当前位置:文档之家› 现代仪器分析重点总结(加强版)

现代仪器分析重点总结(加强版)

现代仪器分析重点总结(加强版)
现代仪器分析重点总结(加强版)

现代仪器分析:一般的说,仪器分析是指采用比较复杂或特殊的仪器设备,通过测量物质的某些物理或物理化学性质的参数及其变化来获取物质的化学组成、成分含量及化学结构等信息的一类方法。

灵敏度:指待测组分单位浓度或单位质量的变化所引起测定信号值的变化程度。灵敏度也就是标准曲线的斜率。斜率越大,灵敏度就越高

光分析法:利用光电转换或其它电子器件测定“辐射与物质相互作用”之后的辐射强度等光学特性,进行物质的定性和定量分析的方法。

光吸收:当光与物质接触时,某些频率的光被选择性吸收并使其强度减弱,这种现象称为物质对光的吸收。

原子发射光谱法:元素在受到热或电激发时,由基态跃迁到激发态,返回到基态时,发射出特征光谱,依据特征光谱进行定性、定量的分析方法。

主共振线:在共振线中从第一激发态跃迁到激发态所发射的谱线。

分析线:复杂元素的谱线可能多至数千条,只选择其中几条特征谱线检验,称其为分析线。

多普勒变宽:原子在空间作不规则的热运动所引起的谱线变宽。

洛伦兹变宽:待测原子和其它粒子碰撞而产生的变宽。

助色团:本身不吸收紫外、可见光,但与发色团相连时,可使发色团产生的吸收峰向长波方向移动,且吸收强度增强的杂原子基团。

分析仪器的主要性能指标是准确度、检出限、精密度。

根据分析原理,仪器分析方法通常可以分为光分析法、电分析化学方法、色谱法、其它仪器分析方法四大类。

原子发射光谱仪由激发源、分光系统、检测系统三部分组成。

使用石墨炉原子化器是,为防止样品及石墨管氧化应不断加入(N2)气,测定时通常分为干燥试样、灰化试样、原子化试样、清残。

光谱及光谱法是如何分类的?

⑴产生光谱的物质类型不同:原子光谱、分子光谱、固体光谱;⑵光谱的性质和形状:线光谱、带光谱、连续光谱;⑶产生光谱的物质类型不同:发射光谱、吸收光谱、散射光谱。

原子光谱与发射光谱,吸收光谱与发射光谱有什么不同

原子光谱:气态原子发生能级跃迁时,能发射或吸收一定频率的电磁波辐射,经过光谱依所得到的一条条分立的线状光谱。

分子光谱:处于气态或溶液中的分子,当发生能级跃迁时,所发射或吸收的是一定频率范围的电磁辐射组成的带状光谱。

吸收光谱:当物质受到光辐射作用时,物质中的分子或原子以及强磁场中的自选原子核吸收了特定的光子之后,由低能态被激发跃迁到高能态,此时如将吸收的光辐射记录下来,得到的就是吸收光谱。

发射光谱:吸收了光能处于高能态的分子或原子,回到基态或较低能态时,有时以热的形式释放出所吸收的能量,有时重新以光辐射形式释放出来,由此获得的光谱就是发射光谱。

选择内标元素和分析线对有什么要求?

a. 若内标元素是外加的,则该元素在分析试样中应该不存在,或含量极微可忽略不计,以免破坏内标元素量的一致性。

b. 被测元素和内标元素及它们所处的化合物必须有相近的蒸发性能,以避免“分馏”现象发生。

c. 分析线和内标线的激发电位和电离电位应尽量接近(激发电位和电离电位相等或很接近的谱线称为“均称线对”);分析线对应该都是原子线或都是离子线,一条原子线而另一条为离子线是不合适的。

d. 分析线和内标线的波长要靠近,以防止感光板反衬度的变化和背景不同引起的分析误差。分析线对的强度要合适。

e. 内标线和分析线应是无自吸或自吸很小的谱线,并且不受其他元素的谱线干扰。

原子荧光光谱是怎么产生的?有几种类型?

过程:当气态原子受到强特征辐射时,由基态跃迁到激发态,约在10-8s后,再由激发态跃迁回到基态,辐射出与吸收光波长相同或不同的辐射即为原子荧光。

三种类型:共振荧光、非共振荧光与敏化荧光。

为什么原子发射光谱法可采用内标法来消除实验条件的影响?

影响谱线强度因素较多,直接测定谱线绝对强度计算难以获得准确结果,实际工作多采用内标法。内标法属相对强度法,是在待测元素的谱线中选一条谱线作为分析线,然后在基体元素或在加入固定量的其他元素的谱线中选一条非自吸谱线作为内标线,两条谱线构成定量分析线对。

通常为什么不用原子吸收光谱法进行物质的定性分析?

答:原子吸收光谱法是定量测量某一物质含量的仪器,是定量分析用的,不能将物质分离,因此不能鉴定物质的性质,因此不能。。。。

原子吸收光谱法,采用峰值吸收进行定量分析的条件和依据是什么?

为了使通过原子蒸气的发射线特征(极大)频率恰好能与吸收线的特征(极大)频率相一致,通常用待测元素的纯物质作为锐线光源的阴极,使其产生发射,这样发射物质与吸收物质为同一物质,产生的发射线与吸收线特征频率完全相同,可以实现峰值吸收。

朗伯比尔定律的物理意义是什么?偏离朗伯比尔定律的原因主要有哪些?

物理意义是:当一束平行单色光通过均匀的溶液时,溶液的吸光度A与溶液中的吸光物质的浓度C及液层厚度L的乘积成正比。A=kcL

偏离的原因是:1入射光并非完全意义上的单色光而是复合光。2溶液的不均匀性,如部分入射光因为散射而损失。3溶液中发生了如解离、缔合、配位等化学变化。

影响原子吸收谱线宽度的因素有哪些?其中最主要的因素是什么?

答:影响原子吸收谱线宽度的因素有自然宽度Δf N、多普勒变宽和压力变宽。其中最主要的是多普勒变宽和洛伦兹变宽。

原子吸收光谱法,采用极大吸收进行定量的条件和依据是什么?

答:原子吸收光谱法,采用极大吸收进行定量的条件:①光源发射线的半宽度应小于吸收线半宽度;②通过原子蒸气的发射线中心频率恰好与吸收线的中心频率ν0相重合。定量的依据:A=Kc

原子吸收光谱仪主要由哪几部分组成?各有何作用?

答:原子吸收光谱仪主要由光源、原子化器、分光系统、检测系统四大部分组成。

光源的作用:发射待测元素的特征谱线。

原子化器的作用:将试样中的待测元素转化为气态的能吸收特征光的基态原子。

分光系统的作用:把待测元素的分析线与干扰线分开,使检测系统只能接收分析线。

检测系统的作用:把单色器分出的光信号转换为电信号,经放大器放大后以透射比或吸光度的形式显示出来。

使用空心阴极灯应注意些什么?如何预防光电倍增管的疲劳?

答:使用空心阴极灯应注意:使用前须预热;选择适当的灯电流。预防光电倍增管的疲劳的方法:避免长时间进行连续光照。

与火焰原子化器相比,石墨炉原子化器有哪些优缺点?

与火焰原子化器相比,石墨炉原子化器的优点有:原子化效率高,气相中基态原子浓度比火焰原子化器高数百倍,且基态原子在光路中的停留时间更长,因而灵敏度高得多。

缺点:操作条件不易控制,背景吸收较大,重现性、准确性均不如火焰原子化器,且设备复杂,费用较高。

光谱干扰有哪些,如何消除?

答:原子吸收光谱法的干扰按其性质主要分为物理干扰、化学干扰、电离干扰和光谱干扰四类。

消除方法:

物理干扰的消除方法:配制与待测溶液组成相似的标准溶液或采用标准加入法,使试液与标准溶液的物理干扰相一致。

化学干扰的消除方法:加入释放剂或保护剂。

电离干扰的消除方法:加入一定量的比待测元素更容易电离的其它元素(即消电离剂),以达到抑制电离的目的。

光谱干扰的消除方法:缩小狭缝宽度来消除非共振线干扰;采用空白校正、氘灯校正和塞曼效应校正的方法消除背景吸收。

比较标准加入法与标准曲线法的优缺点。

答:标准曲线法的优点是大批量样品测定非常方便。缺点是:对个别样品测定仍需配制标准系列,手续比较麻烦,特别是遇到组成复杂的样品测定,标准样的组成难以与其相近,基体效应差别较大,测定的准确度欠佳。

标准加入法的优点是可最大限度地消除基干扰,对成分复杂的少量样品测定和低含量成分分析,准确度较高;缺点是不能消除背景吸收,对批量样品测定手续太繁,不宜采用。电子跃迁有哪几种类型?哪些类型的跃迁能在紫外及可见光区吸收光谱中反映出来?

答:电子跃迁的类型有四种:б→б*,n→б*,n→π*,π→π*。

其中n→б*,n→π*,π→π*的跃迁能在紫外及可见光谱中反映出来。

何谓发色团和助色团?举例说明。

答:发色团指含有不饱和键,能吸收紫外、可见光产生n→π*或π→π*跃迁的基团。例如:>C=C<,—C≡C—,>C=O,—N=N—,—COOH等。

助色团:指含有未成键n 电子,本身不产生吸收峰,但与发色团相连能使发色团吸收峰向长波方向移动,吸收强度增强的杂原子基团。例如:—NH2,—OH,—OR,—SR,—X 等。

标准光谱比较定性法为什么选铁谱?

(1)谱线多:在210~660nm范围内有数千条谱线;

(2)谱线间距离分配均匀:容易对比,适用面广;

(3)定位准确:已准确测量了铁谱每一条谱线的波长。

已知一物质在它的最大吸收波长处的摩尔吸收系数κ为1.4×104L·mol-1·cm-1,现用1cm吸收池测得该物质溶液的吸光度为0.850,计算溶液的浓度。

解:∵A=KCL

∴C=A/(KL)=0.850/(1.4×104×1)=0.607×10-4(mol·L-1 )

10.K2CrO4的碱性溶液在372nm处有最大吸收,若碱性K2CrO4溶液的浓度c(K2CrO4)=3.00×10-5mol· L-1,吸收池长度为1cm,在此波长下测得透射比是71.6%。计算:(1)该溶液的吸光度;(2)摩尔吸收系数;(3)若吸收池长度为3cm,则透射比多大?

解:(1)A=-lgT=-lg71.6%=0.415

(2)K=A/(CL)=0.415/(3.00×10-5×1)=4.83×103 (L·mol-1·cm-1 )

(3)∵lgT=-A=-KCL=-4.83×103×3.00×10-5×3=-0.4347

∴T=36.75%

苯胺在λmax为280nm处的κ为1430 L·mol-1·cm-1,现欲制备一苯胺水溶液,使其透射比为30%,吸收池长度为1cm,问制备100mL该溶液需苯胺多少克?

解:设需苯胺X g,则∵A=-lgT= KCL

∴0.523=1430×(X/M×100×10-3) ×1 X=3.4×10-3g

化学分析:是指利用化学反应和它的计量关系来确定被测物质的组成和含量的一类分析方法。测定时需使用化学试剂、天平和一些玻璃器皿。

仪器分析与化学分析的区别不是绝对的,仪器分析是在化学分析基础上的发展。不少仪器分析方法的原理,涉及到有关化学分析的基本理论;不少仪器分析方法,还必须与试样处理、分离及掩蔽等化学分析手段相结合,才能完成分析的全过程。

仪器分析的特点(与化学分析比较)

灵敏度高,检出限低、选择性好、操作简便,分析速度快,易于实现自动化和智能化。应用范围广,不但可以作组分及含量的分析,在状态、结构分析上也有广泛的应用相对误差较大。需要价格比较昂贵的专用仪器,并且仪器的工作条件要求较高。

仪器分析方法分类:

1、光分析法凡是以电磁辐射为测量信号的分析方法均为光分析法。可分为光谱法和非光谱法。

光谱法则是以光的吸收、发射和拉曼散射等作用而建立的光谱方法。这类方法比较多,是主要的光分析方法。

非光谱法是指那些不以光的波长为特征的信号,仅通过测量电磁幅射的某些基本性质(反射,折射,干涉,衍射,偏振等)。

光分析法的分类:原子发射光谱,原子吸收光谱,紫外可见光谱,红外光谱,核磁谱,分子荧光光谱,原子荧光光谱

2、电化学分析法是根据物质在溶液中的电化学性质建立的一类分析方法。以电讯号作为计量关系的一类方法, 主要有四大类:电位法、电导法、电解法、极谱法及伏安法。

3.色谱法:色谱法是以物质在两相(流动相和固定相)中分配比的差异而进行分离和分析的方法。主要有:气相色谱法和液相色谱法。

4. 其它仪器分析方法

①质谱:根据物质带电粒子的质荷比在电磁场作用下进行定性、定量和结构分析的方法。

②热分析:依据物质的质量、体积、热导、反应热等性质与温度之间的动态关系来进行分析的方法是热差分析法。

③放射分析:依据物质的放射性辐射来进行分析的方法同位素稀释法,中子活化分析法。

仪器分析的应用领域

社会:化学:生命科学:环境科学:材料科学:药物:外层空间探索:

标准曲线是被测物质的浓度或含量与仪器响应信号的关系曲线。

线性范围标准曲线的直线部分所对应的被测物质浓度(或含量)的范围。

精密度是指使用同一方法,对同一试样进行多次平行测定所得测定结果的一致程度。精密度常用测定结果得标准偏差 s 或相对标准偏差(sr)量度。

准确度试样含量的测定值与试样含量的真实值(或标准值)相符合的程度称为准确度。准确度常用相对误差量度。

检出限某一方法在给定的置信水平上可以检出被测物质的最小质量,称为这种方法对该物质的检出限,以浓度表示的称为相对检出限,以质量表示的称为绝对检出限。

方法的灵敏度越高,精密度越好,检出限就越低。

检出限是方法灵敏度和精密度的综合指标,它是评价仪器性能及分析方法的主要技术指标。

光学分析方法:利用光电转换或其它电子器件测定“辐射与物质相互作用”之后的辐射强度等光学特性,进行物质的定性和定量分析的方法。

光分析法在研究物质组成、结构表征、表面分析等方面具有其他方法不可取代的地位;

电磁辐射的基本性质:

电磁辐射(电磁波):以接近光速(真空中为光速)传播的能量;以巨大速度通过空间,不需要以任何物质作为传播媒介的一种能量。

电磁辐射具有波动性和粒子性;

光的波动性:电磁辐射为正弦波(波长、频率、速度、振幅)。与其它波如声波不同,电磁波不需传播介质,可在真空中传输。

频率为空间某点的电场每秒钟达到正极大值的次数

周期两个相邻矢量极大(或极小)通过空间某固定点所需的时间间隔叫做辐射的周期

光的粒子性:当物质发射电磁辐射或者电磁辐射被物质吸收时,就会发生能量跃迁。此时,电磁辐射不仅具有波的特征,而且具有粒子性,最著名的例子是光电效应现象的发现。

1)光电效应

2)能态量子理论物质粒子总是处于特定的不连续的能量状态,即能量是量子化的;处于不同能量状态粒子之间发生能量跃迁时的能量差?E 可用 hν表示。

两个重要推论:物质粒子存在不连续的能态,各能态具有特定的能量。当粒子的状态发生变化时,该粒子将吸收或发射完全等于两个能级之间的能量差;反之亦是成立的,即?E =E1-E0=hν

辐射能的特性

1)吸收物质选择性吸收特定频率的辐射能并从低能级跃迁到高能级;

2)发射将吸收的能量以光的形式释放出;

3)散射丁铎尔散射、瑞利散射、拉曼散射;

4)折射折射是光在两种介质中的传播速度不同;

5)反射

6)干涉干涉现象;

7)衍射光绕过物体而弯曲地向他后面传播的现象;

8)偏振只在一个固定方向有振动的光称为平面偏振光。

丁达尔散射:大分子(如胶体粒子和聚合物分子)尺寸与光的波长相近时所产生的散射现象,此时散射光极强(与λ2成反比),可以肉眼观察到。

瑞利散射:(弹性碰撞。方向改变,但λ不变)

当分子或分子集合体的尺寸远小于光的波长时所发生的散射现象。散射光强与光的波长的λ4、散射粒子的大小和极化率成反比。

拉曼散射:(非弹性碰撞,方向及波长均改变)

光照导致的分子内振动能级跃迁而产生的分子极化过程。分子极化率越大, Raman 散射越强。

电磁波谱的排列从上到下随波长的逐渐增大,频率和光量子的能量逐渐减小。(量变→质变)

朗伯-比尔定律透光度T=It/I0吸光度A= -lgT

光吸收的基本定律

朗伯定律:光吸收与溶液层厚度成正比

比尔定律:光吸收与溶液浓度成正比

摩尔吸光系数(ε)的讨论

1)吸收物质在一定波长和溶剂条件下的特征常数,可作为定性鉴定的参数;

2)不随浓度c和光程长度b的改变而改变。在温度和波长等条件一定时,ε仅与吸收物质本身的性质有关,与待测物浓度无关;

3)同一吸光物质在不同波长下的ε值是不同的。在最大吸收波长λmax处的摩尔吸光系数,常以εmax表示。εmax表明了该吸收物质最大限度的吸光能力,也反映了光度法测定该物质可能达到的最大灵敏度。

4)εmax越大表明该物质的吸光能力越强,用光度法测定该物质的灵敏度越高。ε>105:超高灵敏;

ε=(6~10)×104:高灵敏;

ε<2×104:不灵敏。

5)ε在数值上等于浓度为1mol/L、液层厚度为1cm时该溶液在某一波长下的吸光度。

Lambert-Beer law的适用条件

1) 单色光: 应选用 max处或肩峰处测定

2) 吸光质点形式不变:离解、络合、缔合会破坏线性关系,应控制条件(酸度、浓度、介质等)

3) 稀溶液:浓度增大,分子之间作用增强

光分析法的分类

(一)光谱法——基于物质与辐射能作用时,分子发生能级跃迁而产生的发射、吸收或散射的波长或强度进行分析的方法;

产生光谱的物质类型不同:

原子光谱、分子光谱、固体光谱

光谱的性质和形状:

线光谱、带光谱、连续光谱

产生光谱的物质类型不同:

发射光谱、吸收光谱、散射光谱

原子光谱(线性光谱):最常见的三种

基于原子外层电子跃迁的原子吸收光谱

原子发射光谱、原子荧光光谱;

基于原子内层电子跃迁的 X射线荧光光谱

基于原子核与射线作用的穆斯堡谱;

分子光谱(带状光谱):紫外光谱法(UV);红外光谱法(IR);分子荧光光谱法(MFS);分子磷光光谱法;核磁共振与顺磁共振波谱;

连续光谱:

固体被加热到炽热状态时,无数原子和分子的运动或振动所产生的热辐射,也称黑体辐射。通常产生背景干扰。温度越高,辐射越强,而且短波长的辐射强度增加得最快!

