当前位置:文档之家› 3自由度并联机器人构型综合 杨国彬

3自由度并联机器人构型综合 杨国彬

既具有平面操作模式和空间平移操作模式的3自由度并联机器人构型

综合

专业:交通运输工程

学号:M015115102

姓名:杨国彬

本篇论文分为三个部分:

第一部分:确定论文主旨:即通过简化确定多模式并联机器人支链的步骤,来改进多模式并联机器人构型综合的方法。同时规定一些符号的意思:

:在机械装置中,轴线平行于平面运动旋转轴的转动副(R jionts )

:在一支链中,彼此轴线平行但是不平行于副轴线的R 副:在一支链中,彼此轴线平行;同时,在同样一个腿中,其

轴线不与副和副这两者的轴线平行。

:在一支链中,彼此的轴线经过同一个点。

()E :代表一个平面运动链:由具有Bennett 链接的三个连续的转动副组成的Bennett CU (如图1所示)

//R \R //R /R //R \R .R ~RRR

:代表一个不满足上述提到的一些转动副的情况(即具有平面运动链(()E )的R 副、、、、、这些情况):代表在过渡配置中的R 副,该R 副在平面运动模式下表现为副,或者在空间平移模式和过度配置下表现为副。:代表一个在过渡配置中的R 副,该R 副在平面运动模式和过度配置下表现为副,或者在空间平移模式下表现为

副。

图1 Bennett CU

~

R //R \R /R .R ~RRR /~??? ??R ~R /R '

//??? ??R //R \R

第二部分:

平面并联机器人的构型综合,即研究平面并联运动支链,这里分为三个部分来进行介绍。

2.1、用虚拟链的方法来研究并联机器人的构型综合(在研究平面并联机器人支链时,在底座和动平台之间加有一个E虚拟链,以保证该支链是可以在平面上运动,然后去除E虚拟链,就可以得到平面并联机器人支链)

平面虚拟链(E virtual chain 如图2)可以用来代表一个平面运动

图2 E virtual chain

2.2、用于平面并联运动链(仅由R副组成)的组成单元

仅由R副组成的CUs有四种类型,分别是:平面CU(如图3)、球形CU(如图4)、共轴(coaxial)CU和Bennett CU (如图1)。

图3 planar CU 图4 spherical CU

2.3、平面并联运动支链的构型综合

平面并联机器人支链的获得:首先采用一个或更多的组成单元来构建3自由度单回路运动链,然后去除E 虚拟链来获得平面并联机器人的支链,如下图两个过程:

图5 图6先是由两个平面组成单元4-5和6-7-8-1-2-3组成图5所示的运动链,而后去除E 虚拟链就得到了图6所示的支链。

()E RRR R R R R R \\//////\

\//////R R R R R

图7 图8由一个平面5R 组成单元和一个Bennett 组成单元组成图7所示的运动链,而后去除E 虚拟链就得到了图8所示的支链。()E RRR R RRR R //

~////

~//R RRR R ~

RRR

如此就可以得到平面并联运动支链(均列在表1中)

第三部分:既具有平面模式又具有空间平移模式的并联机器人构型综合(借助一个过渡配置过程,在两个模式之间转换)该构型综合分为三个步骤:

第一步:具有单一模式并联机器人支链的构型综合(已解)第二步:E/PPP=PMs支链的构型综合

第三步:E/PPP=PMs支链的组合

3.1、表1列出了平面并联机器人支链的情况

表2列出了平移并联机器人支链的情况

3.2、并联机器人支链的确定

之前,在过度配置过程中,比较平面并联机器人支链和平移并联机器人支链两种情况,就可以得到E/PPP=PMs支链改良方法:在过渡配置过程中,通过对平面并联机器人支链施加平移并联机器人支链的条件来获得E/PPP=PMs支链。

平移并联机器人5R支链的条件是:两个或三个连续R副的轴线平行,其他R副的轴线平行。

那么现在就对平面并联机器人5R支链施加平移并联机器人5R支链的条件来获得E/PPP=PMs的支链。其步骤为:第一步:对于平面并联机器人支链来说,检查它是否满足平移并联机器人支链的条件。若满足,则该支链就是

E/PPP=PMs的支链,直接跳到第五步。若不满足,执行下一步。

第二步:检查能否通过调整平面机并联器人支链,以致于所有的R副能够分解两个组(在每一组中,R副轴线之间互相平行)。若不可以,那么该支链就不是E/PPP=PMs的支链,同时直接跳到第五步。若满足,执行下一步。

第三步:检查能否通过调整这些支链,以致于至少有两个连续的R副是共轴的。如果可以,那么该支链就不是

E/PPP=PMs的支链,同时直接跳到第五步。若满足,执行下一步。

第四步:检查通过调整这些支链,是否存在一组轴线平行的R副(其中所有这些转动副是连续的)。若存在,那么这个经过调整的支链就是E/PPP=PMs的支链。若不存在,那么该支链就不是E/PPP=PMs的支链,执行下一步第五步:重复1-4步骤直到所有平面并联机器人的支链均被考虑到了。

为了简化综合的过程,考虑到在过渡配置过程中,

E/PPP=PMs支链的特性是相似的。平面并联机器人5R支链(详见表1)可以分为以下的子集,以便简化综合的过程:

子集1:表1中的Nos6-12支链(由两个平面组成单元组成)

子集2:表1中的Nos12-19支链(由一个平面组成单元与

一个球形组成单元组成)

子集3:表1中的Nos20-29支链(由一个平面组成单元与两

个共轴组成单元组成)

子集4:表1中的Nos30-32支链(由一个平面组成单元与

一个Bennett单元组成)

子集1中的每个支链,两个或三个连续的转动副轴线是平行的,同时其他的R 副的轴线也是平行的,这些支链都满足平移并联机器人支链的条件。因此,平面并联机器人的Nos6-12支链都是E/PPP=PMs 的支链。

子集2中的每个支链,除了副之外的R 副都是连续副。

如果调整副使之平行,那么连续的副既经过同一点又

要平行,无异于他们都变成了一个R 副。因此,平面并联机器人的Nos13-19支链中没有E/PPP=PMs 的支链。

子集3中的每个支链都是由三个副和两个固定的副组

成。对于、、、、这

5个支链,即使调整副使之平行了,也因为这5个支链中

没有连续的R 副,所以这5个支链中没有E/PPP=PMs 的支链。//R .

