当前位置:文档之家› 互通立交设计中的一些问题

互通立交设计中的一些问题

互通立交设计中的一些问题
互通立交设计中的一些问题

关于互通式立交设计应注意的一些问题

朱宗余

摘要有关互通式立交设计问题的文章在交通行业的刊物上刊载较多,笔者通过近几年来参加国内数百处互通式立交设计的审核、咨询,对互通式立交设计经常遇见的一些问题(如概念不清、方法不当、运用标准不灵活等)进行分析、探讨,以期与相关技术人员共勉。

主题词高速公路互通式立交设计

l 互通式立交的间距

《公路工程名词术语》(JTJo02—87)对互通式立交的间距没有作明确的解释,按照目前国内的设计习惯,一般理解为互通式立交主线与被交公路(无被交公路时与主要匝道)交叉点之间的距离。

1.1 间距的规定

《公路路线设计规范》(JTJ011—94)P95规定:互通式立交最小间距4km、最大间距30km。最小间距是基于车辆交织和变速、设置交通标志等方面的考虑,若互通式立交间距太近,由于车辆频繁驶出和驶入,使主线外侧车道上的车辆频繁转换车道,导致车流不稳定;最大间距是基于误行车辆及公路维修、救援车辆等调头之用。此外,规范还规定:互通式立交与服务区、停车场的间距极限值3km、一般值5km,与公共汽车停靠站、隧道的间距极限值1.5km、一般值4km。

《公路工程技术标准》(JTG B01—2003)P30和《公路路线设计规范》(2003年9月送审稿)对互通式立交间距的规定仍为最小间距4km、最大间距30km,但条件有所放宽:受地形条件或其他特殊情况受限制时,经论证相邻互通式立体交叉的间距可适当减少,上一互通式立交加速车道终点至下一互通式立交减速车道起点间的距离(即净距离)不得小于1000m,否则应将两者合并为复合式立交;在人烟稀少地区最大间距不应超过40km,否则应在适当位置设置U形转弯设施。送审稿同时规定:互通式立交与服务区、停车区、公共汽车停靠站、隧道等重要设施之间的距离应能满足设置出口预告标志的需要。当条件受限时,间距可适当减小,但入口渐变段终点至下一个出口渐变段起点的距离不得小于1000m。

按《道路交通标志和标线》(GB5768—1999)P44,高速公路出口预告标志分别设在距互通式立交出口2km、lkm和500m处。若设置3块预告标志,则一般最小净距离为2km,若只能设置1块预告标志,则极限最小净距离为500m,上述最小距离1000m就是考虑至少应能设置2块预告标志。

1.2 间距的控制

从现有的审核、咨询项目来看,互通式立交的间距超过30km的不多,即使超过30km,也会按规范在其间适当位置设置U形转弯设施或预留互通式立交。但在我国北京、山东、江苏、上海、广东等经济发达省、市,相继出现了一些互通式立交间距小于4km甚至2km的工程实例,而且,随着我国高速公路的快速发展,路网密度越来越大,近距离互通式立交将会越来越多。

对规范规定的最小间距4km不能一概而论,应作具体分析,判断的标准是看两者之间的净距离能否达到l000m。按《公路建设项目用地指标》(1999)P64统计:枢纽互通、单喇叭互通和苜蓿叶互通(或菱形互通)的计算长度分别为2500m(含辅助车道长度)、1000m和1300m。因此,结合设置出口预告标志,各种情况下的极限最小距离应分别为:

单喇叭互通与单喇叭互通:1000/2十1000十1000/2=2000m

单喇叭互通与苜蓿叶互通(或菱形互通):1000/2十1000十1300/2=2150m

单喇叭互通与枢纽互通:1000/2十l000十2500/2=2750m

枢纽互通与苜蓿叶互通(或菱形互通):2500/2十lo00十l 300/2=2900m

枢纽互通与枢纽互通:2500/2十1000十2500/2=3500m。

一般情况下,互通式立交尽可能以独立的形式存在,由于路网连接需要、或由于公路改建需要、或由于地形条件限制,必须设置近距离互通式立交时,才以辅助车道或集散道的形式将近距离互迥式立交连接起来,形成复合式立交。复合式立交的处理在送审稿中都有明确的要求。

2 主线及被交路线形指标

从交通安全性和行车方向的易辨别性考虑,互通式立交范围内的主线平纵面指标应高于主线正常路段标

准,尤其是在主线的分、合流部。,应有良好的视距及较缓的纵坡,尽量避免较大的横坡。

设计中常见的问题是设计者较多地注重了匝道的设计,而往往忽视了主线及被交路线形指标是否满足规范要求,尤其以后者多见:一是互通式立交范围内的主线平曲线半径、竖曲线半径或纵坡中的某项指标小于极限值,或仅大于极限值而小于一般值(但满足正常路段标准),《公路路线设计规范》(JTJ011—94)P96明确规定:一般情况下应等于或大于一般值,特殊情况时才可采用极限值;二是被交路(特别是已建成的高速公路)平纵面指标偏低,如果属于大于极限值而小于一般值的情况可以尽量不改,如果属于小于极限值的情况,则应以书面的形式报请业主或被交路所属管理者批准,对互通式立交范围内的被交路实行改造,但指标小于极限值的位置若避开变速车道范围也可以尽量不改。

3 匝道设计速度

《公路工程名词术语》(JTJ002—87)P5对公路的设计速度解释为“公路几何设计所采用的车速”,对匝道设计速度没有作明确的解释。《公路路线设计规范》(2003年9月送审稿)明确指出:“匝道设计速度是指匝道中线形紧迫路段所能保持的最大安全速度。其余路段上应以与匝道中必然存在的变速行驶相适应的速度作为设计的控制值。接近自由流出入口附近的匝道部分应有较高的设计速度;接近收费站或平面交叉的匝道端部,设计速度可酌情降低”。

3.1 设计速度的意义

一般来讲,车辆在主线互通式立交之间的正常路段保持一定的速度行驶是可能的,也是驾驶员所希望的,因此,公路的设计速度可以是一个固定值,并以此来控制公路几何设计的各项指标。如设计速度100km/h 的高速公路在一定长度范围内设计速度都是一致的。

车辆从高速公路进入匝道要减速,从匝道进入高速公路要加速,进入收费站要减速停车,离开收准,严格来讲设计是不合理的。

尽管送审稿取消了互通式立交的分级,并将匝道设计速度类似公路一样指定为一个固定值,但匝道设计速度是在不断变化的意义并没有改变。

3.2 设计速度的取值

同一处互通式立交,由于各个匝道形式、功能不同,允许不同的匝道采用不同的设计速度。一般情况下,右转弯匝道和半定向左转弯匝道(又称半直连式匝道)设计速度可以取主线设计速度的50一70%,环形匝道设计速度取30—40km/h。如主线和被交路设计速度为120km/h的部分苜蓿叶形十半定向匝道互通式立交,环形匝道设计速度可采用40km/h,半定向匝道设计速度可采用60km/h,右转弯匝道的设计速度可采用80km/h。

4 环形匝道设计

环形匝道是唯一不需要修桥的左转弯匝道,造价最省,一般出现在喇叭形、苜蓿叶形及变形苜蓿叶形互通式立交中。互通式立交的最小技术指标(如最小平曲线半径、最大纵坡、最大超高等)基本上出现在环形匝道上,因此,环形匝道的设计非常重要。

4.1 适应交通量

由于设计速度及圆曲线半径的控制,环形匝道的通行能力也往往受到了限制,但交通量到底达到多大时不能设环形匝道迄今未见权威的论证,经验做法是交通量一般控制在6000pcu/d(小客车)以内,大于6000pcu/d应考虑采用半定向匝道。但在设计中也见到过交通量大于10000pcu/d甚至18000pcu/d也采用环形匝道,应该说方案明显不合理。

4.2 设计速度

环形匝道的设计速度是互通式立交中所有匝道中最低的,但又是决定平纵面线形设计的关键。不管是枢纽互通式立交还是一般互通式立交,《公路路线设计规范》(2003年9月送审稿)规定环形匝道的设计速度不能超过40km/h,根据主线设计速度及交通量一般采用30、35或40km/h即可。现行设计中枢纽互通式立交的环形匝道采用50km/h设计的情况比较多见,主要受互通式立交分级的影响所致。