另一方面,炽热的固体所产生的连续辐射是红外、可见及较长波长的重要辐射源(光源)。

(二)非光谱法:

不涉及能级跃迁,物质与辐射作用时,仅改变传播方向等物理性质;偏振法、干涉法、旋光法等;

光谱仪器通常包括五个基本单元:光源;单色器;样品;检测器;显示与数据处理

棱镜的色散作用是基于构成棱镜的光学材料对不同波长的光具有不同的折射率。波长长的光折射率小;波长短的光,折射率大。

平行光经过棱镜后按波长顺序排列成为单色光;经聚焦后在焦面上的不同位置上成像,获得按波长展开的光谱;

棱镜的分辨能力取决于棱镜的几何尺寸和材料;

棱镜的光学特性可用色散率和分辨率来表征;

棱镜的特性与参数

光栅(透射光栅,反射光栅)

光栅光谱的产生是多狭缝干涉与单狭缝衍射共同作用的结果,前者决定光谱出现的位置,后者决定谱线强度分布;

光栅的特性可用色散率和分辨率来表征当

角色散率只与色散元件的性能有关;线色散率还与仪器的焦距有关。

狭缝宽度的选择原则:

在原子发射光谱分析中,

定性分析:选择较窄的狭缝宽度—提高相邻谱线的分辨率,减少其它谱线的干扰,提高选择性;

定量分析:选择较宽的狭缝宽度—增加照亮狭缝的亮度,使光强增加,提高分析的灵敏度;

应根据样品性质和分析要求确定狭缝宽度。并通过条件优化确定最佳狭缝宽度。

与发射光谱分析相比,原子吸收光谱因谱线数少,可采用较宽的狭缝。但当背景大时,可适当减小缝宽。

狭缝两边的边缘应锐利且位于同一平面上;

检测器:光电转换器是将光辐射转化为可以测量的电信号的器件。

理想的光电转换器要求:灵敏度高; S/N 大;暗电流小;响应快且在宽的波段内响应恒定。

噪声的来源

化学噪声:分析体系中难以控制的一些化学因素。

仪器的光 ( 电 ) 源、输入 ( 出 ) 转换器、信号处理单元等都是仪器噪声的来源。所用仪器的每个部分都可产生不同类别的噪声。

通常将仪器噪声分为热噪声、散粒噪声、闪变噪声、环境噪声

光检测器

硒光电池:优点:光电流直接正比于辐射能;使用方便、便于携带(耐用、成本低);缺点:电阻小,电流不易放大;响应较慢。只在高强度辐射区较灵敏;长时间使用后,有“疲劳”现象。

真空光电管:优点:阻抗大,电流易放大;响应快;应用广。缺点:有微小暗电流。

光电倍增管:优点:高灵敏度;响应快;适于弱光测定,甚至对单一光子均可响应。缺点:热发射强,因此暗电流大,需冷却( -30oC )。不得置于强光下,否则可永久损坏 PMT !原子发射光谱分析法:元素在受到热或电激发时,由基态跃迁到激发态,返回到基态时,发射出特征光谱,依据特征光谱进行定性、定量的分析方法。

原子发射光谱分析法的分类:

根据仪器设备和检测手段不同:摄谱分析法、光电直读法、火焰光度法、原子荧光分析法

原子发射光谱分析的过程,一般有光谱的获得和光谱的分析两大过程。具体可分为:试样的处理、样品的激发、光谱的获得和记录、光谱的检测

原子发射光谱分析法的特点:(1)可多元素同时检测(2)分析速度快(3)选择性高 (4)检出限较低 (5)准确度较高 (6)所需试样量少;(7) ICP-AES性能优越

缺点:(1) 无法检测非金属元素: (2) 只能确定物质的元素组成与含量,不能给出物质分子及其结构的信息。(3) 在经典分析中,影响谱线强度的因素较多,尤其是试样组分的影响较为显著,所以对标准参比的组分要求较高。 (4)含量(浓度)较大时,准确度较差。

原子发射光谱的产生

在正常状态下,元素处于基态,元素在受到热(火焰)或电(电火花)激发时,由基态跃迁到激发态,返回到基态时,发射出特征光谱(线状光谱);

激发电位:由低能态--高能态所需要的能量,以 eV 表示。每条谱线对应一激发电位。

原子线:原子外层电子的跃迁所发射的谱线,以 I 表示 , 如 Na(I)

共振线:由激发态到基态跃迁所产生的谱线,激发电位最小—最易激发—谱线最强。

电离电位和离子线:原子受激后得到足够能量而失去电子—电离;所需的能量称为电离电位;

离子的外层电子跃迁—离子线。以 II,III,IV 等表示。

等离子体:以气态形式存在的包含分子、离子、电子等粒子的整体电中性集合体。等离子体内温度和原子浓度的分布不均匀,中间的温度、激发态原子浓度高,边缘反之。

自吸:中心发射的辐射被边缘的同种基态原子吸收,使辐射强度降低的现象。元素浓度低时,不出现自吸。随浓度增加,自吸越严重,当达到一定值时,谱线中心完全吸收,如同出现两条线,这种现象称为自蚀。

发射光谱按接受光谱方式分:看谱法、摄谱法、光电法;

按仪器分光系统分:棱镜摄谱仪、光栅摄谱仪;

性能指标:色散率、分辨率、集光能力。

发射光谱的产生电弧点燃后,热电子流高速通过分析间隔冲击阳极,产生高热,试样蒸发并原子化,电子与原子碰撞电离出正离子冲向阴极。电子、原子、离子间的相互碰撞,使原子跃迁到激发态,返回基态时发射出该原子的光谱。

弧焰温度:4000~7000 K 可使约70多种元素激发;

特点:绝对灵敏度高,谱线背景小,适合定性分析;

缺点:弧光不稳,再现性差;不适合定量分析。

低压交流电弧:特点:1)电弧温度高,激发能力强;

2)电极温度稍低,蒸发能力稍低;3)电弧稳定性好,使分析重现性好,适用于定量分析。

高压火花的特点:

1)放电瞬间能量很大,产生的温度高,激发能力强,某些难激发元素可被激发,且多为离子线;

2)放电间隔长,使得电极温度低,蒸发能力稍低,适于低熔点金属与合金的分析;

3)稳定性好,重现性好,适用定量分析(易熔金属、合金以及高含量元素);

缺点:灵敏度较差,但可做较高含量的分析;噪音较大;

等离子体喷焰作为发射光谱的光源主要有以下三种形式:直流等离子体喷焰、电感耦合等离子体、微波感生等离子体

采用ICP作为光源是ICP-AES与其他光谱仪的主要不同之处。

主要部分:高频发生器、等离子体炬管、试样雾化器、光谱系统

ICP是由高频发生器、等离子体炬管和雾化器等三部分组成。

原理:当高频发生器接通电源后,高频电流I通过感应线圈产生交变磁场(绿色)。

特点:温度高,惰性气氛,原子化条件好,有利于难熔化合物的分解和元素激发,有很高的灵敏度和稳定性;“趋肤效应”,涡电流在外表面处密度大,使表面温度高,轴心温度低,中心通道进样对等离子的稳定性影响小。也有效消除自吸现象,线性范围宽(4~5个数量级);ICP中电子密度大,碱金属电离造成的影响小:Ar气体产生的背景干扰小;无电极放电,无电极污染;

缺点:对非金属测定的灵敏度低,仪器昂贵,操作费用高。

等离子体发射光谱仪

1. 光电直读等离子体发射光谱仪

光电直读是利用光电法直接获得光谱线的强度;

两种类型:多道固定狭缝式和单道扫描式;

特点 (1) 多达70个通道可选择设置,同时进行多元素分析,这是其他金属分析方法所不具备的;(2) 分析速度快,准确度高;(3) 线性范围宽(4) 适用于难激发或易氧化的元素

缺点:(1) 出射狭缝固定,各通道检测的元素谱线一定;(2) 雾化效率较低,设备贵。

2. 全谱直读等离子体光谱仪

采用CID阵列检测器,可同时检测165~800nm波长范围内出现的全部谱线;中阶梯光栅分光系统,仪器结构紧凑,体积大大缩小;

兼具多道型和扫描型特点;

仪器特点:

(1) 测定每个元素可同时选用多条谱线;

(2) 可在一分钟内完成70个元素的定量测定;

(3) 可在一分钟内完成对未知样品中多达70多元素的定性;

(4) 1mL的样品可检测所有可分析元素;

(5) 扣除基体光谱干扰;

(6) 全自动操作;

(7) 分析精度:CV 0.5%。

光谱定性分析定性依据:元素不同→电子结构不同→光谱不同→特征光谱

分析线:复杂元素的谱线可能多至数千条,只选择其中几条特征谱线检验,称其为分析线;

最后线:或称持久线。当待测物含量逐渐减小时,谱线数目亦相应减少,当 c 接近 0 时所观察到的谱线,是理论上的灵敏线或第一共振线。

灵敏线:最易激发的能级所产生的谱线,每种元素都有一条或几条谱线最强的线,即灵敏线。最后线也是最灵敏线;

共振线:由第一激发态回到基态所产生的谱线;通常也是最灵敏线、最后线;

定性分析的方法纯样光谱比较法和铁光谱比较法。

⑴纯样光谱比较法(标准试样比较法)将欲检出元素的物质或纯化合物与未知试样在相同条件下并列摄谱于同一块感光板上(此时不用铁谱)。显影、定影后在映谱仪上对照检查两列光谱,以确定未知样中某元素是否存在。此法多应用于不经常遇到的元素分析。

(2)铁光谱比较法(标准光谱比较法):最常用的方法,以铁谱作为标准(波长标尺);

标准谱图:将其他元素的分析线标记在铁谱上,铁谱起到标尺的作用。

谱线检查:将试样与纯铁在完全相同条件下摄谱,将两谱片在映谱器(放大器)上对齐、放大20倍,检查待测元素的分析线是否存在,并与标准谱图对比确定。可同时进行多元素测定。

注意:一般有两条以上灵敏线出现,可确认该元素存在;防止过度检出或漏检

定性分析实验操作技术

(1) 试样处理

a. 金属或合金可以试样本身作为电极,当试样量很少时,将试样粉碎后放在电极的试样槽内;

b. 固体试样研磨成均匀的粉末后放在电极的试样槽内;

c. 糊状试样先蒸干,残渣研磨成均匀的粉末后放在电极的试样槽内。液体试样可采用ICP-AES直接进行分析。

(2) 实验条件选择

a. 光谱仪在定性分析中通常选择灵敏度高的直流电弧;狭缝宽度5~7 m;分析稀土元素时,由于其谱线复杂,要选择色散率较高的大型摄谱仪。

b. 电极电极材料:采用光谱纯的碳或石墨,特殊情况采用铜电极;

电极尺寸:直径约6mm,长3~4 mm;

试样槽尺寸:直径约3~4 mm。深3~6 mm;

试样量:10 ~20mg ;

放电时,碳+氮产生氰 (CN),氰分子在358.4~421.6 nm产生带状光谱,干扰其他元素出现在该区域的光谱线,需要该区域时,可采用铜电极,但灵敏度低。

(3)摄谱过程摄谱顺序:碳电极(空白)、铁谱、试样;

分段暴光法:先在小电流(5A)激发光源摄取易挥发元素光谱调节光阑,改变暴光位置后,加大电流(10A),再次暴光摄取难挥发元素光谱;

光谱半定量分析

与目视比色法相似;测量试样中元素的大致浓度范围;若分析任务对准确度要求不高时,多采用光谱半定量分析。

应用:用于钢材、合金等的分类、矿石品位分级等大批量试样的快速测定。

谱线强度(黑度)比较法:配制一个基体与试样组成近似的被测元素的标准系列,在相同条件下,在同一感光板上标准系列与试样并列摄谱。然后在映谱仪上用目视法直接比较试样与标准系列中被测元素分析线的黑度。若黑度相同或黑度界于某二个标准样之间,则可做出试样中被测元素的含量与标准样品中某一元素含量近似相等或界于二个标准含量之间的判断。

该法的准确度取决于被测试样与标准样品组成的相似程度及标准样品中欲测元素含量间隔的大小。

显线法元素含量低时,仅出现少数灵敏线、随着元素含量增加,一些次灵敏线与较弱的谱线相继出现,于是可以编成一张谱线出现与含量的关系表,以后就根据某一谱线是否出现来估计试样中该元素的大致含量。该法的优点是简便快速,其准确程度受试样组成与分析条件的影响较大。

光谱定量分析

(1) 发射光谱定量分析的基本关系式

在条件一定时,谱线强度I 与待测元素含量c关系为: I = a c

a为常数(与蒸发、激发过程等有关),考虑到发射光谱中存在着自吸现象,需要引入自吸常数 b ,则:

I=acb或者logI = blogc + loga

发射光谱定量分析的基本关系式,称为塞伯-罗马金公式(经验式)。自吸常数 b 随浓度c增加而减小,当浓度很小,自吸消失时,b=1。

直接利用赛伯-罗马金公式进行光谱定量分析叫做绝对强度法

(2) 内标法基本关系式

影响谱线强度因素较多,直接测定谱线绝对强度计算难以获得准确结果,实际工作多采用内标法(相对强度法)。

内标元素与分析线对的选择:

a. 若内标元素是外加的,则该元素在分析试样中应该不存在,或含量极微可忽略不计,以免破坏内标元素量的一致性。

b. 被测元素和内标元素及它们所处的化合物必须有相近的蒸发性能,以避免“分馏”现象发生。

c. 分析线和内标线的激发电位和电离电位应尽量接近(激发电位和电离电位相等或很接近的谱线称为“均称线对”);分析线对应该都是原子线或都是离子线,一条原子线而另

一条为离子线是不合适的。

d. 分析线和内标线的波长要靠近,以防止感光板反衬度的变化和背景不同引起的分析误差。分析线对的强度要合适。

e. 内标线和分析线应是无自吸或自吸很小的谱线,并且不受其他元素的谱线干扰。 定量分析方法

a. 标准曲线法(校正曲线法 )

①当以感光板为检测器时(摄谱法): ?S = S-S0 =γ lgR = γ blgc + γ lgA

在完全相同的条件下,将标准样品与试样在同一感光板上摄谱,由标准试样分析线对的黑度差( S )对lgc 作标准曲线(三个点以上,每个点取三次平均值),再由试样分析线对的黑度差,在标准曲线上求得未知试样lgc 。该法即三标准试样法。 ②当以光电管为检测器时(光电直读法):

ΔlgU = lgU-lgU0 = γblgc + γlgA 即以ΔlgU 对 lgc 作图,也可制作标准曲线,并求得浓度值。 标准曲线法是光谱定量分析的基本方法,应用广泛,特别适用于成批样品的分析。 b.标准加入法(增量法)

无合适内标物时,采用该法。用于测定微量元素

标准加入法可用来检查基体纯度、估计系统误差、提高测定灵敏度等。 干扰来源及其消除方法

1.背景干扰由连续光谱或分子带光谱等所产生的谱线强度(或黑度)叠加于线状光谱上所引起的干扰。也是噪音干扰的一种。 光谱背景是指在线状光谱上,叠加着由于某些原因产生的连续光谱。

背景来源:a )分子辐射。 b )连续辐射c )谱线扩散d )轫致辐射e )复合辐射f )杂散光 背景的扣除:摄谱法(感光板为检测器) 、光电直读光谱法 、基体干扰

基体:样品中除待测物以外的其它组份称为基体,基体对测定的干扰是非常复杂的。 光谱添加剂分为光谱载体和光谱缓冲剂。

1)光谱载体 光谱载体多是一些化合物和碳粉。1、其作用包括控制蒸发行为: 2控制电弧温度:3增加停留时间: 2)光谱缓冲剂 大量辅助物质的加入,可补偿由于试样组成变化对测定的影响,减少标样与试样间的基体差异。 原子荧光分析法原子在辐射激发下发射的荧光强度来定量分析的方法;属发射光谱但所用仪器与原子吸收仪器相近; 特点 检出限低、灵敏度高、谱线简单、干扰小、线性范围宽(可达3~5个数量级)、易实现多元素同时测定(产生的荧光向各个方向发射) 缺点:荧光淬灭效应、复杂基体效应等可使测定灵敏度降低;散射光干扰;可测量的元素不多,应用不广泛 原子荧光光谱的产生过程

过程:当气态原子受到强特征辐射时,由基态跃迁到激发态,约在10-8s 后,再由激发态跃迁回到基态,辐射出与吸收光波长相同或不同的辐射即为原子荧光; 特点:(1)属光致发光;二次发光(2)激发光源停止后,荧光立即消失(3)发射的荧光强度与照射的光强有关(4)不同元素的荧光波长不同(5)浓度很低时,强度与蒸气中该元素的密度成正比,定量依据(适用于微量或痕量分析); 原子荧光的产生类型共振荧光、非共振荧光与敏化荧光

荧光猝灭: 受激发原子与其他原子碰撞,能量以热或其他非荧光发射方式给出,产生非荧光去激发过程,使荧光减弱或完全不发生的现象。 荧光猝灭程度与原子化气氛有关,氩气气氛中荧光猝灭程度最小。如何恒量荧光猝灭程度? 荧光量子效率: Φ = Φ f / Φ a

Φ f 发射荧光的光量子数;Φ a 吸收的光量子数之比;荧光量子效率≈1 待测原子浓度与荧光的强度

当光源强度稳定、辐射光平行、自吸可忽略 ,发射荧光的强度 If 正比于基态原子对特定频率吸收光的吸收强度 Ia ;If = Φ Ia 在理想情况下:

I0 原子化火焰单位面积接受到的光源强度;A 为受光照射在检测器中观察到的有效面积;K0为峰值吸收系数;l 为吸收光程;N 为单位体积内的基态原子数;这就是原子荧光定量原理。 原子荧光光度计

仪器组成(1) 光源 (2) 原子化器 (3) 分光系统 (4) 检测器 仪器类型 单通道、多通道、色散型、非色散型

原子发射光谱分析在鉴定金属元素方面(定性分析)具有较大的优越性,不需分离、多元素同时测定、灵敏、快捷,可鉴定周期表中约70多种元素,长期在钢铁工业(炉前快速分析)、地矿等方面发挥重要作用;在定量分析方面,原子吸收分析有着优越性; AAS 与AES 之比较:

相似之处——产生光谱的对象都是原子;

不同之处——AAS 是基于“基态原子”选择性吸收光辐射能(h ),并使该光辐射强度降低而产生的光谱(共振吸收线);AES 是基态原子受到热、电或光能的作用,原子从基态跃迁至激发态,然后再返回到基态时所产生的光谱(共振发射线和非共振发射线)。 优点:

(1) 灵敏度高:绝对灵敏度可达10-15一10-13g 。 (2) 选择性好:干扰较少,易于消除。 (3) 精密度和准确度高:

(4) 测定元素多:元素周期表中能够用原子吸收法测定的元素多达70多种。

(5) 需样量少、分析速度快 一次测定,只需几微升到几毫升样品,几秒钟便可测定一个样品。 缺点:对多数非金属元素还不能直接测定。 原子吸收光谱的产生

光辐射→气态原子价电子→光辐射减弱 (基态 → 激发态) 原子吸收光谱测量辐射被吸收程度的光谱 基态原子数与待测元素含量的关系

待测元素在进行原子化时,其中必有一部分原子吸收了较多的能量而处于激发态,据热力学原理,当在一定温度下处于热力学平衡时,激发态原子数Nq 与基态原子数N0之比服从 Boltzmann 分配定律:

可见, Nq/N0 的大小主要与“波长” 及“温度”有关。即

a )当温度保持不变时:激发能越小或波长越长, Nq/N0 则越大,即波长长的原子处于激发态的数目多;但在 AAS 中,波长不超过 600nm 。换句话说,激发能对 Nq/N0 的影响有限!

b )温度增加,则 Nq/N0 大,即处于激发态的原子数增加 谱线变宽因素 (1) 自然变宽

无外界因素影响时谱线具有的宽度。其大小为 :τK 为激发态寿命, 10-7-10-8s τK 越大,宽度越小,一般约为10-4nm (2) 多普勒变宽(热变宽)——原子在空间作不规则的热运动所引起的谱线变宽。 (3) 压力变宽(碰撞变宽)

——吸收原子与外界气体分子之间的相互作用引起的变宽 洛伦兹变宽——待测原子和其它粒子碰撞而产生的变宽 赫尔兹马克变宽——待测原子之间相互碰撞而产生的变宽 原子吸收线的测量

1)积分吸收法——围绕着中心频率v0,在它的半宽范围内,吸收系数的积分面积。即:

c K N l K A I ΦI f ?=?????=00kT E

e

g g N N q

q ?-

?=00?∞

=0

aN d K ν

ν

实际中积分吸收不能测量

原因:光源—通带宽0.2nm

吸收—窄吸收10-3nm

导致:待测原子吸收线引起的吸收值,仅相当于总入射光强度的0.5%

亦即:入射光强度与透射光强度相差很小。

2)极大(峰)值吸收法——以半宽比吸收线的半宽还要小得多的锐线光源来代替产生连续光谱的激发光源,测量谱线的峰值吸收。

原子吸收光谱的仪器装置

锐线光源原子化器分光系统检测系统

(1)光源(空心阴极灯、无极放电灯、蒸气放电灯)

空心阴极灯结构及工作原理

阴极——空心圆柱体:①直接用某元素制成

②内壁衬有某元素或其合金制成

阳极——钨棒末端焊有钛丝或钽片

管内充低压惰性气体氖气、氩气

工作原理:向两极加电压(300-500V)阴极 e →阳极使惰性气体原子获得足够动能电离,气体正离子碰撞阴极内壁,金属原子“溅射”激发,激发态原子跃迁到基态辐射能量,产生锐线光谱源。

使用要求:不超过最大工作电流

使用电流—选择最大工作电流?