R .R .R //R ~R ~R ~//~////R R R R R ////~//~R R R R R ~////~//R R R R R //~////~R R R R R //~//~//R R R R R

对于、、、这4个支链,调整副使之平行,得到的支链也是E/PPP=PMs 的支链,但是这个支链和子集1中的Nos6 、7 、8 、9支链是一样的,

这里就不在说了。最后对于支链,调整副使之平

行,得到一个经过调整的支链,这个支链是

E/PPP=PMs 的支链,记为。子集4中的每个支链都有一个Bennett 组成单元,我们

没法调整这些支链来使这三个具有的副的轴线平行。因

此,这三种类型的支链都不是E/PPP=PMs 的支链。

综上所述,总共有8种E/PPP=PMs 的支链(如表3所示)。~~//////R R R R R //////~~R R R R R //~~////R R R R R //

//~~//R R R R R ~R ~//////~R R R R R ~R ~//////~R R R R R /~'//'//'///~??? ????? ????? ????? ????? ??R R R R R ~

RRR ~

RRR

3.3、E/PPP=PMs 支链的组合

为了使E/PPP=PM 的自由度是3,支链约束旋量系应该是系(PM 在平面模式下工作)或系(PM 在空间平移模式下工作),每个5R 支链有1个约束旋量,如果一个并联机器人有3个支链,那么就意味着该并联机器人有3个约束旋量,即该PM 有3个自由度。

图9

--1--20ζζ∞--3∞ζ

图9是E/PPP=PM 的重构过程,首先是在

平面模式下运动的,在支链中,三个副的轴线是互相平行的且与约束轴平行;另外两个副的轴线与约束轴相交。调整两个副使得他们的轴线互相平行,

记调整后的支链为,在该支链中,两个副的

轴线是互相平行的,这样就可以直接记副为副,副为副,所以就得到在空间平移模式下运动的E/PPP=PM ,

即PM 。

通过这个过渡配置过程,这个E/PPP=PM 可以在平面模式和空间平移模式之间转换。\\///////~'//'//'///~2R R R R R R R R R R --??? ????? ????? ????? ????? ??\\//////~//////~2R R R R R R R R R R --~//////~R R R R R //R 101ζ~R 101ζ~R /~'//'//'///~??? ????? ????? ????? ????? ??R R R R R /~??? ??R /~??? ??R \R '//??? ??R /R \

\//////\///\-2-R R R R R R R R R R

结论

分析了从一种运动模式切换到另一种运动模式的并联机器人,为了达到这个目的,改良了分析并联机器人支链的方法。此外,也第一次研究了包含Bennett组成单元的平面并联机

器人。这项工作进一步发展了用于并联机器人机构分析的虚拟链方法,奠定了研究其他类型并联机器人机构综合(包括实现至少一种平面操作模式的并联机器人)的基础。

(整理)Delta并联机器人的机构设计1.

零件的设计与选型 1 定平台的设计 定平台又称基座,在结构中属于固定的,具体的参数见图一,厚度20cm。定 平台的等效圆半径为210mm。材料选用铸铁,铸造加工,开口处磨削加工保证精度。最后进行打孔的工艺。 图一定平台设计图

具体参数为长* 厚* 宽:880mm*10mm*20mm。孔的参数为φ10*10mm。材料用铝合金,设计为杆式,质量小,经济,同时也满足载荷条件。 图二驱动杆的设计图 3 从动杆的设计 具体参数为长* 宽* 高:620*20*10mm。孔参数为φ10*10mm。材料选用铝合金。 图三从动杆的设计图

参数如下图,考虑到重量因素,采用铝合金,切削加工。动平台的等效圆半径为50mm,分布角为21.5°。 图四动平台的设计图 5 链接销的设计 45号钢,为主动杆和定平台的连接销:φ9*66mm。

6 球铰链的选型 目前,大多数的Delta机构的主动杆与从动杆的链接方式为球铰链的链接。球型连接铰链是用于自动控制中的执行器与调节机构的连接附件。它采用了球型轴承结构具有控制灵活、准确、扭转角度大的优点,由于该铰链安装、调整方便、安全可靠。所以,它广泛地应用在电力、石油化工、冶金、矿山、轻纺等工业的自动控制系统中。球铰链由于选用了球型轴承结构,能灵活的承受来自各异面的压力。本文选用球铰链设计,是主要因为球铰链的可控性,以及结构简单,易于装配。且有很好的可维护性。 本文选用了伯纳德的SD 系列球铰链,相对运动角为60°。 7 垫圈的选型 此处我们选用标准件。GB/T 97.1 10‐140HV ,10.5*1.6mm。 8 电机的选型 本设计的Delta 机器人,主要面向工业中轻载的场合,比如封装饼干等。因此,以下做电动机的选型处理。 由于需要对角度的精确控制,因此决定选用伺服电机。交流伺服电机有以下特点:启动转矩大,运行范围广,无自转现象,正常运转的伺服电动机,只要失去控制电压,电机立

三自由度并联机械手的设计..

