当前位置:文档之家› 人教中考数学《二次函数的综合》专项训练及详细答案

人教中考数学《二次函数的综合》专项训练及详细答案

人教中考数学《二次函数的综合》专项训练及详细答案
人教中考数学《二次函数的综合》专项训练及详细答案

一、二次函数 真题与模拟题分类汇编(难题易错题)

1.如图,在平面直角坐标系中,∠ACB=90°,OC=2OB ,tan ∠ABC=2,点B 的坐标为(1,0).抛物线y=﹣x 2+bx+c 经过A 、B 两点. (1)求抛物线的解析式;

(2)点P 是直线AB 上方抛物线上的一点,过点P 作PD 垂直x 轴于点D ,交线段AB 于点E ,使PE=

1

2

DE . ①求点P 的坐标;

②在直线PD 上是否存在点M ,使△ABM 为直角三角形?若存在,求出符合条件的所有点M 的坐标;若不存在,请说明理由.

【答案】(1)y=﹣x 2﹣3x+4;(2)①P (﹣1,6),②存在,M (﹣1,11)或(﹣1,311)或(﹣1,﹣1)或(﹣1,13

2

). 【解析】 【分析】

(1)先根据已知求点A 的坐标,利用待定系数法求二次函数的解析式;

(2)①先得AB 的解析式为:y=-2x+2,根据PD ⊥x 轴,设P (x ,-x 2-3x+4),则E (x ,-2x+2),根据PE=

1

2

DE ,列方程可得P 的坐标; ②先设点M 的坐标,根据两点距离公式可得AB ,AM ,BM 的长,分三种情况:△ABM 为直角三角形时,分别以A 、B 、M 为直角顶点时,利用勾股定理列方程可得点M 的坐标. 【详解】

解:(1)∵B (1,0),∴OB=1, ∵OC=2OB=2,∴C (﹣2,0), Rt △ABC 中,tan ∠ABC=2,

AC 2BC =, ∴AC

23=, ∴AC=6, ∴A (﹣2,6),

把A (﹣2,6)和B (1,0)代入y=﹣x 2

+bx+c 得:426

10b c b c --+=??-++=?

解得:

3

4

b

c

=-

?

?

=

?

∴抛物线的解析式为:y=﹣x2﹣3x+4;

(2)①∵A(﹣2,6),B(1,0),

∴AB的解析式为:y=﹣2x+2,

设P(x,﹣x2﹣3x+4),则E(x,﹣2x+2),∵PE=1

2

DE,

∴﹣x2﹣3x+4﹣(﹣2x+2)=1

2

(﹣2x+2),∴x=-1或1(舍),

∴P(﹣1,6);

②∵M在直线PD上,且P(﹣1,6),

设M(﹣1,y),

∵B(1,0),A(﹣2,6)

∴AM2=(﹣1+2)2+(y﹣6)2=1+(y﹣6)2,BM2=(1+1)2+y2=4+y2,

AB2=(1+2)2+62=45,

分三种情况:

i)当∠AMB=90°时,有AM2+BM2=AB2,

∴1+(y﹣6)2+4+y2=45,

解得:y=311,

∴M(﹣1,11)或(﹣1,311

ii)当∠ABM=90°时,有AB2+BM2=AM2,

∴45+4+y2=1+(y﹣6)2,∴y=﹣1,

∴M(﹣1,﹣1),

iii)当∠BAM=90°时,有AM2+AB2=BM2,

∴1+(y﹣6)2+45=4+y2,∴y=13

2

∴M(﹣1,13

2

);

综上所述,点M 的坐标为:∴M (﹣1,3+11)或(﹣

1,3﹣11)或(﹣1,﹣1)或

(﹣1,

13

2

). 【点睛】

此题是二次函数的综合题,考查了待定系数法求二次函数的解析式,铅直高度和勾股定理的运用,直角三角形的判定等知识.此题难度适中,解题的关键是注意方程思想与分类讨论思想的应用.

2.如图,已知A (﹣2,0),B (4,0),抛物线y=ax 2+bx ﹣1过A 、B 两点,并与过A 点的直线y=﹣

1

2

x ﹣1交于点C . (1)求抛物线解析式及对称轴;

(2)在抛物线的对称轴上是否存在一点P ,使四边形ACPO 的周长最小?若存在,求出点P 的坐标,若不存在,请说明理由;

(3)点M 为y 轴右侧抛物线上一点,过点M 作直线AC 的垂线,垂足为N .问:是否存在这样的点N ,使以点M 、N 、C 为顶点的三角形与△AOC 相似,若存在,求出点N 的坐标,若不存在,请说明理由.

【答案】(1)抛物线解析式为:y=211

184

x x --,抛物线对称轴为直线x=1;(2)存在P 点坐标为(1,﹣1

2

);(3)N 点坐标为(4,﹣3)或(2,﹣1) 【解析】

分析:(1)由待定系数法求解即可;

(2)将四边形周长最小转化为PC+PO 最小即可;

(3)利用相似三角形对应点进行分类讨论,构造图形.设出点N 坐标,表示点M 坐标代入抛物线解析式即可.

详解:(1)把A (-2,0),B (4,0)代入抛物线y=ax 2+bx-1,得

0421

01641a b a b --??

+-?

==

解得

1

8

1

4 a

b

?

??

?

?-

??

∴抛物线解析式为:y=1

8

x2?

1

4

x?1

∴抛物线对称轴为直线x=-

1

4

1

22

8

b

a

-

=-

?

=1

(2)存在

使四边形ACPO的周长最小,只需PC+PO最小

∴取点C(0,-1)关于直线x=1的对称点C′(2,-1),连C′O与直线x=1的交点即为P 点.

设过点C′、O直线解析式为:y=kx

∴k=-

1

2

∴y=-

1

2

x

则P点坐标为(1,-

1

2

(3)当△AOC∽△MNC时,

如图,延长MN交y轴于点D,过点N作NE⊥y轴于点E

∵∠ACO=∠NCD,∠AOC=∠CND=90°

∴∠CDN=∠CAO

由相似,∠CAO=∠CMN

∴∠CDN=∠CMN

∵MN⊥AC

∴M、D关于AN对称,则N为DM中点

设点N 坐标为(a ,-1

2

a-1) 由△EDN ∽△OAC ∴ED=2a

∴点D 坐标为(0,-5

2

a?1) ∵N 为DM 中点

∴点M 坐标为(2a ,3

2

a?1) 把M 代入y=18x 2?1

4

x?1,解得 a=4

则N 点坐标为(4,-3)

当△AOC ∽△CNM 时,∠CAO=∠NCM

∴CM ∥AB 则点C 关于直线x=1的对称点C′即为点N 由(2)N (2,-1)

∴N 点坐标为(4,-3)或(2,-1)

点睛:本题为代数几何综合题,考查了待定系数、两点之间线段最短的数学模型构造、三角形相似.解答时,应用了数形结合和分类讨论的数学思想.

3.在平面直角坐标系中,O 为原点,抛物线2(0)2

y ax x a =-

≠经过点3)A -,对称轴为直线l ,点O 关于直线l 的对称点为点B .过点A 作直线//AC x 轴,交y 轴于点

C .

(Ⅰ)求该抛物线的解析式及对称轴;

(Ⅱ)点P 在y 轴上,当PA PB +的值最小时,求点P 的坐标; (Ⅲ)抛物线上是否存在点Q ,使得1

3

AOC AOQ S S ??=,若存在,求出点Q 的坐标;若不存在,请说明理由.

【答案】(Ⅰ)抛物线的解析式为212y x x =

-;抛物线的对称轴为直线x =

;

(Ⅱ)P 点坐标为9

(0,)4

-;(Ⅲ)存在,Q 点坐标为或(-,理由见解析 【解析】 【分析】

(Ⅰ)将3)A -点代入二次函数的解析式,即可求出a ,再根据对称轴的公式即可求解.

(Ⅱ)先求出B 点胡坐标,要求PA PB +胡最小值,只需找到B 关于轴的对称点1B ,则

直线A 1B 与y 轴的交点就是点P ,根据待定系数法求出AB 1的解析式,令y=0,即可求出P 点的坐标.

(Ⅲ)设点Q 的坐标,并求出△AOQ 面积,从而得到△AOQ 面积,根据Q 点胡不同位置进行分类,用m 及割补法求出面积方程,即可求解. 【详解】 (Ⅰ)

∵2(0)2

y ax x a =-≠

经过点3)A -,

∴232

a -=?-

12a =, ∴

抛物线的解析式为212y x x =

∵21222

b x a =-=-

=? ∴

抛物线的对称轴为直线2

x =

. (Ⅱ)∵点(0,0)O

,对称轴为x =

, ∴点O 关于对称轴的对称点B

点坐标为. 作点B 关于轴的对称点1B

,得1(B -, 设直线AB 1的解析式为y kx b =+,

把点3)A -

,点1(B -

代入得30b

b

?-=+??=-+??,

解得49

4k b ?=-????=-??

∴944y x =--.