4.3 圆曲线半径

环形匝道半径应根据匝道的设计速度、交通量及地形等条件而定。《公路路线设计规范》(2003年9月送

审稿)规定了匝道圆曲线最小半径的极限值和一般值,从行车角度考虑,半径当然越大越好,但环形匝道半径每增加一级(10km/h为一级),环形匝道占地就会成倍增加,且车辆绕行距离增长,规模明显增大,不经济且不必要。经验做法是交通量不超过3000pcu/d取极限半径或稍大于极限值的半径,交通量在3000一6000pcM/d之间取一般半径或稍大于一般值的半径,送审稿规定:冰冻积雪地区不得采用最小半径。从现有的审核、咨询项目来看,喇叭形互通式立交的环形匝道半径取值较为适宜,但枢纽互通式立交的环形匝道半径取80、85甚至100m的情况也有,应该说是很不经济的。

4.4 加宽

按照《公路路线设计规范》(JTJ011—94)Pl09,当单向单车道匝道圆曲线半径小于72m、单向或对向双车道匝道圆曲线半径小于47m时应对行车道进行加宽。匝道圆曲线的加宽一般出现在环形匝道上,加宽缓和段长度应与缓和曲线全长或超高缓和段长度相同。设计中常见的问题有:一是忘记了加宽;二是对向双车道的内侧行车道加宽了,而外侧行车道没有加宽;三是加宽值不是加在行车道,而是加在了硬路肩;四是按公路的双车道路面加宽值加宽。

《公路路线设计规范》(JTJ011—94)P49规定:二、三、四级公路加宽缓和段按线性过渡:bx=kb,其中k=Lx/L;高速公路、一级公路加宽缓和段按高次抛物线过渡:bx=(4k’一3k4)b,或插人缓和曲线。若按设计速度比照,匝道一般相当于二、三、四级公路,因此匝道按线性加宽较为多见。

上述两种加宽过渡方式有一个共同缺陷,即加宽段的起点和终点存在折点,路容不美观。20世纪80年代末,在广深珠高速公路设计时从香港引入了一种三次抛物线加宽过渡方式:bx=(3k2-2k3)b,其显著的特点是加宽段的起点和终点无折点,加宽的线形流畅、员滑,至今在设计中广泛使用。三次抛物线也适用于超高过渡。

4.5 超高

匝道的超高应与车辆在匝道上的行驶速度相适应,最大超高一般出现在环形匝道上,过大的超高给人一种不安全感,同时影响路容。一般情况下,我国南方地区匝道超高不宜超过8%,合成坡度不宜大于lo.5%,北方积雪冰冻区匝道超高不得超过6%,合成坡度不得大于8%。匝道土路肩的横坡一般为外倾3%或4%,当路面超高为6%、7%、8%时,超高段外侧土路肩的横坡可以分别可取一3%、一2%、一1%。匝道硬路肩的横坡可以与行车道横坡相同。

受分、合流点影响,匝道的超高过渡通常在部分缓和曲线内进行(缓和曲线在匝道中部除外)。《公路路线设计规范》(JTJ011—94)和《公路路线设计规范》(2003年9月送审稿)对匝道的超高过渡方式没有明确的规定,设计中主要采用按线性方式或三次抛物线方式(公式同前)。线性过渡有两个弊病:一是超高的起终点路面曲折、不平整,二是如果两反向超高过渡,小于2%横坡的滞水段较长。三次抛物线过渡正好克服了这两个弊病,在所有匝道超高过渡及公路超高过渡中使用非常普遍。

5 减速车道及分流点设计

平行式加速车道的设计相对简单,长度的调整很容易,且设计规范对合流点附近的指标末作过多的限制。由于设计规范对减速车道及分流点附近的指标限制较多,设计时最为常见的问题主要集中在减速车道及分流点附近,这也互通式立交设计的重点和难点。

5.1 减速车道的设计方法

直接式减速车道的设计方法主要有两种。习惯设计法是从主线外侧车道中心开始,以一定的出口角采用直线、缓和曲线或大半径圆曲线偏出,这种方法具有较顺直的流出行车轨迹,符合驾驶员的习惯。另一种方法是20世纪90年代初从北美国家引进的,笔者称流行设计法,即直接从减速车道起点(即1个车道宽的位置)开始,再以一定的出口角采用直线、缓和曲线或大半径圆曲线偏出。

习惯设计法主要有三个缺点:一是渐变段长度一般比减速车道长,主线转弯车辆开始偏离的位置不明显;二是定线时并不知道减速车道起点在哪里,需要计算;三是主线为曲线时减速车道起点处的出口渐变率不易控制,或大或小。流行设计法正好克服了习惯设计方法的缺点,即渐变段长度可以自由控制,与主线路基形成明显的折点,出口位置明显;定线时就定了减速车道的起点位置;出口渐变率直接控制,不存在或大或小的问题。事实上,只要将减速车道的起点反向延长,与主线外侧车道中心线相交,就是习惯设计法

了。因此,可以认为:流行设计法是习惯设计法的演变。此外,流行设计法在双车道加、减速车道并设置辅助车道的设计时优势更加明显。

为了适应车辆顺适而平缓地从减速车道过渡到匝道圆曲线,一种最有效和最常用的方法是在匝道圆曲线之前设置一种两段缓和曲线运相连接的复曲线,在连接点处曲率半径相等,这种曲线叫刹车曲线。1993年在京珠国道主干线河北石安高速公路设计时从北欧国家弓[入刹车曲线,遗憾的是至今采用刹车曲线设计还不太普遍,主要原因是计算相对复杂一些。曲率平缓过渡的第二种方法是将第一段缓和曲线改为半径较大的圆曲线,使之成为卵形曲线。这种方法使用较为普遍,尤其是在主线弯道内侧更为有利。另外,还有一种方法是采用三次样条曲线,同样可以保证曲线的曲率连续,但使用较少,只是作为线元法设计的一种调整工具。

5.2 减速车道及分流点附近的指标控制

减速车道及分流点附近有许多指标控制,要完全满足这些指标并非易事。

(1)减速车道长度:规范规定的长度应视为最小值,设计中不少人认为是标准值而加以采用,长度明显不够;另一个问题是当主线纵坡大于2%时下坡减速车道长度末考虑修正(山区高速公路多见)。

(2)渐变段长度:由上述两种减速车道设计方法得到的渐变段长度都不会有大的问题。

(3)出口渐变率:规范规定的渐变率应视为最大值,设计中常见的问题是主线弯道内侧出口渐变率过小,而外侧出口渐变率过大。

(4)分流点曲率半径及缓和曲线参数:一是设计中不少人将“曲率半径”与“圆曲线半径”混为一谈,如主线设计速度为100km/h时分流点最小曲率半径为200m,就认为非要接一段半径为200m的圆曲线不可;二是缓和曲线参数符合规范要求,但分流点曲率半径又不符合规范要求,如图3所示,主线设计速度为100km /h时分流点AK0十129.62曲率半径只有189.27m;三是曲率半径和缓和曲线参数均符合规范要求,但分流点之后的缓和曲线长度过短,以至不能满足匝道超高过渡的需要。

(5)分流点附近竖曲线半径及竖曲线长度:凸、凹形竖曲线半径一般能满足设计规范要求,但竖曲线长度小于一般值甚至小于极限值的情况时有发生。

应当指出:加速是减速的逆过程,加速车道同样可以采用逆向刹车曲线;由于合流点附近车速已经较高,其平纵面指标应尽量达到分流点附近的相应指标(如曲率半径、竖曲线长等),设计中往往忽视了这一点,认为规范没有要求而采用了过低的指标。

6 渐变段设计

互通式立交范围内存在许多路基渐变段设计,如变速车道渐变段、匝道收费广场渐变段、平交口附加车道渐变段及匝道之间分、合流渐变段等,由于设计规范只规定了渐变率,对渐变段的过渡方式未作详细的规定,因此,设计时比较自由、灵活。

(1)变速车道渐变段:通常采用直线过渡,使折点明显。为使路容美观、诱导视线,也可在三角段的起、终点处设置10—20m长的圆弧,平交口附加车道渐变段方法类似。

(2)分流点偏宽渐变段:当主线硬路肩不足3.0m时,为给误行车辆通提供返回的余地应设置偏宽(硬路肩能停车时不需要设置偏宽),匝道偏宽为0.6-1.0m偏宽渐变段由于长度较短,通常采用直线过渡,为使路宽美观,也可采用二次抛物线过渡。

(3)收费广场渐变段:一般情况下收费广场要比与之连接的匝道路基宽,采用直线过渡路容很不美观,通常在渐变段起、终点处设置10—40m长的圆弧,也可采用二次抛物线过渡。当收费广场位于半径较小的曲线上时,应放缓曲线内侧的渐变率,并增大转折点圆滑曲线的半径。