学号: 密级: 武汉东湖学院本科生毕业论文(设计) 三自由度并联机械手的设计 院(系)名称:机电工程学院 专业名称:机械设计制造及其自动化 学生姓名: 指导教师: 二〇一六年五月六日

郑重声明 我郑重声明:本人恪守学术道德,崇尚严谨学风,所呈交的学术论文是本人在老师的指导下,独立进行研究工作所取得的结果。除文中明确注明和引用的内容外,本论文不包含任何他人已经发表和撰写过得内容。论文为本人亲自撰写,并对所写内容负责。 本人签名: 日期:2016年5月7号

摘要 随着机器人技术的快速发展,并联机械手的应用领域越来越广,已成为当今机器人领域新的研究热点。针对并联机械手机构比传统串联机械手更复杂的问题,本文以一种轻型高速的三自由度Delta 并联机械手为例,在完成其运动学的基础上,对并联机械手进行了建模以及装配。 首先,本文介绍了三自由度并联机械手机构的工作原理,并对其进行了运动学分析。其中,对机构的自由度进行的计算,采用几何法求得了其运动学正解以及其运动学逆解。其次,对机构进行了速度模型及雅克比矩阵的分析。实现了solidworks对机构的零部件与装配图三维建模。最后,通过个零部件的配合,实现了三自由度并联机械手的装配。 关键词:并联机械手;三自由度;3D建模

ABSTRACT With the rapid development of robot technology, parallel manipulator used more and more widely, has become the hot spot in the field of new robots today. In view of the parallel manipulator mechanism more complex than the traditional serial manipulator problem, based on a lightweight high-speed three degree of freedom parallel manipulator as an example, the Delta at the completion of its kinematics, on the basis of the parallel manipulator has carried on the modeling and assembly. First, this paper introduces the working principle of three degrees of freedom parallel manipulator mechanism, and carries on the kinematics analysis. Among them, the institution of degree of freedom for the calculation of geometric method is used to obtain the positive kinematics solution and its inverse kinematics solution. Second, the institutions for the velocity model and the Jacobi matrix analysis. Implements the solidworks for spare parts and assembly drawing 3 d modeling of the organization. Finally, by a spare parts, implements the three degree of freedom parallel manipulator assembly. Keywords: Parallel manipulator;Three degrees of freedom;3D modeling

全转动副三自由度并联机器人设计说明书资料

河北工业大学城市学院 毕业论文 作者:周** 学号:***** 系(专业):机械系 专业:机械设计与制造及其自动化 题目:全转动副三自由度并联机器人 指导者:李** 教授 (姓名) (专业技术职务) 评阅者: (姓名) (专业技术职务) 2015 年6月11 日

目录 1 绪论 ........................................................................................................................ - 4 - 1.1 引言 .............................................................................................................. - 4 - 1.2 此次课题研究背景和意义 ........................................................................ - 4 - 1.3 串并联机器人的国内外研究现状、使用范围及发展趋势 ...................... - 5 - 1. 4 本次毕业设计主要完成工作 ..................................................................... - 6 - 1.4.1 基本内容 ............................................................................................ - 6 - 1.4.2 课题研究拟采用的手段和工作路线 ................................................ - 6 - 2 总体方案的设计 .................................................................................................... - 7 - 2.1 总体布局的设计 ....................................................................................... - 7 - 3 由基本参数选定标准件的型号 .......................................................................... - 10 - 3.1 减速机的选择 .......................................................................................... - 10 - 3.2 选择伺服电机并对其检验 ...................................................................... - 12 - 3.3 轴承的选择及校核 .................................................................................... - 15 - 3.4 联轴器的选择 .......................................................................................... - 17 - 4.1 支链尺寸的确定 ........................................................................................ - 19 - 4.2 对主动轴尺寸的确定及校核 .................................................................... - 20 - 4.3 对支链上转动副的设计 ............................................................................ - 22 - 4.4 支链末端设计 ............................................................................................ - 25 - 5 机构的整体布局设计及机架设计 ...................................................................... - 2 6 - 结论 ...................................................................................................................... - 29 - 参考文献 .................................................................................................................... - 31 - 致谢 ............................................................................................................................ - 32 -