直线9

4

y x =-与y 轴的交点即为P 点. 令0x =得9y 4

=-, ∵P 点坐标为9(0,)4

-.

(Ⅲ)

∵3)A -,//AC x 轴,

∴AC =3OC =,

∴11322AOC S OC AC ?=

?=?=

又∵13AOC AOQ S S ??=

,∴9332

AOQ AOC S S ??==. 设Q 点坐标为2133

(,

)2m m m -, 如图情况一,作QR CA ⊥,交CA 延长线于点R , ∵93

2

AOQ AOC AQR OCRQ S S S S ???=--=梯形, ∴

()

2113311

333332222m m m m ???+-+-??- ? ??-?21339332m m ??-+= ? ???

, 化简整理得23180m m --=, 解得133m =,223m =-.

如图情况二,作QN AC ⊥,交AC 延长线于点N ,交x 轴于点M , ∵93

2

AOQ AQN QMO OMNA S S S S ???=--=

梯形, ∴2211331133(3m)3()2222m m m ????+-- ? ? ? ?????

393(3)2m m --+=,

化简整理得23180m m -=, 解得133m =223m =- ∴Q 点坐标为(33,0)或(23,15)-, ∴抛物线上存在点Q ,使得1

3

AOC AOQ S S ??=

.

【点睛】

主要考查了二次函数的性质,以及求两边和的最小值,面积等常见的题型,计算量较大,但难度不是很大.

4.在平面直角坐标系中,有两点(),A a b 、(),B c d ,若满足:当a b ≥时,c a =,

2d b =-;当a b <时,c a <-,d b <,则称点为点的“友好点”.

(1)点()4,1的“友好点”的坐标是_______.

(2)点(),A a b 是直线2y x =-上的一点,点B 是点A 的“友好点”. ①当B 点与A 点重合时,求点A 的坐标.

②当A 点与A 点不重合时,求线段AB 的长度随着a 的增大而减小时,a 的取值范围. 【答案】(1)()41-,;(2)①点A 的坐标是()2,0或()1,1-;②当1a <或3

2

2a ≤<时,AB 的长度随着a 的增大而减小; 【解析】 【分析】

(1)直接利用“友好点”定义进行解题即可;(2)先利用 “友好点”定义求出B 点坐标,A 点又在直线2y x =-上,得到2b a =-;①当点A 和点B 重合,得2b b =-.解出即可,②当点A 和点B 不重合, 1a ≠且2a ≠.所以对a 分情况讨论,1°、当1a <或

2a >时,()2

2

2

313224AB b b a a a ?

?=--=-+=-- ??

?,所以当a ≤32时,AB 的长度随

着a 的增大而减小,即取1a <.2°当12a <<时,()2

2

2

31+3224AB b b a a a ?

?=--=--=--+ ??

?,当

32a ≥

时,AB 的长度随着a 的增大而减小,即取3

2

2a ≤<. 综上,当1a <或3

2

2a ≤<时,AB 的长度随着a 的增大而减小. 【详解】

(1)点()4,1,4>1,根据“友好点”定义,得到点()4,1的“友好点”的坐标是()41-,

(2)

点(),A a b 是直线2y x =-上的一点,

∴2b a =-.

2a a >-,根据友好点的定义,点B 的坐标为()

2

,B a b -,

①当点A 和点B 重合,∴2b b =-. 解得0b =或1b =-. 当0b =时,2a =;当1b =-时,1a =,

∴点A 的坐标是()2,0或()1,1-.

②当点A 和点B 不重合,1a ≠且2a ≠.

当1a <或2a >时,()2

2

2

313224AB b b a a a ??=--=-+=-- ??

?. ∴当a ≤

3

2

时,AB 的长度随着a 的增大而减小, ∴取1a <.

当12a <<时, ()2

2

2

31+3224AB b b a a a ?

?=--=--=--+ ??

? .

∴当3

2

a ≥时,AB 的长度随着a 的增大而减小, ∴取

3

2

2a ≤<. 综上,当1a <或3

2

2a ≤<时,AB 的长度随着a 的增大而减小. 【点睛】

本题属于阅读理解题型,结合二次函数的基本性质进行解题,第二问的第二小问的关键是求出AB 的长用a 进行表示,然后利用二次函数基本性质进行分类讨论

5.如图,已知点A (0,2),B (2,2),C (-1,-2),抛物线F :y=x 2-2mx+m 2-2与直线x=-2交于点P .

(1)当抛物线F 经过点C 时,求它的解析式;

(2)设点P 的纵坐标为y P ,求y P 的最小值,此时抛物线F 上有两点(x 1,y 1),(x 2,y 2),且x 1<x 2≤-2,比较y 1与y 2的大小.

【答案】(1) 221y x x =+-;(2)12y y >.

【解析】 【分析】

(1)根据抛物线F :y=x 2-2mx+m 2-2过点C (-1,-2),可以求得抛物线F 的表达式; (2)根据题意,可以求得y P 的最小值和此时抛物线的表达式,从而可以比较y 1与y 2的大小. 【详解】

(1) ∵抛物线F 经过点C (-1,-2), ∴22122m m -=++-. ∴m 1=m 2=-1.

∴抛物线F 的解析式是221y x x =+-.

(2)当x=-2时,2

442P y m m =++-=()2

22m +-.

∴当m=-2时,P y 的最小值为-2. 此时抛物线F 的表达式是()2

22y x =+-. ∴当2x ≤-时,y 随x 的增大而减小. ∵12x x <≤-2, ∴1y >2y . 【点睛】

本题考查二次函数的性质、二次函数图象上点的坐标特征、待定系数法求二次函数解析式,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.

6.温州茶山杨梅名扬中国,某公司经营茶山杨梅业务,以3万元/吨的价格买入杨梅,包装后直接销售,包装成本为1万元/吨,它的平均销售价格y (单位:万元/吨)与销售数量x (2≤x ≤10,单位:吨)之间的函数关系如图所示.

(1)若杨梅的销售量为6吨时,它的平均销售价格是每吨多少万元?

(2)当销售数量为多少时,该经营这批杨梅所获得的毛利润(w )最大?最大毛利润为多少万元?(毛利润=销售总收入﹣进价总成本﹣包装总费用)

(3)经过市场调查发现,杨梅深加工后不包装直接销售,平均销售价格为12万元/吨.深

加工费用y(单位:万元)与加工数量x(单位:吨)之间的函数关系是y=1

2

x+3

(2≤x≤10).

①当该公司买入杨梅多少吨时,采用深加工方式与直接包装销售获得毛利润一样?

②该公司买入杨梅吨数在范围时,采用深加工方式比直接包装销售获得毛利润大些?

【答案】(1)杨梅的销售量为6吨时,它的平均销售价格是每吨10万元;(2)当x=8时,此时W最大值=40万元;(3)①该公司买入杨梅3吨;②3<x≤8.

【解析】

【分析】

(1)设其解析式为y=kx+b,由图象经过点(2,12),(8,9)两点,得方程组,即可得到结论;

(2)根据题意得,w=(y﹣4)x=(﹣1

2

x+13﹣4)x=﹣

1

2

x2+9x,根据二次函数的性质

即可得到结论;

(3)①根据题意列方程,即可得到结论;②根据题意即可得到结论.【详解】

(1)由图象可知,y是关于x的一次函数.

∴设其解析式为y=kx+b,

∵图象经过点(2,12),(8,9)两点,

212 89

k b

k b

+=

?

?

+=

?

解得k=﹣1

2

,b=13,

∴一次函数的解析式为y=﹣1

2

x+13,

当x=6时,y=10,

答:若杨梅的销售量为6吨时,它的平均销售价格是每吨10万元;

(2)根据题意得,w=(y﹣4)x=(﹣1

2

x+13﹣4)x=﹣

1

2

x2+9x,

当x =﹣

2b

a

=9时,x =9不在取值范围内, ∴当x =8时,此时W 最大值=﹣12

x 2

+9x =40万元; (3)①由题意得:﹣

12x 2+9x =9x ﹣(1

2

x +3) 解得x =﹣2(舍去),x =3, 答该公司买入杨梅3吨;

②当该公司买入杨梅吨数在 3<x ≤8范围时,采用深加工方式比直接包装销售获得毛利润大些.

故答案为:3<x ≤8. 【点睛】

本题是二次函数、一次函数的综合应用题,难度较大.解题关键是理清售价、成本、利润三者之间的关系.

7.如图,在平面直角坐标系中,抛物线y=ax 2+bx ﹣3(a≠0)与x 轴交于点A (﹣2,0)、B (4,0)两点,与y 轴交于点C .

(1)求抛物线的解析式;

(2)点P 从A 点出发,在线段AB 上以每秒3个单位长度的速度向B 点运动,同时点Q 从B 点出发,在线段BC 上以每秒1个单位长度的速度向C 点运动,其中一个点到达终点时,另一个点也停止运动,当△PBQ 存在时,求运动多少秒使△PBQ 的面积最大,最大面积是多少?