《公路路线设计规范》(2003年9月送审稿)对主线分岔及匝道之间分、合流的各种情况渐变段都有详细的规定,在此不一一介绍。

7 纵断面设计

7.1 匝道起、终点标高及纵坡的计算

匝道起、终点标高的计算是匝道纵断面设计首先要解决的问题,一般由分流点或合流点对应的主线标高按主线路面横坡推算至分流点或合流点,再按匝道起、终点处路面横坡推算至匝道起、终点的控制标高。

匝道之间分流点或合流点对应匝道标高的计算与此相同。

匝道起、终点纵坡的计算目前没有一个统一的计算模式,从现有的审核、咨询项目来看,主要有两种计算方法:一种是直接采用分流点或合流点对应的主线桩号切线纵坡,这种方法计算简单、复核方便,但误差稍大,一般用于初步设计。另一种是在匝道上距分流点或合流点5m或10m取一点,从主线分别推算该点与分流点或合流点对应设计高之差,再除以这两点之间的距离,作为分流点处出主线、合流点处进主线的匝道纵坡值。这种方法计算的匝道纵坡是瞬间纵坡,误差较小,一般用于施工图设计。匝道之间分流点或合流点对应匝道纵坡的计算与此相同。

7.2 匝道平、纵面组合设计

匝道平、纵面线形组合设计原则上尽可能地执行公路路线的做法,如平曲线应包住竖曲线、变坡点不得与反向平曲线的拐点重合、直线段内不能插入短的竖曲线等,特别是对设计速度较大的匝道(如半定向匝道)纵断面设计更应该如此。由于设计规范对匝道平、纵面组合设计工作强调,设计中就显得“过于自由”,有的设计甚至千篇一律在离匝道起点后30m或35m、离匝道终点前30m或35m设置变坡点,而不顾平、纵面线形的组合及填挖高度。

在出口处,如果是凸形竖曲线接下坡匝道,应使凸形竖曲线加长以增大视距,使驾驶员能及早发现平曲线的方向,具有足够的安全运行时间。在人口处,如果是上坡接凸形竖曲线,应使匝道(一般长度至少60m)纵断面与邻近的主线基本一致,使驾驶员能看清主线上的交通情况,以便安全驶入。

值得一提的是:位于跨线桥上的匝道竖曲线半径应尽可能大,以提供良好的行车视线。如喇叭形互通式立交,由于跨线桥过后紧接环形匝道,跨线桥上的竖曲线半径不能以满足相应设计速度的一般值为原则,应考虑提高一级设计速度的标准来确定竖曲线半径的大小。枢纽互通式立交中的半定向匝道由于纵坡一般较大,跨线桥上的匝道竖曲线半径能满足相应设计速度的一般值即可。

7.3 纵坡及最短直坡长度

匝道纵坡应尽量平缓,避免多次不必要的变坡。最大纵坡应适当留有余地,最小纵坡应考虑纵向排水要求,一般情况不应小于o.5%,特殊情况不应小于o.3%。

设计规范对匝道最短坡长没有严格的规定,通常情况下能设得下竖曲线即可。笔者认为:参照公路路线的做法,按照匝道的设计速度,最短直坡长度应不小于3s行程,若不够,应加大竖曲线半径,将竖曲线连接起来。

互通式立交设计实例-2

2.7.17.2 延安路-南北高架立交 1.立交概况 1)立交等级 延安路-南北高架立交位于成都路、延安路交叉口,是市中心的重要交通节点。延安路是横穿上海市中心城区高架系统东西向的交通主干道,东接延安路隧道复线与浦东陆家嘴地区相连,西至虹桥国际机场和沪青平高速公路。南北高架是一条纵贯市中心区南北向的城市主干道,往南穿越黄浦江与浦东济阳快速路连接,往北至南北高架延伸线,与彭浦工业区和宝钢地区连接。延安路-南北高架立交不仅是连接这两条干道的交通枢纽,而且是上海市高架系统“申”字型骨架的中心点。因此,该立交是市区高架系统中最重要的交通枢纽工程之一,它的建成将为高架系统安全、畅通、快速运行起到极其重要的作用。根据立交所处的地理位置、相交道路的等级和在路网中的重要性,立交等级确定为互通式立交1级。 2)设计标准 立交主线设计车速为60km/h,匝道为30km/h;主线净空为5.2m,主线最小半径为1000m;匝道净空为4.5m,匝道最小半径为55m;主线最大纵坡为4.16%,匝道最大纵坡为5.5%。 3)选型依据 (1)用地条件 南北高架与延安路高架轴线间呈斜交72度,规划红线均控制在65m范围内,交叉口规划半径仅为80m。立交四周建筑物稠密,有8层高的浦东大楼,多幢5层楼新工房,其余大多为2至3层的老式砖房,在交叉口西南象限紧贴红线有2幢24层新建高层建筑,立交占地很小,设计条件极为苛刻,立交方案的取舍受地形约束较大。 (2)交通量预测 根据上海市交研所提供的交通流量预测资料,该立交远期2020年立交高峰小时流量为12683pcu/h,南北高架与延安路高架的交通比重2020年为54:45,南北高架流量略大于延安路高架流量。南北高架的直行流量占进口总流量的58%,延安路高架的直行流量占进口总流量的53%,因此首先应保证该节点直行车流的流量。

丘陵地区城市快速路互通式立交设计体会--结合永九快速路与钟太快

丘陵地区城市快速路互通式立交设计体会--结合永九快速路与钟太快速路互通立交工程论述 发表时间:2018-08-23T13:45:40.880Z 来源:《防护工程》2018年第8期作者:黄枭 [导读] 快速路互通相对高速公路互通可更加灵活紧凑。此外城市快速路作为城市道路仍有地下管网需求,可引入服务带概念集中布置管网,并结合服务带设置碟形边沟贯彻海绵城市理念。 黄枭 济南市市政工程设计研究院(集团)有限责任公司广东省广州市 510640 摘要:城市快速路相对高速公路,有基本不需考虑收费系统,以及出入口间距及加减速车道控制指标相对较低等特点。针对地势起伏较大且农林用地限制因素较多的丘陵地区,快速路互通相对高速公路互通可更加灵活紧凑。此外城市快速路作为城市道路仍有地下管网需求,可引入服务带概念集中布置管网,并结合服务带设置碟形边沟贯彻海绵城市理念。 关键词:城市快速路;互通立交;丘陵地区;服务带;碟形边沟 引言:本文为某丘陵地区两条城市快速路之间互通式立交设计实例,目前已开工建设。文中结合城市快速路特点,介绍了该互通立交工程的设计思路及要点。并根据个人设计体会讨论了设施服务带及碟形排水边沟设置的特点。 一、项目背景 1.1地貌地质条件 项目位于广州知识城西北部,沿线丘陵相对高度20~60m,间夹山间冲沟、小盆地,现状用地以农田、鱼塘、菜地、果林为主,零星分布有村庄、厂房等。 根据钻探揭露,场区从上往下覆盖层主要为第四系人工填土层(Q4ml),包括(素填土和杂填土)、第四系冲积层(Q4al)、第四系坡积层(Q4dl) 、第四系残积层(Q3el)、基岩为燕山期四期(γ54)花岗岩。 1.2周边相关骨架交通简述 A、永九快速路 南北走向,红线宽度55米,规划断面双向十车道。北与新广从公路相交连接白云区、从化区,南接萝岗永和大道贯通整个黄埔区。 B、钟太快速路 东西走向,红线宽度45米,规划断面双向八车道。西接白云区新广从路可前往白云机场,向东贯穿知识城北部与北三环高速相交前往增城。 1.3与穗广深城际铁路的关系 根据搜集相关资料,穗莞深城际铁路规划线位在钟太快速的南侧。本互通方案设计过程中与穗莞深城际铁路设计方案进行了对接,明确穗广深高架上跨本工程并落实了布墩位置,避免了不必要的冲突。 二、总体方案及规模 永九快速线南起K15+000,北至K16+140,线路长1.14公里;钟太快速路段西起K1+160,东至K2+436.972,线路长1.28公里。立交范围内的永九快速路主线保持双向8车道,钟太快速路主线保持双向6车道。 立交范围内东北、西北、西南象限均为山体。可考虑利用现状地势布置匝道位置,增加匝道路基长度替代匝道桥以节约造价,路基纵断面尽量顺地势拉设,减少土石方量。同时考虑避免侵占南侧基本农田及北侧山林禁建区。 三、方案设计 2035年钟太快速路-永九快速线交叉口高峰小时流量预测表(pcu/h) 道路名称进口道交通量小计合计 钟太快速路(东)左转 338 3759 17034 直行 2762 右转 659 钟太快速路(西)左转 359 3912 直行 2758 右转 795 永九快速线(南)左转 397 4538 直行 3546 右转 595 永九快速线(北)左转 960 4825 直行 3587 右转 278 结合交通路网规划,对交通流量进行分析,南转西、西转北、东转南交通量较小,利用环形匝道实现其左转交通功能,由于左转匝道在相邻象限,存在交织,为不干扰主线和被交路的交通,在永九快速路南往北方向和钟太快速路东往西方向的外侧设置辅助车道,通过侧绿化带进行分隔,匝道直接连接辅助车道;北转东交通量较大,采用半定向匝道实现左转功能。 根据交通量需求,立交匝道采用单车道即可,但由于匝道长度均大于300m,因此匝道设计采用双车道匝道断面,立交出入口采用交通划线方式控制为一车道。 主要技术指标:加速车道长度160m,减速车道长度80m,渐变段长度50m。左转匝道最小平曲线半径R=45m,右转匝道最小平曲线半径R=60m。匝道最大纵坡5.0%,最短坡长129.415 m,竖曲线最小半径:凸型500 m,凹型500 m。