平面并联机器人的运动学和动力学研究

平面2自由度并联机器人的运动学 和动力学研究 林协源1刘冠峰1 (1.广东工业大学广州) 摘要:本文面向高速高精LED电子封装设备设计了一种高速高精2自由度平面并联机构(2-PPa并联机器人)。该机构由一个动平台和两个对称分布的完全相同的支链组成,每个支链中都有一个移动副(驱动关节)和一个由平面平行四边形组成的特殊转动动副。首先推导出该机器人的运动学模型包括正反解;其次结合焊线机实际工艺要求提出多项机构性能指标对该机构的几何参数进行多目标优化;然后基于Euler-Lagrange 方程建立该机器人的动力学方程,最后通过算例分析两个移动副在动平台按照一定轨迹运动时其速度、加速度和驱动力的变化规律。这些为接下来研究该机器人的动态性能和系统解耦控制等都具有重要意义。 关键词:2自由度平面并联机器人运动学动力学 Kinematic and Dynamic Analysis of a Planar Two-degree-freedom Parallel Manipulator LIN Xieyuan1LIU Guanfeng1 (1.Guangdong University of Technology Guangzhou ) Abstract:In this paper,a type of planar 2-DOF parallel manipulator is proposed for uses in design of high- speed and high-accuracy LED packaging machines. The manipulator consists of a moving platform and two identical subchains. Each subchain is made of a prismatic joint (actuator) and a parallelogram with four passive revolute joints. We first derive the kinematic model of the manipulator. Then, we determine the optimal geometric parameters of the manipulator by solving a multi-goal optimization problem based on performance indices. We compute the dynamic equation use Euler-Lagrange formulation and use it to analyze the relationship between velocity, acceleration and driving torque of joints. This analysis is important for further study of the dynamic performance and the decoupling control methods for the manipulator. Key words:2-DOF Planar parallel manipulator Kinematics Dynamics 0 前言 在电子、包装和食品等轻工业场合中,机器人只需要3到4个自由度即可满足使用要求。串联机器人由于自身具有较大的质量和惯性,很难应用到需要高速高负载能力的场合。并联机器人很好的弥补了串联机器人这方面的不足。所以,近年来少自由度并联机器人的研究相当热门。其中3自由度并联机器人的研究已是相当深入[1-4]。在Z方向只需要较小的操作位移时,末端搭载一个1或2自由度的串联机构的2自由度并联机器人相对应3或4自由度的并联机器人会显得更加经济适用。 清华大学曽提出过两种平面2-DOF并联机器人:一种是PRRRP(P表示移动副,R 表示转动副)并联机器人,其中两移动副运动方向平行,且机器人的末端姿态是可变的[5];一种是2-PPa(Pa表示平行四边形机构)并联机器人,同样,该机器人的移动副运动方向也平行,不过其末端姿态不可变[6]。文章[6]中的并联机器人最后应用在了立式机床上。同样的2-PPa并联机器人,上海交通大学将其应用在高速高精度的场合

三自由度3-CS并联平台机构的运动学分析

三自由度3-CS并联平台机构的运动学分析 于靖军;毕树生;宗光华;黄真 【期刊名称】《航空学报》 【年(卷),期】2001(022)003 【摘要】With the development of parallel mechanisms research, spatial imperfect-DOF parallel mechanisms especially some constrained 3-DOF parallel mechanisms have received more attention for the advantages of their simple structure, easy control and low cost. In this paper, a novel model of constrained 3-DOF parallel manipulator—3-CS in-parallel platform mechanism is introduced firstly. The instantaneous possible motion characteristics for this mechanism are analyzed in detail by applying the screw theory. In addition, the first order kinematic analysis of the 3-CS mechanism is discussed thoroughly, which involves deriving three motion constraint equations for the output motions of the manipulator and formulating the kinematic influence matrix (also called Jacobian of the mechanism) reflecting the velocity relationship between three independent input motions and three independent output motions in a closed form. At last, the closed-form solutions are developed for both the inverse and forward position kinematics.%首先介绍了一种新型的并联机构——三自由度3-CS并联平台机构的模型。应用螺旋理论分析了该机构的瞬时运动。同时对该机构进行了运动学分析:给出了操作平台的输出运动参数的3个运动约束方程和3个独立输出运动参数与3个独

并联机器人构型方法 (1)

机器人机构设计中最重要的步骤之一是解决机构型综合的问题,机器人机构构型方法的研究具有十分重要的理论和实际意义,尤其是并联机器人的型综合方法一直以来都受到国内外许多研究学者的关注。在并联机器人机构的构型理论研究中,基于机构末端运动特征描述与机构需要完成的功能的简单有效的构型方法还缺乏系统的研究。 并联机器人机构构型方法研究 8 多自由度机构,其构型综合是一个非常具有挑战性的难题。目前国内外主要有 5 种并联机构的型综合研 究方法,即:基于机构的结构公式的构型方法、基于螺旋理论的综合方法、基于群论和微分几何的综合 方法、基于单开链的型综合方法以及基于集合的综合方法。 1-3-1 基于机构的结构公式的构型方法 基于机构的结构公式(即自由度计算公式)的构型方法是比较传统的一种并联机构的型综合方法。 Tsai [84] 在1999 年用基于计算自由度的Grübler-Kutzbach 公式的列举法综合了一类三自由度并联机构。 基于并联机构自由度计算的一般Grübler-Kutzbach 公式为 ( ) 1 1 = = ??+ ∑ g i i M d n g f (1.1) 式中M 为机构的自由度数; d 为机构的阶; n 为机构的杆件数(包括机架); g 为运动副数; i f 为第i 个运动副的自由度数。 当给定机构的自由度数M 后,根据(1.1)寻求机构的每个分支运动链的运动副数。并联机构属于空 间多环机构,其独立环路数l 可以由下式给出 l = g ?n +1 (1.2) 该式即为著名的欧拉环路公式。将上式带入(1.1)中,可得到 =1 ∑= + g i i

f M d l (1.3) 定义并联机构中第j 个分支总的自由度数为 j C ,则有下式成立 =1 =1 ∑=∑ mg j i j i C f (1.4) 将(1.4)代入(1.3)消去 i f 后得到 ∑= + m j j C M d l (1.5) 对于分支运动链结构相同,且分支数等于机构自由度数的对称并联机构,又有以下条件成立m = M且l = M ?1 (1.6) 把(1.6)代入(1.5)消去l 后得到 = ?+1 j d C d M (1.7) 由上式在已知d 和M 时,可以得到分支运动链的自由度数 j C ,从而给出分支运动链。例如,d =3, M =3时,由式(1.7)可得 j C =3,分支运动链可以是RRR、RPR、PRR 等。并联机器人机构构型方法研究 1 0 寻找可以生成{ } gi L 的分支运动链,此时可利用位移子群乘法运算的封闭性获得不同结构的分支。 Hervé和Angeles 等较早将李群理论引入并联机构型综合。1978 年,Hervé [113] 基于位移群的代数结 构对运动链进行了分类,证明了所有六种低副所生成的运动都是位移子群,还给出了另外六种位移子群 以及子群间交集的运算法则,奠定了位移子群以及子群间交集的运算法则和位移子群综合法的理论基