(3)当△PBQ 的面积最大时,在BC 下方的抛物线上存在点K ,使S △CBK :S △PBQ =5:2,求K 点坐标.

【答案】(1)y=38

x 2﹣

3

4

x ﹣3 (2)运动1秒使△PBQ 的面积最大,最大面积是910

(3)K 1(1,﹣278

),K 2(3,﹣158)

【解析】 【详解】

试题分析:(1)把点A 、B 的坐标分别代入抛物线解析式,列出关于系数a 、b 的解析

式,通过解方程组求得它们的值;

(2)设运动时间为t 秒.利用三角形的面积公式列出S △PBQ 与t 的函数关系式S △PBQ =﹣910

(t ﹣1)2+

9

10

.利用二次函数的图象性质进行解答; (

3)利用待定系数法求得直线BC 的解析式为y=

3

4

x ﹣3.由二次函数图象上点的坐标特征可设点K 的坐标为(m ,3

8m 2﹣34

m ﹣3).

如图2,过点K 作KE ∥y 轴,交BC 于点E .结合已知条件和(2)中的结果求得S △CBK =

9

4.则根据图形得到:S △CBK =S △CEK +S △BEK =12EK?m+12

?EK?(4﹣m ),把相关线段的长度代入推知:﹣

34m 2+3m=9

4.易求得K 1(1,﹣278

),K 2(3,﹣158).

解:(1)把点A (﹣2,0)、B (4,0)分别代入y=ax 2+bx ﹣3(a≠0),得

4230

16430a b a b --=??

+-=?

, 解得3834a b ?

=????=-??

所以该抛物线的解析式为:y=3

8x 2﹣34

x ﹣3;

(2)设运动时间为t 秒,则AP=3t ,BQ=t . ∴PB=6﹣3t .

由题意得,点C 的坐标为(0,﹣3). 在Rt △BOC 中,BC=2234+=5. 如图1,过点Q 作QH ⊥AB 于点H .

∴QH ∥CO , ∴△BHQ ∽△BOC ,

HB OC BG

BC

=,即

Hb 35

t

=,

HQ=

35

t . ∴S △PBQ =12PB?HQ=12(6﹣3t )?35t=﹣910t 2+9

5t=﹣910(t ﹣1)2+910

当△PBQ 存在时,0<t <2 ∴当t=1时,

S △PBQ 最大=

910

. 答:运动1秒使△PBQ 的面积最大,最大面积是910

; (3)设直线BC 的解析式为y=kx+c (k≠0). 把B (4,0),C (0,﹣3)代入,得

40

3

k c c +=??

=-?, 解得3k 4c 3

?=???=-?,

∴直线BC 的解析式为y=3

4

x ﹣3. ∵点K 在抛物线上.

∴设点K 的坐标为(m ,3

8

m 2﹣

3

4

m ﹣3). 如图2,过点K 作KE ∥y 轴,交BC 于点E .则点E 的坐标为(m ,

3

4

m ﹣3).

∴EK=

34m ﹣3﹣(38m 2﹣34

m ﹣3)=﹣3

8m 2+32m .

当△PBQ 的面积最大时,∵S △CBK :S △PBQ =5:2,S △PBQ =

9

10

∴S△CBK=9

4

S△CBK=S△CEK+S△BEK=1

2

EK?m+

1

2

?EK?(4﹣m)

=1

2

×4?EK

=2(﹣3

8

m2+

3

2

m)

=﹣3

4

m2+3m.

即:﹣3

4

m2+3m=

9

4

解得 m1=1,m2=3.

∴K1(1,﹣27

8

),K2(3,﹣

15

8

).

点评:本题是二次函数的综合题型,其中涉及到的知识点有待定系数法求二次函数解析式和三角形的面积求法.在求有关动点问题时要注意该点的运动范围,即自变量的取值范围.

8.如图,已知抛物线y=ax2+bx﹣2(a≠0)与x轴交于A、B两点,与y轴交于C点,直线

BD交抛物线于点D,并且D(2,3),tan∠DBA=1

2

(1)求抛物线的解析式;

(2)已知点M为抛物线上一动点,且在第三象限,顺次连接点B、M、C、A,求四边形BMCA面积的最大值;

(3)在(2)中四边形BMCA面积最大的条件下,过点M作直线平行于y轴,在这条直线上是否存在一个以Q点为圆心,OQ为半径且与直线AC相切的圆?若存在,求出圆心Q 的坐标;若不存在,请说明理由.

【答案】(1)y=1

2

x2+

3

2

x﹣2;(2)9;(3)点Q的坐标为(﹣2,4)或(﹣2,﹣

1).

【解析】

(1)如答图1所示,利用已知条件求出点B的坐标,然后用待定系数法求出抛物线的解析式.

(2)如答图1所示,首先求出四边形BMCA面积的表达式,然后利用二次函数的性质求出其最大值.

(3)如答图2所示,首先求出直线AC与直线x=2的交点F的坐标,从而确定了Rt△AGF 的各个边长;然后证明Rt△AGF∽Rt△QEF,利用相似线段比例关系列出方程,求出点Q的坐标.

考点:二次函数综合题,曲线上点的坐标与方程的关系,锐角三角函数定义,由实际问题列函数关系式,二次函数最值,勾股定理,相似三角形的判定和性质,圆的切线性质.

9.如图,直线y=﹣x+分别与x轴、y轴交于B、C两点,点A在x轴上,

∠ACB=90°,抛物线y=ax2+bx+经过A,B两点.

(1)求A、B两点的坐标;

(2)求抛物线的解析式;

(3)点M是直线BC上方抛物线上的一点,过点M作MH⊥BC于点H,作MD∥y轴交BC 于点D,求△DMH周长的最大值.

【答案】(1)(﹣1,0)(2)y=﹣x2+x+(3)

【解析】

试题分析:(1)由直线解析式可求得B、C坐标,在Rt△BOC中由三角函数定义可求得∠OCB=60°,则在Rt△AOC中可得∠ACO=30°,利用三角函数的定义可求得OA,则可求得A点坐标;

(2)由A、B两点坐标,利用待定系数法可求得抛物线解析式;

(3)由平行线的性质可知∠MDH=∠BCO=60°,在Rt△DMH中利用三角函数的定义可得到DH、MH与DM的关系,可设出M点的坐标,则可表示出DM的长,从而可表示出△DMH 的周长,利用二次函数的性质可求得其最大值.

试题解析:(1)∵直线y=﹣x+分别与x轴、y轴交于B、C两点,

∴B(3,0),C(0,),

∴OB=3,OC=,

∴tan∠BCO==,

∴∠BCO=60°,

∵∠ACB=90°,

∴∠ACO=30°,

∴=tan30°=,即=,解得AO=1,

∴A(﹣1,0);

(2)∵抛物线y=ax2+bx+经过A,B两点,

∴,解得,

∴抛物线解析式为y=﹣x2+x+;

(3)∵MD∥y轴,MH⊥BC,

∴∠MDH=∠BCO=60°,则∠DMH=30°,

∴DH=DM,MH=DM,

∴△DMH的周长=DM+DH+MH=DM+DM+DM=DM,

∴当DM有最大值时,其周长有最大值,

∵点M是直线BC上方抛物线上的一点,

∴可设M(t,﹣t2+t+),则D(t,﹣t+),

∴DM=﹣t2+t+),则D(t,﹣t+),

∴DM=﹣t2+t+﹣(﹣t+)=﹣t2+t=﹣(t﹣)2+,∴当t=时,DM有最大值,最大值为,

此时DM=×=,

即△DMH周长的最大值为.

考点:1、二次函数的综合应用,2、待定系数法,3、三角函数的定义,4方程思想10.抛物线y=x2+bx+c与x轴交于A(1,0),B(m,0),与y轴交于C.

(1)若m=﹣3,求抛物线的解析式,并写出抛物线的对称轴;

(2)如图1,在(1)的条件下,设抛物线的对称轴交x轴于D,在对称轴左侧的抛物线上有一点E,使S△ACE=S△ACD,求点E的坐标;

(3)如图2,设F(﹣1,﹣4),FG⊥y于G,在线段OG上是否存在点P,使

∠OBP=∠FPG?若存在,求m的取值范围;若不存在,请说明理由.

【答案】(1)抛物线的解析式为:y=x2+2x﹣3=(x+1)2﹣4;对称轴是:直线x=﹣1;(2)点E的坐标为E(﹣4,5)(3)当﹣4≤m<0或m=3时,在线段OG上存在点P,使∠OBP=∠FPG.

【解析】

试题分析:(1)利用待定系数法求二次函数的解析式,并配方求对称轴;(2)如图1,设E(m,m2+2m﹣3),先根据已知条件求S△ACE=10,根据不规则三角形面积等于铅直高度与水平宽度的积列式可求得m的值,并根据在对称轴左侧的抛物线上有一点E,则点E 的横坐标小于﹣1,对m的值进行取舍,得到E的坐标;

(3)分两种情况:①当B在原点的左侧时,构建辅助圆,根据直径所对的圆周角是直角,只要满足∠BPF=90°就可以构成∠OBP=∠FPG,如图2,求出圆E与y轴有一个交点时的m值,则可得取值范围;②当B在原点的右侧时,只有△OBP是等腰直角三角形,

△FPG也是等腰直角三角形时满足条件,直接计算即可.

