当前位置:文档之家› 数据结构编程——求最小生成树的代价

数据结构编程——求最小生成树的代价

数据结构编程——求最小生成树的代价
数据结构编程——求最小生成树的代价

#include

#include

typedef struct{

int vertex[20];//存放图中顶点的信息

int arc[20][20];//存放图中的边的信息

int n,m;//n为顶点数,m为边数

}MGraph;

int MinEdge(int lowcost[],int n){

int a,k=1,min=20000;

for(a=1;a<=n;a++)

if((lowcost[a]

min=lowcost[a];

k=a;

}

return k;

}

void xxx(){

//构造邻接矩阵

MGraph G;

int i,j,k;

scanf("%d %d",&i,&j);

G.n=i;G.m=j;

for(i=1;i<=G.n;i++){

G.vertex[i]=i;

}

for(i=1;i<=G.n;i++)

for(j=1;j<=G.n;j++)

if(i==j) G.arc[i][j]=0;

else G.arc[i][j]=20000;

for(k=1;k<=G.m;k++){

scanf("%d %d",&i,&j);

scanf("%d",&(G.arc[i][j]));

G.arc[j][i]=G.arc[i][j];

}

//Prim算法

int sum=0;

int lowcost[20];

for(i=2;i<=G.n;i++){

lowcost[i]=G.arc[1][i];

}

lowcost[1]=0;

for(i=1;i

k=MinEdge(lowcost,G.n);

sum+=lowcost[k];

lowcost[k]=0;

for(j=2;j<=G.n;j++){

if(G.arc[k][j]

lowcost[j]=G.arc[k][j];

}

}

}

printf("%d\n",sum);

}

int main(){

int t,i;

scanf("%d",&t);

for(i=1;i<=t;i++){

xxx();

}

system("pause");

return 0;

}

数据结构-第六章-图-练习题及答案详细解析(精华版)

图 1. 填空题 ⑴ 设无向图G中顶点数为n,则图G至少有()条边,至多有()条边;若G为有向图,则至少有()条边,至多有()条边。 【解答】0,n(n-1)/2,0,n(n-1) 【分析】图的顶点集合是有穷非空的,而边集可以是空集;边数达到最多的图称为完全图,在完全图中,任意两个顶点之间都存在边。 ⑵ 任何连通图的连通分量只有一个,即是()。 【解答】其自身 ⑶ 图的存储结构主要有两种,分别是()和()。 【解答】邻接矩阵,邻接表 【分析】这是最常用的两种存储结构,此外,还有十字链表、邻接多重表、边集数组等。 ⑷ 已知无向图G的顶点数为n,边数为e,其邻接表表示的空间复杂度为()。 【解答】O(n+e) 【分析】在无向图的邻接表中,顶点表有n个结点,边表有2e个结点,共有n+2e个结点,其空间复杂度为O(n+2e)=O(n+e)。 ⑸ 已知一个有向图的邻接矩阵表示,计算第j个顶点的入度的方法是()。 【解答】求第j列的所有元素之和 ⑹ 有向图G用邻接矩阵A[n][n]存储,其第i行的所有元素之和等于顶点i的()。 【解答】出度

⑺ 图的深度优先遍历类似于树的()遍历,它所用到的数据结构是();图的广度优先遍历类似于树的()遍历,它所用到的数据结构是()。 【解答】前序,栈,层序,队列 ⑻ 对于含有n个顶点e条边的连通图,利用Prim算法求最小生成树的时间复杂度为(),利用Kruskal 算法求最小生成树的时间复杂度为()。 【解答】O(n2),O(elog2e) 【分析】Prim算法采用邻接矩阵做存储结构,适合于求稠密图的最小生成树;Kruskal算法采用边集数组做存储结构,适合于求稀疏图的最小生成树。 ⑼ 如果一个有向图不存在(),则该图的全部顶点可以排列成一个拓扑序列。 【解答】回路 ⑽ 在一个有向图中,若存在弧、、,则在其拓扑序列中,顶点vi, vj, vk的相对次序为()。 【解答】vi, vj, vk 【分析】对由顶点vi, vj, vk组成的图进行拓扑排序。 2. 选择题 ⑴ 在一个无向图中,所有顶点的度数之和等于所有边数的()倍。 A 1/2 B 1 C 2 D 4 【解答】C 【分析】设无向图中含有n个顶点e条边,则。

