然成为对称密钥加密中最流行的算法之一。 密码说明: 严格地说,AES和Rijndael加密法并不完全一样(虽然在实际应用中二者可以互换),因为Rijndael加密法可以支援更大范围的区块和密钥长度:AES的区块长度固定为128 位元,密钥长度则可以是

128,192或256位元;而Rijndael使用的密钥和区块长度可以是32位元的整数倍,以128位元为下限,256位元为上限。加密过程中使用的密钥是由Rijndael密钥生成方案产生。大多数AES计算是在一个特别的有限域完成的。AES加密过程是在一个4×4的字节矩阵上运作,这个矩阵又称为“体(state)”,其初值就是一个明文区块(矩阵中一个元素大小就是明文区块中的一个Byte)。(Rijndael加密法因支援更大的区块,其矩阵行数可视情况增加)加密时,各轮AES加密循环(除最后一轮外)均包含4个步骤: 1AddRoundKey—矩阵中的每一个字节都与该次回合金钥(round key)做XOR运算;每个子密钥由密钥生成方案产生。 2SubBytes—透过一个非线性的替换函数,用查找表的方式把每个字节替换成对应的字节。 3ShiftRows—将矩阵中的每个横列进行循环式移位。 4MixColumns—为了充分混合矩阵中各个直行的操作。这个步骤使用线性转换来混合每行内的四个字节。 最后一个加密循环中省略MixColumns步骤,而以另一个AddRoundKey取代。 安全性: 截至2006年,针对AES唯一的成功攻击是旁道攻击。旁道攻击不是攻击密码本身,而是攻击那些实作于不安全系统上的加密系统。

加密解密程序实验报告

程序设计实践 加密解密程序实验报告 课题概述 1.1课题目标和主要内容: 利用MFC类或者win32编写windows程序,实现加密解密的功能。 1.2系统的主要功能: 1.实现用户界面友好的操作。 2.具有对称编码体制,可以实现: i.凯撒密码:能够自定义密钥,自由输入明文,进行加密、解密,在对话框中返回加密和 解密后的内容。

ii.置换密码:能够自定义密钥,自由输入明文,经矩阵变换进行加密、解密,在对话框中返回加密和解密后的内容 iii.对称加密DES:用MFC调用WIN32编写的程序,在用户友好界面操作的同时显示程序加密,解密结果。 3.具有非对称编码体制: i. RSA加密解密:随机产生p,q,经检验是否互质,若不互质接着产生两个随机数,直 到二者互质为止。自动生成p,q,N及加密解密的密钥,可以自由输入明文,返回加密、 解密的内容。 ii. MD5消息摘要计算:用MFC调用WIN32编写的程序,在用户友好界面操作的同时显示程序的加密结果。 4.信息隐藏技术: 用LSB在图片(bmp格式,任意位置的图片)中写入信息,读取信息并显示出来,可 以擦除信息。可以自定义密钥。 5. AES加密解密:用MFC调用WIN32编写的程序,在用户友好界面操作的同时显示程序 加密,解密结果。 6. 以上的所有对文字加密解密的方法(除LSB以外其余所有方法),都可以用于文件加 密,解密,并能够及时保存加密,解密的信息到一个TXT文档,可以存在用户想存放 的地方。 7.更多: 链接了一个可加密解密,功能更为齐全的网站,若是上述方法不能满足用户需求, 可以在程序运行的窗口中点击相应按钮,在联网的条件下进行在线加密解密。 一、系统设计 2.1系统总体框架: 2.2主要的层次逻辑为:

RSA算法实验报告

实验报告 姓名:XXXXXXXXX学号:0XXXXX班级:XXXXXXXXX日期:2013/12/* 题目:RSA算法实验 一、实验环境 1.硬件配置: 处理器:Inter(R) Core(TM) i5-2430M CPU @ 2.40GHz (4 CPUs) ,~2.4GHz 内存:2048MB RAM 2.使用软件: (1) 操作系统:win7 旗舰版 (2) 软件工具:Microsoft Visual c++ 6.0 二、实验涉及的相关概念或基本原理 它是第一个既能用于数据加密也能用于数字签名的算法。算法的名字以发明者的名字命名:Ron Rivest, Adi Shamir 和Leonard Adleman。但RSA的安全性一直未能得到理论上的证明。它经历了各种攻击,至今未被完全攻破。 RSA的安全性依赖于大数分解。公钥和私钥都是两个大素数(大于100 个十进制位)的函数。从一个密钥和密文推断出明文的难度等同于分解两个大素数的积。 密钥对的产生。选择两个大素数,p 和q 。计算: n = p * q 然后随机选择加密密钥e,要求 e 和( p - 1 ) * ( q - 1 ) 互质。最后,利用Euclid 算法计算解密密钥d,满足 e * d = 1 ( mod ( p - 1 ) * ( q - 1 ) ) 其中n和d也要互质。数e和n是公钥,d是私钥。两个素数p和q不再需要,应该丢弃,不要让任何人知道。 加密信息m(二进制表示)时,首先把m分成等长数据块m1 ,m2,..., mi ,块长s ,其中<= n, s 尽可能的 大。对应的密文是: ci = mi^e ( mod n ) ( a ) 解密时作如下计算: mi =ci^d ( mod n ) ( b ) RSA 可用于数字签名,方案是用( a ) 式签名,( b )式验证。具体操作时考虑到安全性和m信息量较大等因素,一般是先作HASH 运算。 RSA 的安全性。RSA的安全性依赖于大数分解,但是否等同于大数分解一直未能得到理论上的证明,因为没有证明破解RSA就一定需要作大数分解。假设存在一种无须分解大数的算法,那它肯定可以修改成为大数分解算法。目前,RSA 的一些变种算法已被证明等价于大数分解。不管怎样,分解n是最显然的攻击方法。现在,人们已能分解多个十进制位的大素数。因此,模数n 必须选大一些,因具体适用情况而定。 RSA的速度。由于进行的都是大数计算,使得RSA最快的情况也比DES慢上倍,无论是软件还是硬件实现。速度一直是RSA的缺陷。一般来说只用于少量数据加密。 RSA的选择密文攻击。RSA在选择密文攻击面前很脆弱。一般攻击者是将某一信息作一下伪装( Blind),