试题解析:(1)当m=﹣3时,B(﹣3,0),

把A(1,0),B(﹣3,0)代入到抛物线y=x2+bx+c中得:,解得,

∴抛物线的解析式为:y=x2+2x﹣3=(x+1)2﹣4;对称轴是:直线x=﹣1;

(2)如图1,设E(m,m2+2m﹣3),

由题意得:AD=1+1=2,OC=3,

S△ACE=S△ACD=×ADOC=×2×3=10,

设直线AE的解析式为:y=kx+b,

把A(1,0)和E(m,m2+2m﹣3)代入得,

,解得:,

∴直线AE的解析式为:y=(m+3)x﹣m﹣3,∴F(0,﹣m﹣3),

∵C(0,﹣3),∴FC=﹣m﹣3+3=﹣m,∴S△ACE=FC(1﹣m)=10,

﹣m(1﹣m)=20,m2﹣m﹣20=0,

(m+4)(m﹣5)=0,

m1=﹣4,m2=5(舍),

∴E(﹣4,5);

(3)如图2,当B在原点的左侧时,连接BF,以BF为直径作圆E,当⊙E与y轴相切时,设切点为P,

∴∠BPF=90°,∴∠FPG+∠OPB=90°,∵∠OPB+∠OBP=90°,∴∠OBP=∠FPG,

连接EP,则EP⊥OG,

∵BE=EF,∴EP是梯形的中位线,∴OP=PG=2,

∵FG=1,tan∠FPG=tan∠OBP=,

∴,∴m=﹣4,

∴当﹣4≤m<0时,在线段OG上存在点P,使∠OBP=∠FPG;

如图3,当B在原点的右侧时,要想满足∠OBP=∠FPG,

则∠OBP=∠OPB=∠FPG,∴OB=OP,

∴△OBP是等腰直角三角形,△FPG也是等腰直角三角形,

∴FG=PG=1,∴OB=OP=3,∴m=3,

综上所述,当﹣4≤m<0或m=3时,在线段OG上存在点P,使∠OBP=∠FPG.

考点:二次函数的综合题.

2020-2021备战中考数学压轴题专题初中数学 旋转的经典综合题附详细答案

2020-2021备战中考数学压轴题专题初中数学旋转的经典综合题附详细答案 一、旋转 1.操作与证明:如图1,把一个含45°角的直角三角板ECF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点C重合,点E、F分别在正方形的边CB、CD上,连接AF.取AF中点M,EF的中点N,连接MD、MN. (1)连接AE,求证:△AEF是等腰三角形; 猜想与发现: (2)在(1)的条件下,请判断MD、MN的数量关系和位置关系,得出结论. 结论1:DM、MN的数量关系是; 结论2:DM、MN的位置关系是; 拓展与探究: (3)如图2,将图1中的直角三角板ECF绕点C顺时针旋转180°,其他条件不变,则(2)中的两个结论还成立吗?若成立,请加以证明;若不成立,请说明理由. 【答案】(1)证明参见解析;(2)相等,垂直;(3)成立,理由参见解析. 【解析】 试题分析:(1)根据正方形的性质以及等腰直角三角形的知识证明出CE=CF,继而证明出△ABE≌△ADF,得到AE=AF,从而证明出△AEF是等腰三角形;(2)DM、MN的数量关系是相等,利用直角三角形斜边中线等于斜边一半和三角形中位线定理即可得出结论.位置关系是垂直,利用三角形外角性质和等腰三角形两个底角相等性质,及全等三角形对应角相等即可得出结论;(3)成立,连接AE,交MD于点G,标记出各个角,首先证明出 MN∥AE,MN=AE,利用三角形全等证出AE=AF,而DM=AF,从而得到DM,MN数量相等的结论,再利用三角形外角性质和三角形全等,等腰三角形性质以及角角之间的数量关系得到∠DMN=∠DGE=90°.从而得到DM、MN的位置关系是垂直. 试题解析:(1)∵四边形ABCD是正方形,∴AB=AD=BC=CD,∠B=∠ADF=90°,∵△CEF 是等腰直角三角形,∠C=90°,∴CE=CF,∴BC﹣CE=CD﹣CF,即BE=DF, ∴△ABE≌△ADF,∴AE=AF,∴△AEF是等腰三角形;(2)DM、MN的数量关系是相等,DM、MN的位置关系是垂直;∵在Rt△ADF中DM是斜边AF的中线,∴AF=2DM,∵MN 是△AEF的中位线,∴AE=2MN,∵AE=AF,∴DM=MN;∵∠DMF=∠DAF+∠ADM, AM=MD,∵∠FMN=∠FAE,∠DAF=∠BAE,∴∠ADM=∠DAF=∠BAE,

中考数学压轴题专题

中考数学压轴题专题 一、函数与几何综合的压轴题 1.如图①,在平面直角坐标系中,AB 、CD 都垂直于x 轴,垂足分别为B 、D 且AD 与B 相交于E 点.已知:A (-2,-6),C (1,-3) (1) 求证:E 点在y 轴上; (2) 如果有一抛物线经过A ,E ,C 三点,求此抛物线方程. (3) 如果AB 位置不变,再将DC 水平向右移动k (k >0)个单位,此时AD 与BC 相交于E ′点, 如图②,求△AE ′C 的面积S 关于k 的函数解析式. [解] (1)(本小题介绍二种方法,供参考) 方法一:过E 作EO ′⊥x 轴,垂足O ′∴AB ∥EO ′∥DC ∴ ,EO DO EO BO AB DB CD DB '''' == 又∵DO ′+BO ′=DB ∴ 1EO EO AB DC '' += ∵AB =6,DC =3,∴EO ′=2 又∵DO EO DB AB ''=,∴2 316 EO DO DB AB ''=?=?= ∴DO ′=DO ,即O ′与O 重合,E 在y 轴上 方法二:由D (1,0),A (-2,-6),得DA 直线方程:y =2x -2① 再由B (-2,0),C (1,-3),得BC 直线方程:y =-x -2 ② 联立①②得02x y =??=-? ∴E 点坐标(0,-2),即E 点在y 轴上 (2)设抛物线的方程y =ax 2 +bx +c (a ≠0)过A (-2,-6),C (1,-3) 图① 图②

E (0,-2)三点,得方程组42632a b c a b c c -+=-?? ++=-??=-? 解得a =-1,b =0,c =-2 ∴抛物线方程y =-x 2 -2 (3)(本小题给出三种方法,供参考) 由(1)当DC 水平向右平移k 后,过AD 与BC 的交点E ′作E ′F ⊥x 轴垂足为F 。 同(1)可得: 1E F E F AB DC ''+= 得:E ′F =2 方法一:又∵E ′F ∥AB E F DF AB DB '?= ,∴1 3DF DB = S △AE ′C = S △ADC - S △E ′DC =1112 2223 DC DB DC DF DC DB ?-?=? =1 3 DC DB ?=DB=3+k S=3+k 为所求函数解析式 方法二:∵ BA ∥DC ,∴S △BCA =S △BDA ∴S △AE ′C = S △BDE ′()11 32322 BD E F k k '= ?=+?=+ ∴S =3+k 为所求函数解析式. 证法三:S △DE ′C ∶S △AE ′C =DE ′∶AE ′=DC ∶AB =1∶2 同理:S △DE ′C ∶S △DE ′B =1∶2,又∵S △DE ′C ∶S △ABE ′=DC 2∶AB 2 =1∶4 ∴()221 3992 AE C ABCD S S AB CD BD k '?= =?+?=+梯形 ∴S =3+k 为所求函数解析式. 2.已知:如图,在直线坐标系中,以点M (1,0)为圆心、直径AC 为22的圆与y 轴交于A 、D 两点. (1)求点A 的坐标; (2)设过点A 的直线y =x +b 与x 轴交于点B.探究:直线AB 是否⊙M 的切线?并对你的结论加以证明; (3)连接BC ,记△ABC 的外接圆面积为S 1、⊙M 面积为S 2,若 4 21h S S =,抛物线 y =ax 2 +bx +c 经过B 、M 两点,且它的顶点到x 轴的距离为h .求这条抛物线的解析式. [解](1)解:由已知AM =2,OM =1, 在Rt△AOM 中,AO = 122=-OM AM , ∴点A 的坐标为A (0,1) (2)证:∵直线y =x +b 过点A (0,1)∴1=0+b 即b =1 ∴y=x +1 令y =0则x =-1 ∴B(—1,0),

中考数学专题突破几何综合

2016年北京中考专题突破几何综合 在北京中考试卷中,几何综合题通常出现在后两题,分值为8分或7分.几何综合题主要包含三角形(全等、相似)、四边形、锐角三角函数、圆等知识,主要研究图形中的数量关系、位置关系、几何计算以及图形的运动、变换等规律. 求解几何综合题时,关键是抓住“基本图形”,能在复杂的几何图形中辨认、分解出基本图形,或通过添加辅助线补全、构造基本图形,或运用图形变换的思想将分散的条件集中起来,从而产生基本图形,再根据基本图形的性质,合理运用方程、三角函数的运算等进行推理与计算. 1.[2015·北京] 在正方形ABCD中,BD是一条对角线,点P在射线CD上(与点C,D 不重合),连接AP,平移△ADP,使点D移动到点C,得到△BCQ,过点Q作QH⊥BD于点H,连接AH,PH. (1)若点P在线段CD上,如图Z9-1(a). ①依题意补全图(a); ②判断AH与PH的数量关系与位置关系,并加以证明. (2)若点P在线段CD的延长线上,且∠AHQ=152°,正方形ABCD的边长为1,请写出求DP长的思路.(可以不写出计算结果 .........) 图Z9-1 2.[2014·北京] 在正方形ABCD外侧作直线AP,点B关于直线AP的对称点为E,连接BE,DE,其中DE交直线AP于点F. (1)依题意补全图Z9-2①; (2)若∠PAB=20°,求∠ADF的度数; (3)如图②,若45°<∠PAB<90°,用等式表示线段AB,FE,FD之间的数量关系,并证明.