公路互通式立交设计分析

公路互通式立交设计分析 发表时间:2019-07-05T10:48:27.290Z 来源:《基层建设》2019年第11期作者:曾海清 [导读] 摘要:立交桥梁是互通式立体交叉工程的重要组成部分,对整个立交工程有较大影响。 青州弘正建设工程质量检测有限公司山东青州 262500 摘要:立交桥梁是互通式立体交叉工程的重要组成部分,对整个立交工程有较大影响。结合设计实践,分析立交桥梁的若干技术问题。总结一些设计经验,与同行探讨。 关键词:互通式立交;桥梁;设计 立交桥梁是互通式立体交叉工程的重要组成部分,其设计多是互通式立交专业设计的难点、重点,其造价一般在整个立交工程中占有较大比例,对整个立交工程有较大影响。本文结合湖南多条高速公路上的互通式立交区域的桥梁设计实践,分析立交桥梁的若干技术问题,总结一些设计经验,与同行探讨。 1互通式立交的设计原则 互通式立交主要设计在车流量比较集中的城市路段和高速公路上。互通式立交通过设计多个通行车道达到分流的目的,专业称为匝道。通过设计向左或向右的匝道来分流。目前城市中和高速公路上已经设计有一些互通式立交,但是由于城市规划的关系,大部分的互通式立交并没有在市中心,而是在中环以外。因此,市中心的拥堵现象还无法用互通式立交来解决。 互通式立交需要的技术难度高,占地面积大,建造成本高,因此,互通式立交的设计要综合考虑,尽量用最低成本发挥最大效益。 互通式立交设计原则:一是考察路段的车流量。根据车流量的大小设计匝道的宽窄,以及单向匝道或是双向匝道。二是考虑地形条件。根据地形来设计适当地互通式立交,可以最大限度地减少成本。三是要考虑气候条件给此路段带来的影响。比如雨季的时候,该路段会不会积水,会不会有滑坡、泥石流的现象。要将这些条件进行综合考虑,设计最合理的互通式立交。 2互通式立交的设计要点 互通式立交的详细设计互通式立交的详细设计是在选型设计基础上针对地形、地物、交通量、技术规范等要求对互通式立交匝道布局的进一步深化,是互通式立交设计的参数化和指标化。 平面线形设计互通式立交平面线形设计,要根据互通式立交的重要性、地形、用地条件等因素确定,并保证车辆能连续安全地运行。互通式立交平面线形的要素主要有直线、缓和 曲线和圆曲线。匝道及其端部,凡曲率变化较大处应缓和曲线,一般缓和曲线采用回旋线。在匝道与匝道、匝道与主要道路拼接处,如采用缓和曲线,要注意回旋线参数要稍大一点,主要是便于超高过渡和适应汽车行驶速度的变化,特别是分流点处更应注意。在反向S型曲线处,选择回旋线参数时注意同超高过渡的协调一致,否则容易形成反超高。此外,匝道平面线形要与其交通量相适应,转向交通量大的匝道平面线形技术指标应高一些;驶出匝道的平面线形技术指标应高于驶入匝道的平面线形技术指标;反向曲线间的两个回旋线,其参数宜相等,不相等时,其比值应小于1.5。 纵面线形设计纵面线形应与地形相适应,设计成视觉连续、平顺而圆滑的线形,避免在短距离内出现频繁起伏。互通式立交的纵面线形设计实质是匝道的拉坡,不少设计人员将匝道拉坡范围完全与匝道的线位长度一致起来,这是不合适的。因为这样处理会在车流分合流端部形成剪刀差,路容、排水可能都有问题。拉坡的范围应该以车流分合流端部开始或结束,分合流端部以前的变速车道部分随主线的横坡和纵坡变化而变化。但在具体确定分合流匝道的起点和终点高程以及横坡时要综合考虑主线的纵坡和横坡,匝道在该处的纵坡、横坡不能简单地取主线的纵坡、横坡,这样至少在理论上是不连续的。另外,确定分合流点处的高程、纵坡、横坡时还须注意,当主线为曲线且有超高时,主线外侧变速车道先做成向外的横坡,然后根据变速车道形式向超高过渡,如果是直接式车道,则在变速车道全长范围内过渡,如果是平行式车道则在端部至匝道线位与主线“切点”范围内过渡。确定拉坡范围还应注意, 对于首尾相接的匝道,其拉坡范围应统一考虑。另外在拉坡时还要遵循平、纵配合的设计原则,注意平纵组合,注意线形与自然环境和景观的配合与协调。 超高及其过渡由于互通式立交范围内的平曲线指标比较低,所以超高不可避免,但超高的取值及过渡需要深入研究。 匝道超高设计匝道超高设计要充分考虑车辆在匝道上行驶速度经常变化的实际情况,采用不同的超高值。定向匝道跨越主要道路时,往往采用圆曲线最小半径的一般值或介于极限值与一般值之间,相应的超高按规范要求应取值8%以上,在这种情况下,由于定向匝道路基较宽,而且采用桥梁等结构物,没有路基边坡,所以在视觉上往往横向坡度比一般单匝道或土基填筑有边坡的路段横坡大,给驾驶员视觉上造成悬空的感觉,心理压力大,所以最大超高在这些地方宜放缓,收费站附近的超高值应小于匝道计算行车速度所对应的值。接近分流、合流处匝道超高值就应大一些。 超高过渡段匝道上直线至圆曲线间或两超高不同的曲线间应设置超高过渡段。超高过渡段的设置要根据计算行车速度、横断面的类型、旋轴的位置以及渐变率等因素来确定。 超高过渡区间。有缓和曲线时,超高过渡在回旋线的全长或部分范围内进行;没有缓和曲线时,可将所需过渡段长度的1/3~1/2插入圆曲线,其余设置在直线上;在有构造物地段,超高过渡应充分考虑桥跨布置,一般过渡范围最好放在桥梁的同一联里,这样可减少构造物处理上的难度; 反向超高的过渡。为了减少排水上的困难,反向超高的过渡采用较大的超高渐变率是合适的;C超高渐变率的取值。超高渐变率的取值在一般路段只需满足规范要求,但在宽度变化路段则要注意,由于宽度变化,行车道宽度的B值也是变化的。由于容易忽略宽度变化对超高渐变率的“折减”作用,此时超高渐变率似乎满足要求了,但象收费站等宽度变化较大的地方,边部将扭曲得很厉害,如果同时又在反向超高的地方,则排水就成问题了。因此在宽度变化路段要注意超高渐变率的取值;d超高旋转方式。这里是指过渡范围内行车道外侧边缘的竖向形状是直线的还是曲线的。一般情况下采用直线方式,但直线方式比较生硬,在过渡段两端有折曲感,所以从美观等因素考虑,采用曲线方式更好。 变速车道的设计变速车道分为直接式与平行式两种,减速车道原则上采用直接式,加速车道原则上采用平行式。当变速车道为双车道时,加、减速车道均采用直接式。一般双车道加速车道也采用直接式,但应注意直接式加速车道应采用较小的流入角度,这对车辆合流较为有利。另外双车道的匝道与主要公路拼接时应注意车道平衡问题,否则当车流量较大时,车流的分流与合流将产生问题。单车道减速车