并联机器人技术方案

并联机器人方案 一、并联机器人用途: 并联机器人作为一种新型的机器人形式得到了越来越多的应用,与串联机器人相比该型机器人具有结构简单、刚度大、承载能力强、误差小等特点,与串联机器人形成了良好的互补关系。可用于六自由度数控加工中心、航天器对接机构、汽车装配线、运动模拟器、岩土挖掘、光学调整、医疗机械等领域。 二、系统特点: 1、机构采用并联式结构,按工业标准要求设计,结构简单、速度快; 2、控制系统采用Windows系列操作系统,二次开发方便、快捷,适于教学实验; 3、提供教材、实验指导书等,内容涵盖机器人运动学、动力学、控制系统的设计、机器人轨迹规划等。 三、系统配置: 1、机器人本体、控制柜、电机控制卡、控制软件、理论教材及实验指导书。附属件配置有钻铣刀头、电主轴、绘图笔架、加工平台、手动夹具,另赠送一套加工所需原材料。 2、并联机器人加工装置(用电主轴本体、夹持器及钻铣刀)。 3、绘图装置(绘图笔架及绘图笔)。 4、并联机器人加工平台及工件夹持装置。 5、部分加工演示原材料(石蜡、尼龙等)。

1.并联机器人系统照片 2.并联机器人技术参数: 3.机器人型号:RBT-6T01P(全步进电机驱动) 机器人报价:175000.00元机器人型号:RBT-6S01P(全伺服电机驱动) 机器人报价:195000.00元

1.并联机器人系统照片 2.并联机器人技术参数: 3.机器人型号:RBT-6T02P(全步进电机驱动) 机器人报价:155000.00元机器人型号:RBT-6S02P(全伺服电机驱动) 机器人报价:175000.00元

六自由度桌面型并联机器人 1.并联机器人系统图片 2.并联机器人技术参数 3.机器人型号:RBT-6T03P(全步进电机驱动) 机器人报价:135000.00元机器人型号:RBT-6S03P(全伺服电机驱动) 机器人报价:155000.00元

3自由度并联机器人构型综合 杨国彬

既具有平面操作模式和空间平移操作模式的3自由度并联机器人构型 综合 专业:交通运输工程 学号:M015115102 姓名:杨国彬

本篇论文分为三个部分: 第一部分:确定论文主旨:即通过简化确定多模式并联机器人支链的步骤,来改进多模式并联机器人构型综合的方法。同时规定一些符号的意思: :在机械装置中,轴线平行于平面运动旋转轴的转动副(R jionts ) :在一支链中,彼此轴线平行但是不平行于副轴线的R 副:在一支链中,彼此轴线平行;同时,在同样一个腿中,其 轴线不与副和副这两者的轴线平行。 :在一支链中,彼此的轴线经过同一个点。 ()E :代表一个平面运动链:由具有Bennett 链接的三个连续的转动副组成的Bennett CU (如图1所示) //R \R //R /R //R \R .R ~RRR

:代表一个不满足上述提到的一些转动副的情况(即具有平面运动链(()E )的R 副、、、、、这些情况):代表在过渡配置中的R 副,该R 副在平面运动模式下表现为副,或者在空间平移模式和过度配置下表现为副。:代表一个在过渡配置中的R 副,该R 副在平面运动模式和过度配置下表现为副,或者在空间平移模式下表现为 副。 图1 Bennett CU ~ R //R \R /R .R ~RRR /~??? ??R ~R /R ' //??? ??R //R \R

第二部分: 平面并联机器人的构型综合,即研究平面并联运动支链,这里分为三个部分来进行介绍。 2.1、用虚拟链的方法来研究并联机器人的构型综合(在研究平面并联机器人支链时,在底座和动平台之间加有一个E虚拟链,以保证该支链是可以在平面上运动,然后去除E虚拟链,就可以得到平面并联机器人支链) 平面虚拟链(E virtual chain 如图2)可以用来代表一个平面运动 图2 E virtual chain

并联机器人设计论文设计

并联机器人设计论文 摘要:并联机器人是一类全新的机器人,它具有刚度大、承载能力强、误差小、精度高、自重负荷比小、动力性能好、控制容易等一系列优点,在21世纪将有广阔的发展前景。文中从运动副分析入手,对一种运动解耦的三自由度并联机构进行了构型研究,该机构由三个正交分布的支链组成,且机构的运动副均为转动副,构成了机构动平台x、y、z三个方向的平动解耦;在机构构型研究的基础上,对其进行了运动学分析,推导出了该并联机构的运动学正反解,分析了机构输入/输出的速度和加速度等,验证了该机构运动解耦的特性。这对该机构的动力学分析、控制策略、机构设计和轨迹规划等方面的研究,具有一定的理论意义。 关键词:三自由度并联机构;并联机器人;设计;