图Z9-2 3.[2013·北京] 在△ABC中,AB=AC,∠BAC=α(0°<α<60°),将线段BC绕点B 逆时针旋转60°得到线段B D. (1)如图Z9-3①,直接写出∠ABD的大小(用含α的式子表示); (2)如图②,∠BCE=150°,∠ABE=60°,判断△ABE的形状并加以证明; (3)在(2)的条件下,连接DE,若∠DEC=45°,求α的值. 图Z9-3 4.[2012·北京] 在△ABC中,BA=BC,∠BAC=α,M是AC的中点,P是线段BM上的动点,将线段PA绕点P顺时针旋转2α得到线段PQ. (1)若α=60°且点P与点M重合(如图Z9-4①),线段CQ的延长线交射线BM于点D,请补全图形,并写出∠CDB的度数; (2)在图②中,点P不与点B,M重合,线段CQ的延长线与射线BM交于点D,猜想∠CDB 的大小(用含α的代数式表示),并加以证明; (3)对于适当大小的α,当点P在线段BM上运动到某一位置(不与点B,M重合)时,能使得线段CQ的延长线与射线BM交于点D,且PQ=DQ,请直接写出α的范围. 图Z9-4

中考数学压轴题专集二一次函数

中考数学压轴题专集二:一次函数 1、如图,在平面直角坐标中,点A 的坐标为(4,0),直线AB ⊥x 轴,直线y =- 1 4 x +3经过点B ,与y 轴交于点C . (1)求点B 的坐标; (2)直线l 经过点C ,与直线AB 交于点D ,E 是直线AB 上一点,且∠ECD =∠OCD ,CE =5,求直线l 的解析式. 解:(1)∵A (4,0),AB ⊥x 轴,∴点B 的横坐标为4 把x =4代入y =- 1 4 x +3,得y =2 ∴B (4,2) (2)∵AB ⊥x 轴,∴∠EDC =∠OCD ∵∠ECD =∠OCD ,∴∠EDC =∠ECD ∴ED =EC =5 在y =- 1 4 x +3中,当x =0时,y =3 ∴C (0,3),OC =3 过C 作CF ⊥AB 于F ,则CF =OA =4 ∴EF = EC 2 -CF 2 = 5 2 -4 2 =3 ∴FD =5-3=2,∴DA =1 ∴D (4,1) 设直线l 的解析式y =kx +b ,把C (0,3),D (4,1)代入 得:?????b =3 4k +b =1 解得 ?????k =- 1 2 b =3 ∴直线l 的解析式为y =- 1 2 x +3

2、如图,直线y=2x+4交坐标轴于A、B两点,点C为直线y=kx(k>0)上一点,且△ABC是以C为直角顶点的等腰直角三角形. (1)求点C的坐标和k的值; (2)若在直线y=kx(k>0)上存在点P,使得S△PBC=1 2S△ABC,求点P的坐标. (1)过点C分别作坐标轴的垂线,垂足为G、H 则∠HCG=90° ∵∠ACB=90°,∴∠ACG=∠BCH 又∠AGC=∠BHC=90°,AC=BC ∴△ACG≌△BCH,∴CG=CH 在y=2x+4中,令y=0,得x=-2;令x=0,得y=4 ∴A(-2,0),B(0,4),OA=2,OB=4 设CG=CH=x,则2+x=4-x 解得x=1,∴C(1,1) ∴k=1 (2)由(1)知,CG=1,AG=3 ∴AC2=BC2=12+32=10 ∴S△ABC=1 2AC 2=5,S △PBC = 1 2S△ABC= 5 2 当点P在点G左侧时 S△PBC=S△PBO+S△BOC-S△PCO ∴1 2OP×4+ 1 2×4×1- 1 2OP×1= 5 2 解得OP=1 3,∴P1(- 1 3,0) 当点P在点G右侧时 S△PBC=S△PBO-S△BOC-S△PCO ∴1 2OP×4- 1 2×4×1- 1 2OP×1= 5 2 解得OP=3,∴P2(3,0)

中考数学(人教版)总复习 热点专题突破训练:专题一 图表信息

专题一 图表信息 专题提升演练 1.如图,根据程序计算函数值,若输入的x值为,则输出的函数值为( ) A. B. C. D. 2.如图,AB为半圆的直径,点P为AB上一动点,动点P从点A出发,沿AB匀速运动到点B,运动时间为t,分别以AP和PB为直径作半圆,则图中阴影部分的面积S与时间t之间的函数图象大致为( ) 3.如图是小明设计的用手电筒来测量某古城墙高度的示意图.在点P处放一水平的平面镜,光线从点A出发经平面镜反射后刚好射到古城墙CD的顶端C处,已知AB⊥BD,CD⊥BD,测得AB=1.2 m, BP=1.8 m,PD=12 m,则该古城墙的高度是( ) B.8 m C.18 m D.24 m 4.某种蓄电池的电压为定值,使用此电源时,电流I(单位:A)与可变电阻R(单位:Ω)之间的函数关系如图,当用电器的电流为10 A时,用电器的可变电阻阻值为 Ω. .6 5.为鼓励居民节约用电,某省试行阶梯电价收费制,具体执行方案如下: 档次每户每月用电数/度执行电价/(元/度) 第一档小于等于2000.55 第二档大于200小于4000.6

第三档大于等于4000.85 例如:一户居民七月用电420度,则需缴电费420×0.85=357(元). 某户居民五月、六月共用电500度,缴电费290.5元.已知该用户六月用电量大于五月,且五月、六月的用电量均小于400度.问该户居民五月、六月各用电多少度? 500度,所以每个月用电量不可能都在第一档. 假设该用户五月、六月每月用电均超过200度, 此时的电费共计:500×0.6=300(元), 而300>290.5,不符合题意. 又因为六月用电量大于五月,所以五月用电量在第一档,六月用电量在第二档. 设五月用电x度,六月用电y度, 根据题意,得 故该户居民五月、六月各用电190度、310度. 6.在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m),绘制出如下的统计图 ①和图②.请根据相关信息,解答下列问题: 图① 图② (1)图①中a的值为 ; . (2)∵ =1.61, ∴这组数据的平均数是1.61. ∵在这组数据中,1.65出现了6次,出现的次数最多, ∴这组数据的众数为1.65. ∵将这组数据按从小到大的顺序排列,其中处于中间的两个数都是1.60,又=1.60, ∴这组数据的中位数为1.60.

2017上海历年中考数学压轴题专项训练

24.(本题满分12分,第(1)小题满分3分,第(2)小题满分4分,第(3)小题满分5分) 如图,已知抛物线2y x bx c =++经过()01A -, 、()43B -,两点. (1)求抛物线的解析式; (2 求tan ABO ∠的值; (3)过点B 作BC ⊥x 轴,垂足为点C ,点M 是抛物线上一点,直线MN 平行于y 轴交直线AB 于点N ,如果M 、N 、B 、C 为顶点的四边形是平行四边形,求点N 的坐标. 24.解:(1)将A (0,-1)、B (4,-3)分别代入2 y x bx c =++ 得1, 1643c b c =-?? ++=-? , ………………………………………………………………(1分) 解,得9 ,12 b c =-=-…………………………………………………………………(1分) 所以抛物线的解析式为29 12 y x x =- -……………………………………………(1分) (2)过点B 作BC ⊥x 轴,垂足为C ,过点A 作AH ⊥OB ,垂足为点H ………(1分) 在Rt AOH ?中,OA =1,4 sin sin ,5 AOH OBC ∠=∠=……………………………(1分) ∴4sin 5AH OA AOH =∠= g ,∴322,55 OH BH OB OH ==-=, ………………(1分) 在Rt ABH ?中,4222 tan 5511 AH ABO BH ∠==÷=………………………………(1分) (3)直线AB 的解析式为1 12y x =- -, ……………………………………………(1分) 设点M 的坐标为29(,1)2m m m --,点N 坐标为1 (,1)2 m m -- 那么MN =2 291 (1)(1)422 m m m m m - ----=-; …………………………(1分) ∵M 、N 、B 、C 为顶点的四边形是平行四边形,∴MN =BC =3 解方程2 4m m -=3 得2m =± ……………………………………………(1分) 解方程2 43m m -+=得1m =或3m =; ………………………………………(1分)