山区高速公路单喇叭型互通立交设计浅析

山区高速公路单喇叭型互通立交设计浅析 李军发山西省交通科学研究院 摘要:重点阐述了山区高速公路单喇叭型互通立交匝道平面、纵面线形及横断面设计要点,结合本人的体会,对于山区单喇叭型互通立交的布设在满足互通功能的情况下应扩展思路,根据地形灵活布置立交线形。 关键词:山区高速公路单喇叭型互通立交设计浅析 1.山区高速公路互通立交的特点 a)在山区设置一般出入口互通立交的目的是为了服务于当地乡镇及县域经济发展,交通量往往都不大。 b)山区地形复杂、场地狭小、走廊内常常伴随河流、地方道路,使互通立交布设的位置和形式受到一定的限制。 c)山区高速公路主线构造物较多,互通布设范围常常受到前后大桥、隧道等构造物的限制,互通立交与隧道的间距在地形受限制的山区是很难达到标准、规范的要求,互通的布设还需特别注意行车安全性方面的要求。 d)山区高速公路主线平纵指标往往偏低,互通立交有时不可避免的处于主线长下坡或主线小半径平曲线上,同样也需要注意安全性方面的问题。 2.设计交通量 公路的交通量是随着社会经济的发展而变化,其远景设计年限交通量应包括正常的交通量以及诱增交通量。设计交通量应根据交通工程学原理,进行切实的调查、统计,通过科学的分析、预测,建立相关的数学模型,求得设计年限内平均日交通量(AADT)作为设计依据。设计过程中采用设计小时交通量对匝道的通行能力及横断面采用的车道数等进行验算,匝道设计小时交通量按(1)式计算: DDHV=AADT×D×K (1) 式中: DDHV——单向设计小时交通量,veh/h;AADT为预测年度的年平均日交通量,veh/d; D——方向不均匀系数,%;K为设计小时交通量系数,%,为第30个高峰小时交通量与AADT的比值。 3.匝道平面设计

浅析互通式立交匝道起终点平面接线设计

浅析互通式立交匝道起终点平面接线设计 摘要:互通式立交匝道起点平面线形设计尤为重要,尤其是对应主线上为缓和曲线时,在匝道起、终点设计中较为复杂。规范中对此没有明确具体的规定,本文将通过设计实例,对此加以总结归纳,以供参考。 关键词:互通式立交;主线为缓和曲线;匝道起终点设计 Abstract: Thehorizontal alignmentdesignoftheinterchangerampstarting pointis particularlyimportant, especiallywhenthetransition curvecorresponding to the main line, rampterminaldesign more complex.Thereisnoclear and specificprovisions of the specification,design examples, whichtobesummarizedfor reference. Key words: interchange;mainlinefor transition curve;rampterminaldesign 1、前言 互通立交是路网的一个重要组成部分,无论在高速公路还是在城市道路中都具有交通枢纽的作用,其中匝道就是相交道路的连接道,供车辆驶入驶出,其变速车道与主线部分相依,此部分的设计需要综合考虑主线线形,如果设置不当,很容易出现不顺适,造成该处行车不舒适,或者使车辆行驶条件恶化,存在交通安全隐患。 匝道起终点的接线设计,规范上要求变速车道全长范围内原则上采用与主线相同的线形(相同半径的圆弧或相同参数的回旋线),实际设计中,当匝道起终点对应主线线形为直线或者圆曲线时,较为容易;当主线对应处为缓和曲线时,设计时相对复杂,理论上应采用缓和曲线接线设计,但是由于主线上的缓和曲线曲率半径很大,所以为方便设计和施工,也可以采用圆曲线进行接线设计,本文就是针对这种情况进行总结分析。 2、匝道起点设计 以山东省某高速公路互通立交减速车道设计为例,该公路主线设计速度为120km/h,A匝道驶离主线,其中此处主线平面线形为A=775、Ls=280m的不完整缓和曲线(半径由4980m变化到1500m)。 确定起点位置 首先根据互通总体位置,确定A匝道设计起点(主线渐变段终点)的大约位置,在这个范围内由于主线是缓和曲线,其每一点的曲率半径都不同,故需要人为取其中一点作为设计起点,通常可取一个整桩号点,以方便计算、标注。

高速公路互通式立交选型诠释

高速公路互通式立交选型诠释 摘要:互通式立体交叉公路是高速公路网的主要节点,高速公路互通式立交的选型关系对路网功能作用的发挥起着关键的作用。互通的选型应满足路网规划的要求,同时其位置和型式亦是高速公路路线走向的一个重要制约因素。 关键词:高速公路;互通式立交;选型 1高速公路互通式立体交叉设计分析 1.1互通式立体交叉的设计交通量与通行能力道路立体交叉的主要目的是为了提高交叉路口的通行能力,减少交叉时交通的干扰,从而保证道路交叉处的交通安全与快速通行。 1.2互通式立交设计车速我国对设计车速的定义是:在天气良好,交通量小,路面干净的条件下,中等技术水平的驾驶员在道路受限制部分能够保持安全而舒适行驶的最大速度。设计车速实际是个理论的车速,而车辆的运行车速是实际的85%车速。 1.3互通式立交的匝道设计匝道设计按一个固定车速来控制整个匝道的设计指标,是不符合汽车行驶特性的,导致匝道不能提供顺适、安全、经济和通畅的要求。匝道的设计车速与公路主线的设计车速的应用在设计中是不一样的。公路主线按设计车速来控制整个路线指标(公路主线没有要求不同设计车速或等级情况下),来提供全线的安全、舒适的行驶。而匝道是提供车辆转弯的连接道,匝道的设计车速除了满足匝道本身设计的安全、经济外,还要考虑到与连接道路的顺畅连接,这也是匝道的设计车速不能用一个速度来控制的原因。 1.4互通式立交的变速车道设计变速车道的横断面由左侧路缘带(与主线车道共用)、车道、右路肩(含右侧路缘带)组成。变速车道分为直接式和平行式,路线规范规定:变速车道为单车道时,减速车道宜采用直接式,加速车道宜采用平行式。变速车道为双车道时,加、减速车道均应采用直接式。 对直接式减速车道传统的做法是从主线外侧行车道中心,用同于主线线形(一般情况)以1/17.5~1/25流出角向外流出,在流出达到一个车道宽度即减速车道起点,到分离主线,形成整个减速车道。该设计方法主要优点是线形流出自然,符合车辆行驶轨迹,但驾驶员不易辨认出流出位置,并且在设计过程中减

互通式立交桥设计

107 国道跨金水路、郑汴路立交桥方案设计概况 1 概况 107国道北起北京南至珠海,是我国南北向交通运输的大动脉。目前郑州以北的北京至新乡段和郑州以南的郑州至漯河段已相继建成高速公路,而郑州至新乡段仍为一级公路。由于受一级公路的平面交叉制约,交通堵塞比较严重。特别是郑州东出口金水路和郑汴路两处平交,双向直行和转向车交通量都很大,还有进出市区的行人、自行车、摩托车和拖拉机等,严重影响南来北往的车辆顺利通行。已成为107国道上的两个卡脖子路段。不仅严重影响了国道主干线上交通的正常通行,而且给郑州车辆进出造成极大的不便。为解决这两个交叉口的交通堵塞问题,修建立交进行交通分流十分必要。 2 立交总体方案 要解决金水路、郑汴路与107国道交叉的交通堵塞问题,考虑到近期及远期交通量和流向可避免修建两座投资大、占地多的大型互通式立交,因为:①近期107国道的交通量是另外两条被交叉道路两倍以上;②远期郑州黄河二桥及新乡至郑州的高速公路修建必将大大缓解107国道的交通压力。将主要流向107的交通无干扰直通,我们设计了以下两种方案,以达到投资小见效快的目的。 2.1方案一 107国道上跨金水路和郑汴路,跨线桥宽17.5m,双向四车道,

桥长分别为401.0m、431.0m,两端引道均为100m。桥下平交进行渠化并增设郑州至机场方向的右转车专用车道。 2.2方案二 金水路、郑汴路上跨107国道,跨线桥宽17.5m,双向四车道,桥长分别为401.0m、431.0m,两端引道均为100m。107国道在下层通过,平面处进行渠化,并增设郑州至机场方向的右转专用车道。这两种方案均增设了郑州至机场方向的右转车专用车道,能够解决郑州的车辆出市问题,设置跨线桥使直行车不经过平面交叉口而直接通过,能有效地缓解由原来直行车绕行环岛引起的交通干扰,达到解决交叉口交通堵塞的目的。从直行车交通量分析,107国道上的直行交通量较金水路、郑汴路的直行交通量要大得多,采用107国道上跨金水路和郑汴路的跨线桥方案能最有效地分流交通。从远期发展考虑,郑州黄河公路二桥和新乡至郑州高速公路建成后,107国道北连开洛高速公路,南通机场路和郑许高速公路,远期做为郑州市的主干线,其重要作用仍不可替代。综合近期和远期的分析情况,推荐107国道上跨方案,即方案一(见图1、图2)。 推荐方案和比较方案工程数量对比见表1。