1.课题国外现状及研究的主要成果 少自由度并联机器人由于其驱动元件少、造价低、结构紧凑而有较高的实用价值,更具有较好的应用前景,因此少自由度的并联机器人的设计理论的研究和应用领域的拓展成为并联机器人的研究热点之一。研究少自由度并联机构最早的学者应属澳大利亚著名机构学教授Hunt ,在1983年,他就列举了平面并联机构、空间三自由度3-rps并联机构,但对四,五自由度并联机构未作详细阐述。在Hunt之后,不断有学者提出新的少自由度并联机构机型。在少自由度并联机构机型的研究中,三维平移并联机构得到广泛的重视。clavel提出了一种可实现纯平运动三自由度Delta 并联机器人,在Delta机构的支链中采用平行四边形机构约束动平台的3个转动自由度。Tsai提出的Delta机构完全采用回转副,并通过转轴的偏移扩大了Delta机构的工作空间。在Tricept并联机床上采用的构型是由Neumann发明的一种具有3个可控位置自由度的并联机构,该机构的突出特点是带有导向装置,采用3个副驱动支链并由导向装置约束动平台。Tsai通过自由度分析提取支链的运动学特征,系统研究了并联机构的综合问题,特别研究了一类实现三自由度平动的并联机构。Rasim Alizade于2004年提出基于平台类型和联接平台的形式和类型进行分类的一种并联机构的结构综合和分类的新方法和公式,并综合出具有单平台和多平台的纯并联和串并联复联机构.我国燕山大学的黄真教授及其团队除了研制出解耦微型6维力传感器和微动机械,设计出一种新的

平面2自由度并联机器人的动力学设计_刘善增

2008年第27卷2月第2期机械科学与技术M e c h a n i c a l S c i e n c e a n dT e c h n o l o g y f o r A e r o s p a c e E n g i n e e r i n g F e b r u a r y V o l .272008 N o .2 收稿日期:2006-06-13 基金项目:国家自然科学基金项目(50575002),北京市自然科学基 金项目(3062004),北京市 教委科技发展计划项目(K M 200610005003)和北京工业大学研究生科技基金项目(y k j -2007-1069)资助 作者简介:刘善增(1977-),博士研究生,研究方向为并联机器人 等,l i u s h a n z e n g @163.c o m 刘善增 平面2自由度并联机器人的动力学设计 刘善增 (北京工业大学机电学院,北京 100022) 摘 要:通过对平面二自由度并联机器人动力学的研究和系统存在耦合原因的分析,得出了机构设计的五点措施。采用这些措施对提高平面二自由度并联机构系统的动态特性、易控性,以及增强系统运行的稳定性和精度等都具有重要的作用。最后,通过两个算例验证了这些措施的可行性和效果,经过参数调整后的系统大大降低了驱动力矩和能耗。 关 键 词:并联机器人;机构设计;动力学分析 中图分类号:T H 112 文献标识码:A 文章编号:1003-8728(2008)02-0230-04 D y n a mi cD e s i g no f a 2-D O FP l a n a r P a r a l l e l R o b o t L i u S h a n z e n g (B e i j i n g U n i v e r s i t y o f T e c h n o l o g y ,B e i j i n g 100022) A b s t r a c t :T h e p a p e r p r e s e n t s f i v e m e a s u r e s f o r t h e m e c h a n i s md e s i g n o f a 2-D O F p l a n a r p a r a l l e l r o b o t o n t h e b a s i s o f i t s d y n a m i c a n a l y s i s a n d t h e a n a l y s i s o f c a u s e s f o r f a i l u r e .T h e m e a s u r e s a r e u s e f u l f o r i m p r o v i n g t h e d y n a m i c p r o p e r t i e s ,c o n t r o l l a b i l i t y ,s t a b i l i t y a n d a c c u r a c y o f t h e p a r a l l e l r o b o t .T h e p a p e r g i v e s t w o n u m e r i c a l e x a m p l e s t o v e r i f y t h e f e a s i b i l i t y a n d e f f e c t s o f t h e m e a s u r e s .T h e a d j u s t m e n t o f t h e p a r a l l e l r o b o t ′s p a r a m e t e r s g r e a t l y r e d u c e s i t s a c t u a t o r t o r q u e s a n d e n e r g y c o n s u m p t i o n .K e y w o r d s :p a r a l l e l r o b o t ;m e c h a n i s m d e s i g n ;d y n a m i c s a n a l y s i s 随着机构学发展和研究领域的拓宽及机械产品创新的需求,平面多自由度机构已广泛应用于并联机器人、串联机械手等领域,以实现高速、高精度、高稳定性的运动输出或完成更复杂的运动规律。近年来,对平面并联机构的研究日益受到国内外学者的重视。 然而,由于并联机构存在运动学和动力学的强耦合性,使得这类机构系统的控制较为困难,运行精度低。解耦合在动力学中的研究是个难题。因此,如果能采取有效的结构设计措施,使得机构的动态方程得到简化。那么,对改善系统的动态特性,提高系统的运动精度和实际控制都是非常有利的。 文献[1]中利用平衡自适应的方法对平面二自由度串联机械手进行了静平衡和完全解耦,但系统结构复杂。文献[2]中采用动态质量等价分布和平 衡的方法对平面二自由串联机械手进行了研究,消除了重力项的影响,使得系统的驱动力矩降低了70%和能耗减少了40%。文献[3]中对二自由度五 杆机构进行了动力学分析,并在分析的基础上得出了一种平行四边形的四杆机构(第五杆杆长为0),从而实现了五杆机构的完全解耦。但本质上这种完全解耦的五杆机构已不是真正意义的五杆机构。本文对平面二自由度并联机构的动力学进行了深入研究,分析了系统动态方程中的耦合项,为了达到改善系统动态性能和降低能耗的目的,提出了机构设计的5点措施。1 机构的运动学分析 平面二自由度并联机构A B C D E 的示意图,如图1。图1中A E 为机架;各杆杆长为l i (i =1~5);各杆件的质心S i (i =1~4)位置分别为(l s i ,αi )(i =1~4),αi 为各杆质心与其自身杆件所成夹角,相应的各杆质量为m i (i =1~4)。假定杆A B 和D E 为主动构件,即杆A B 和D E 与驱动器相连。以A 为原点o ,建立直角坐标系o x y ,如图1中所示。则并联机构A B C D E 的向量环方程 DOI :10.13433/j .cn ki .1003-8728.2008.02.029