2018年度中考数学压轴题

1、如图,在Rt△ABC中,∠C=90°,AB=10cm,AC:BC=4:3,点P从点A出发沿AB方向向点B运动,速度为1cm/s,同时点Q从点B出发沿B→C→A方向向点A运动,速度为2cm/s,当一个运动点到达终点时,另一个运动点也随之停止运动.(1)求AC、BC的长; (2)设点P的运动时间为x(秒),△PBQ的面积为y(cm2),当△PBQ存在时,求y与x的函数关系式,并写出自变量x的取值范围; (3)当点Q在CA上运动,使PQ⊥AB时,以点B、P、Q为定点的三角形与△ABC 是否相似,请说明理由; (4)当x=5秒时,在直线PQ上是否存在一点M,使△BCM得周长最小,若存在,求出最小周长,若不存在,请说明理由. 解:(1)设AC=4x,BC=3x,在Rt△ABC中,AC2+BC2=AB2, 即:(4x)2+(3x)2=102,解得:x=2,∴AC=8cm,BC=6cm; (2)①当点Q在边BC上运动时,过点Q作QH⊥AB于H,

∵AP=x ,∴BP=10﹣x ,BQ=2x ,∵△QHB ∽△ACB , ∴ QH QB AC AB = ,∴QH=错误!未找到引用源。x ,y=错误!未找到引用源。BP ?QH=1 2 (10﹣x )?错误!未找到引用源。x=﹣4 5 x 2+8x (0<x ≤3), ②当点Q 在边CA 上运动时,过点Q 作QH ′⊥AB 于H ′, ∵AP=x , ∴BP=10﹣x ,AQ=14﹣2x ,∵△AQH ′∽△ABC , ∴'AQ QH AB BC =,即:' 14106 x QH -=错误!未找到引用源。,解得:QH ′=错误!未找到引用源。(14﹣x ), ∴y= 12PB ?QH ′=12(10﹣x )?35(14﹣x )=310x 2﹣36 5 x+42(3<x <7); ∴y 与x 的函数关系式为:y=2 248(03)5 33642(37)10 5x x x x x x ?-+<≤????-+<

中考数学压轴题专题

中考数学压轴题专题 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

专题1:抛物线中的等腰三角形 基本题型:已知AB,抛物线()0 2≠ bx y,点P在抛物线上(或坐 c ax =a + + 标轴上,或抛物线的对称轴上),若ABP ?为等腰三角形,求点P坐标。 分两大类进行讨论: =):点P在AB的垂直平分线上。 (1)AB为底时(即PA PB 利用中点公式求出AB的中点M; k,因为两直线垂直斜率乘积为1-,进利用两点的斜率公式求出AB 而求出AB的垂直平分线的斜率k; 利用中点M与斜率k求出AB的垂直平分线的解析式; 将AB的垂直平分线的解析式与抛物线(或坐标轴,或抛物线的对 称轴)的解析式联立即可求出点P坐标。 (2)AB为腰时,分两类讨论: =):点P在以A为圆心以AB为半径的圆 ①以A ∠为顶角时(即AP AB 上。 =):点P在以B为圆心以AB为半径的圆 ②以B ∠为顶角时(即BP BA 上。 利用圆的一般方程列出A(或B)的方程,与抛物线(或坐标轴,或抛物线的对称轴)的解析式联立即可求出点P坐标。 专题2:抛物线中的直角三角形

基本题型:已知AB ,抛物线()02≠++=a c bx ax y ,点P 在抛物线上(或坐标 轴上,或抛物线的对称轴上),若ABP ?为直角三角形,求点P 坐 标。 分两大类进行讨论: (1)AB 为斜边时(即PA PB ⊥):点P 在以AB 为直径的圆周上。 利用中点公式求出AB 的中点M ; 利用圆的一般方程列出M 的方程,与抛物线(或坐标轴,或抛物线的对 称 轴)的解析式联立即可求出点P 坐标。 (2)AB 为直角边时,分两类讨论: ①以A ∠为直角时(即AP AB ⊥): ②以B ∠为直角时(即BP BA ⊥): 利用两点的斜率公式求出AB k ,因为两直线垂直斜率乘积为1-,进而求出 PA (或PB )的斜率k ;进而求出PA (或PB )的解析式; 将PA (或PB )的解析式与抛物线(或坐标轴,或抛物线的对称轴)的解 析式联立即可求出点P 坐标。 所需知识点: 一、 两点之间距离公式: 已知两点()()2211y ,x Q ,y ,x P , 则由勾股定理可得:()()221221y y x x PQ -+-= 。 二、 圆的方程: 点()y ,x P 在⊙M 上,⊙M 中的圆心M 为()b ,a ,半径为R 。 则()()R b y a x PM =-+-=22,得到方程☆:()()22 2R b y a x =-+-。 ∴P 在☆的图象上,即☆为⊙M 的方程。

中考数学复习检测第2部分专题突破专题二特色题型突破

精品文档
2019-2020 年中考数学复习检测第 2 部分专题突破专题二特色题型突 破
类型一 求阴影部分的面积 【例 1】 将△ABC 绕点 B 逆时针旋转到△A′BC′,使 A,B,C′在同一直 线上,若∠BCA=90°,∠BAC=30°,AB=2 cm,则图 1 中阴影部分的面积为 ____________.
图1
方法点拨 如图 2 所示,运用旋转,把左边的深色阴影部分绕点 B 顺时针旋 转 120°就会转到右边的深色阴影部分,刚好构成一个圆心角为 120°的圆环面 积.此题运用图形的变换将不规则的图形变为规则的可求面积的图形.
图2 【例 2】 如图 3,正六边形 ABCDEF 内接于⊙O,若⊙O 的半径为 4,则阴影部分的面积 等于____________.
图3 方法点拨 连接 OD,根据正多边形的对称性可得 S△BDO=S△FDO=S△BCD,弓形 DE 的面积=
实用文档

精品文档
弓形 BC 的面积,则不规则的阴影部分的面积刚好拼成扇形 BOD 的面积.此题运用图象的面 积相等替换求不规则图象的面积.
【例 3】 (xx·滨州)如图 4,△ABC 是等边三角形,AB=2,分别以 A,B,C 为圆心, 以 2 为半径作弧,则图中阴影部分的面积是____________.
图4 方法点拨 此题运用面积的差求阴影部分的面积.
1.(xx·赤峰)如图 5,⊙O 的半径为 1,分别以⊙O 的直径 AB 上的两个四等分点 O1,O2
为圆心,12为半径作圆,则图中阴影部分的面积为(
)
A.π
B.12π
C.14π
D.2π
图5 2.(xx·淄博)如图 6,△ABC 的面积为 16,点 D 是 BC 边上一点,且 BD=14BC,点 G 是 AB 上一点,点 H 在△ABC 内部,且四边形 BDHG 是平行四边形,则图中阴影部分的面积是( )
图6
A.3
B.4
C.5
D.6
3.(xx·临沂)如图 7,AB 是⊙O 的切线,B 为切点,AC 经过点 O,与⊙O 分别相交于点
D,C.若∠ACB=30°,AB= 3,则阴影部分的面积是( )
图7
实用文档

中考数学压轴题专题 动点问题

2012年全国中考数学(续61套)压轴题分类解析汇编 专题01:动点问题 25. (2012吉林长春10分)如图,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分别为边AB、BC的中点,连结DE,点P从点A出发,沿折线AD-DE-EB运动,到 点B停止.点P在AD的速度运动,在折线DE-EB上以1cm/s的速度运动.当点P与点A不重合时,过点P作 PQ⊥AC于点Q,以PQ为边作正方形PQMN,使点M落在线段AC上.设点P的运动时间为t(s). (1)当点P在线段DE上运动时,线段DP的长为______cm,(用含t的代数式表示).(2)当点N落在AB边上时,求t的值. (3)当正方形PQMN与△ABC重叠部分图形为五边形时,设五边形的面积为S(cm2),求S与t的函数关系式. (4)连结CD.当点N于点D重合时,有一点H从点M出发,在线段MN上以2.5cm/s 的速度沿M-N-M连续做往返运动,直至点P与点E重合时,点H停止往返运动;当点P 在线段EB上运动时,点H始终在线段MN的中心处.直接写出在点P的整个运动过程中,点H落在线段CD上时t的取值范围. 【答案】解:(1)t-2。 (2)当点N落在AB边上时,有两种情况: ①如图(2)a,当点N与点D重合时,此时点P在DE上,DP=2=EC,即t-2=2,t=4。 ②如图(2)b,此时点P位于线段EB上. ∵DE=1 2 AC=4,∴点P在DE段的运动时间为4s, ∴PE=t-6,∴PB=BE-PE=8-t,PC=PE+CE=t-4。 ∵PN∥AC,∴△BNP∽△BAC。∴PN:AC = PB:BC=2,∴PN=2PB=16-2t。 由PN=PC,得16-2t=t-4,解得t=20 3 。 综上所述,当点N落在AB边上时,t=4或t=20 3 。 (3)当正方形PQMN与△ABC重叠部分图形为五边形时,有两种情况:

2019年各省市中考数学压轴题合辑5(湖南专辑)

【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。】 2019年各省市中考数学压轴题合辑(五) 1.(2019?长沙)如图,抛物线26(y ax ax a =+为常数,0)a >与x 轴交于O ,A 两点,点B 为抛物线的顶点,点D 的坐标为(t ,0)(30)t -<<,连接BD 并延长与过O ,A ,B 三点的P e 相交于点C . (1)求点A 的坐标; (2)过点C 作P e 的切线CE 交x 轴于点E . ①如图1,求证:CE DE =; ②如图2,连接AC ,BE ,BO ,当3a = ,CAE OBE ∠=∠时,求11OD OE -的值.