市政道路互通式立交设计要点分析

市政道路互通式立交设计要点分析 发表时间:2019-02-22T11:26:49.853Z 来源:《防护工程》2018年第32期作者:王爱祥 [导读] 随着城市化进程的不断推进,市政建设也不断在加强。现阶段,互通式立交凭借着其自身的优越性,已经在高速公路以及城市道路中得到了广泛的应用。互通式立交是道路的一个重要组成部分 王爱祥 身份证号码:42011119731029XXXX 摘要:随着城市化进程的不断推进,市政建设也不断在加强。现阶段,互通式立交凭借着其自身的优越性,已经在高速公路以及城市道路中得到了广泛的应用。互通式立交是道路的一个重要组成部分,但在设计时要考虑到多个方面,因此设计起来比较复杂。本文主要先介绍互通式立交的概念及相关,进而对市政道路互通式立交的设计要点进行分析。 关键词:市政道路;互通式立交;设计要点 一、前言 近些年来,随着交通运输行业的快速发展,互通式立交在道路中的作用愈来愈突出。互通式立交是城市道路网的重要组成部分,对道路网的高效、安全运行有着决定性的影响。由于互通式立交的组成要素较多,并且还受到车辆行驶路径、速度以及行驶的多向性等的影响,从而导致其设计方法较为复杂。20世纪80年代后,我国建立了大量的立交,以解决交通疏解的问题,但由于研究不够,不仅没能解决问题,而且后期还为交通带来了新的问题。据统计发现,大多数的交通事故都是发生在交叉口,尤其是城区,因此重视交叉口的设计,掌握全面、正确的互通式立交设计要点,合理的进行设计是很有必要的。下面对互通式立交的设计要点进行具体的分析。 二、关于互通式立交 1、互通式立交的分类 从道路网的系统功能上来讲,互通式立交可分为服务型互通式立交、疏导型互通式立交以及枢纽型互通式立交等;从交通组织特性上来讲,互通式立交可分为完全是互通式立交、部分互通式立交、以及交织型互通式立交等;从相交道路的跨越方式上来讲,互通式立交可分为上跨式互通式立交、下穿式互通式立交 2、互通式立交的基本类型及适用范围 不同的左右转弯匝道的选择和组合就形成了不同的互通式立交类型,因此可以说互通式立交的类型主要是根据道路的各种左右转弯匝道的选择及组合来决定的。现阶段,在市政道路中常见的互通式立交的基本类型主要有以下几种: 2.1苜蓿叶型立交 苜蓿叶型立交是一种较为常见的互通式立交,通过苜蓿叶型立交桥时,直行的车辆按照原来的方向行驶,右转弯的车辆进入右侧匝道行驶,而左转弯的车辆则须先直行通过立交桥,然后进入相应匝道后右转270度才能实现左转。其主要特点是平面布置呈苜蓿叶的形状,匝道布置对称,造型简洁美观,虽然占地面积较大,但工程投资低,而且使用性能也好,因此是最经济合理的互通式立交类型。苜蓿叶型立交一般适用于地形比较开阔,而且无大型建筑物或者无用地限制的十字交叉口。 2.2部分苜蓿叶型立交 部分苜蓿叶型立交是在立交的两个左转弯处采用环形匝道设计,而在另外两个左转弯处采用定向或迂回匝道的设计,从而使平面呈部分苜蓿叶的形状,这两个左转弯匝道设计可设计在相邻的或是对角的位置,从而使得占地面积适中。部分苜蓿叶型立交的特点是立交层次较高,造型对称且美观,虽然建设投资较大,但占地面积适中,交通运行性能较好,一般适用于有大型建筑物、中心城区或是用地局部受限制的十字路口。 2.3喇叭型立交 喇叭型立交主要是在左转弯处采用环形匝道分别进出主干道的设计,其平面呈喇叭形状,一般适用于T型交叉路口。 2.4Y型立交 Y型立交主要是在左转弯处采用定向匝道分别进出主干道的设计,其平面布置呈Y型,一般适用于转向交通量较大的T型或Y型路口以及各种高等级、高标准道路在T型、Y型路口的连接等。 2.5环形立交 环形立交是将道路的交叉点设计为环岛,从而使车辆按照环道行驶,可分为大半径环形立交和小半径环形立交。这种类型的互通式立交占地面积较大,因此目前采用较多的是 是小半径环形立交。此外,环形立交通行速度和通行能力都较低,一般适用于中、小城市以及左转向交通量较少的交叉口。 三、市政道路互通式立交的设计要点分析 1、互通式立交整体线形的设计 互通式立交在作为一种交通道路构成的同时,也是一种景观性的建筑,因此在设计时应注意其内容和形式的统一,在内容上不仅要做到横、纵指标符合相应的要求规范,在形式上也应做好整体线形设计,合理利用各种曲线如回旋曲线,从而使得匝道与交叉道路所形成的整体看起来流畅且富有动感美。例如:在采用喇叭形型互通式立交时,设计时可将喇叭设计成水滴的形状,从而避免匝道与主线垂直交叉连接时的呆板。 2、立交类型选择及断面布置 2.1立交类型的选择 不同的立交类型具有不同的适用范围,因此立交类型的选择主要是根据立交所在地的实际情况决定。在苜蓿叶型互通式立交中,由于其存在行车交织区段,因此要注意交织区段是否满足行车交织要求。当左转交通量较大或主线设计较高,其交织长度满足不了要求时,应取消主干道上的交织,将其交织段设在主干道的集散道上即可。在喇叭型互通式立交中,设计师应注意采取将两个左转弯进出匝道上跨主

互通式立体交叉设计与选型

公路互通式立体交叉的设计与选型 马家宇 (河南省新开元路桥工程咨询有限公司) 一、互通式立交简介 1.路线交叉的分类 加铺转角式 公路与铁路交叉渠化 平面交叉环形交叉(俗称转盘) 交通信号灯管制 路线交叉公路与公路交叉 分离式立体交叉 立体交叉 公路与管线交叉互通式立体交叉公路与公路交叉设计时,应采取措施尽可能消灭冲突点或减少改善冲突点。 (1)实行交通管制在交叉口设置交通信号灯或由交通警察指挥,使发生冲突的车流从通行时间上错开。 (2)采用渠化交通在交叉口内合理布置交通岛、交通标志和标线,或增设车道等,引导各方向车流沿固定路径行驶,以减少车辆之间的相互干扰,改善冲突点和分合流点的位置及角度。 (3)变冲突点为分合流点环形平面交叉可以变冲突点为分合流点,进行交织,消灭了冲突点。 (4)修建立体交叉将相互冲突的车流从空间上分开,使其互不干扰。这是解决交叉口交通问题最彻底的办法。 2.互通式立交发展概况 1928年美国在新泽西州修建了世界上第一座苜蓿叶型互通式立交。由于其社会、经济效益良好,发展十分迅速,到1936年,美国修建了125座互通式立交。 我国互通式立交发展较晚且发展缓慢。1955年武汉滨江路修建了我国第一座部分苜蓿叶型互通式立交;1956年北京市郊京密引水滨河路修建了三座部分互通式立交;1964年广州大北路修建了一座双层环型立交。从1988年10月沪嘉高速公路通车至今,中国大陆高速公路走过了18年的快速发展历程,公路互通式立交也随着高速公路得到快速的发展。 3.互通式立交分类 3.1 按跨越方式分:上跨式、下穿式、半上跨半下穿式 3.2 按交通功能分:全互通式、部分互通式

高速公路互通立交景观设计说明

关于XX高速XXX互通与 曹庵互通绿化图纸优化设计的说明 一、原施工图存在的问题 1、两互通区域内的水域位置及面积已调整; 2、招标文件中的苗木清单没有包含互通区设计图纸中的大部分苗木品种; 3、原设计图纸苗木品种单一,数量较少,搭配不合理,不能满足互通区景观绿化功能; 4、原设计图纸以低矮小灌木为主,少量乔木为辅,随着时间的推移,小灌木会逐渐被杂草淹没,导致在后期整个互通区绿化效果呈现荒化; 5、原设计图纸中,主要是以低矮小灌木为主,这对养护的要求比较严格。 二、优化设计思想 互通区是高速公路整体结构中的一个节点。互通区的规划设计首先是通过植物造景,使景观的造型与自然景观相融合,以生态性为主,在大小不同、形态各异的绿地中,利用不同植物的镶嵌组合,形成一个层次丰富、景色各异的花园绿岛,营造一个优美的行车环境。 互通区景观规划设计的重点区域是匝道围合而成的圆形空敞,由于匝道区域车速较慢,创造优美、和谐的景观就显得尤为重要。为了保证视线的通透,入口处内侧应栽植植株低矮的树丛、灌木,而且入口处外侧应利用树丛、灌木勾勒出道路线性,以起到标志性和导向性的作用。以本土植物为基础种植,选择一些与其他绿化区域相似的植物,采用乔、灌、草的复合群落,在栽植时能形成图案等,能表现出当地的经济文化特色为宜。景观上要注意与周边环境和整条道路景观取得协调一致。总之,互通立交区是主线景观的一个重点,就像镶嵌在项链上的钻石,对于提高整个高速路的景观效果至关重要。互通区采用如图1所示的景观规划设计模式: 图.1