过高:谱线变宽、灵敏度↘

过低:光强↘稳定性↘灵敏度↘

种类:单元素灯、双元素灯、多元素灯

(2)原子化器

作用:把试样中的待测元素转化为基态原子

要求:原子化效率高、不受浓度影响、稳定性好、重现性好

分类:火焰原子化器

石墨炉原子化器(电热原子化器)

低温原子化技术

①火焰原子化器(预混合型、全消耗型)组成:雾化器、预混合室、燃烧器、供气系统

层流火焰:

第一燃烧区预热区

第二燃烧区中间薄层区

中间薄层区温度最高,是原子吸收的主要观测区。

火焰原子化器(预混合)

优点:重现性好、操作简便

缺点:原子化效率低、不能直接分析固样

试样雾滴在火焰中,经蒸发,干燥,离解(还原)等过程产生大量基态原子。

火焰温度的选择:

(a)保证待测元素充分离解为基态原子的前提下,尽量采用低温火焰;

(b)火焰温度越高,产生的热激发态原子越多;

(c)火焰温度取决于燃气与助燃气类型,常用空气—乙炔最高温度2600K能测35种元素。

火焰类型:

化学计量火焰(燃助比为1:4):

温度高,干扰少,稳定,背景低,常用。

富燃焰(燃助比大于1:3)

还原性火焰,燃烧不完全,用于

测定较易形成难熔氧化物的元素Mo、Cr、稀土等。

贫燃焰(燃助比小于1:6)

火焰温度低,氧化性气氛,适用于碱金属测定。

②石墨炉原子化器(电热)

原理:利用电流直接加热石墨,使其达到高温并使贮装的样品在高温下直接原子化而进行测定。

特点:样品用量少、原子化效率高

灵敏度高于火焰法数百倍

能直接分析液体、固体样品

缺点:操作条件不易控制、稳定性差、有记忆效应、测量精度差、价高

③低温原子化技术:氢化物发生法和冷原子吸收法

a 氢化物发生法

特点:原子化温度低;灵敏度高、基体干扰和化学干扰小;

b 冷原子化法

原理:将试样中的汞离子用SnCl2或盐酸羟胺完全还原为金属汞后,用气流将汞蒸气带入具有石英窗的气体测量管中进行吸光度测量。

特点:常温测量;灵敏度、准确度较高

(3)分光系统

主要组成:入射狭缝、反射镜、色散元件、出射狭缝

作用:将待测元素的分析线(分析线)与干扰线(邻近线)分开,使检测系统只能接受分析线

单色器性能参数

(1)线色散率(D)两条谱线间的距离与波长差的比值dL/dλ。实际工作中常用其倒数 dλ/dL

(2)通带宽度(W)指通过单色器出射狭缝的光束的波长宽度。当倒色散率(D)一定时,可通过选择狭缝宽度(S)来确定: W=D S

(3)分光系统

主要组成:入射狭缝、反射镜、色散元件、出射狭缝

作用:将待测元素的分析线与干扰线分开,使检测系统

(4)检测系统

包括:光电转换器——光电倍增管

放大器——同步解调放大器

显示器——数字打印和显示浓度直读自动校准和微机处理

(5)测定条件选择

①狭缝宽度——不引起吸光度减小的最大狭缝宽度②分析线——灵敏度高、干扰少

③灯电流——保证输出稳定和适当光强的条件下,尽量选用低的工作电流

④试样用量——根据实验确定,在合适的燃烧器高度下,调节毛细管出口的压力以改变进样速率,达到最大吸光度值的进样量

原子吸收光谱法的分析方法

1、定量分析方法

(1)标准曲线法

优点:大批量试样测定方便

缺点:组成复杂样品难以配制标准试液,基体效应差别大,准确度差

(2)标准加入法

优点:可消除基体影响

缺点:批量样品测定手续太繁琐

2、灵敏度与检出限

灵敏度:指在一定浓度时,测定值(吸光度)的增量(ΔA)与相应的待测元素浓度(或质量)的增量(Δc或Δm)的比值

石墨炉原子吸收法——特征质量(绝对灵敏度):

检出限:在适当置信度下,能检测出的待测元素的最小浓度或最小量。用接近于空白的溶液,经若干次(10-20次)重复测定所得吸光度的标准偏差的3倍求得。

干扰及消除方法※

物理干扰、化学干扰、电离干扰、光谱干扰

1、物理干扰——指试样在转移、蒸发及原子化过程中,由于溶质或溶剂的物理化学性质改变而引起的干扰。

消除:配制与待测溶液组成相似的标准溶液或者采用标准加入法,使试液与标准溶液的物理干扰相一致

2、化学干扰——指在溶液或原子化过程中待测元素与其它组分发生化学反应而使其原子化降低或升高引起的干扰。

消除:①加释放剂消除:能与干扰元素生成更稳定、更难挥发的化合物,而释放待测元素。

②加保护剂消除:能与待测元素形成络合物,在元素中更易原子化

3、电离干扰—指待测元素在形成自由原子后进一步失去电子,而使基态原子数减少、测定结果和灵敏度降低的现象。

消除:加入消电离剂消除

大量易电离的其它元素抑制待测元素的电离

4、光谱干扰——指与光谱发射和吸收有关的干扰效应

消除:非共振线干扰—减小狭缝消除

背景吸收干扰(分子吸收、光散射假象吸收)

原子吸收光谱法的应用

广泛应用于——环保、材料、临床、医药、食品、冶金、地质、法医、交通、能源等

1、直接原子吸收分析:样品前处理、测定

2、间接原子吸收分析

紫外-可见吸收光谱法—利用紫外-可见分光光度计测量物质对紫外-可见光的吸收程度和紫外-可见吸收光谱来确定物质的组成、含量,推测物质结构的分析方法。

类属:分子吸光分析法

特点①灵敏度高②准确度较高③方法简便④应用广泛

分子吸光分析法

基于物质分子对光的选择性吸收而建立的分析方法;包括比色法和分子吸收分光光度法

比色法

基于比较待测溶液颜色的分子吸光分析法;分为:

目视比色法:通过日光照射待测溶液,用肉眼比较溶液颜色深浅来确定待测物质含量的方法

光电比色法:利用光电比色计进行测定的比色分析法

分子吸收分光光度法

采用棱镜和光栅作为分光系统元件的分子吸光分析法

1、可见吸收分光光度法

2、紫外吸收分光光度法(1、2属于紫外-可见吸收分光光度法)

3、红外吸收分光光度法

吸收曲线物质的吸光度随入射光波长变化的关系曲线

光的吸收定律—朗伯-比尔定律※

K越大,光吸收能力越强,则定量分析灵敏度越高

物质对光吸收的加和性:A=A1+A2+……+An

显色反应应具备的条件:

①选择性好显色剂仅与待测组分显色而不与其它共存组分显色,否则须进行分离或掩蔽后才能测定

②灵敏度高物质应具有较大的摩尔吸光系数k,104-105

数量级,保证足够的灵敏度

③有色化合物组成恒定,稳定性好显色剂与待测物质的反应要定量进行,生成配合物的组成要恒定,符合一定化学式;要有较大的稳定常数,保证有较好的重现性。

④色差大

影响显色的因素:

①显色剂的用量②溶液的酸度③显色温度④显色时间⑤副反应的影响⑥溶液中共存离子的影响

紫外可见吸收光谱法的基本原理

根据吸收光谱可进行定性鉴定和结构分析。用最大吸收峰或次峰所对应的波长为入射光,测定待测物质的吸光度,对物质进行定量分析。

紫外-可见吸收光谱与分子结构的关系

电子跃迁的类型

与紫外-可见吸收光谱有关的价电子是:

成键σ电子(单键轨道)

成键π电子(双键或叁键轨道)

未成键 n 电子(非键轨道)

当外层电子吸收紫外或可见辐射后,就从基态向激发态(反键轨道)跃迁。主要有四种跃迁所需能量ΔΕ大小顺序为:

n→π*<π→π*≤n→σ*<σ→σ*

紫外-可见吸收光谱的主要研究对象四种跃迁

σ→σ*跃迁

所需能量最大;σ电子只有吸收远紫外光的能量才能发生跃迁;

饱和烷烃的分子吸收光谱出现在远紫外区;近紫外、可见光区不产生吸收;吸收波长λ<200 nm;

n→σ*跃迁

所需能量较大。吸收波长为150~250nm,大部分在远紫外区,近紫外区仍不易观察到;属于中等强度吸收。含非键电子的饱和化合物(含N、O、S和卤素等杂原子)均呈现n→σ* 跃迁。

π→π*跃迁

所需能量较小吸收波长处于远紫外区的近紫外端或近紫外区,吸收峰在200nm附近;Kmax一般在104L·mol-1·cm-1以上,属于强吸收;含有双键或三键的不饱和有机化合物都能产生π→π*跃迁;共轭体系中的π→π*跃迁,吸收峰向长波方向移动,在200-700nm的紫外-可见光区

n →π*跃迁

含杂原子的双键不饱和化合物。化合物分子中同时含π电子和n电子,可产生 n→π*跃迁

λmax大,但κ小(<100):

丙酮λmax =280, κ=15所需能量小,吸收峰出现在200-400nm的紫外光区,弱吸收

以上4种跃迁以n→π*,π→π* 最有实际意义

发色团与助色团、长移与短移、吸收带

1. 发色团——含有不饱和键,能够吸收紫外、可见光,产生n →π*和π→π*跃迁的基团。

2. 助色团——本身不吸收紫外、可见光,但与发色团相连时,可使发色团产生的吸收峰向长波方向移动,且吸收强度增强的杂原子基团。

3. 长移——当有机物分子结构发生变化后,吸收峰向长波方

向移动的现象。

4. 短移——当有机物分子结构发生变化后,吸收峰向短波方

向移动的现象。

5. 吸收带——吸收峰在紫外、可见吸收光谱中的波带位置

影响紫外可见吸收光谱的因素

1. 共轭效应π→π共轭使吸收峰波长长移,吸收强度增加

2. 助色效应助色团的n电子与发色团的π电子共轭,使吸收峰波长长移,吸收强度增加的现象。

3. 超共轭效应烷基的σ电子与共轭体系中的π电子共轭,使吸收峰波长长移,吸收强度增加的现象。

4. 溶剂效应由溶剂的极性强弱引起吸收峰波长发生位移,吸收强度和形状发生改变的现象。

5. 空间效应由于空间障碍,防碍两个发色团处在同一平面,使共轭程度降低,吸收峰向短波方向移动,吸收强度降低的现象。

仪器的基本构造(测定波长范围 200~1000 nm )光源、单色器、吸收池、检测器、显示器

1、光源紫外光光源、可见光光源

2、单色器作用:将光源发射的连续光色散成单一波长的单色光组成:色散元件(棱镜或光栅)+ 狭缝 + 透镜系统

3、吸收池可见光区用玻璃制吸收池;紫外光区用石英制吸收池

4、检测器

作用:检测光信号,并将其转变成电信号要求:灵敏度高,响应时间短,噪音低,稳定性好

常用:①光电管:放大光电流,可测量弱光;蓝敏(210-625nm)和红敏(625-1000nm)②光电倍增管:能将光电流放大108倍③光电二极管阵列检测器:扫描速度快,可得到三维(A, λ,t)光谱图

5、显示器电表指示、图表指示、数字显示装置等

二、仪器的类型

1、单光束分光光度计优点:简单,价廉,适于在给定波长处测量吸光度或透光度,一般不能作全波段光谱扫描,要求光源和检测器有高的稳定性。缺点:操作麻烦;不能进行吸收光谱的自动扫描;光源不稳定性影响测量精密度

2、双光束分光光度计特点和不足:测量方便,不需要更换吸收池。补偿了仪器不稳定性的影响。实现了快速自动吸收光谱扫描。不能消除试液的背景成分吸收干扰

3、双波长分光光度计将不同波长的两束单色光(λ1、λ2) 快束交替通过同一吸收池而后到达检测器。产生交流信号。无需参比池。可测定高浓度、多组分、浑浊试样,准确度高。

双波长仪器能否消除背景干扰?

Aλ1 = lg I0/ I1 = κλ1LC + Ab

Aλ2 = lg I0/ I2 = κλ2LC + Ab

式中 Ab 为背景吸收或干扰物质的吸收;若波长选择合适,λ1和λ2处 Ab相同,则?A = lg I2/ I1 =(κλ1-κλ2)LC 因此测量两波长吸光度之差,就消除了背景吸收的干扰。

光电二极管阵列分光光度计

紫外—可见吸收光谱法的误差

1、溶液偏离朗伯—比尔定律引起的误差(标准曲线直线段)

2、仪器误差(机械系统误差、光学系统误差)

3、操作误差(如显色条件和测量条件的把握)

紫外—可见吸收光谱法测量条件的选择1、入射光波长的选择2、吸光度读数范围的选择3、参比溶液的选择

选择最适宜的测量条件时,应注意以下几点:

1、入射光波长的选择:

选择被测物质的最大吸收波长作为入射光波长。这样,灵敏度较高,偏离朗伯-比耳定律的程度减小。

当有干扰物质存在时,应根据“吸收最大、干扰最小”的原则选择入射光波长。

2、吸光度读数范围的选择:

透光率读数的准确度是仪器精度的主要指标。测定结果的精度常用浓度的相对误差△c/c表示。

参比的溶液选择

参比溶液是用来调节仪器工作零点的,若参比溶液选得不适当,则对测量读数准确度的影响较大。

①纯溶剂空白:当试液、试剂、显色剂均无色时,可用蒸馏水作参比液,称纯溶剂空白。

②试剂空白:试液无色,试剂、显色剂有色,采用不加试液的空白溶液作参比,称试剂空白。

③试液空白:试剂和显色剂均无色时,而试液中其他离子有色时,应采用不加显色剂的试液溶液作参比液,称试液空白。

紫外-可见吸收光谱法的应用

定性分析根据吸收光谱图的形状(吸收峰波长、强度、摩尔吸收系数)进行定性分析方法:①比较光谱法②文献标准图谱比较法

结构分析

1、根据化合物的紫外-可见吸收光谱推测化合物所含的官能团

2、利用紫外-可见吸收光谱判别有机化合物的同分异构体

3、配合物组成的确定摩尔比法连续变化法

多组分物质的定量分析

利用吸光度加和性原理直接测定 1)吸收光谱不重叠2)吸收光谱单向重叠3)吸收光谱双向重叠4)用双波长测定法进行定量分析

分光光度法由于仪器自身的限制,引起分析结果相对误差可达百分之几

普通光度法:浓度测量相对误差较小的透射率范围:20~65%(0.7~0.2)即:A=0.434 时误差最小

不适应下列测定:①要求相对误差低达千分之几的高含量组分和低含量组分的测定②样品的吸光度超出0.2 ~0.7范围,几个待测组分间的浓度差异很小且必须测出这种关键性的差异

示差分光光度法(量程扩展技术)

1、单标准示差分光光度法

①高浓度试液②低浓度试液

2、双标准示差分光光度法

一般的分光光度法是在溶液中发生的化学反应达到平衡后测量吸光度,然后根据吸收定律算出待测物质的含量。

动力学分光光度法则是利用反应速率与反应物、产物或催化剂的浓度之间的定量关系,通过测量与反应速率成比例关系的吸光度,从而计算待测物质的浓度。根据催化剂的存在与否,动力学分光光度法可分为非催化和催化分光光度法。当利用酶这种特殊的催化剂时,则称为酶催化分光光度法。

由反应速度方程式及吸收定律方程式可以推导出催化动力学分光光度法的基本关系为:A=KCct (动力学分光光度法的基本关系式)式中K为常数,Cc为催化剂的浓度。

测定Cc的方法:固定时间法、固定浓度法、斜率法

优点:灵敏度高,选择性好(有时是特效的)、应用范围广

(快速、慢速反应,有副反应,高、低浓度均可)。

缺点:影响因素较多,测量条件不易控制,误差经常较大。

质谱分析质谱能够提供的信息:

⑴相对分子质量

⑵分子式(样品的元素组成)

⑶鉴定某些官能团

⑷分子结构信息

⑸人机问答,给出可能的化合物。

质谱仪与质谱分析原理

进样系统1.气体扩散2.直接进样3.气相色谱

离子源1.电子轰击2.化学电离3.场致电离4.激光

质量分析器1.单聚焦2.双聚焦 3.飞行时间4.四极杆

检测器质谱仪需要在高真空下工作:离子源(10-3 10 -5 Pa )

质量分析器(10 -6 Pa )

(1)大量氧会烧坏离子源的灯丝;