数据结构树和二叉树实验报告

《数据结构》课程实验报告 实验名称树和二叉树实验序号 5 实验日期 姓名院系班级学号 专业指导教师成绩 教师评语 一、实验目的和要求 (1)掌握树的相关概念,包括树、结点的度、树的度、分支结点、叶子结点、儿子结点、双亲结点、树 的深度、森林等定义。 (2)掌握树的表示,包括树形表示法、文氏图表示法、凹入表示法和括号表示法等。 (3)掌握二叉树的概念,包括二叉树、满二叉树和完全二叉树的定义。 (4)掌握二叉树的性质。 (5)重点掌握二叉树的存储结构,包括二叉树顺序存储结构和链式存储结构。 (6)重点掌握二叉树的基本运算和各种遍历算法的实现。 (7)掌握线索二叉树的概念和相关算法的实现。 (8)掌握哈夫曼树的定义、哈夫曼树的构造过程和哈夫曼编码产生方法。 (9)掌握并查集的相关概念和算法。 (10)灵活掌握运用二叉树这种数据结构解决一些综合应用问题。 二、实验项目摘要 1.编写一程序,实现二叉树的各种基本运算,并在此基础上设计一个主程序完成如下功能: (1)输出二叉树b; (2)输出H结点的左、右孩子结点值; (3)输出二叉树b的深度; (4)输出二叉树b的宽度; (5)输出二叉树b的结点个数; (6)输出二叉树b的叶子结点个数。 2.编写一程序,实现二叉树的先序遍历、中序遍历和后序遍历的各种递归和非递归算法,以及层次遍历的算法。 三、实验预习内容 二叉树存储结构,二叉树基本运算(创建二叉树、寻找结点、找孩子结点、求高度、输出二叉树)

三、实验结果与分析 7-1 #include #include #define MaxSize 100 typedef char ElemType; typedef struct node { ElemType data; struct node *lchild; struct node *rchild; } BTNode; void CreateBTNode(BTNode *&b,char *str) { BTNode *St[MaxSize],*p=NULL; int top=-1,k,j=0; char ch; b=NULL; ch=str[j]; while (ch!='\0') { switch(ch) { case '(':top++;St[top]=p;k=1; break; case ')':top--;break; case ',':k=2; break; default:p=(BTNode *)malloc(sizeof(BTNode)); p->data=ch;p->lchild=p->rchild=NULL; if (b==NULL) b=p; else { switch(k) { case 1:St[top]->lchild=p;break; case 2:St[top]->rchild=p;break; } } } j++; ch=str[j]; }

哈夫曼树编码译码实验报告(DOC)

数据结构课程设计设计题目:哈夫曼树编码译码

目录 第一章需求分析 (1) 第二章设计要求 (1) 第三章概要设计 (2) (1)其主要流程图如图1-1所示。 (3) (2)设计包含的几个方面 (4) 第四章详细设计 (4) (1)①哈夫曼树的存储结构描述为: (4) (2)哈弗曼编码 (5) (3)哈弗曼译码 (7) (4)主函数 (8) (5)显示部分源程序: (8) 第五章调试结果 (10) 第六章心得体会 (12) 第七章参考文献 (12) 附录: (12)

在当今信息爆炸时代,如何采用有效的数据压缩技术节省数据文件的存储空间和计算机网络的传送时间已越来越引起人们的重视,哈夫曼编码正是一种应用广泛且非常有效的数据压缩技术。哈夫曼编码是一种编码方式,以哈夫曼树—即最优二叉树,带权路径长度最小的二叉树,经常应用于数据压缩。哈弗曼编码使用一张特殊的编码表将源字符(例如某文件中的一个符号)进行编码。这张编码表的特殊之处在于,它是根据每一个源字符出现的估算概率而建立起来的(出现概率高的字符使用较短的编码,反之出现概率低的则使用较长的编码,这便使编码之后的字符串的平均期望长度降低,从而达到无损压缩数据的目的)。哈夫曼编码的应用很广泛,利用哈夫曼树求得的用于通信的二进制编码称为哈夫曼编码。树中从根到每个叶子都有一条路径,对路径上的各分支约定:指向左子树的分支表示“0”码,指向右子树的分支表示“1”码,取每条路径上的“0”或“1”的序列作为和各个叶子对应的字符的编码,这就是哈夫曼编码。哈弗曼译码输入字符串可以把它编译成二进制代码,输入二进制代码时可以编译成字符串。 第二章设计要求 对输入的一串电文字符实现哈夫曼编码,再对哈夫曼编码生成的代码串进行译码,输出电文字符串。通常我们把数据压缩的过程称为编码,解压缩的过程称为解码。电报通信是传递文字的二进制码形式的字符串。但在信息传递时,总希望总长度能尽可能短,即采用最短码。假设每种字符在电文中出现的次数为Wi,编码长度为Li,电文中有n种字符,则电文编码总长度为∑WiLi。若将此对应到二叉树上,Wi为叶结点的权,Li为根结点到叶结点的路径长度。那么,∑WiLi 恰好为二叉树上带权路径长度。因此,设计电文总长最短的二进制前缀编码,就是以n种字符出现的频率作权,构造一棵哈夫曼树,此构造过程称为哈夫曼编码。设计实现的功能: (1) 哈夫曼树的建立; (2) 哈夫曼编码的生成; (3) 编码文件的译码。