三、优化设计手法 从互通立交桥景观设计入手,例如通过植物高低的变化引导视线,构造景观的节奏感,营造出“车在路上走、人在画中游”的优美的公路交通环境。中心区域以孤植大乔木作为点缀,并以大乔木为中心,向四周辐射,搭配一些低矮的乔灌木及球类植物,形成季相分明、层次突出、色彩丰富的景观效果。在匝道周围,栽植不同树种的树阵,让驾乘人员一进入互通区就能感受到视觉上的震撼。此外,互通立交桥区色彩的充分利用,可以极大的提高驾驶的安全性。 四、优化设计原则 绿化考虑到公路互通的特点,以“安全、实 用、美观”为宗旨,以经济可行,管理、维护方 便为原则,力求建造一个集绿化、生态、美化于 一体的互通区环境。绿化满足交通要求,保证行 车安全,使司机视线畅通,转弯区有足够开阔的安图.2 全视距。乔、灌木结合,树立大绿化的思想,道路、互通的绿化与沿线自然的绿化环境 相结合,注意绿化的整体性和节奏感。 1、交通功能的绿化 (1)在互通出主车道的匝道口处种植一排具 有引导作用的乔木以诱导司机的视线,引道车辆 能安全的进入出口匝道,例如:淮南东立交G匝 道的栾树、高杆女贞。在绿化的设计上充分考虑图.3 到了互通区的功能的要求,使绿化与互通的功能结合,达到绿化美化同时又能对车辆起到交通的提示作用。如图2、图3所示。 (2)在车辆进入主线快车道与匝道口的 交接区域,充分考虑到主线行车应与接线口 保持良好的视点,使高速行驶的主线车辆能 观察到匝道的车辆,同时匝道口的车辆也能 了解主线快速道的车辆行驶情况,保证行车 的安全,所以这区域的绿化,只能种植低矮 的灌木,例如:淮南东互通2景观B、C、D 区红花继木球、丝兰、金边黄杨、红叶石楠 球等,否则会影响行车的视线,造成安全隐患。图.4 如图3所示区域。 2、互通植物种植原则 高速公路互通立交范围内的植物种植设计,除了诱导交通、提高交通安全主要作用

互通式立交的设计方法

互通式立交的设计方法 互通式立交的设计方法立交造型和位置的选取高速公路的总体设计思路确定以后,互通式立交位置的选取就显得比较重要,需要了解立交区域内许多自然条件,包括立交区域内的地形情况、岩石和水土的分布和气候条件,以及区域内植被情况, 道上不同区段的构造物采用不同的立面造型,以达到丰富立交景观的作用。从而使立交在整体造型上具有美观、大方的特点,并对周围景观起到优化的作用。 立交的坡面景观设计立交的坡面景观设计对于立交的整体设计是一个必不可少的部分,它使立交的造型具有优美、实用的特点。立交的坡面景观设计的一个主要途径是通过坡面修饰来实现的。

坡面修饰就是对匝道所包围着的区域,进行横断面设计时,根据匝道填土高度的不同,路基横坡度采用不同的值,越低越缓,一般在路肩3~4米的范围内作成园形,这样将使匝道的横断面在整体上具有柔和的自然形态,起到修饰和美化的作用。坡面修饰一般在环形匝道及三角区域内进行,而作为坡面修饰设计思路在设计文件中的具体反映即为等高线图。坡面修饰的等高线要尽可能地不与原有的地面 腐植土,可就近用于坡面修饰,减少了运距。 绿化是立交景观的重要组成部分,它兼起到宏观景观和微观景观的作用。立交的绿化主要以矮小灌木、草皮为主,从工程条件看,这些花草树木对路基边坡有一个稳定作用,此外它们对现有的景观还能起到补充的作用,调整工程中难以避免的景观影响,并同时保持了生态平衡。位于匝道两侧的矮小灌木、草皮对景观还

起着良好的衬托作用。由于匝道的平曲线半径一般较小,因而在曲线外侧的树木使曲线变化显得非常明显,而在内侧的树木既可增加识别匝道特征的能力,又能使景观与造型恰当地配合,但应注意的是,在立交内应种植矮小的灌木,以利于整个立交的通视,保证车辆的行驶安全。这些绿化仅能起到宏观景观的作用,作为互通式立交的绿化,还需搞一些集中的景观绿化,如在立交的匝道所包围着的区域内可适

城市互通式立交设计要点分析

城市互通式立交设计要点分析 发表时间:2018-09-12T16:24:58.437Z 来源:《基层建设》2018年第22期作者:彭振华 [导读] 摘要:城市互通式立交设计就是能够更好的提高公路的运行能力,进一步对安全通行性进行强化的必然措施。 北京市市政工程设计研究总院有限公司东莞分院广东东莞 523000 摘要:城市互通式立交设计就是能够更好的提高公路的运行能力,进一步对安全通行性进行强化的必然措施。但是怎样提高城市互通式立交设计的儿科学性,并以此来解决城市互通式立交设计中一些尚存的问题已经成了各城市互通式立交设计单位中工作的重点内容。本文就详细的分析了城市互通式立交设计中的要点问题,希望为类似工程的设计提供可以参考的依据。 关键词:城市互通;立交;设计;要点;分析 随着城市化进程的加快和社会经济的快速增长,城市的交通业也得到了更大的发展空间,道路的纵横交错使得平面交叉路口已经满足不了现代城市交通量的增长,在这样的环境下,城市互通式立交,作为现代化城市交通标志的形式也就产生了。其也就成了城市道路网络中的重要枢纽。由于其具有特殊的空间多层的立体结构形态,又担负着道路中的交通转向、梳理和控制车流量的作用,因此,也就成了道路中的主要安全关口。从总体上来说,这种形式的交通组织方式有很多优势,比如,可以使各个方向上的车流在不同标高的平面上行驶,大大的减少了车流的冲突点;为车流的连续通行提供了便捷的条件,进而提高了道路的通行能力;有效的节约了人们的行驶时间,还节省了燃料的消耗,进而降低了车辆的运行成本和尾气的排放,实现了节能减排;还对相交道路的车辆出入进行了控制,进而减少了对城市主干道和快速交通道路的干扰。 1、城市互通式立交可行性分析 城市互通式立交的可行性分析主要是对道路建设的区域的交通量进行分析。一般情况下,很多城市在对道路交通量进行分析时,先要对本城市的交通量进行预测,在预测时,主要包含以下几个阶段:首先要对整个城市的发展进行综合性的预测,尤其要重点估计道路建设区域周边经济发展的情况;然后要详细的分析道路建设区域的交通集中量,这中间不但包括交通集中发生区域的交通量,还包括交通集中的程度,尤其还要明确的区分各个道路交通集中点的密集程度,通过分析,并将分析的结果以及其中用到的数据资料等整理起来,作为后期进行城市互通式立交设计的参考资料;其次就是要预测道路建设区域的交通分布情况,通过预测,构建出一个道路交通运行的大致框架;最后就是根据构建出的大致框架,对道路建设区域的交通量进行分配,通过对城市道路建设中各条道路的交通量进行规划,从而达到对道路建设区域中各条道路的交通量进行合理的规划。在对城市道路的交通量进行合理的预测后,就需要将预测的结果进行整理,使其形成一个条理清晰的可行性报告。一般情况下,交通量的预测报告中以每2年为一个基准,其中一定要重点说明互通式立交道路的日流量、高峰时段的流量以及针对各个道路高峰点所做出的流量预测的结果。 2、城市互通式立交设计方案的要点 对城市互通式立交设计方案进行合理的设计,使其能够形成一个更加有效的,并且切合实际的设计体系,这也是一种能够有效推动城市道路交通的重要手段。而城市互通式立交的设计需要从多个方面入手,我们只有发挥出积极配合的力量才能取得理想的设计效果,从而对城市互通式立交设计的应用更加具有实用性做好保障。 2.1选择立交的位置要合理 对城市互通式立交设计的工作人员来说,合理的选择城市互通式立交的位置是明确交通枢纽节点的关键问题,这也是城市互通式立交总体设计的主要内容之一。设计人员应该对建设项目的整体功能作为重点进行考虑,再对周边的交通情况进行详细的了解,包括周边道路的交通情况、城市互通式立交附近的地形情况、地形条件以及地质条件等。设计人员在明确了上述这些问题后,还要考虑到城市互通式立交公路项目区域的真题规划、区域交通能力等因素,根据这些因素来对节点的位置进行确定。一般来说,城市道路交通方案的最终结果取决于城市互通式立交的位置,当满足不了高质量施工和应用要求,或者无法在主线和被交路相交处进行设置时,可以考虑到移位、合并或者分离等措施,进而保证城市互通式立交设计的规范化和合理化。 2.2要对立交的型式进行科学的衡定 对于城市互通式立交设计来说,立交桥式的选择合理程度直接影响着城市互通式立交以及与其相应通行道路的运行能力。而从另一个方面来说,城市互通式立交设计的重点就是要科学的衡定立交的型式。这可以从两个方面来分析,一是从城市互通式立交的适用功能方面。站在功能的角度上对城市互通式立交进行划分,可以将其划分为枢纽城市互通式立交和出入口型城市互通式立交。枢纽城市互通式立交就是能够有效的解决城市道路之间存在的交通流量的转换问题,在实际的选型过程中,设计人员要更多的考虑到其实用性的功能,此种型式有着较大的设计空间。而出入口型城市互通式立交则更多的应用在交通流量上下高速道路的位置,在设计的型式上与上述枢纽式的城市互通式立交的设计型式有所区别,此种设计型式比较有限,需要在充分满足公路管理的相关要求上来进行;二是在保证城市道路通行能力方面。实现城市互通式立交的目的就是要对交叉路口的运行效率进行提升,进而减少道路交叉对交通出行的影响,而通过有效的设计则能够更好的满足于城市交通安全与快速的通行要求,设计人员还要针对日常高速公路中交叉路段的通行情况,选择使用性强的城市互通式立交型式,使城市道路能够保持稳定的通行能力。 2.3要对匝道的设计进行综合性的考量 在城市互通式立交整体的规划中,匝道的设计车速和通行能力也是非常重要的,其关系着城市互通式立交的具体形状、设计尺寸等因素,而要想提高城市道路的通行能力,同时对通行的安全做好保障就需要设计人员对匝道的设计进行综合性的考量。在设计车速方面,在实际的设计中,在匝道车速的设计环节,设计人员一定要根据城市互通式立交的等级、类型、转弯的交通量等情况来对相应匝道的车速进行设计。因此,在这个过程中,设计人员要遵循以下几个原则:在右转弯的匝道上需要采用上限标准或者中间值,来保证车辆通行的安全性;在直连式或者半直连式左转匝道的设计方面要采用上限标准或者中间值;为了更好的保障城市道路的通行效率,在入口的匝道部分,应设计更高的车速,但是在接近出口的匝道部分应将车速适当的降低。在匝道通行能力方面,设计人员要对相关的因素进行充分的考量,并采用科学的方法进行验算和检查,最终确定合适的设计方案,使匝道的通行能力能够更好的满足交城市道路交通运行的实际需求。 2.4要与周边环境相适应 在城市互通式立交设计中设计人员要考虑到施工地形方面的需求,尤其是对于一些风险点和敏感区,设计人员要进行避让,减少地形环境对城市互通式立交设计带来的影响。另外,还要避免建设中由于高填、深挖等工程给周边环境、景观等造成的破坏和影响。设计人员