(2)用作加速离子的几千伏高压会引起放电;

(3)引起额外的离子-分子反应,改变裂解模型,谱图复杂化。

EI 源的特点:电离效率高,灵敏度高;应用最广,标准质谱图基本都是采用EI 源得到的;稳定,操作方便,电子流强度可精密控制;结构简单,控温方便;适应范围:挥发性化合物、气体、金属蒸气。

化学电离源:最强峰为准分子离子M+1;谱图简单;不适用难挥发试样;适用于结构不太稳定的化合物。

场致电离源(FI )电压:7-10 kV ;d<1 mm ;强电场将分子中拉出一电子;能量约为12eV 分子离子峰强;碎片离子峰少;不适合化合物结构鉴定; 基体辅助激光解吸电离

快原子轰击源(FAB )特别适宜于极性高分子化合物。可分析难挥发和热不稳定性的化合物。

质量分析器是质谱仪的重要组成部分,它的作用是将离子室产生的离子,按照质荷比的大小不同分开,并允许足够数量的离子通过,产生可被快速测量的离子流。①单聚焦磁场分析器②双聚焦分析器

质谱的表示方法在质谱分析中,主要用条(棒)图形式和表格形式表示质谱数据。横坐标是质荷比、纵坐标是相对强度。 相对强度是把原始质谱图上最强的离子峰定为基峰,并规定其相对强度为100%。其它离子峰以此基峰的相对百分数表示。 用表格形式表示质谱数据,称为质谱表。

分子离子峰分子受电子束轰击后失去一个电子而形成的离子

其相对强弱随化合物结构而变化,其强弱顺序一般为芳环>共轭多烯>烯>环状化合物>羰基化合物>醚>酯>胺>酸>醇>高度分支的烃类。

分子离子峰的特点

一般质谱图上质荷比最大的峰为分子离子峰;有例外,由稳定性判断。形成分子离子需要的能量最低,一般约10电子伏特。 分子离子的判断

由C ,H ,O 组成的有机化合物,M 一定是偶数。

由C ,H ,O ,N 组成的有机化合物,N 奇数,M 奇数。 由C ,H ,O ,N 组成的有机化合物,N 偶数,M 偶数。 氮律 质量差是否合理

即在比分子离子小4-14及20-25个质量单位处,不应有离子峰出现。否则,所判断的质量数最大的峰就不是分子离子峰。因为一个有机化合物分子不可能失去4-14个氢而不断链。如果断键,失去的最小碎片应为CH3,它的质量是15个质量单位。同样,也不可能失去20-25个质量单位。 ★应该注意的是:分子离子峰一定符合“氮律”,不符合“氮律”的离子一定不是分子离子;而符合“氮律”的离子不一定是分子离子,因为奇电子离子都会符合氮律,而重排离子消去反应所产生的离子也会得到奇电子离子。偶电子离子一定不符合“氮律”。 之所以有“氮律”,是因为以共价键形式结合成有机物分子的常见元素(如C 、H 、O 、S 、N 、Cl 、Br 等)中,除N 原子外,其他元素的价数和该元素最大丰度同位素的质量数同样为偶数或同样为奇数,唯独14N 是偶数质量数(14)、奇数价数(3),这些元素共价键结合为分子时,分子量的偶、奇值取决于分子中N 原子的偶、奇值,故有“氮律”。 3. 分子离子的获得

制备挥发性衍生物、降低电离电压,增加进样量、降低气化温度、采用软电离技术

碎片离子峰一般有机化合物的电离能为7-13电子伏特,质谱中常用的电离电压为70电子伏特,使结构裂解,产生各种“碎片”离子。 重排离子峰分子离子在裂解成碎片时,某些原子或基团重新排列或转移而形成的离子,称为重排离子,质谱图上相应的峰为重排离子峰。 解析分子离子区

(1) 标出各峰的质荷比数,尤其注意高质荷比区的峰。(2) 识别分子离子峰。(3) 分析同位素峰簇的相对强度,(4) 推导分子式,计算不饱和度。 (5) 由分子离子峰的相对强度了解分子结构的信息。

离子丰度的影响因素:产物离子的稳定性、电离能、最大烷基丢失、中性产物的稳定性 σ键是共价键的一种。特点:

1. σ键有方向性,两个成键原子必须沿着对称轴方向接近,才能达到最大重叠。

2. 成键电子云沿键轴对称分布,两端的原子可以沿轴自由旋转而不改变电子云密度的分布。

3. σ键是头碰头的重叠,与其它键相比,重叠程度大,键能大,因此,化学性质稳定。

共价单键是σ键,共价双键有一个σ键,π键,共价三键由一个σ键,两个π键组成。含饱和杂原子断裂发生的位置都是电荷定位原子相邻的第一个碳原子和第二个碳原子之间的键,这个键称为α键, α―断裂 含不饱和杂原子

α―断裂 丢失最大烃基的可能性最大 i 断裂—开裂:醇、醚、胺等 四、重排断裂

麦氏重排条件:含有C=O , C=N ,C=S 及碳碳双键与双键相连的链上有γ碳,并在γ 碳有H 原子(γ氢)六圆环过度,H γ 转移到杂原子上,同时β 键发生断裂,生成一个中性分子和一个自由基阳离子

饱合烃的质谱图1.直链烷烃2.支链烷烃3.环烷烃

芳烃的质谱图苯的分子离子峰通常为基峰、烷基苯的特征离子系列为C6H5(CH2)n+,芳烃有明显的分子离子峰,且通常有m/z77、91、105、119….质谱峰。 醇和酚的质谱图特征离子峰为M -28或CnH2n+1O+系列峰。

醚的质谱图醚易发生b 断裂的同时,也可发生a 断裂,并进一步发生重排反应。 醛、酮的质谱图直链的醛酮显示有CnH2n+1CO 为通式的特征离子系列峰。 谱图解析步骤

1、由分子离子峰获取相对分子质量及元素组成信息。 除了相对分子质量之外,分子离子还提供如下信息:

是否含奇数氮原子;含杂原子的情况;对于化学结构不是很复杂的普通有机物。 2、根据分子离子峰和附近碎片离子峰的质荷比差值推测被测物的类别

3、根据碎片离子的质量及所符合的化学通式,推测离子可能对应的特征结构片断或官能团。

4、结合相对分子质量、不饱和度和碎片离子结构及官能团等的信息,合并可能的结构单元,搭建完整的分子结构。

5、核对主要碎片离子。

6、结合其他分析方法最终确定化合物的结构。如有必要可结合其它分析方法最终确定出化合物的结构。

7、质谱图的计算机数据库检索。

分子质谱法的应用:相对分子质量的测定、分子式的测定、结构鉴定、质谱联用技术分析混合物、分子质谱可用于某些定量分析中 分子分离器类型:微孔玻璃式、半透膜式和喷射式三种。

喷射式分子分离器:由一对同轴收缩型喷嘴构成,喷嘴被封在一真空室中可做成多级。

一、

名词解释

1·(原子吸收光谱法) : AAS 原子吸收光谱法) 基于测量待测元素的基态原子对其特征谱线的吸收程度而建立起来 的分析方法 2· AES (原子发射光谱法) :根据原子(或离子)在一定条件下受激后所发射的特征光谱来研究

3· AES (原子发射光谱法) 物质化学组成及其含量的方法。 4 UV-VIS (紫外-可见吸收光谱法):利用紫外-可见分光光度计测量物质对紫外-可见光吸收 程度(吸光度)和紫外-可见吸收光谱来确定物质的组成含量,推测物质结构的分析方法

+?

M

5·IR(红外吸收光谱法利用红外分光光度计测量物质对红外光的吸收及所产生的红外吸收光红外吸收光谱法)

6·MS(质谱分析法):利用电磁学原理,讲化合物电离城具有不同质量的离子,然后按其质荷比(m/z)的大小依次排列成谱收集和记录下来以对化合物进行分析的方法。

7· AFS(原子荧光分析法):利用光能激发产生的原子荧光谱线的波长和强度进行的物质的定性和定量分析方法,称为原子荧光分析法。

8·GC(气相色谱法):色谱分析法是先将待测分析的混合各组分在两相中进行分离,析各组分含量的方法;气相色谱法是以气体为流动相的色谱分析法。

9·HPLC(高效液相色谱法): 色谱分析法是先将待测分析的混合各组分在两相中进行分离,然后顺序分析各组分含量的方法;高效液相色谱法是以液体为流动相的色谱分析法。

1 、光谱分析法三个基本过程

(1)能源(光源)提供作用能(光,电,热)(2)作用能与被测物间相互作用(吸收/发射)(3)检测相互作用产生的信号

2、* AAS,ICP-AES,HG-AFS 共同点

(1)、都是测定元素(2)、同属于原子光谱 (3)、都采用线光谱

*UV-VIS,IR 的共同点

(1)都是分子吸收光谱(2)光源都是用连续光(3)系统组成都含有光源、吸收池、单射器、检测器、信号处理与显示系统。(4)都采用线光谱

3、直接 AAS 分析法步骤

(1)样品前处理(2)制作标准曲线(3)待测溶液 AAS 测定(取得原始数据)(4)数据处理

5、光源——原子化器——单色器——检测器——信号处理与显示系统作(还要说明各部件作用)

锐线光源的作用是发射待测元素的特征谱线;原子化器作用是提供能量使试样中的待测元素转化为测定所需的基态原子蒸汽(可视为吸收池);单色器作用是将待测元素的分析线与干扰谱线分开,使待测系统只能接受分析线;监测系统的作用是把单色器分出光信号(分析线)转化为电信号;信号处理与显示系统作用是信号放大与数据处理,并显示测定结果。

6、色谱分析法 GC 与 HPLC 共同点

(1)色谱基本理论一致(2)定性与定量分析理论完全一样 7、“梯度洗脱”与“程序升温”技术的共同点

梯度洗脱” 程序升温” (1)某一色谱条件随时间改变(2)都能改善分离效果,减少分析时间(3)都是一项色谱分析技术

GC 实验

流程(1)GC 实验样品前处理:提取:采用适当的溶剂和方法,将样品中不同成分从中分离出来。纯化:在测定之前,除掉样品中杂质的操作。衍生:指用特殊的化学试剂(即衍生剂)借助于化学反应给样品化合物接上某个特殊基团,,使它转变成相应的衍生物,以提高灵敏度和选择性。

(2)GC 仪器工作流程:)气路系统——进样系统——分离系统——检测系统——信号处理与显示系统(说明各部件的作用)气路系统的作用是提供连续运行,并具有恒定流速的纯净载气和辅助气;进样系统的作用是定量引入试样瞬间汽化(包括汽化室和进样装置);分离系统的作用是将混合组分分离成单一组分;监测系统的作用是将色谱柱后流出物的浓度或质量信号转化为易被监测的电信号装置;信号处理与显示系统的作用是信号放大与数据处理,并显示测定结果。辅助系统:温控系统,汽化室、色谱柱和检测器恒温箱都需要加热和温控。

(3)六个系统所需操作条件选择——①气路系统:气体:载气(氮气);②进样系统:采用手工进样微量注射;③色谱柱:毛细管柱;④检测器:FID 即火焰离子检测器;⑤辅助气:氢气、空气⑥温度系统:

恒温 HPLC 实验高压输液系统:流动相 CH3OH:H2O;作用是将样品很好的溶解并将其中组分初步分离;进样系统:手工微量注射。色谱柱:ODS,色谱柱前要加保护柱,(反相色谱柱)检测器:UVD,即紫外吸收检测器;柱温:25~65℃

1、仪器分析方法特点:准确、灵敏、快速、自动化程度高;分析样品用量少,可进行无损分析;已建立遥控分析方法;由成分分析发展到有关空间分布、微观分布、形态分析、化学结构等特征分析;从静态观察到动态追踪观察;不同仪器分析枫技术的联用。

AAS )优点:定量测定元素可达 70 多种;不足:无法直接测定吸收线在远紫外区的元素;②不能同时测定多种元素。(2)ICP-AES )优点:具有多元素(即从常量至痕量组成各元素)同时检测能力;不足:①只能用于元素总量分析,无法确定物质空间结构和官能团等;②消耗 Ar 量较大,费用较高;(3)HG-AFS )优点:对 As,Hg 等九种元素的测定已经成为国家标准不足:应用元素范围有限(4)UV-VIS )优点:适用范围广不足:①定量分析灵敏度相对较低;②定性分析中 UV 只作辅助手段。(5)IR )优点:具有高度特征性(分子指纹)不足:①不能检测以下待测物:单原子(Ar、Ne、He 等),同质核双原子分子(H2O2)、 N2、O2),对称分子都不产生 IR 吸收峰;②旋光异构体不能用 IR 鉴别;③定量分析不够灵敏(比 UV 差);(6)GC )优点:选择性高,灵敏度高,分离效能高,分析速度快,应用范围广。不足:①缺乏标样时定性分析较难;②不能直接分析难挥发和受热易分解的物质。(7)HPLC )优点:高压,高速,高效,高选择性,高灵敏度。不足:①受压易分解;②梯度洗脱比程序升温技术操作更复杂;③要消耗大量溶剂。

仪器分析期末复习材料(07环境工程专业)

考试题型:

一、填空题:4×3′;二、名词解释(4×2′);三、选择题:10%;四、比较题1×16′;五、简答题54%(3题)

名词解释

AAS(原子吸收光谱法):基于测量待测元素的基态原子对其特征谱线的吸收程度而建立起来的分析方法

AES(原子发射光谱法):根据原子(或离子)在一定条件下受激后所发射的特征光谱来研究物质化学组成及其含量的方法。

UV-VIS(紫外-可见吸收光谱法):利用紫外-可见分光光度计测量物质对紫外-可见光吸收程度(吸光度)和紫外-可见吸收光谱来确定物质的组成、含量,推测物质结构的分析方法

IR(红外吸收光谱法):利用红外分光光度计测量物质对红外光的吸收及所产生的红外吸收光谱对物质的组成和结构进行分析测定的方法

MS(质谱分析法):利用电磁学原理,讲化合物电离城具有不同质量的离子,然后按其质荷比(m/z)的大小依次排列成谱收集和记录下来以对化合物进行分析的方法。AFS(原子荧光分析法):利用光能激发产生的原子荧光谱线的波长和强度进行的物质的定性和定量分析方法,称为原子荧光分析法。

GC(气相色谱法):色谱分析法是先将待测分析的混合各组分在两相中进行分离,然后顺序分析各组分含量的方法;气相色谱法是以气体为流动相的色谱分析法。

HPLC(高效液相色谱法):色谱分析法是先将待测分析的混合各组分在两相中进行分离,然后顺序分析各组分含量的方法;高效液相色谱法是以液体为流动相的色谱分析法。光谱分析法

1光谱分析法三个基本过程

(1)能源(光源)提供作用能(光,电,热)

(2)作用能与被测物间相互作用(吸收/发射)

(3)检测相互作用产生的信号

2* AAS,ICP-AES,HG-AFS共同点

(1)、都是测定元素

(2)、同属于原子光谱

(3)、都采用线光谱

*UV-VIS,IR的共同点

(1)都是分子吸收光谱

(2)光源都是用连续光

(3)系统组成都含有光源、吸收池、单射器、检测器、信号处理与显示系统。

(4)都采用线光谱

3 直接AAS分析法步骤

(1)样品前处理

(2)制作标准曲线

(3)待测溶液AAS测定(取得原始数据)

(4)数据处理

4 AAS实验

(1)定量分析过程

配置标准系列;测定相应的A;绘制标准曲线;根据Ax找出Cx。

(2)仪器工作流程

光源——原子化器——单色器——检测器——信号处理与显示系统作(还要说明各部件作用)

锐线光源的作用是发射待测元素的特征谱线;

原子化器作用是提供能量使试样中的待测元素转化为测定所需的基态原子蒸汽(可视为吸收池);

单色器作用是将待测元素的分析线与干扰谱线分开,使待测系统只能接受分析线;

监测系统的作用是把单色器分出光信号(分析线)转化为电信号;

信号处理与显示系统作用是信号放大与数据处理,并显示测定结果。

色谱分析法

1 GC与HPLC共同点

(1)色谱基本理论一致(2)定性与定量分析理论完全一样

2 “梯度洗脱”与“程序升温”技术的共同点

(1)某一色谱条件随时间改变

(2)都能改善分离效果,减少分析时间

(3)都是一项色谱分析技术

3 GC实验流程(按实验四)

(1)GC实验样品前处理:

提取:采用适当的溶剂和方法,将样品中不同成分从中分离出来。

纯化:在测定之前,除掉样品中杂质的操作。

衍生:指用特殊的化学试剂(即衍生剂),借助于化学反应给样品化合物接上某个特殊基团,使它转变成相应的衍生物,以提高灵敏度和选择性。

(2)GC仪器工作流程:

气路系统——进样系统——分离系统——检测系统——信号处理与显示系统(说明各部件的作用)

气路系统的作用是提供连续运行,并具有恒定流速的纯净载气和辅助气;

进样系统的作用是定量引入试样瞬间汽化(包括汽化室和进样装置);

分离系统的作用是将混合组分分离成单一组分;

监测系统的作用是将色谱柱后流出物的浓度或质量信号转化为易被监测的电信号装置;

信号处理与显示系统的作用是信号放大与数据处理,并显示测定结果。

辅助系统:温控系统,汽化室、色谱柱和检测器恒温箱都需要加热和温控。

(3)六个系统所需操作条件选择

①气路系统:气体:载气(氮气);②进样系统:采用手工进样微量注射;③色谱柱:毛细管柱;④检测器:FID即火焰离子检测器;⑤辅助气:氢气、空气⑥温度系统:恒温

4 HPLC实验

(1)工作流程

高压输液系统——进样器——色谱柱——检测器——信号处理与显示系统

各部件的作用:高压输液系统的作用:根据色谱条件输送流动相溶剂。

进样器的作用:将待测分析样品引入色谱柱。

色谱柱的作用:担负着将混合组分分离成单一组分的作用。

检测器的作用:将流经其样品池的液体试样质量或浓度信号变成电信号。

信息处理与显示系统的作用:信号放大和数据处理,并显示测定结果。

(2)五个系统所需操作条件选择

高压输液系统:流动相CH3OH:H2O;作用是将样品很好的溶解并将其中组分初步分离

进样系统:手工微量注射

色谱柱:ODS,色谱柱前要加保护柱,(反相色谱柱)

检测器:UVD,即紫外吸收检测器;

柱温:25~65℃

综合

1仪器分析方法特点(评记忆写几个)

(1)准确、灵敏、快速、自动化程度高;

(2)分析样品用量少,可进行无损分析;

(3)已建立遥控分析方法;

(4)由成分分析发展到有关空间分布、微观分布、形态分析、化学结构等特征分析;

(5)从静态观察到动态追踪观察;

(6)不同仪器分析枫技术的联用。

2七种仪器分析方法最突出优点及其不足(各记一种)

(1)AAS

优点:定量测定元素可达70多种;

不足:无法直接测定吸收线在远紫外区的元素;

②不能同时测定多种元素。

(2)ICP-AES

优点:具有多元素(即从常量至痕量组成各元素)同时检测能力;