2.(2019?长沙)已知抛物线22(2)(2020)(y x b x c b =-+-+-,c 为常数). (1)若抛物线的顶点坐标为(1,1),求b ,c 的值; (2)若抛物线上始终存在不重合的两点关于原点对称,求c 的取值范围; (3)在(1)的条件下,存在正实数m ,n (m <n ),当m ≤x ≤n 时,恰好≤≤, 求m ,n 的值.

3.(2019?长沙)根据相似多边形的定义,我们把四个角分别相等,四条边成比例的两个凸四边形叫做相似四边形.相似四边形对应边的比叫做相似比. (1)某同学在探究相似四边形的判定时,得到如下三个命题,请判断它们是否正确(直接在横线上填写“真”或“假”). ①四条边成比例的两个凸四边形相似;(命题) ②三个角分别相等的两个凸四边形相似;(命题) ③两个大小不同的正方形相似.(命题) (2)如图1,在四边形ABCD和四边形 1111 A B C D中, 111 ABC A B C ∠=∠, 111 BCD B C D ∠=∠,111111 AB BC CD A B B C C D ==.求证:四边形ABCD与四边形 1111 A B C D相似. (3)如图2,四边形ABCD中,// AB CD,AC与BD相交于点O,过点O作// EF AB分 别交AD,BC于点E,F.记四边形ABFE的面积为 1 S,四边形EFCD的面积为 2 S,若 四边形ABFE与四边形EFCD相似,求2 1 S S 的值.

中考数学压轴题专题

中考数学压轴题专题Prepared on 21 November 2021

专题1:抛物线中的等腰三角形 基本题型:已知AB,抛物线()0 2≠ bx y,点P在抛物线上(或坐 c ax =a + + 标轴上,或抛物线的对称轴上),若ABP ?为等腰三角形,求点P坐标。 分两大类进行讨论: =):点P在AB的垂直平分线上。 (1)AB为底时(即PA PB 利用中点公式求出AB的中点M; k,因为两直线垂直斜率乘积为1-,进利用两点的斜率公式求出AB 而求出AB的垂直平分线的斜率k; 利用中点M与斜率k求出AB的垂直平分线的解析式; 将AB的垂直平分线的解析式与抛物线(或坐标轴,或抛物线的对 称轴)的解析式联立即可求出点P坐标。 (2)AB为腰时,分两类讨论: =):点P在以A为圆心以AB为半径的圆 ①以A ∠为顶角时(即AP AB 上。 =):点P在以B为圆心以AB为半径的圆 ②以B ∠为顶角时(即BP BA 上。 利用圆的一般方程列出A(或B)的方程,与抛物线(或坐标轴,或抛物线的对称轴)的解析式联立即可求出点P坐标。 专题2:抛物线中的直角三角形

基本题型:已知AB ,抛物线()02≠++=a c bx ax y ,点P 在抛物线上(或坐标 轴上,或抛物线的对称轴上),若ABP ?为直角三角形,求点P 坐标。 分两大类进行讨论: (1)AB 为斜边时(即PA PB ⊥):点P 在以AB 为直径的圆周上。 利用中点公式求出AB 的中点M ; 利用圆的一般方程列出M 的方程,与抛物线(或坐标轴,或抛物线的对称 轴)的解析式联立即可求出点P 坐标。 (2)AB 为直角边时,分两类讨论: ①以A ∠为直角时(即AP AB ⊥): ②以B ∠为直角时(即BP BA ⊥): 利用两点的斜率公式求出AB k ,因为两直线垂直斜率乘积为1-,进而求出 PA (或PB )的斜率k ;进而求出PA (或PB )的解析式; 将PA (或PB )的解析式与抛物线(或坐标轴,或抛物线的对称轴)的解析式联立即可求出点P 坐标。 所需知识点: 一、 两点之间距离公式: 已知两点()()2211y ,x Q ,y ,x P , 则由勾股定理可得:()()2 21221y y x x PQ -+-=。 二、 圆的方程: 点()y ,x P 在⊙M 上,⊙M 中的圆心M 为()b ,a ,半径为R 。 则()()R b y a x PM =-+-= 22,得到方程☆:()()22 2 R b y a x =-+-。 ∴P 在☆的图象上,即☆为⊙M 的方程。

中考数学压轴题集锦

中考数学冲刺复习资料:二次函数压轴题 1、(本题满分10分) 如图,在平面直角坐标系中,抛物线y =- 3 2x 2 +b x +c 经过A (0,-4)、B (x 1,0)、 C (x 2,0)三点,且x 2 -x 1=5. (1)求b 、c 的值;(4分) (2)在抛物线上求一点D ,使得四边形BDCE 是以BC 为对 角线的菱形;(3分) (3)在抛物线上是否存在一点P ,使得四边形B P O H 是以OB 为对角线的菱形?若存在,求出点P 的坐标,并判断这个菱形是否为正方形?若不存在,请说明理由.(3分) 2、如图所示,在平面直角坐标系中,矩形ABOC 的边BO 在x 轴的负半轴上,边OC 在y 轴的正半轴上,且1AB =,3OB = ABOC 绕点O 按顺时针 方向旋转60后得到矩形EFOD .点A 的对应点为点E ,点B 的对应点为点F ,点C 的对应点为点D ,抛物线2 y ax bx c =++过点 A E D ,,. (1)判断点E 是否在y 轴上,并说明理由; (2)求抛物线的函数表达式; (3)在x 轴的上方是否存在点P ,点Q ,使以点O B P Q ,,,为顶点的平行四边形的面积是矩形ABOC 面积的2倍,且点P 在抛物线上,若存在,请求出点P ,点Q 的坐标;若不存在,请说明理由. y O 第26题图 D E C F A B (第25题图) A x y B C O

3、如图16,在平面直角坐标系中,直线33y x =--与x 轴交于点A ,与y 轴交于点C ,抛物线2 23 (0)y ax x c a =- +≠经过A B C ,,三点. (1)求过A B C ,,三点抛物线的解析式并求出顶点F 的坐标; (2)在抛物线上是否存在点P ,使ABP △为直角三角形,若存在,直接写出P 点坐标;若不存在,请说明理由; (3)试探究在直线AC 上是否存在一点M ,使得MBF △的周长最小,若存在,求出M 点的坐标;若不存在,请说明理由. 4、如图14,已知半径为1的1O 与x 轴交于A B ,两点,OM 为 1O 的切线,切点为M ,圆心1O 的坐标为(20),,二次函数2y x bx c =-++的图象经 过A B ,两点. (1)求二次函数的解析式; (2)求切线OM 的函数解析式; (3)线段OM 上是否存在一点P ,使得以P O A ,,为顶点的三角形与1OO M △相似.若存在,请求出所有符合条件的点P 的坐标;若不存在,请说明理由. 5、ABC △中,90C ∠=,60A ∠=,2AC =cm .长为1cm 的线段MN 在ABC △的边AB 上沿AB 方向以1cm/s 的速度向点B 运动(运动前点M 与点A 重合).过M N ,分别作AB 的垂线交直角边于P Q ,两点,线段MN 运动的时间为t s . (1)若AMP △的面积为y ,写出y 与t 的函数关系式(写出自变量t 的取值范围); (2)线段MN 运动过程中,四边形MNQP 有可能成为矩形吗?若有可能,求出此时t 的值;若不可能,说明理由; (3)t 为何值时,以C P Q ,,为顶点的三角形与ABC △相似? 图14 y x O A B M O 1 A O x y B F C