一种三自由度并联机器人运动轨迹精度的可靠性研究

一种三自由度并联机器人运动轨迹精度的可靠性研究六 口李兵 口张晓瑾 口谢里阳口魏玉兰 东北大学机械工程与自动化学院沈阳 110004 摘要:机器人轨迹精度的可靠性是评价机构性能的重要参数。压电材料作为一种驱动器能够抑制机器人柔性连接杆的振动,在抑制振动的同时也提高了机器人运动轨迹的精度。首先介绍了一种三自由度平面并联机器人系统;其次表达了振动控制系统的工作原理和实验分析;然后分别表达了不考虑振动和考虑振动因素时机器人轨迹精度的可靠度计算方法;最后分析了无振动控制和有振动控制时机器人运动轨迹精度的可靠度。可靠度计算表明,振动控制系统能够提高机器人运动轨迹精度的可靠度。 关键词:并联机器人减振轨迹精度可靠性中图分类号:TP242 0328 文献标识码:A文章编号:1000一4998(2010)lO—O005一04 Abstract:Thereliabilityofthetrajectoryaccuracyofthemnipulator is an imponant p啪meter toevaluatethe perfomance of tIle m粕ipulator.ThevibmtionoftIlenexiblelinkIge8ofthem肌ipulatorc锄besuppressedwhenthepiezoelectricmaterialisu鸵d 鹊a咖sducer. Andthe kine啪tic trajectoryaccuracyofthem锄ipulatorisimproved at the s舢e time. Athree—degree—of— f}eedom pl衄盯paraUelrnanipulatori8 in删uced first.Thentheworkingprincipleandexperimentalanalysisofthevibration suppression8ystema聆pre鸵med.Thecalculatingmethodsofthereliabilityofthet阳jectoryaccuracyof山e毗njpulator with or withoutvibmtionfactorcorIside陀d are alsoprovided.Finally,tlIe陀liabilityofkinematict陋jectory∞curacyofIhe mIlipIllator with or without、ribmtionsupp陀ssion is锄lyzed.The resultsshowthatthereliabilityofthekinematic tmjectoryaccumcyofthe 眦nipulator can beimpmvedwit}Ithehelpofvibmtionsuppres8ion. Key words:Par棚elMaIIipIllatorVmmti帅Su坤re辎i伽TrajectoryAc饥ncyReIiability 并联机器人具有刚度大、运动精度高等优点而被广泛使用在航天工业和制造业中…。为了获得更高的运动速度和加速度,轻质量连接杆的机器人被使用,但同时却造成了系统振动,影响了运动精度。 多种方法可以抑制柔性杆的振动,例如选用刚性或阻尼更大的材料【2.”。近十几年,利用智能结构抑制柔性系统的振动被越来越重视,一个智能结构包含4个要素:驱动器、传感器、控制策略和动力控制装置。压电材料能被作为智能驱动器和传感器,PzT压电材料要求更低的驱动电压,并可使用在更大的频率范围而被广泛使用¨】。多种控制策略能实现柔性连接杆的动态振动抑制,其中应变反馈控制策略具有更宽的动态阻尼频率区域,能实现更大范围的振动抑制”】。 机器人在运动过程中产生的振动会影响其运动轨迹的精度№1。振动越强,运动轨迹精度越差,若振动幅度超过规定值就认为机器人动态性能失效,即意味着机器人不能按照预定的轨迹运动。当使用PzT振动控制系统后,能明显抑制机器人的振动,提高运动轨迹精度。机器人运动轨迹精度可靠性研究的主要任务是评价机器人运动可靠度及其机构动态精度,对机器人的 ★国家863高技术研究发展计划项目(编号:2007AA042428)科技部重大专项资助项目(编号:2009zx04013)收稿日期:2010年4月 器 机械制造48卷第554期 运动精度作出合理的可靠性预计。因此,机器人运动轨迹精度的可靠性研究具有重要的意义。 1机器人模型 如图1,这种三自由度(3一DOF)并联机器人由3个对称布置的连接杆以封闭形式组成,每一组连接杆机构都由一个直线位移约束和两个转动约束组成n1。机器人使用了比较轻的连接杆,能够获得更快的运动速度和加速度,但系统却产生了振动,而且使运动轨迹的精度降低。 机器人的系统坐标系,如图2所示,其中标出了连 20lO/lO 囤 万方数据