不足:①只能用于元素总量分析,无法确定物质空间结构和官能团等;

②消耗Ar量较大,费用较高;

(3)HG-AFS

优点:对As,Hg等九种元素的测定已经成为国家标准

不足:应用元素范围有限

(4)UV-VIS

优点:适用范围广

不足:①定量分析灵敏度相对较低;

②定性分析中UV只作辅助手段。

(5)IR

优点:具有高度特征性(分子指纹)

不足:①不能检测以下待测物:单原子(Ar、Ne、He等),同质核双原子分子(H2O2)、N2、O2),对称分子都不产生IR吸收峰;

②旋光异构体不能用IR鉴别;

③定量分析不够灵敏(比UV差);

(6)GC

优点:选择性高,灵敏度高,分离效能高,分析速度快,应用范围广。

不足:①缺乏标样时定性分析较难;

②不能直接分析难挥发和受热易分解的物质。

(7)HPLC

优点:高压,高速,高效,高选择性,高灵敏度。

不足:①受压易分解;②梯度洗脱比程序升温技术操作更复杂;

③要消耗大量溶剂。

3七种仪器分析方法在农业上的应用(各2例)

(1)原子发射光谱法

①火焰光度法测植物中K,Na元素含量②原子发射光谱法测土壤中Al

(2)原子荧光分析法

①原子荧光分析法测定金属铝中的Bi;②原子荧光分析法测定铜中痕量

(3)原子吸收光谱法

①原子吸收分光光度法测定土壤中Zn ②原子吸收分光光度法测玉米中Zn

(4)紫外-可见吸收光谱法

①紫外-可见吸收光谱法测定苯甲酸、山梨酸和未知物;②紫外可见吸收光谱法测定土壤中的Fe

(5)红外吸收光谱法

①红外吸收光谱法鉴定农药乐果②红外吸收光谱法鉴定落果防止剂

(6)气相色谱法

①气相色谱法测定植物激素②气相色谱法分析农产品中有机氯农药

(7) 高效液相色谱法

①高效液相色谱法番茄中类胡萝卜素②高效液相色谱法测定大豆异黄酮

4 比较光谱分析法和色谱分析法特点

1、标准曲线:是待测物质的标准浓度或含量与仪器响应信号的关系曲线。

2、分析线:用来进行定性或定量分析的特征谱线。

3、紫外线:波长在200~400nm范围内的电磁波。

4、共振吸收线:也叫特征谱线,是指原子从基态跃迁到第一激发态所产生的谱线。

5、质谱线谱:以质核比为横坐标,以相对强度或相对丰度为纵坐标的质谱图,图中的每条直线表示一个离子锋。

6、红外线:在光谱中波长为0.75~1000μm的一段称为红外线,为不可见光线。

7、基线:只有流动相而没有组分通过检测器时的色谱曲线,他反映了检测器噪声随时间变化的情况

8、色谱流出曲线;色谱柱流出物通过检测器是所产生的强度(mv)对时间(t)的曲线图

不同点:

第4章原子吸收光谱法 P60

1.影响原子吸收谱线宽度的因素有哪些?其中最主要的因素是什么?

答:影响原子吸收谱线宽度的因素有自然宽度ΔfN、多普勒变宽和压力变宽。其中最主要的是多普勒变宽和洛伦兹变宽。

3.原子吸收光谱法,采用极大吸收进行定量的条件和依据是什么?

答:原子吸收光谱法,采用极大吸收进行定量的条件:①光源发射线的半宽度应小于吸收线半宽度;②通过原子蒸气的发射线中心频率恰好与吸收线的中心频率ν0相重合。

定量的依据:A=Kc

4.原子吸收光谱仪主要由哪几部分组成?各有何作用?

答:原子吸收光谱仪主要由光源、原子化器、分光系统、检测系统四大部分组成。

光源的作用:发射待测元素的特征谱线。

原子化器的作用:将试样中的待测元素转化为气态的能吸收特征光的基态原子。

分光系统的作用:把待测元素的分析线与干扰线分开,使检测系统只能接收分析线。

检测系统的作用:把单色器分出的光信号转换为电信号,经放大器放大后以透射比或吸光度的形式显示出来。

5.使用空心阴极灯应注意些什么?如何预防光电倍增管的疲劳?

答:使用空心阴极灯应注意:使用前须预热;选择适当的灯电流。

预防光电倍增管的疲劳的方法:避免长时间进行连续光照。

6.与火焰原子化器相比,石墨炉原子化器有哪些优缺点?

答:与火焰原子化器相比,石墨炉原子化器的优点有:原子化效率高,气相中基态原子浓度比火焰原子化器高数百倍,且基态原子在光路中的停留时间更长,因而灵敏度高得多。

缺点:操作条件不易控制,背景吸收较大,重现性、准确性均不如火焰原子化器,且设备复杂,费用较高。

7.光谱干扰有哪些,如何消除?

答:原子吸收光谱法的干扰按其性质主要分为物理干扰、化学干扰、电离干扰和光谱干扰四类。

消除方法:

物理干扰的消除方法:配制与待测溶液组成相似的标准溶液或采用标准加入法,使试液与标准溶液的物理干扰相一致。

化学干扰的消除方法:加入释放剂或保护剂。

电离干扰的消除方法:加入一定量的比待测元素更容易电离的其它元素(即消电离剂),以达到抑制电离的目的。

光谱干扰的消除方法:缩小狭缝宽度来消除非共振线干扰;采用空白校正、氘灯校正和塞曼效应校正的方法消除背景吸收。

10.比较标准加入法与标准曲线法的优缺点。

答:标准曲线法的优点是大批量样品测定非常方便。缺点是:对个别样品测定仍需配制标准系列,手续比较麻烦,特别是遇到组成复杂的样品测定,标准样的组成难以与其相近,基体效应差别较大,测定的准确度欠佳。

标准加入法的优点是可最大限度地消除基干扰,对成分复杂的少量样品测定和低含量成分分析,准确度较高;缺点是不能消除背景吸收,对批量样品测定手续太繁,不宜采用。

11.原子吸收光谱仪有三档狭缝调节,以光谱带0.19nm、0.38nm和1.9nm为标度,对应的狭缝宽度分别为0.1mm、0.2mm和1.0mm,求该仪器色散元件的线色散率倒数;若单色仪焦面上的波长差为20nm.mm-1,狭缝宽度分别为0.05mm、0.1mm、0.2mm及2.0mm四档,求所对应的光谱通带各为多少?

解:∵W=D?S

∴D=W/S

∴D1=W1/S1=0.19/0.1=1.9nm.mm-1

D2=W2/S2=0.38/0.2=1.9nm.mm-1

D3=W3/S3=1.9/1.0=1.9nm.mm-1

W1=D?S1=2.0×0.05=0.1nm

W2=D?S2=2.0×0.1=0.2nm

W3=D?S3=2.0×0.2=0.4nm

W4=D?S4=2.0×2.0=4.0nm

12.测定植株中锌的含量时,将三份1.00g植株试样处理后分别加入0.00mL、1.00mL、2.00mL0.0500mol?L-1ZnCl2标准溶液后稀释定容为25.0mL,在原子吸收光谱仪上测定吸光度分别为0.230、0.453、0.680,求植株试样中锌的含量(3.33×10-3g.g-1)。

解:设植株试样中锌的含量为Cx mol.L-1

∵ A=KC

∴A1=KCx

A2=K(25×10-3Cx+1.00×0.0500×65.4×10-3)/25×10-3

A3=K(25×10-3Cx+2.00×0.0500×65.4×10-3) /25×10-3

解之得Cx=2×10-3 mol.L-1

∴植株试样中锌的含量为3.33×10-3g.g-1

第5章紫外可见吸收光谱法 P82

1.电子跃迁有哪几种类型?哪些类型的跃迁能在紫外及可见光区吸收光谱中反映出来?

答:电子跃迁的类型有四种:б→б* ,n→б*,n→π*,π→π*。

其中n→б*,n→π*,π→π*的跃迁能在紫外及可见光谱中反映出来。

4.何谓发色团和助色团?举例说明。

答:发色团指含有不饱和键,能吸收紫外、可见光产生n→π*或π→π*跃迁的基团。例如:>C=C<,—C≡C—,>C=O,—N=N—,—COOH等。

助色团:指含有未成键n 电子,本身不产生吸收峰,但与发色团相连能使发色团吸收峰向长波方向移动,吸收强度增强的杂原子基团。例如:—NH2,—OH,—OR,—SR,—X等。

9.已知一物质在它的最大吸收波长处的摩尔吸收系数κ为1.4×104L?mol-1?cm-1,现用1cm吸收池测得该物质溶液的吸光度为0.850,计算溶液的浓度。

解:∵A=KCL

∴C=A/(KL)=0.850/(1.4×104×1)=0.607×10-4 (mol?L-1 )

10.K2CrO4的碱性溶液在372nm处有最大吸收,若碱性K2CrO4溶液的浓度c(K2CrO4)=3.00×10-5mol? L-1,吸收池长度为1cm,在此波长下测得透射比是71.6%。计算:(1)该溶液的吸光度;(2)摩尔吸收系数;(3)若吸收池长度为3cm,则透射比多大?

解:(1)A=-lgT=-lg71.6%=0.415

(2)K=A/(CL)=0.415/(3.00×10-5×1)=4.83×103 (L?mol-1?cm-1 )

(3)∵lgT=-A=-KCL=-4.83×103×3.00×10-5×3=-0.4347

∴T=36.75%

11.苯胺在λmax为280nm处的κ为1430 L?mol-1?cm-1,现欲制备一苯胺水溶液,使其透射比为30%,吸收池长度为1cm,问制备100mL该溶液需苯胺多少克?

解:设需苯胺X g,则

∵A=-lgT= KCL

∴0.523=1430×(X/M×100×10-3) ×1

X=3.4×10-3g

12.某组分a溶液的浓度为5.00×10-4mol? L-1,在1cm吸收池中于440nm及590nm下其吸光度为0.638及0.139;另一组分b溶液的浓度为8.00×10-4mol? L-1,在1cm吸收池中于440nm及590nm 下其吸光度为0.106及0.470。现有a组分和b组分混合液在1cm吸收池中于440nm及590nm处其吸光度分别为1.022及0.414,试计算混合液中a组分和b组分的浓度。

解:∵Ka440 ?Ca ?L=Aa440

∴Ka440 = Aa440/(Ca ?L)=0.638/(5.00×10-4×1)=1.28×103

同理Ka590 = Aa590/(Ca ?L)=0.139/(5.00×10-4×1)=2.78×102

Kb440 = Ab440/(Cb ?L)=0.106/(8.00×10-4×1)=1.33×102

Kb590 = Ab590/(Cb ?L)=0.470/(8.00×10-4×1)=5.88×102

又∵Aa+b440=Ka440 ?Ca ?L+ Kb440 ?Cb ?L

Aa+b590=Ka590 ?Ca ?L+ Kb590 ?Cb ?L

∴有 1.022=1.28×103×Ca× 1+1.33×102×Cb×1

0.414=2.78×102×Ca× 1+5.88×102×Cb×1

解之得Ca=7.6×10-4 (mol?L-1 )

Cb=3.7×10-4 (mol?L-1 )

第7章分子发光分析法

3.第一第二单色器各有何作用?荧光分析仪的检测器为什么不放在光源与液池的直线上?

答:第一单色器的作用是把从光源发射的光中分离出所需的激发光;第二单色器的作用是滤去杂散光和杂质所发射的荧光。

荧光分析仪的检测器不放在光源与液池的直线上是为了消除激发光及散射光的影响。

4.荧光光谱的形状决定于什么因素?为什么与激发光的波长无关?

答:荧光光谱的形状决定于S0和S1态间的能量差、荧光物质的结构及基态中各振动能级的分布情况。荧光光谱的形状与激发光的波长无关是因为荧光光谱是由S1态的最低能级跃迁至S0态的各振动能级产生。

12.烟酰胺腺嘌呤双核苷酸的还原型(NADH)是一种重要的强荧光辅酶。在340nm波长处有一最大吸收,在365nm波长处有一最大发射,用NADH的标准溶液得到如下表的度相对荧光强。一未知样品

的相对荧光强为42.3,试求样品中的NADH的浓度为多少?

⑧解答⑨

f

I

C

A=1.40671 B=117.07927 R=0.99991

I f=1.40671+117.07927c

当I f=42.3时,c=0.343 mol/L

第12章电位分析及离子选择性电极分析法 P216

1.什么是电位分析法?什么是离子选择性电极分析法?

答:利用电极电位和溶液中某种离子的活度或浓度之间的关系来测定待测物质活度或浓度的电化学分析法称为电位分析法。

以离子选择性电极做指示电极的电位分析,称为离子选择性电极分析法。

2.何谓电位分析中的指示电极和参比电极?金属基电极和膜电极有何区别?

答:电化学中把电位随溶液中待测离子活度或浓度变化而变化,并能反映出待测离子活度或浓度的电极称为指示电极。电极电位恒定,不受溶液组成或电流流动方向变化影响的电极称为参比电极。金属基电极的敏感膜是由离子交换型的刚性基质玻璃熔融烧制而成的。膜电极的敏感膜一般是由在水中溶解度很小,且能导电的金属难溶盐经加压或拉制而成的单晶、多晶或混晶活性膜。

4. 何谓TISAB溶液?它有哪些作用?

答:在测定溶液中加入大量的、对测定离子不干扰的惰性电解质及适量的pH缓冲剂和一定的掩蔽剂,构成总离子强度调节缓冲液(TISAB)。

其作用有:恒定离子强度、控制溶液pH、消除干扰离子影响、稳定液接电位。

5. 25℃时,用pH=4.00的标准缓冲溶液测得电池:“玻璃电极|H+(a=X mol?L-1)║饱和甘汞电极”的电动势为0.814V,那么在c(HAc)=1.00×10-3 mol?L-1的醋酸溶液中,此电池的电动势为多少?(KHAc=1.8×10-5,设aH+=[H+])

解:∵E1=φ(+)--φ(-)=φ(+)-(K-0.0592pH1)

E2=φ(+)--φ(-)=φ(+)-(K-0.0592pH2)

∴E2- E1= E2-0.814=0.0592(pH2- pH1)

∴E2=0.814+0.0592(-lg√Kc-4.00)=0.806(V)

6.25℃时,用pH=5.21的标准缓冲溶液测得电池:“玻璃电极|H+(a=X mol?L-1)║饱和甘汞电极”的电动势为0.209V,若用四种试液分别代替标准缓冲溶液,测得电动势分别为①0.064V;②0.329V;③0.510V;④0.677V,试求各试液的pH和H+活度

解:(1)ΔE1=0.064-0.209=0.0592(pH1-pHs)

∵pHs=5.21

∴pH1=2.76 aH+=1.74×10-3 mol?L-1

(2)ΔE2=0.329-0.209=0.0592(pH2-pHs)

∵pHs=5.21

∴pH2=7.24 aH+=5.75×10-8 mol?L-1

(3)ΔE3=0.510-0.209=0.0592(pH3-pHs)

∵pHs=5.21

∴pH3=10.29 aH+=5.10×10-11 mol?L-1

(4)ΔE4=0.677-0.209=0.0592(pH4-pHs)

∵pHs=5.21

∴pH4=13.12 aH+=7.60×10-14 mol?L-1

7.25℃时,电池:“镁离子电极|Mg2+(a=1.8×10-3mol?L-1)║饱和甘汞电极”的电动势为0.411V,用含Mg2+试液代替已知溶液,测得电动势为0.439V,试求试液中的pMg值。

解:∵E2- E1=(0.0592/2)pMg+(0.0592/2)lg(1.8×10-3)

0.439-0.411=(0.0592/2)pMg-0.0813

∴ pMg=3.69

8.25℃时,电池:“NO3-离子电极|NO3-(a=6.87×10-3mol?L-1)║饱和甘汞电极”的电动势为0.3674V,用含NO3-试液代替已知浓度的NO3-溶液,测得电动势为0.4464V,试求试液的pNO3值。

解:∵E2- E1=0.4464--0.3674=-0.0592 pNO3-0.0592lg(6.87×10-3)

0.079=-0.0592 pNO3+0.128

∴pNO3=0.828

第15章分离分析法导论 P261

2.塔板理论的主要内容是什么?它对色谱理论有什么贡献?它的不足之处在哪里?

答:塔板理论把整个色谱柱比拟为一座分馏塔,把色谱的分离过程比拟为分馏过程,直接引用分馏过程的概念、理论和方法来处理色谱分离过程。

塔板理论形象地描述了某一物质在柱内进行多次分配的运动过程,n越大,H越小,柱效能越高,分离得越好。定性地给出了塔板数及塔板高度的概念。

塔板理论的不足之处:某些基本假设不严格,如组分在纵向上的扩散被忽略了、分配系数与浓度的关系被忽略了、分配平稳被假设为瞬时达到的等。因此,塔板理论不能解释在不同的流速下塔板数不同这一实验现象,也不能说明色谱峰为什么会展宽及不能解决如何提高柱效能的问题。

3.速率理论的主要内容是什么?它对色谱理论有什么贡献?与塔板理论相比,有何进展?

答:速率理论的主要内容是范第姆特方程式:H=A+B/? +C?

对色谱理论的贡献:综合考虑了组分分子的纵向分子扩散和组分分子在两相间的传质过程等因素。

与塔板理论相比,速率理论解释了色谱操作条件如何影响分离效果及如何提高柱效能。

4.何谓分离度,它的表达式是什么?应从哪些方面着手提高分离度?

答:分离度是指相邻两色谱峰的保留值之差与两峰宽度平均值之比。

表达式:R=

可以通过提高塔板数n,增加选择性?2,1,容量因子k?来改善分离度。

5.色谱定性的主要方法有哪些?多机连用有什么优越性?

答:色谱定性的主要方法有:○1与标样对照的方法;○2利用保留指数法定性;○3与其它方法结合定性。

多机连用能充分发挥色谱分离的特长,也能充分发挥质谱或光谱定结构的特长。

6.色谱定量常用哪几种方法?它们的计算公式如何表达?简述它们的主要优缺点。

答:色谱定量常用归一法、内标法及外标法。

归一法的计算公式:wi=mi/m=mi/(m1+m2+…+mn)=Aifi/( A1f1+ A2f2 +…+Anfn)

内标法的计算公式:wi=mi/m=Aifi ms/(Asfs m)

归一法具有简便、准确的优点,对操作条件如进样量、温度、流速等的控制要求不苛刻。但是在试样组分不能全部出峰时不能使用这种方法。

内标法测定结果比较准确,操作条件对测定的准确度影响不大。

外标法标准曲线操作简便,不需用校正因子,但是对操作条件的稳定性和进样量的重现性要求很高。

7.下列数据是由气—液色谱在一根40cm长的填充柱上得到的:

化合物tR/min Y/min

空气 2.5 —

甲基环己烷,A 10.7 1.3

甲基环己烯,B 11.6 1.4

甲苯,C 14.0 1.8

求:(1)平均的理论塔板数;(2)平均塔板高度;

(3)甲基环己烯与甲基环己烷的分离度;(4)甲苯与甲基环己烯的分离度。

解:(1) ?n=(n1+n2+n3)/3=?16?(10.7/1.3)2+16?(11.6/1.4)2+16?(14.0/1.8)2?/3

=1050

(2) ?H=L/?n=40/1050=0.038㎝

(3) RAB=(tR(B)?tR(A))/[1/2(YA+YB)]=(11.6-10.7)/[1/2(1.3+1.4)]=0.67

(4) RCB=(tR(C)?tR(B))/[1/2(YB+YC)]=(14.0-11.6)/[1/2(1.4+1.8)]=1.50

8.有甲、乙两根长度相同的色谱柱,测得它们在范第姆特方程式中的各项常数如下:甲柱:A=0.07cm,B=0.12cm2?s-1,C=0.02s;乙柱:A=0.11cm,B=0.10cm2?s-1,C=0.05s。求:(1)甲柱和乙柱的最佳流速u和最小塔板高度;(2)哪一根柱子的柱效能高?