加密技术及密码破解实验报告

第九章、实验报告 实验一、设置Windows启动密码 一、实验目的:利用Windows启动密码保存重要文件。 二、实验步骤: 1、在Windows XP系统中选择开始——运行,在打开输入框中“syskey.exe”,点击确定,打开“保证Windows XP账户数据库的安全”对话框。 2、单击【更新】,打开【启动密码】对话框,然后输入密码,在【确认】文本框中再次输入密码,单击【确定】

实验二、为word文档加密解密 一、实验目的:保护数据的安全 二、实验步骤: 1、打开一个需要加密的文档,选择【工具】——【选项】——【安全性】然后输入想要设置打开文件时所需的密码 2、单击【高级(A)】打开加密类型对话框,选中【加密文档属性】复选框,单击【确定】。 3、打开文件的【确认密码】对话框,输入打开文件时需要的密码,单击【确定】,随即打开【确认密码】对话框,输入密码。 4、保存文件后,重新打开Word文档,打开【密码】,输入打开文件所需的密码,单击【确定】输入修改的密码,单击【确定】

破解word密码 (1)安装Advanced Office Password Recovery软件,安装完成后打开需要破解的word文档,进行暴力破解,结果如图所示: 实验三、使用WinRAR加密解密文件 一.实验目的:加密文件,保证文件的安全性。 二.实验步骤: 1、在需要加密的文件夹上右击,选中【添加到压缩文件】打开【压缩文件名和参数】 2、选中【压缩文件格式】组合框中的【RAR】并在【压缩选项】中选中【压缩后删除源文件】然后切换到【高级】,输入密码,确认密码。

3、关闭对话框,单击确定,压缩完成后,双击压缩文件,系统打开【输入密码对话框】 破解WinRAR加密的文件 (1)安装Advanced RAR Password Recovery软件,打开WinRAR加密文件,进行暴力破解,获得密码。结果如图: 实验四:使用文件夹加密精灵加密文件夹 一、实验目的:对文件进行加密,保证其安全性 二、实验步骤: 1、安装文件夹加密精灵软件,设置登录密码。重新选择【文件加密精灵】,出现登录框。如图

《现代密码学》实验报告

现代密码学实验报告 学生姓名骆秀娟 学号0909121906 专业班级计科1204班 指导教师段桂华 学院信息科学与工程学院 完成时间2014年4月25日

实验一对称密码算法实验 [实验目的] 1.掌握密码学中经典的对称密码算法DES、AES、RC4的算法原理。 2.掌握DES、AES、RC4的算法流程和实现方法。 [实验预备] 1.DES算法有什么特点?算法中的哪些结构保证了其混淆和扩散的特性? 2.AES算法的基本原理和特点。 3.流密码RC4的密钥流生成以及S盒初始化过程。 [实验内容] 1.分析DES、AES、RC4、SHA的实现过程。 2. 用程序设计语言将算法过程编程实现。 3. 完成字符串数据的加密运算和解密运算 输入明文:Idolikethisbook 输入密钥:cryption [实验步骤] 1. 预习DES、AES、RC4算法。 2. 写算法流程,用程序设计语言将算法过程编程实现。 3. 输入指定的明文、密钥进行实验,验证结果。 4. 自己选择不同的输入,记录输出结果。 写出所编写程序的流程图和运行界面、运行结果。

DES程序流程图: DES运行结果:

AES程序流程图: AES运行结果:

RC4流程图:

RC4运行结果: [问题讨论] 1. 在DES算法中有哪些是弱密钥?哪些是半弱密钥? 2. 改变明文或密钥中的一个比特值可能影响AES值中的多少比特? 3.分析实验中在编辑、编译、运行等各环节中所出现的问题及解决方法。 回答问题 解:1>弱密钥有以下几种情况:全0;全1;一半为0,一半为1; 半弱密钥如下:E01F E01F E01F E01F FE01 FE01 FE01 FE01 E001 E001 F101 F101 FE1F FE1F FE01 FE01 2>改变一个比特值最多改变4个AES值。 3>在RC4实验中,为了将输入的char型密钥分个存储进数组中,刚开始我想把它转化为string型,再存储,但是string型数据不能直接从键盘输入,且最后

相关主题
文本预览
相关文档 最新文档