并联机器人发展概述

并联机器人发展概述 随着先进制造技术的发展,并联机器人已从简单的上下料装置发展成数字化制造中的重要单元。在查阅了大量国内外相关文献的基础上,介绍了并联机器人的特点、分类、应用,从运动学、动力学、控制策略三方面总结了近年来并联机器人的主要研究成果,并指出面临的问题。 1895年,数学家Cauchy研究一种“用关节连接的八面体”,开始人类历史上并联机器的研究。1938年Pollard提出采用并联机构来给汽车喷漆。1949年Caough提出用一种并联机构的机器检测轮胎,这是真正得到运用的并联机构。而并联结构的提出和应用研究则开始于70年代。1965年,德国人Stewart发明了六自由度并联机构,并作为飞行模拟器用于训练飞行员。1978年澳大利亚人Hunttichu把六自由度的Stewart平台机构作为机器人机构,自此,并联机器人技术得到了广泛推广。 自工业机器人问世以来,采用串联机构的机器人占主导位置。串联机器人具有结构简单、操作空间大,因而获得广泛应用。由于串联机器人自身的限制,研究人员逐渐把研究方向转向并联机器人。和串联机器人相比并联结构其末端件上同时由6根杆支撑,与串联的悬臂梁相比刚度大,结构稳定。由于刚度大,并联结构较串联结构在相同的自重或体积下,有高的多的承载能力大。串联机构末端件上的误差是各个关节误差的积累和放大,因而误差大、精度低,并联式则没有那样的误差积累和放大关系,微动精度高。串联机器人的驱动电机及传动系统大都放在运动着的大小臂上,增加了系统的惯量,恶化了动力性能,而并联机器人将电机置于机座上,减小了运动负荷。在位置求解上,串联机构正解容易,但反解困难。而并联机构正解困难,反解非常容易,而机器人在线实时计算是要计算反解的。 根据并联机器人的自由度数,可以分为:2自由度并联机构。2自由度并联机构,如5-R,3-R-2-P(R表示旋转,P表示平移)。平面5杆机构是最典型的2自由度并联机构,这类机构一般具有2个平移自由度。3自由度并联机构。3自由度并联机构种类较多,形式复杂,一般有以下形式,平面3自由度并联机构,如3-RRP机构、3-RPR机构、它们具有2个旋转自由度和1个平移自由度;3维纯平移机构,如Star Like并联机构、Tsai 并联机构,该类机构的运动学正反解都很简单,是一种应用很广泛的3维平移空间机构;空间3自由度并联机构,如典型的3-RPS机构、这类机构属于欠秩机构,在工作空间不同的点,其运动形式不同是其最显著的特点,由于这种特殊的运动特性,阻碍了该类机构在实际的广泛应用;4自由度并联机构。4自由度并联机构大多不是完全的并联机构,如2-UPS-1-RRRR机构,运动平台通过3个支链与顶平台相连,有2个运动链是相同的,各具有一个虎克铰U,1个平移副P,其中P和1个R是驱动副,因此这种机构不是完全并联机构。5自由度并联机构。现有的5自由度并联机构结构复杂,如韩国的Lee的5自由度并联机构具有双层结构。6自由度并联机构。该类并联机器人是国内外学者研究的最多的并联机构,一般情况下,该类机构具有6个运动链。随着6自由度并联机构研

并联机器人发展现状与展望

并联机器人发展现状与展望 引言 并联机器人是一类全新的机器人,它具有刚度大、承载能力强、误差小、精度高、自重负荷比小、动力性能好、控制容易等一系列优点,在21世纪将有广阔的发展前景。本文根据掌握的大量并联机器人文献,对其分类和应用做了简要分析和概括,并对其在运动学、动力学、机构性能分析等方面的主要研究成果、进展以及尚未解决的问题进行了阐述。 1并联机构的发展概况 (一)并联机构的特点 并联机构是一种闭环机构,其动平台或称末端执行器通过至少2个独立的运动链与机架相联接,必备的要素如下:①末端执行器必须具有运动自由度;②这种末端执行器通过几个相互关联的运动链或分支与机架相联接;③每个分支或运动链由惟一的移动副或转动副驱动。 与传统的串联机构相比,并联机构的零部件数目较串联构造平台大幅减少,主要由滚珠丝杠、伸缩杆件、滑块构件、虎克铰、球铰、伺服电机等通用组件组成。这些通用组件可由专门厂家生产,因而其制造和库存备件成本比相同功能的传统机构低得多,容易组装和模块化。 除了在结构上的优点,并联机构在实际应用中更是有串联机构不可比拟的优势。其主要优点如下: (1)刚度质量比大。因采用并联闭环杆系,杆系理论上只承受拉、压载荷,是典型的二力杆,并且多杆受力,使得传动机构具有很高的承载强度。 (2)动态性能优越。运动部件质量轻,惯性低,可有效改善伺服控制器的动态性能,使动平台获得很高的进给速度与加速度,适于高速数控作业。 (3)运动精度高。这是与传统串联机构相比而言的,传统串联机构的加工误差是各个关节的误差积累,而并联机构各个关节的误差可以相互抵消、相互弥补,因此,并联机构是未来机床的发展方向。 (4)多功能灵活性强。可构成形式多样的布局和自由度组合,在动平台上安装刀具进行多坐标铣、磨、钻、特种曲面加工等,也可安装夹具进行复杂的空间装配,适应性强,是柔性化的理想机构。 (5)使用寿命长。由于受力结构合理,运动部件磨损小,且没有导轨,不存在铁屑或冷却液进入导轨内部而导致其划伤、磨损或锈蚀现象。 并联机构作为一种新型机构,也有其自身的不足,由于结构的原因,它的运动空间较小,而串并联机构则弥补了并联机构的不足,它既有质量轻,刚度大,精度高的特点,又增大了机构的工作空间,因此具有很好的应用前景,尤其是少自由度串并联机构,适应能力强,且易于控制,是当前应用研究中的一个新热点。 (二)并联机构的分类 从运动形式来看,并联机构可分为平面机构和空间机构;细分可分为平面移动机构、平面移动转动机构、空间纯移动机构、空间纯转动机构和空间混合运动机构, 另可按并联机构的自由度数分类:

相关主题
文本预览
相关文档 最新文档