解 (1)对甲柱有:u最佳=(B/C)1/2=(0.12/0.02)1/2=2.45 cm?s-1

H最小=A+2(BC)1/2=0.07+2(0.12×0.02)1/2=0.168 cm

对乙柱有:u最佳=(B/C)1/2=(0.10/0.05)1/2=1.41 cm?s-1

H最小=A+2(BC)1/2=0.11+2(0.10×0.05)1/2=0.251 cm

(2)从(1)中可看出甲柱的柱效能高。

9.有一A、B、C三组分的混合物,经色谱分离后其保留时间分别为:tR(A)=4.5min,tR(B)=7.5min,tR(C)=10.4min,tM=1.4min,求:(1)B对A的相对保留值;(2)C对B的相对保留值;(3)B组分在此柱中的容量因子是多少?

解:(1) ?B,A=t?R(B)/ t?R(A)= (7.5-1.4)/(4.5-1.4)=1.97

(2) ?C,B=t?R(C)/ t?R(B)= (10.4-1.4)/(7.5-1.4)=1.48

(3) k?B= t?R(B)/tM=(7.5-1.4)/1.4=4.36

10.已知在混合酚试样中仅含有苯酚,o-甲酚,m-甲酚,p-甲酚四种组分,经乙酰化处理后,测得色谱图,从图上测得各组分的峰高、半峰宽以及测得相对校正因子分别如下:

化合物苯酚o-甲酚 m-甲酚 p-甲酚

峰高/mm 64.0 104.1 89.2 70.0

半峰宽/mm 1.94 2.40 2.85 3.22

相对校正因子(f) 0.85 0.95 1.03 1.00

求各组分的质量分数。

解:w1= A1f1/(A1f1+ A2f2+A3f3+A4f4)

=64.0×1.94×0.85/(64.0×1.94×0.85+104.1×2.40×0.95+89.2×2.85×1.03+70.0×3.22×1.00)=105.54/830.13=12.72%

同理:w2=237.35/830.13=28.59%

w3=261.85/830.13=31.54%

w4=225.40/830.13=27.15%

11.有一试样含甲酸、乙酸、丙酸及少量水、苯等物质,称取试样1.055g,以环己酮作内标,称取0.1907g环己酮加到试样中,混合均匀后进样,得如下数据:

化合物甲酸乙酸环己酮丙酸

峰面积/cm2 14.8 72.6 133 42.4

相对校正因子(f) 3.83 1.78 1.00 1.07

求甲酸、乙酸和丙酸的质量分数。

解:由于以环己酮作内标所以wi=Aifims/( Asfsm)

w甲酸=14.8×3.83×0.1907/(133×1.00×1.055)=7.70%

w乙酸=72.6×1.78×0.1907/(133×1.00×1.055)=17.56%

w丙酸=42.4×1.07×0.1907/(133×1.00×1.055)=6.17%

第16章气相色谱法 P

1.简述气相色谱仪的分离原理。气相色谱仪一般由哪几部分组成?各有什么作用?

答:气相色谱仪的分离原理:当混合物随流动相流经色谱柱时,与柱中的固定相发生作用(溶解、吸附等),由于混合物中各组分理化性质和结构上的差异,与固定相发生作用的大小、强弱不同,在同一推动力作用下,各组分在固定相中的滞留时间不同,从而使混合物中各组分按一定顺序从柱中流出。

气相色谱仪一般由气路系统、进样系统、分离系统、检测系统和记录与数据处理系统组成。

气路系统的作用:为色谱分析提供纯净、连续的气流。

进样系统的作用:进样并将分析样品瞬间汽化为蒸气而被载气带入色谱柱。

分离系统的作用:使样品分离开。

检测系统的作用:把从色谱柱流出的各个组分的浓度(或质量)信号转换为电信号。

记录与数据处理系统的作用:把由检测器检测的信号经放大器放大后由记录仪记录和进行数据处理。

3.试述热导、氢火焰离子化和电子捕获检测器的基本原理,它们各有什么特点?

答:热导检测器是基于不同的物质具有不同的热导指数。它的特点是结构简单,稳定性好,灵敏度适宜,线性范围宽。

电子捕获检测器是基于响应信号与载气中组分的瞬间浓度呈线性关系,峰面积与载气流速成反比。它的特点是高选择性,高灵敏度。

氢火焰离子化检测器基于响应信号与单位时间内进入检测器组分的质量呈线性关系,而与组分在载气中的浓度无关,峰面积不受载气流速影响。它的特点是死体积小,灵敏度高,稳定性好,响应快,线性范围宽。

4.对载体和固定液的要求分别是什么?如何选择固定液?

答:对载体的要求:○1表面应是化学惰性的,即表面没有吸附性或吸附性很弱,更不能与被测物质起化学元反应;○2多孔性,即表面积较大,使固定液与试样的接触面较大;○3热稳定性好,有一定的机械强度,不容易破碎;○4对载体粒度一般选用40~60目,60~80目或80~100目。

对固定液的要求:○1挥发性小,在操作温度下有较低蒸气压,以免流失;○2热稳定性好,在操作温度下不发生分解,呈液体状态;○3对试样各组分有适当的溶解能力;○4具有高的选择性,即对沸点相同或相近的不同物质有尽可能高的分离能力;○5化学稳定性好,不与被测物质起化学反应。

固定液的选择,一般根据“相似相溶原则”进行。

5.试比较红色担体和白色担体的性能。

答:红色担体孔穴多,孔径小,比表面大,可负担较多固定液。缺点是表面存在活性吸附中心,分析极性物质时易产生拖尾峰。

白色担体表面孔径大,比表面积小,pH大,表面较为惰性,表面吸附作用和催化作用小。

6.判断下列情况对色谱峰形的影响。

①进样速度慢,不是迅速注入的;②由于汽化室的温度低,样品不能瞬间汽化;③增加柱温;④增加载气流速;⑤增加柱长。

答:○1样品原始宽度大,使色谱峰扩张;

○2出峰时间拖长,峰形变宽,分离效果差;

○3缩短分析时间,但选择性较差,不利于分离;

○4纵向扩散大,色谱峰扩张;

○5保留时间增加,延长了分析时间。

8.已知记录仪的灵敏度为0.658mV?cm-1,记录仪纸速为2cm?min-1,载气流速Fco为68mL?min-1,进样量(12℃)为0.5mL饱和苯蒸汽,其质量经计算为0.11mg,得到色谱峰的实测面积为3.48cm2。求热导检测器的灵敏度S。

解:∵S=C1AFco/(C2m)

∴S=(0.658×3.48×68)/(2×0.11)=707.8 mV?mL?mg-1

9.氢火焰离子化检测器灵敏度的测定:进样量(150℃时)为50μL饱和苯蒸气,其质量为11×10-6g,记录仪纸速为2cm?min-1,记录仪的灵敏度为0.658mV?cm-1,测得色谱峰面积为173cm2,仪器噪声为0.1mV,求其灵敏度S和敏感度D。

解:S=60C1A/(C2m)=60×0.658×173/(2×11×10-6)=3.10×108 mV?s?g-1

D=2RN/S=2×0.1/(3.10×108)=6.45×10-10 g?s-1

武汉大学版仪器分析知识点总结(适用考中科院的同学)

第一部分:AES,AAS,AFS AES原子发射光谱法是根据待测元素的激发态原子所辐射的特征谱线的波长和强度,对元素进行定性和定量测定的分析方法。 特点: 1.灵敏度和准确度较高 2.选择性好,分析速度快 3.试样用量少,测定元素范围广 4.局限性 (1)样品的组成对分析结果的影响比较显著。因此,进行定量分析时,常常需要配制一套与试样组成相仿的标准样品,这就限制了该分析方法的灵敏度、准确度和分析速度等的提高。 (2)发射光谱法,一般只用于元素分析,而不能用来确定元素在样品中存在的化合物状态,更不能用来测定有机化合物的基团;对一些非金属,如惰性气体、卤素等元素几乎无法分析。 (3)仪器设备比较复杂、昂贵。 术语: 自吸 自蚀 ?击穿电压:使电极间击穿而发生自持放电的最小电压。 ?自持放电:电极间的气体被击穿后,即使没有外界的电离作用,仍能继续保持电离,使放电持续。 ?燃烧电压:自持放电发生后,为了维持放电所必需的电压。 由激发态直接跃迁至基态所辐射的谱线称为共振线。由较低级的激发态(第一激发态)直接跃迁至基态的谱线称为第一共振线,一般也是元素的最灵敏线。当该元素在被测物质里降低到一定含量时,出现的最后一条谱线,这是最后线,也是最灵敏线。用来测量该元素的谱线称分析线。 仪器: 光源的作用: 蒸发、解离、原子化、激发、跃迁。 光源的影响:检出限、精密度和准确度。 光源的类型: 直流电弧 交流电弧 电火花 电感耦合等离子体(ICP)

ICP 原理 当高频发生器接通电源后,高频电流I 通过感应线圈产生交变磁场(绿色)。 开始时,管内为Ar 气,不导电,需要用高压电火花触发,使气体电离后,在高频交流电场的作用下,带电粒子高速运动,碰撞,形成“雪崩”式放电,产生等离子体气流。在垂直于磁场方向将产生感应电流(涡电流,粉色),其电阻很小,电流很大(数百安),产生高温。又将气体加热、电离,在管口形成稳定的等离子体焰炬。 ICP-AES 法特点 1.具有好的检出限。溶液光谱分析一般列素检出限都有很低。 2.ICP 稳定性好,精密度高,相对标准偏差约1%。 3.基体效应小。 4.光谱背景小。 5.准确度高,相对误差为1%,干扰少。 6.自吸效应小 进样: 溶液试样 气动雾化器 超声雾化器 超声雾化器:不连续的信号 气体试样可直接引入激发源进行分析。有些元素可以转变成其相应的挥发性化合物而采用气体发生进样(如氢化物发生法)。 例如砷、锑、铋、锗、锡、铅、硒和碲等元素。 固体试样 (1). 试样直接插入进样 (2). 电弧和火花熔融法 (3). 电热蒸发进样 (4). 激光熔融法 分光仪棱镜和光栅 检测器:目视法,摄谱法,光电法 干扰: 光源 蒸发温度 激发温度/K 放电稳定性 应用范围 直流电弧 高 4000~7000 较差 定性分析,矿物、纯物质、 难挥发元素的定量分析 交流电弧 中 4000~7000 较好 试样中低含量组分的定量分析 火花 低 瞬间10000 好 金属与合金、难激发元素的定量分析 ICP 很高 6000~8000 最好 溶液的定量分析

现代仪器分析-荧光分析教案

学习好资料欢迎下载 题目: 荧光分析法 教学目的与要求: (1)掌握分子荧光、磷光和化学发光的产生机理;掌握激 发光谱和发射光谱特征。 (2)掌握荧光与分子结构的关系以及溶液的荧光(磷光) 强度影响因素。 (3)熟悉荧光(磷光)分析法的特点及定量测定方法。 (4)了解磷光分析法的类型。 (5)熟悉荧光、磷光和化学发光分析仪器的结构。 内容与时间分配: ①荧光分析原理:120min; ②荧光仪器:20min; ③分析方法:40min; ④磷光分析简介:20min; 重点与难点: 1、荧光的产生; 2、荧光光谱与激发光谱; 3、荧光与分子结构 4、影响因素 5、分析方法 教具准备: PPT

荧光分析法(fluorometry) 灵敏度高,紫外-可见法10-7g/ml 待测物质:分子荧光 原子荧光 激发光:紫外可见荧光 红外可见荧光 X-射线荧光 1、基本原理 利用目一波长得光照射试样,使试样吸收这一辐射,然后再发射出波长相同或较长得光,若这种再发射约在10-9秒内发生,称为荧光,利用荧光得强度和特性对物质进行定性、定量分析,称为荧光分析法。 当分子轨道中电子吸收光子跃迁, 若电子跃迁后,处于自旋方向相反得状态,则总自旋量子数S=0,体系的多重性M=2S+1,既为激发态的单线态(此分子在磁场中不产生能级裂分) 若电子跃迁后,处于自旋方向相同的状态,则总自旋量子数S=1/2+1/2=1,体系的多重性M=2S+1=3,即为三线态(在磁场中,三线态的电子能级产生裂分,一条线可分裂成三条线。三线态的能量较相应单线态的能量低)。 [电子由单→单跃迁,所需E1

《现代仪器分析》考试知识点总结

《现代仪器分析》考试知识点总结 一、填空易考知识点 1、仪器分析的分类:光学分析,电化学分析,色谱分析,其他仪器分析。 2、紫外可见分光光度计组成:光源,单色器,样品室接收检测放大系统,显示器或记录器。常用检测器:光电池,光电管,光电倍增管,光电二极管 3、吸收曲线的特征值及整个吸收曲线的形状是定性鉴别的重要依据。 4、定量分析的方法:标准对照法,标准曲线法。 5、标准曲线:配置一系列不同浓度的标准溶液,以被测组分的空白溶液作参比,测定溶液的标准系列吸光度,以吸光度为纵坐标,浓度为横坐标绘制吸光度,浓度关系曲线。 6、原子吸收分光光度法的特点:(优点)灵敏度高,测量精度好,选择性好,需样量少,操作简便,分析速度快,应用广泛。(缺点)由于分析不同的元素需配备该元素的元素灯,因此多元素的同时测定尚有困难;测定难熔元素,和稀土及非金属元素还不能令人满意。 7、在一定条件下,被测元素基态原子蒸汽的峰值吸收与试液中待测元素的浓度成正比,固可通过峰值吸收来定量分析。

8、原子化器种类:火焰原子化器,石墨炉原子化器,低温原子化器。 9、原子吸收分光光度计组成:空心阴极灯,原子化系统,光学系统,检测与记录系统。 10、离子选择性电极的类型:(1)PH玻璃膜电极(2)氟离子选择性电极(3)流动载体膜电极(4)气敏电极。 11、电位分析方法:直接电位法(直接比较法,标准曲线法,标准加入法)电位滴定法。 12、分离度定义:相邻两色谱峰保留时间的差值与两峰基线宽度和之间的比值 13、气象色谱仪组成:载气系统,进样系统,分离系统,检测系统,信号记录或微机数据处理系统,温度控制系统。 14、监测器分类:浓度型检测器(热导池检测器)质量型检测器(氢火焰离子化检测器) 15、基态:原子通常处于稳定的最低能量状态即基态激发:当原子受到外界电能,光能或者热能等激发源的激发时,原子核外层电子便跃迁到较高的能级上而处于激发态的过程叫激发。 16、紫外光:肉眼看不见的光波(100760nm) 17、锐光源:发射线的半宽度比吸收线的半宽度窄得多的光源(可以实现对峰值的准确测量) 18、参比电极:电位分析中电极电位不随待测溶液离子浓度变化而变化的电极(甘汞电极,银-氯化银电极)

仪器分析复习资料整理

第二章气相色谱分析 1、气相色谱仪的基本设备包括哪几部分?各有什么作用? 载气系统(气路系统) 进样系统: 色谱柱和柱箱(分离系统)包括温度控制系统(温控系统): 检测系统: 记录及数据处理系统(检测和记录系统): 2、当下列参数改变时,是否会引起分配系数的改变?为什么? (1)柱长缩短, 不会(分配比,分配系数都不变) (2)固定相改变, 会 (3)流动相流速增加, 不会 (4)相比减少, 不会 当下列参数改变时:,是否会引起分配比的变化?为什么? (1)柱长增加, 不会 (2)固定相量增加, 变大 (3)流动相流速减小, 不会 (4)相比增大, 变小 答: k=K/b(b记为相比),而b=VM/VS ,分配比除了与组分,两相的性质,柱温,柱压有关外,还与相比有关,而与流动相流速,柱长无关. 3、试述速率方程中A, B, C三项的物理意义. H-u曲线有何用途?曲线的形状主要受那些 因素的影响? A、涡流扩散项:气体碰到填充物颗粒时,不断地改变流动方向,使试样组分在气相中形成 类似“涡流”的流动,因而引起色谱的扩张。由于A=2λdp ,表明 A 与填充物的平均颗粒直径 dp 的大小和填充的不均匀性λ 有关,而与载气性质、线速度和组分无关,因此使用适当细粒度和颗粒均匀的担体,并尽量填充均匀,是减少涡流扩散,提高柱效的有效途径。 B、分子扩散项:由于试样组分被载气带入色谱柱后,是以“塞子”的形式存在于柱的很 小一段空间中,在“塞子”的前后 ( 纵向 ) 存在着浓差而形成浓度梯度,因此使运动着的分子产生纵向扩散。而 B=2rDg r 是因载体填充在柱内而引起气体扩散路径弯曲的因数 ( 弯曲因子 ) , D g 为组分在气相中的扩散系数。分子扩散项与 D g 的大小成正比,而 D g 与组分及载气的性质有关:相对分子质量大的组分,其 D g 小 , 反比于载气密度的平方根或载气相对分子质量的平方根,所以采用相对分子质量较大的载气( 如氮气 ) ,可使 B 项降低, D g 随柱温增高而增加,但反比于柱压。弯曲因子 r 为与填充物有关的因素。 C、传质阻力项:传质项系数 Cu C 包括气相传质阻力系数 C g 和液相传质阻力系数 C 1 两 项。所谓气相传质过程是指试样组分从移动到相表面的过程,在这一过程中试样组分将在两相间进行质量交换,即进行浓度分配。这种过程若进行缓慢,表示气相传质阻力大,就引起色谱峰扩张。对于填充柱: 液相传质过程是指试样组分从固定相的气液界面移动到液相内部,并发生质量交换,达到分配平衡,然后以返回气液界面的传质过程。这个过程也需要一定时间,在此时间,组分的其它分子仍随载气不断地向柱口运动,这也造成峰形的扩张。液相传质阻力系数 C 1 为: 对于填充柱,气相传质项数值小,可以忽略。 在色谱分析中,理论塔板数与有效理论塔板数的区别就在于前者___没有考虑死时间(死