中考数学压轴题专题训练

2018中考数学压轴专题一、动点与面积问题 例1 如图,抛物线y =ax 2+bx +c (a ≠0)与x 轴交于A (-1, 0),B (4, 0)两点,与y 轴交于点C (0, 2).点M (m , n )是抛物线上一动点,位于对称轴的左侧,并且不在坐标轴上.过点M 作x 轴的平行线交y 轴于点Q ,交抛物线于另一点E ,直线BM 交y 轴于点F . (1)求抛物线的解析式,并写出其顶点坐标; (2)当S △MFQ ∶S △MEB =1∶3时,求点M 的坐标. 例2如图,已知抛物线2 12 y x bx c = ++(b 、c 是常数,且c <0)与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴的负半轴交于点C ,点A 的坐标为(-1,0). (1)b =______,点B 的横坐标为_______(上述结果均用含c 的代数式表示); (2)连结BC ,过点A 作直线AE //BC ,与抛物线交于点E .点D 是x 轴上一点,坐标为(2,0),当C 、D 、E 三点在同一直线上时,求抛物线的解析式; (3)在(2)的条件下,点P 是x 轴下方的抛物线上的一动点,连结PB 、PC .设△PBC 的面积为S . ①求S 的取值范围; ②若△PBC 的面积S 为正整数,则这样的△PBC 共有_____个. 例3如图,已知二次函数的图象过点O (0,0)、A (4,0)、B (43 2,3 -),M 是OA 的中点. (1)求此二次函数的解析式; (2)设P 是抛物线上的一点,过P 作x 轴的平行线与抛物线交于另一点Q ,要使四边形PQAM 是菱形,求点P 的坐标; (3)将抛物线在x 轴下方的部分沿x 轴向上翻折,得曲线OB ′A (B ′为B 关于x 轴的对称点),在原抛物线x 轴的上方部分取一点C ,连结CM ,CM 与翻折后的曲线OB ′A 交于点D ,若△CDA 的面积是△MDA 面积的2倍,这样的点C 是否存在?若存在求出点C 的坐标;若不存在,请说明理由. 例4如图,直线l 经过点A (1,0),且与双曲线m y x = (x >0)交于点B (2,1).过点(,1)P p p -(p >1)作x 轴的平 行线分别交曲线m y x =(x >0)和m y x =-(x <0)于M 、N 两点. (1)求m 的值及直线l 的解析式; (2)若点P 在直线y =2上,求证:△PMB ∽△PNA ;

2020年中考数学压轴题突破(含答案)

2014中考压轴题突破 训练目标 1.熟悉题型结构,辨识题目类型,调用解题方法; 2.书写框架明晰,踩点得分(完整、快速、简洁)。 题型结构及解题方法 压轴题综合性强,知识高度融合,侧重考查学生对知识的综合运用能力,对问题背景的研究能力以及对数学模型和套路的调用整合能力。 答题规范动作 1.试卷上探索思路、在演草纸上演草。

2.合理规划答题卡的答题区域:两栏书写,先左后右。 作答前根据思路,提前规划,确保在答题区域内写完答案;同时方便修改。 3.作答要求:框架明晰,结论突出,过程简洁。 23题作答更加注重结论,不同类型的作答要点: 几何推理环节,要突出几何特征及数量关系表达,简化证明过程; 面积问题,要突出面积表达的方案和结论; 几何最值问题,直接确定最值存在状态,再进行求解; 存在性问题,要明确分类,突出总结。 4.20分钟内完成。 实力才是考试发挥的前提。若在真题演练阶段训练过程中,对老师所讲的套路不熟悉或不知道,需要查找资源解决。下方所列查漏补缺资源集中训练每类问题的思路和方法,这些训练与真题演练阶段的训练互相补充,帮学生系统解决压轴题,以到中考考场时,不仅题目会做,而且能高效拿分。课程名称: 2014中考数学难点突破 1、图形运动产生的面积问题 2、存在性问题 3、二次函数综合(包括二次函数与几何综合、二次函数之面积问题、二次函数中的存在性问题) 4、2014中考数学压轴题全面突破(包括动态几何、函数与几何综合、点的存在性、三角形的存 在性、四边形的存在性、压轴题综合训练) 一、图形运动产生的面积问题 一、知识点睛 1.研究_基本_图形 2.分析运动状态: ①由起点、终点确定t的范围; ②对t分段,根据运动趋势画图,找边与定点,通常是状态转折点相交时的特殊位置. 3.分段画图,选择适当方法表达面积. 二、精讲精练 1.已知,等边三角形ABC的边长为4厘米,长为1厘米的线段MN在△ABC的边AB上,沿AB方向以 1厘米/秒的速度向B点运动(运动开始时,点M与点A重合,点N到达点B时运动终止),过点M、N分别作AB边的垂线,与△ABC的其他边交于P、Q两点,线段MN运动的时间为t秒. (1)线段MN在运动的过程中,t为何值时,四边形MNQP恰为矩形?并求出该矩形的面积. (2)线段MN在运动的过程中,四边形MNQP的面积为S,运动的时间为t.求四边形MNQP的面积S随运动时间t变化的函数关系式,并写出自变量t的取值范围.

人教版中考数学总复习专项练习

(一) 数与式的化简与求值 (参考用时:40分钟) 一、实数的混合运算 1.(2019长沙)计算:|-√2|+1 2 -1-√6÷√3-2cos 60°. 2.(2019滨州)计算:-1 2-2-|√3-2|+√3 2 ÷√1 18 . 3.(2019巴中)计算-1 2 2+(3-π)0+|√3-2|+2sin 60°-√8. 4.计算:√(1-√2)2-1-√2 20+sin 45°+1 2 -1.

5.计算:|3.14-π|+3.14÷ √3 2 +10-2cos 45°+(√2-1)-1+(-1)2 019. 二、整式的化简与求值 1.如果x-2y=2 019,求[(3x+2y )(3x-2y )-(x+2y )(5x-2y )]÷2x 的值. 2.先化简,再求值: (m-n )(m+n )+(m+n )2-2m 2,其中m ,n 满足方程组{m +2n =1, 3m -2n =11. 3.已知实数a 是1 2x 2-5 2x-7=0的根,不解方程,求多项式(a-1)(2a-1)-(a+1)2+1的值.

三、分式的化简与求值 1.(2019长沙)先化简,再求值: a+3a -1-1 a -1 ÷ a 2+4a+4 a 2-a ,其中a=3. 2.(2019黄石)先化简,再求值: 3 x+2 +x-2÷ x 2-2x+1 x+2 ,其中|x|=2. 3.先化简,再求值: x -1x -x -2x+1 ÷2x 2-x x 2+2x+1 ,其中x 满足x 2-2x-2=0. 4.(2019常德)先化简,再选一个合适的数代入求值: x -1x 2+x -x -3 x 2-1 ÷ 2x 2+x+1 x 2-x -1.

北京市中考数学专题突破一:填空压轴题型(含答案)

北京市中考数学专题突破一:填空压轴题型(含答案)

专题突破(一)填空压轴题型 规律探究性问题的解答需要学生经历观察、分析、归纳、概括、推理、检验等一系列探索活动,对学生的“数感”提出较高要求. 新定义题型就是指通过试题提供的新定义、新规则、新概念、新材料来创设新情景,提升类比迁移等综合素质. 因此,这两个考点成为北京市中考填空题压轴题的热点. 2012—2015年北京中考知识点对比 题型 年份 2012201320142015 填空探究式 的规律 定义新 运算,探 函数综 合循环 尺规作 图的理

究规律规律论依据 1.[2015·北京]阅读下面材料: 在数学课上,老师提出如下问题: 尺规作图:作一条线段的垂直平分线. 已知:线段AB. 图Z1-1 求作:线段AB的垂直平分线.

小芸的作法如下: 如图, 图Z1-2 (1)分别以点A和点B为圆心,大于1 2AB的长为半径作弧,两弧相交于C,D两点; (2)作直线CD. 所以直线CD就是的所求作的垂直平分线. 老师说:“小芸的作法正确.” 请回答:小芸的作图依据是______________________. 2.[2014·北京]在平面直角坐标系xOy中,对于点P(x,y),我们把点P′(-y+1,x+1)叫做点P的伴随点,已知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,这样依次得到点A1,A2,A3…,A4…,若点A1的坐标为(3,1),则点A3的坐标为________,点

A2014的坐标为________;若点A1的坐标为(a,b),对于任意正整数n,点A n均在x轴上方,则a,b应满足的条件为__________________. 3.[2013·北京]如图Z1-3,在平面直角坐标系xOy 中,已知直线l:t=-x-1,双曲线y=1 x.在l上取点A1, 过点A1作x轴的垂线交双曲线于点B1,过点B1作y轴的垂线交l于点A2,请继续操作并探究:过点A2作x 轴的垂线交双曲线于点B2,过点B2作y轴的垂线交l 于点A3,…,这样依次得到l上的点A1,A2,A3,…,A n,….记点A n的横坐标为a n,若a1=2,则a2=________,a2013=________;若要将上述操作无限次地进行下去,则a1不能取 ...的值是________ 图Z1-3 4.[2012·北京]在平面直角坐标系xOy中,我们把横、纵坐标都是整数的点叫做整点,已知点A(0,4),

相关主题
文本预览
相关文档 最新文档