道路立交规划与设计复习题

道路立交规划与设计复习题

道路立交规划与设计复习要点 第一章 1. 高速公路:具有四个或四个以上车道,并设有中央分隔带,全部立体交叉并具有完善的交通安全设施与管理设施、服务设施,全部控制出入,专供汽车高速行驶的公路。 2.高速公路与普通公路的主要区别 汽车专用分道行驶控制出入完善的设施 高速公路的特点 :行车速度快、通行能力大交通事故降低,安全性较好运输效益提高 3. 立体交叉:是利用跨线构造物使道路与道路在不同标高相互交叉的连接方式。 4.立交的组成:跨线构造物;主线;匝道,变速车道,集散车道等。 P13-14 第二章 1.立交规划原则:以公路网规划为依据;满足交通发展需求;技术上可行;用地上可能;经济上有效益。 2.立交设置的条件: (1).设置立交的条件:高速公路同其它各级公路交叉,必须采用立体交叉;高速公路与各级城市道路交叉时,必须采用立体交叉; (2).互通立交的设置条件:高速公路同交通繁忙的其他等级公路应设置互通立交;高速同通往重要港口、机场、车站和旅游胜地的公路相交时,应设置互通立交;高速公路同通往重要交通源的支线起点相交时,必须采用互通立交。 3.交通量组成:(1). 正常交通量:对已有路网,可以通过交通调查,得出所建 道路的现状交通,然后考虑每年流量的增长率,推算出规划年的正常交通量。 (2).转移交通量:除正常交通量外,因修建道路,汽车运输费用降低,运输时间缩 短,使原来由铁路、水运或临近道路运载的客货运量转向新建公路的交通量。 (3).新增交通量:包括三个方面。第一是时间和距离的缩短,引起市场范围的变化; 第二种是由于公路的建设,经济结构、产业布局发生变化;第三种是新路改善了交通条件,诱发了原来潜在的交通量这部分交通量是原来想出行由于道路条件而未出行的。 4.立交间距设置的原则及影响因素? P23 5.交织段长度要求? 第三章 1. 立交的分类(按相交道路跨越方式划分) ①上跨式:用跨线桥从相交道路上方跨过的立交方式。特点:施工方便;排水易处理 ②下穿式立交:用地道(或隧道)从相交道路下方穿过的交叉方式。特点:占地少;施工干扰较大;排水困难。 P26或P31 2. (按交通功能划分 ) (1)、分离式立交 仅设跨线构造物(跨线桥或地道) 使相交道路空间分离,上、下道路间无匝道连接的交叉方式。特点:形式简单;造价较低。 (2).互通式立交——完全互通式能满足全部转向交通要求,各方向车流间无任何冲突的立交。特点:各向有专用匝道;通行能力大;造价高。互通式立交——部分互通式 上下道路之间只有部分转弯方向的车流轨迹在空间分离的立交形式。特点:车

高速公路互通立交景观设计规范标准

高速公路互通立交景观设计规 一、国法规 鉴于互通立交桥在高速公路建设中的特殊重要地位,各国十分重视高速公路互通立交桥的景观设计。我国国家交通部1998年关于发布《公路环境保护设计规》(JTJ/T006--98),下面摘录关于互通立交桥景观设计的几条规定: 条文6.2.2.1公路上的桥梁、互通式立交、隧道和服务区、管理设施等作为一个景点,设计时应使构造物本身各部位比例协调。 条文6.2.2.2各景点设计路段应充分结合工程和自然景观,宜具有一定风格,且与地域景观协调一致。各景观设计路段之间的过渡应自然。 条文6.3.4.4互通式立交区及服务区围,有条件时宜作景观绿化设计。 二、设计手法 公路互通立交桥景观环境要素包罗万象,但我们不应将精力集中在耗费大量人力、物力、财力的人造景观上,而应重点体现对原有的建筑景观资源的保护、利用和开发,以及公路主体与原有自然及社会环境的相融--“不破坏就是最大的保护”。 从互通立交桥景观设计入手,例如通过植物高低的变化引导视线,构造景观的节奏感;从互通立交桥线形入手,优化平纵组合、改善线形,使其流畅连续,确保车辆快速安全通过,提供舒适的行车条件,营造出“车在路上走、人在画中游”的优美的公路交通环境; 从互通立交桥结构入手,要求边坡以曲线柔美自然流畅的曲面为主,挡墙由高至低或由低至高渐变且与路线线形吻合为主要造型,边沟以隐蔽、宽浅或远离路基为首选。 互通立交桥周围的山岭、坡地、河流,构成美丽的风景,千变万化的植被体现出一种自然美。互通立交桥作为一种构造物,既要满足车辆通行的基本要求,又要达到自然景观与再造景观的和谐统一。 互通立交桥匝道大量曲线的设置,使公路线形能更好地适应地形,增加了互通立交桥的曲线美,给人以幽静和耐人寻味的感觉。曲线丰富的变化和节奏感,驾驶员行驶在上面,眼睛左右移动,不断扫视整个视域,并把视线引向远方,避免了驾驶员遇到紧急情况而手慌脚乱。

相关主题
文本预览
相关文档 最新文档