仪器分析心得体会

仪器分析心得体会 篇一:仪器分析的感想 对仪器分析课程的认识和感想 仪器分析是高等学校等有关专业开设的一门基础课,其目的是使学生在大学学习期间掌握有关仪器分析中一些常用方法的基本原理、特点和应用,对于将来参加科学研究或具体实际工作都是很有益的。 仪器分析法是以物理和化学及其信号强度为基础建立起来的一种分析方法,使用比较复杂和特殊的仪器。仪器分析的基本原理源于分析化学。分析仪器的发展与分析化学的发展紧密相关,分析化学经历过三次重大变革,使得仪器分析也逐步升级,从仪器化、电子化、计算机化到智能化、信息化以至仿生化。 常用的仪器分析方法主要包括几类:光学分析法、电化学分析法、色谱分析法、质谱法。这些方法依据的原理不同,具有的性能指标如精密度、灵敏度、检出限、测定下限、线性范围、准确度等,在选择方法时,还要有一些考虑,如对样品结果准确度的要求,还有费用(包括仪器的购置费、运转费)、样品量、分析速度等。使用仪器分析法检测样品,具有效率高、速度快、方便、实用的特点。 仪器分析的应用范围十分广泛。仪器分析与科学四大理论(天体、地球、生命、人类起源和深化)及人类社会面临

的五大危机(资源、粮食、能源、人口、环境)问题的解决密切相关,也与工农业生产及人们日常衣食住行用的质量保证等领域密切相关,仪器分析的发展包括仪器和方法两方面的发展,仪器分析的发展趋势表现在建立原位、在体、实时、在线的动态分析检测方法建立无损以及多参数同时检测方法。现在以实现各种分析法的联用;分析仪器的智能化、自动化和微型化等几个方面。 通过对仪器分析这一课程的学习,对常用仪器的基本原理、特点、使用方法和应用都有了大致的认识和掌握。这门学科的实用性强,应用广泛。它的方法和基本思想如逻辑思维,对以后的科研和日常的工作有巨大的帮助。如果能对仪器分析这门课程有深刻认识,对以后仪器的创新和发展也能尽到一份力。 篇二:《仪器分析》问题学习法总结 《仪器分析》问题学习法心得体会 虽然只有短短的八周学习时间,但在张玲老师的指导学习下,使我对仪器分析这门学科了解颇多。通过学习是我知道仪器分析是我们学化学的必学的一门课程,是化学分析中不可缺少的方法。而且随着科技的发展,仪器分析变得越来越重要,在化学分析中的应用也越来越广泛。因此,我们必须学好仪器分析。就像张玲老师说的那样,大学毕业后我们什么书都可以卖掉,但《仪器分析》这本书一定要留下来。

现代仪器分析重点总结(期末考试版)

现代仪器分析:一般的说,仪器分析是指采用比较复杂或特殊的仪器设备,通过测量物质的某些物理或物理化学性质的参数及其变化来获取物质的化学组成、成分含量及化学结构等信息的一类方法。灵敏度:指待测组分单位浓度或单位质量的变化所引起测定信号值的变化程度。灵敏度也就是标准曲线的斜率。斜率越大,灵敏度就越高 光分析法:利用光电转换或其它电子器件测定“辐射与物质相互作用”之后的辐射强度等光学特性,进行物质的定性和定量分析的方法。 光吸收:当光与物质接触时,某些频率的光被选择性吸收并使其强度减弱,这种现象称为物质对光的吸收。 原子发射光谱法:元素在受到热或电激发时,由基态跃迁到激发态,返回到基态时,发射出特征光谱,依据特征光谱进行定性、定量的分析方法。 主共振线:在共振线中从第一激发态跃迁到激发态所发射的谱线。 分析线:复杂元素的谱线可能多至数千条,只选择其中几条特征谱线检验,称其为分析线。 多普勒变宽:原子在空间作不规则的热运动所引起的谱线变宽。 洛伦兹变宽:待测原子和其它粒子碰撞而产生的变宽。 助色团:本身不吸收紫外、可见光,但与发色团相连时,可使发色团产生的吸收峰向长波方向移动,且吸收强度增强的杂原子基团。 分析仪器的主要性能指标是准确度、检出限、精密度。 根据分析原理,仪器分析方法通常可以分为光分析法、电分析化学方法、色谱法、其它仪器分析方法四大类。 原子发射光谱仪由激发源、分光系统、检测系统三部分组成。 使用石墨炉原子化器是,为防止样品及石墨管氧化应不断加入(N2)气,测定时通常分为干燥试样、灰化试样、原子化试样、清残。 光谱及光谱法是如何分类的? ⑴产生光谱的物质类型不同:原子光谱、分子光谱、固体光谱;⑵光谱的性质和形状:线光谱、带光谱、连续光谱;⑶产生光谱的物质类型不同:发射光谱、吸收光谱、散射光谱。 原子光谱与发射光谱,吸收光谱与发射光谱有什么不同 原子光谱:气态原子发生能级跃迁时,能发射或吸收一定频率的电磁波辐射,经过光谱依所得到的一条条分立的线状光谱。 分子光谱:处于气态或溶液中的分子,当发生能级跃迁时,所发射或吸收的是一定频率范围的电磁辐射组成的带状光谱。 吸收光谱:当物质受到光辐射作用时,物质中的分子或原子以及强磁场中的自选原子核吸收了特定的光子之后,由低能态被激发跃迁到高能态,此时如将吸收的光辐射记录下来,得到的就是吸收光谱。发射光谱:吸收了光能处于高能态的分子或原子,回到基态或较低能态时,有时以热的形式释放出所吸收的能量,有时重新以光辐射形式释放出来,由此获得的光谱就是发射光谱。 选择内标元素和分析线对有什么要求? a. 若内标元素是外加的,则该元素在分析试样中应该不存在,或含量极微可忽略不计,以免破坏内标元素量的一致性。 b. 被测元素和内标元素及它们所处的化合物必须有相近的蒸发性能,以避免“分馏”现象发生。 c. 分析线和内标线的激发电位和电离电位应尽量接近(激发电位和电离电位相等或很接近的谱线称为“均称线对”);分析线对应该都是原子线或都是离子线,一条原子线而另一条为离子线是不合适的。 d. 分析线和内标线的波长要靠近,以防止感光板反衬度的变化和背景不同引起的分析误差。分析线对的强度要合适。 e. 内标线和分析线应是无自吸或自吸很小的谱线,并且不受其他元素的谱线干扰。 原子荧光光谱是怎么产生的?有几种类型? 过程:当气态原子受到强特征辐射时,由基态跃迁到激发态,约在10-8s后,再由激发态跃迁回到基态,辐射出与吸收光波长相同或不同的辐射即为原子荧光。 三种类型:共振荧光、非共振荧光与敏化荧光。 为什么原子发射光谱法可采用内标法来消除实验条件的影响? 影响谱线强度因素较多,直接测定谱线绝对强度计算难以获得准确结果,实际工作多采用内标法。内标法属相对强度法,是在待测元素的谱线中选一条谱线作为分析线,然后在基体元素或在加入固定量的其他元素的谱线中选一条非自吸谱线作为内标线,两条谱线构成定量分析线对。 通常为什么不用原子吸收光谱法进行物质的定性分析? 答:原子吸收光谱法是定量测量某一物质含量的仪器,是定量分析用的,不能将物质分离,因此不能鉴定物质的性质,因此不能。。。。 原子吸收光谱法,采用峰值吸收进行定量分析的条件和依据是什么? 为了使通过原子蒸气的发射线特征(极大)频率恰好能与吸收线的特征(极大)频率相一致,通常用待测元素的纯物质作为锐线光源的阴极,使其产生发射,这样发射物质与吸收物质为同一物质,产生的发射线与吸收线特征频率完全相同,可以实现峰值吸收。 朗伯比尔定律的物理意义是什么?偏离朗伯比尔定律的原因主要有哪些? 物理意义是:当一束平行单色光通过均匀的溶液时,溶液的吸光度A与溶液中的吸光物质的浓度C及液层厚度L的乘积成正比。A=kcL 偏离的原因是:1入射光并非完全意义上的单色光而是复合光。2溶液的不均匀性,如部分入射光因为散射而损失。3溶液中发生了如解离、缔合、配位等化学变化。 影响原子吸收谱线宽度的因素有哪些?其中最主要的因素是什么? 答:影响原子吸收谱线宽度的因素有自然宽度Δf N、多普勒变宽和压力变宽。其中最主要的是多普勒变宽和洛伦兹变宽。 原子吸收光谱法,采用极大吸收进行定量的条件和依据是什么? 答:原子吸收光谱法,采用极大吸收进行定量的条件:①光源发射线的半宽度应小于吸收线半宽度;②通过原子蒸气的发射线中心频率恰好与吸收线的中心频率ν0相重合。定量的依据:A=Kc 原子吸收光谱仪主要由哪几部分组成?各有何作用? 答:原子吸收光谱仪主要由光源、原子化器、分光系统、检测系统四大部分组成。

现代仪器分析 重点内容综述

一,原子发射光谱法:元素在受到热或电激发时,由基态跃迁到激发态,返回到基态时,发射出特征光谱,依据特征光谱进行定性、定量的分析方法。 主共振线:在共振线中从第一激发态跃迁到激发态所发射的谱线。 分析线:复杂元素的谱线可能多至数千条,只选择其中几条特征谱线检验,称其为分析线。 多普勒变宽:原子在空间作不规则的热运动所引起的谱线变宽。 洛伦兹变宽:待测原子和其它粒子碰撞而产生的变宽。 助色团:本身不吸收紫外、可见光,但与发色团相连时,可使发色团产生的吸收峰向长波方向移动,且吸收强度增强的杂原子基团。 分析仪器的主要性能指标是准确度、检出限、精密度。 2.根据分析原理,仪器分析方法通常可以分为光分析法、电分析化学方法、色谱法、其它仪器分析方法四大类。 3.原子发射光谱仪由激发源、分光系统、检测系统三部分组成。 4.使用石墨炉原子化器是,为防止样品及石墨管氧化应不断加入(N2)气,测定时通常分为干燥试样、灰化试样、原子化试样、清残。 5.光谱及光谱法是如何分类的?⑴产生光谱的物质类型不同:原子光谱、分子光谱、固体光谱;⑵光谱的性质和形状:线光谱、带光谱、连续光谱;⑶产生光谱的物质类型不同:发射光谱、吸收光谱、散射光谱。原子光谱与发射光谱,吸收光谱与发射光谱有什么不同 6.原子光谱:气态原子发生能级跃迁时,能发射或吸收一定频率的电磁波辐射,经过光谱依所得到的一条条分立的线状光谱。 7.分子光谱:处于气态或溶液中的分子,当发生能级跃迁时,所发射或吸收的是一定频率范围的电磁辐射组成的带状光谱。 8.吸收光谱:当物质受到光辐射作用时,物质中的分子或原子以及强磁场中的自选原子核吸收了特定的光子之后,由低能态被激发跃迁到高能态,此时如将吸收的光辐射记录下来,得到的就是吸收光谱。 9.发射光谱:吸收了光能处于高能态的分子或原子,回到基态或较低能态时,有时以热的形式释放出所吸收的能量,有时重新以光辐射形式释放出来,由此获得的光谱就是发射光谱。 10.原子荧光。 三种类型:共振荧光、非共振荧光与敏化荧光。 11.原子发射光谱法可采用内标法来消除实验条件的影响 12.朗伯比尔定律 物理意义是:当一束平行单色光通过均匀的溶液时,溶液的吸光度A与溶液中的吸光物质的浓度C及液层厚度L的乘积成正比。A=kcL 偏离的原因是:1入射光并非完全意义上的单色光而是复合光。2溶液的不均匀性,如部分入射光因为散射而损失。3溶液中发生了如解离、缔合、配位等化学变化。 13.影响原子吸收谱线宽度的因素有哪些?其中最主要的因素是什么?答:影响原子吸收谱线宽度的因素有自然宽度ΔfN、多普勒变宽和压力变宽。其中最主要的是多普勒变宽和洛伦兹变宽。 14.原子吸收光谱仪主要由光源、原子化器、分光系统、检测系统四大部分组成。 原子化器的作用:将试样中的待测元素转化为气态的能吸收特征光的基态原子。 分光系统的作用:把待测元素的分析线与干扰线分开,使检测系统只能接收分析线。 检测系统的作用:把单色器分出的光信号转换为电信号,经放大器放大后以透射比或吸光度的形式显示出来。 15.与火焰原子化器相比,石墨炉原子化器有哪些优缺点? 与火焰原子化器相比,石墨炉原子化器的优点有:原子化效率高,气相中基态原子浓度比火焰原子化器高数百倍,且基态原子在光路中的停留时间更长,因而灵敏度高得多。缺点:操作条件不易控制,背景吸收较大,重现性、准确性均不如火焰原子化器,且设备复杂,费用较高 16.原子吸收光谱法的干扰按其性质主要分为物理干扰、化学干扰、电离干扰和光谱干扰四类 17.比较标准加入法与标准曲线法的优缺点。 答:标准曲线法的优点是大批量样品测定非常方便。缺点是:对个别样品测定仍需配制标准系列,手续比较麻烦,特别是遇到组成复杂的样品测定,标准样的组成难以与其相近,基体效应差别较大,测定的准确度欠佳。 标准加入法的优点是可最大限度地消除基干扰,对成分复杂的少量样品测定和低含量成分分析,准确度较高;缺点是

仪器分析知识总结(改进版)

仪器分析复习资料(改进版) 绪论 分子光谱法:UV-VIS、IR、F 原子光谱法:AAS 电化学分析法:电位分析法、电位滴定 色谱分析法:GC、HPLC 质谱分析法:MS、NRS 第一章绪论 ⒈经典分析方法与仪器分析方法有何不同? 经典分析方法:是利用化学反应及其计量关系,由某已知量求待测物量,一般用于常量分析,为化学分析法。 仪器分析方法:是利用精密仪器测量物质的某些物理或物理化学性质以确定其化学组成、含量及化学结构的一类分析方法,用于微量或痕量分析,又称为物理或物理化学分析法。 化学分析法是仪器分析方法的基础,仪器分析方法离不开必要的化学分析步骤,二者相辅相成。 ⒉仪器的主要性能指标的定义 1、精密度(重现性):数次平行测定结果的相互一致性的程度,一般用相对标准偏差表示(RSD%),精密度表征测定过程中随机误差的大小。 2、灵敏度:仪器在稳定条件下对被测量物微小变化的响应,也即仪器的输出量与输入量之比。 3、检出限(检出下限):在适当置信概率下仪器能检测出的被检测组分的最小量或最低浓度。 4、线性范围:仪器的检测信号与被测物质浓度或质量成线性关系的范围。 5、选择性:对单组分分析仪器而言,指仪器区分待测组分与非待测组分的能力。 校准曲线包括工作曲线和标准曲线: 工作曲线:配置4到6个不同浓度的标准溶液,加入与实际样品类似的基体中制成加标模拟样品采用和实际样品相同的分析方法测定(经过预处理的),以加标模拟样品的浓度为横坐标,响应信号为纵坐标绘制的标准曲线。 没有经过预处理的为标准曲线 标准参考物质法:取与待测试样相似的一定量标准参考物质,在规定的实验条件下进行检测根据测量值与给定的标准参考量值计算相对误差,越小越准确。 加标回收法:没有标准参考物质的条件下,向样品中加入一定量的被测成分的纯物质或者已知量的标准物质,两份试样同时按照相同的分析步骤加标的一份所得结果减去未加标的一份,差值同标准物质的理论值只比即加标回收率。(越接近100%越好) 注意事项:加标物质不能过多,一般为测量物含量的0.5-2.0倍,加标后的总含量不应超过方法测定的总含量。加标物质的浓度应该高,体积小,不超过原始试样体积的1% 标准方法比较法:和国标(已知方法)得到的结果比较。至少设计9组,分浓度的高,中,低三个浓度。 线性:被测物信号值与试样中被测物浓度直接呈正比关系的程度 线性范围:待测物质的浓度或量和测量信号值呈线性关系的浓度或者量的范围。(从测定的最低浓度扩展到校正曲线偏离线性浓度的范围。) ⒊简述三种定量分析方法的特点和应用要求 一、工作曲线法(标准曲线法、外标法) 特点:直观、准确、可部分扣除偶然误差。需要标准对照和扣空白 应用要求:试样的浓度或含量范围应在工作曲线的线性范围内,绘制工作曲线的条件应与试样的条件尽量保持一致。 二、标准加入法(添加法、增量法) 特点:由于测定中非待测组分组成变化不大,可消除基体效应带来的影响 应用要求:适用于待测组分浓度不为零,仪器输出信号与待测组分浓度符合线性关系的情况 三、内标法 特点:可扣除样品处理过程中的误差 应用要求:内标物与待测组分的物理及化学性质相近、浓度相近,在相同检测条件下,响应相近,内标物既不干扰待测组分,又不被其他杂质干扰 第2章光谱分析法引论 习题 1、吸收光谱和发射光谱的电子能动级跃迁的关系 吸收光谱:当物质所吸收的电磁辐射能与该物质的原子核、原子或分子的两个能级间跃迁所需要的能量满足ΔE=hv 的关系时,将产生吸收光谱。M+hv→M* 发射光谱:物质通过激发过程获得能量,变为激发态原子或分子M*,当从激发态过渡到低能态或某态时产生发射光谱。M*→M+hv 2、带光谱和线光谱 带光谱:是分子光谱法的表现形式。分子光谱法是由分子中电子能级、振动和转动能级的变化产生。 线光谱:是原子光谱法的表现形式。原子光谱法是由原子外层或内层电子能级的变化产生的。 第6章原子吸收光谱法(P130) 1、定义:它是基于物质所产生的原子蒸气对特定谱线的吸收来进行定量分析的方法。基态原子吸收其共振辐射,外层电子由基态跃迁至激发态而产生原子吸收光谱。 原子吸收光谱位于光谱的紫外区和可见区。 优点:灵敏度高,准确度高,选择性好,分析速度块,试样用量少,应用范围光 缺点:换等频率频繁,不可同时测定多个元素,对于难溶解元素有困难。 2、原子吸收定量原理:频率为ν的光通过原子蒸汽,其中一部分光被吸收,使透射光强度减弱。 3、谱线变宽的因素(P-131): 自然宽度:由原子本身性质引起,在无外界因素影响情况下谱线仍有一定宽度,这种宽度为自然宽度△VN ⑴多普勒(Doppler)宽度ΔυD:由原子在空间作无规热运动所致。故又称热变宽。 Doppler宽度随温度升高和相对原子质量减小而变宽。 ⑵压力变宽ΔυL(碰撞变宽):由吸收原子与外界气体分子之间的相互作用引起 外界压力愈大,浓度越高,谱线愈宽。 4、对原子化器的基本要求:①使试样有效原子化;②使自由状态基态原子有效地产生吸收; ③具有良好的稳定性和重现形;④操作简单及低的干扰水平等。 锐线光源:指发射线的半宽度比吸收线半宽度窄得多,且发射中心频率与吸收线中心频率相一致的光源。 石墨炉原子化法的过程:干燥,灰化,原子化,净化 1.测量条件选择 ⑴分析线:一般用共振吸收线。 ⑵狭缝光度:W=DS没有干扰情况下,尽量增加W,增强辐射能。 ⑶灯电流:按灯制造说明书要求使用 ⑷原子条件:燃气:助燃气、燃烧器高度石墨炉各阶段电流值 ⑸进样量:(主要指非火焰方法) 2.分析方法 (1).工作曲线法 最佳吸光度0.1---0.5,工作曲线弯曲原因:各种干扰效应。 ⑵. 标准加入法 标准加入法能消除基体干扰,不能消背景干扰。使用时,注意要扣除背景干扰。 Boltman分布定律:(Nj,N0分别代表单位体积内激发态原子数和基态原子数)1,Nj/N0值温度越高,比值越大2,在同一温度下,不同元素电子跃迁的能级Ej值越小,共振波长越长,比值越大。 习题 ⒈引起谱线变宽的主要因素有哪些? ⑴自然变宽:无外界因素影响时谱线具有的宽度 ⑵多普勒(Doppler)宽度ΔυD:由原子在空间作无规热运动所致。故又称热变宽。 ⑶.压力变宽ΔυL(碰撞变宽):由吸收原子与外界气体分子之间的相互作用引起

现代仪器分析 各章习题总结

第一章、绪论 1、了解分析化学发展的过程 阶段一:16世纪天平的出现,分析化学具有了科学的内涵 20世纪初,依据溶液中四大反应平衡理论,形成分析化学理论基础。 第一次变革,20世纪40年代前,化学分析占主导地位,仪器分析种类少和精度低。阶段二:20世纪40年代后,仪器分析的大发展时期 第二次变革,仪器分析的发展。 阶段三:八十年代处初,以计算机应用为标志的分析化学第三次变革 2、掌握仪器分析的分类和发展特点 分类:电化学分析法、光学分析法、色谱分析法、其它仪器分析法。 发展特点:提高灵敏度, 解决复杂体系的分离问题, 微型化及微环境的表征与测量, 扩展时空多维信息, 形态、状态分析及表征, 生物大分子及生物活性物质的表征与测定, 非破坏性检测与遥测, 自动化及智能化。 3、分析仪器的性能应从哪些方面进行评价? 精密度:标准偏差、相对标准偏差、方差、变异系数 误差:绝对误差、相对误差 灵敏度:校正灵敏度、分析灵敏度 检测限:空白加3倍的空白标准偏差 线性范围:可以分析的浓度范围 选择性:选择性系数 4、仪器分析常用的校正方法?各有何特点? 标准曲线法:标准物配制浓度要准确,标准基体与样品基体一致 标准加入法:基体相近,基体干扰相同,但适用于小数量的样品分析 内标法:克服或减少仪器或方法的不足等引起的随机误差或系统误差 5、了解分析仪器的组成部分 信号发生器——(分析信号)——检测器——(输入信号)——信号处理器——读出装置 6、内标元素和分析线对选择的条件? 内标元素应是原来试样中不含或含量少的元素, 内标物的激发电位应与分析线相同或尽量相近, 内标元素的待测元素应具有相近的电离电位, 两条谱线的波长应接近, 分析线对附近的背景干扰应尽量小 第二章:离心与电泳技术 1、理解相对离心力场(g)和沉降系数(s)的物理意义。 相对离心力场:转头所产生的最大离心力场是重力场的多少倍。 沉降系数:单位离心力场的沉降速度。 迁移率:单位电场强度下电荷移动速率,取决于物质本身。

《现代仪器分析》教学大纲

《现代仪器分析》教学大纲 课程编号: 课程名称:现代分析/ Modern Instrumental Analysis 学时/学分:40 /2.5 先修课程:无机及分析化学、有机化学 适用专业:化学工程与工艺 开课学院(部)、系(教研室):化学工程学院制药工程系 一、课程的性质与任务 仪器分析与光谱解析是制药工程专业的学科基础必修课。 本课程要求学生掌握各种仪器分析方法的基本原理、基本方法和基本操作。熟悉各种典型光谱的解析及色谱法的分离条件的选择。了解各种仪器的工作原理,以及各种仪器分析方法在药学中的应用。 二、课程的教学内容、基本要求及学时分配 (一)教学内容 1.电位法及永停滴定法 电化学分析法的基本原理(分类、基本原理);直接电位法、电位滴定法和永停滴定法的测定方法、应用及示例。 2.气相色谱法 气相色谱法的基本原理(基本概念、塔板理论、Van Deemter方程式简介),色谱柱(固定液、载体、气-液色谱填充柱的制备),气-固色谱填充柱、毛细管色谱柱简介,检测器(热导、氢焰)分离条件的选择,定性、定量分析方法,应用与示例等。 3.高效液相色谱法 高效液相色谱法的基本原理(Van Deemter); 方程式在HPLC与GC中表现形式、Giddings方程式简介),各类高效液相色谱法:液-固吸附色谱法、液-液分配色谱法、化学键合相色谱法(反相键合相色谱法、正相键合相色谱法、离子抑制色谱法、离子对色谱法),离子交换色谱法与离子色谱法、空间排斥色谱法,其他色谱法简介(胶束色谱法、手性色谱法、亲合色谱法),高效液相色谱固定相,流动相、仪器装置、定性与定量分析方法及毛细电泳法简介。 4.紫外—可见光度法 紫外—可见光谱的跃迁机理;Lambert-beer定律;精细结构;溶剂效应;wood-word吸收定则及应用。 5.红外光谱法 红外光谱的跃迁机理;判别定则;拉曼光谱;Fourier变换红外光谱;试样的制备和仪器等。 6.核磁共振 核自旋能级跃迁的基本原理;Zeeman能级;Boltzman分布;核的进动与弛豫;化学位移及其影响因素;13C—1H自旋—自旋偶合;偶合常数及其影响因素;NMR光谱的改进;奥氏核效应;二维谱。 7.质谱

武汉大学 现代仪器分析方法与实践 实验报告(ESI MS液质)

高效液相色谱与质谱联用 廖宇翔2011202030138 第七组材料物理与化学 实验目的 1. 掌握高效液相色谱与质谱联用的工作原理及仪器的基本结构 2. 了解仪器的操作方法 实验原理 液质联用(HLPC-MS)又叫液相色谱-质谱联用技术,它以液相色谱作为分离系统,质谱为检测系统。样品在色谱部分被分离,通过接口进入质谱,被离子化后,经质谱的质量分析器将离子碎片按质量数分开,经检测器得到质谱图。不同离子的质荷比及其在电场中运动的速度不同,质量分析器便能依此进行分离检测并记录,得到质谱图。而对比色谱图与质谱图中峰的位置可进行定性和结构分析,根据峰的强度可进行定量分析。液质联用体现了色谱和质谱优势的互补,将色谱对复杂样品的高分离能力,与MS具有高选择性、高灵敏度及能够提供相对分子质量与结构信息的优点结合起来,在药物分析、食品分析和环境分析等许多领域得到了广泛的应用。 主要仪器 HPLC-ESI-MS 实验所用的质谱仪为电喷雾电离和离子阱检测。电喷雾电离条件温和,分子不易形成碎片,有大量的分子离子。离子阱能有效地保留进入质谱的离子,提高检测器中的离子浓度,有更高的灵敏度。 操作步骤 1.样品预处理。 2.选择合适的工作条件,进样分析。 3.处理数据。 4.在记录质谱数据时可以更据需要选择碎片离子峰的二次或多次质谱图。 思考题 1.质谱仪由哪几部分组成? 质谱仪主要由真空系统、进样系统、离子源、质量分析器和离子检测器五部分组成。

2.为什么实验中要维持高真空? 空气中的大量氧会烧坏离子源的灯丝;残余气体分子会使产生信号,干扰质谱图;残余气体分子会引起额外的离子-分子反应,改变裂解模型,使图谱复杂化;残余气体会干扰离子源中电子束的正常调节;大量气体分子还会使离子很快淬灭,达不到检测器;质谱中的加速电压会使残余气体分子放电,影响检测。 3.离子源的作用是什么?说出几种常见的离子源。 试样中各组分在离子源中发生电离,生成不同荷质比的带正电荷的离子以便被电场加速,进而进入质量分析器被分别记录。即离子源的作用是将分子转化成离子,以便进行检测。常见的离子源有:电子轰击EI、化学电离CI、场致电离FI、场解析电离源FD、快原子轰击FAB、激光解析LDI、电喷雾电离ESI、大气压化学电离APCI等等。 4.常见的ESI电喷雾质谱的合适溶剂有哪些? ESI-MS的合适溶剂主要有水、N,N’-二甲基甲酰胺(DMF)、甲醇、正己烷、乙腈以及挥发性酸碱等等。

(完整版)仪器分析知识点整理..

教学内容 绪论 分子光谱法:UV-VIS、IR、F 原子光谱法:AAS 电化学分析法:电位分析法、电位滴定 色谱分析法:GC、HPLC 质谱分析法:MS、NRS 第一章绪论 ⒈经典分析方法与仪器分析方法有何不同? 经典分析方法:是利用化学反应及其计量关系,由某已知量求待测物量,一般用于常量分析,为化学分析法。仪器分析方法:是利用精密仪器测量物质的某些物理或物理化学性质以确定其化学组成、含量及化学结构的一类分析方法,用于微量或痕量分析,又称为物理或物理化学分析法。 化学分析法是仪器分析方法的基础,仪器分析方法离不开必要的化学分析步骤,二者相辅相成。 ⒉仪器的主要性能指标的定义 1、精密度(重现性):数次平行测定结果的相互一致性的程度,一般用相对标准偏差表示(RSD%),精密度表征测定过程中随机误差的大小。 2、灵敏度:仪器在稳定条件下对被测量物微小变化的响应,也即仪器的输出量与输入量之比。 3、检出限(检出下限):在适当置信概率下仪器能检测出的被检测组分的最小量或最低浓度。 4、线性范围:仪器的检测信号与被测物质浓度或质量成线性关系的范围。 5、选择性:对单组分分析仪器而言,指仪器区分待测组分与非待测组分的能力。 ⒊简述三种定量分析方法的特点和应用要求 一、工作曲线法(标准曲线法、外标法) 特点:直观、准确、可部分扣除偶然误差。需要标准对照和扣空白 应用要求:试样的浓度或含量范围应在工作曲线的线性范围内,绘制工作曲线的条件应与试样的条件尽量保持一致。 二、标准加入法(添加法、增量法) 特点:由于测定中非待测组分组成变化不大,可消除基体效应带来的影响 应用要求:适用于待测组分浓度不为零,仪器输出信号与待测组分浓度符合线性关系的情况 三、内标法 特点:可扣除样品处理过程中的误差 应用要求:内标物与待测组分的物理及化学性质相近、浓度相近,在相同检测条件下,响应相近,内标物既不干扰待测组分,又不被其他杂质干扰 第2章光谱分析法引论 习题

现代仪器分析重点总结(期末考试版)

分析仪器的主要性能指标是准确度、检出限、精密度。 根据分析原理,仪器分析方法通常可以分为光分析法、电分析化学方法、色谱法、其它仪器分析方法四大类。 已知一物质在它的最大吸收波长处的摩尔吸收系数κ为 1.4×104L·mol-1·cm-1,现用1cm吸收池测得该物质溶液的吸光度为0.850,计算溶液的浓度。 解:∵A=KCL ∴C=A/(KL)=0.850/(1.4×104×1)=0.607×10-4(mol·L-1 ) 10.K2CrO4的碱性溶液在372nm处有最大吸收,若碱性K2CrO4溶液的浓度c(K2CrO4)=3.00×10-5mol· L-1,吸收池长度为1cm,在此波长下测得透射比是71.6%。计算:(1)该溶液的吸光度;(2)摩尔吸收系数;(3)若吸收池长度为3cm,则透射比多大? 解:(1)A=-lgT=-lg71.6%=0.415 (2)K=A/(CL)=0.415/(3.00×10-5×1)=4.83×103 (L·mol-1·cm-1 ) (3)∵lgT=-A=-KCL=-4.83×103×3.00×10-5×3=-0.4347 ∴T=36.75% 苯胺在λmax为280nm处的κ为1430 L·mol-1·cm-1,现欲制备一苯胺水溶液,使其透射比为30%,吸收池长度为1cm,问制备100mL该溶液需苯胺多少克? 解:设需苯胺X g,则∵A=-lgT= KCL ∴0.523=1430×(X/M×100×10-3) ×1 X=3.4×10-3g 精密度是指使用同一方法,对同一试样进行多次平行测定所得测定结果的一致程度。精密度常用测定结果得标准偏差 s 或相对标准偏差(sr)量度。 二光分析导论 和活度) 四原子吸收光谱法 原子吸收光谱法的分析方法 主共振线:在共振线中从第一激发态跃迁到激发态所发射的谱线。主共振吸收线就是该元素的灵敏线,也是原子吸收中最主要的分析线。基态原子数与待测元素含量的关系温度增加,则Nq/N0 大,即处于激发态的原子数增加;当温度保持不变时,电子跃迁能级差越小的元素,形成的激发态原子就越多, Nq/N0 则越大 轮廓表示原子吸收线轮廓的特征量 是吸收线的特征频率V o和宽度。 2)极大(峰)值吸收法以半宽比 吸收线的半宽还要小得多的锐线光 源来代替产生连续光谱的激发光 源,测量谱线的峰值吸收。 光源:锐线光源空心阴极灯 火焰类型:富燃焰、贫燃焰、化学 计量火焰 低温原子化技术:氢化物发生法(Sn As Se Sb Ge Pb)和冷原子化法(汞) 测定条件选择 ①狭缝宽度——不引起吸光度减 小的最大狭缝宽度②分析线— —灵敏度高、干扰少 ③灯电流——保证输出稳定和适 当光强的条件下,尽量选用低的工 作电流 ④试样用量——根据实验确定,在 合适的燃烧器高度下,调节毛细管 出口的压力以改变进样速率,达到 最大吸光度值的进样量 特征浓度:Cc(又称百分灵敏度) 是指产生1%净吸收(吸光度为 0.0044)的待测元素浓度。 干扰及消除方法※ 物理干扰、化学干扰、电离干扰、 光谱干扰 1、物理干扰消除:配制与待测溶液 组成相似的标准溶液或者采用标准 加入法,使试液与标准溶液的物理 干扰相一致 2、化学干扰消除:①加释放剂消除: 能与干扰元素生成更稳定、更难挥 发的化合物,而释放待测元素。 ②加保护剂消除:能与待测元素形 成络合物,在元素中更易原子化 3、电离干扰消除:加入消电离剂消 除,大量易电离的其它元素抑制待 测元素的电离 4、光谱干扰消除:非共振线干扰— 减小狭缝消除 背景吸收干扰(空白校正、氘灯校 正和塞曼效应校正) 五紫外-可见吸收光谱法 利用紫外-可见分光光度计测量物 质对紫外-可见光的吸收程度和紫 外-可见吸收光谱来确定物质的组 成、含量,推测物质结构的分析方 法。 朗伯—比尔定律A=kcL 电子跃迁的类型 成键σ电子(单键轨道) 成键π电子(双键或叁键轨道) 未成键n 电子(非键轨道)主要有 四种跃迁所需能量ΔΕ大小顺序 为:n→π*<π→π*≤n→σ*<σ →σ* 吸收带:R吸收带n→π*跃迁产生 K共轭体系中的π→π*B芳香族 化合物的π→π*产生的精细结构 吸收带E芳香族化合物的π→π* 产生的,芳香族化合物特征吸收 影响紫外可见吸收光谱的因素 1. 共轭效应π→π共轭使吸收峰 波长长移,吸收强度增加 2. 助色效应助色团的n电子与发 色团的π电子共轭,使吸收峰波长 长移,吸收强度增加的现象。 3. 超共轭效应烷基的σ电子与共 轭体系中的π电子共轭,使吸收峰 波长长移,吸收强度增加的现象。 4. 溶剂效应由溶剂的极性强弱引 起吸收峰波长发生位移,吸收强度 和形状发生改变的现象。(溶剂极性 增加)长移:π→π*吸收峰向长波 方向移动的现象。红移短移:π→ π*吸收峰向短波方向移动的现象。 紫移 测量条件选择,应注意: 1、入射光波长的选择: 选择被测物质的最大吸收波长作为 入射光波长。这样,灵敏度较高, 偏离朗伯-比耳定律的程度减小。 当有干扰物质存在时,应根据“吸 收最大、干扰最小”的原则选择入 射光波长。 2、吸光度读数范围的选择:为了减 少浓度的相对误差,提高测量的准 确度,一般控制待测液的吸光度在 0.2~0.7,可通过改变称样量、稀释 溶液以及选择不同厚度的吸收池来 控制吸光度。 3参比的溶液选择原则是使溶 液的吸光度能真正反应待测物的浓 度。 ①纯溶剂空白:当试液、试剂、显 色剂均无色时,可用蒸馏水作参比 液,称纯溶剂空白。 ②试剂空白:试液无色,试剂、显 色剂有色,采用不加试液的空白溶 液作参比,称试剂空白。 ③试液空白:试剂和显色剂均无色 时,而试液中其他离子有色时,应 采用不加显色剂的试液溶液作参比 液,称试液空白。 4、溶剂的选择:饱和有机化合物的 选择:低极性、惰性 5、显色反应条件:ph值范围 七分子发光光谱 分子去激类型:无辐射去激;辐射 去激 分子荧光分子磷光 原理分子第一 单重激发 态(S1) 的最低振 动能级到 基态(S0) 的不同振 动能级的 辐射跃迁 分子第一 三重激发 态(T1) 的最低振 动能级到 基态(S0) 的不同振 动能级的 辐射跃迁 特点概率大, 辐射过程 快, 损耗能量 大,波长 磷光大于 荧光,寿 命长 十一电化学分析法 电极分类 按电极电位形成的机理把能够建立 平衡电位的电极分为金属基电极和 膜电极第一类电极:金属和该金 属离子溶液组成的电极体系,电位 由金属离子活度系数决定 第二类电极;金属、金属难溶盐与该 难溶盐的阴离子溶液相平衡构成, 与该溶液中构成难容盐的阴离子活 度的对数呈线性关系常见甘汞电 极、Ag—AgCl电极 第三类电极:零类电极,由石墨、 金铂等惰性导体浸入含有氧化还原 电对的溶液中构成,也成氧化还原 电极。(溶液中氧化还原电对的性质 十六气相色谱法 适用范围:沸点在500度以下;在 操作条件下,热稳定性良好的物质, 原则上均可采取气相色谱法。 固定液的选择:根据相似相容原理 气相色谱检测器类型 浓度型:热导检测器、电子捕获器 质量型:氢火焰离子化检测器、火 焰光度检测器 操作条件的选择:载气及其流速的 选择;柱温的选择;载体和固定液 含量的选择;进样条件的选择 毛细血管和填充柱的区别:1、采用 分流进样方式 2、尾吹系统 十七高效液相色 适用范围:不受样品挥发和热稳即 相对分子质量的限制,只要把样品 制成溶液即可 基本部分:高压输液系统,进样系 统,分离系统,检测系统 正相键合色谱与反向键和色谱的区 别: 正相:流动相极性低而固定相高 反向:流动相极性大于固定相极性

相关主题
相关文档 最新文档