最小生成树数据结构课程设计报告

河北科技大学 课程设计报告 学生姓名:白云学号:Z110702301 专业班级:计算机113班 课程名称:数据结构课程设计 学年学期: 2 01 3—2 014学年第2学期指导教师:郑广 2014年6月

课程设计成绩评定表

目录 一、需求分析说明 (1) 1.1最小生成树总体功能要求 (1) 1.2基本功能 (1) 1.3 模块分析 (1) 二、概要设计说明 (1) 2.1设计思路 (1) 2.2模块调用图 (2) 2.3数据结构设计 (2) 2.3.1.抽象数据类型 (2) 2.3.2方法描述 (2) 三、详细设计说明 (3) 3.1主函数模块 (3) 3.2邻接表输出子模块 (3) 3.3邻接矩阵输出子模块 (3) 3.4创建邻接矩阵子模块 (3) 3.5创建邻接表子模块 (3) 3.6 Prim子模块 (3) 3.7 Kruscal子模块 (4) 四、调试分析 (4) 4.1实际完成情况说明 (4) 4.2 出现的问题及解决方案 (4) 4.3程序中可以改进的地方 (4) 六、课程设计总结 (7) 七、测试数据 (7) 八、参考书目 (7)

一、需求分析说明 1.1最小生成树总体功能要求 在n个城市之间建设网络,只需保证连通即可,求最经济的架设方法。存储结构采用多种。求解算法多种。 1.2基本功能 在n个城市之间建设网络,只需要架设n-1条线路,建立最小生成树即可实现最经济的架设方法。 程序可利用克鲁斯卡尔算法或prim算法生成最小生成树。 1.3 模块分析 主模块:用于生成界面和调用各个子模块。 Kruscal模块:以kruscal算法实现最小生成树。 Prim模块:以prim算法实现最小生成树。 邻接表模块:用邻接表方式存储图。 邻接表输出模块:输出邻接表。 邻接矩阵模块:用邻接矩阵方式存储图。 邻接矩阵模块:输出邻接矩阵。 二、概要设计说明 2.1设计思路 问题的解决分别采用普利姆算法以及克鲁斯卡尔算法。 1) 普利姆算法就是先选择根,把它放入一个集合U中,剩余的顶点放在集合V中。然后选择该顶点与V中顶点之间权值最小的一条边,以此类推,如果达到最后一个则返回上一个顶点。 2) 克鲁斯卡尔算法就是写出所有的顶点,选择权最小的边,然后写出第二小的,以此类推,最终要有一个判断是否生成环,不生成则得到克鲁斯卡尔的最小生成树。

PDM的主要功能

PDM的主要功能 PDM是为企业提供了一种宏观管理和控制所有与产品相关信息以及与产品相关过程的机制和技术。PDM系统包含多项功能,从面向应用与系统支持的功能来看,一般包括电子仓库(又称电子数据存储、电子保险箱、电子资料室)、面向应用的使用功能(如文档控制、变更控制、配置管理、设计检索与零件库、项目管理等)、实用化支持功能(如通知与通信、数据传输与转换、图像服务与系统管理),其功能结构如图3所示。 图3.PDM系统的主要功能(面向应用与系统支持) 从软件功能模块的组成来看,一般包括电子数据存储和文档管理、工作流程管理、产品结构及配置管理、分类与检索管理、项目管理、集成接口、用户化工具等,其功能结构如图4所示。

图4.PDM系统的功能(面向软件功能模块的组成) 2.2.1项目管理功能 项目管理的定义:为了在确定的时间内完成既定的项目,通过一定的方式合理地组织有关人员,并有效地管理项目中所有资源(人员、设备等)与数据,控制项目进度的系统管理方法,项目管理所涉及的信息最多,范围最广,实现起来也最复杂。 项目管理是面向过程的一种管理模式,它强调对项目的全过程(包括立项、计划、执行、控制和收尾等)进行全方位管理,其静态领域涉及范围管理、时间管理、成本管理、质量管理、人力资源管理、沟通管理、采购管理、风险管理和综合管理九个知识体系。 与目标管理不同,项目本身具有不可重复性并包含许多不确定因索,这就使得管理者和任务承担者很难就项目达成双方一致的目标。由于项目管理贯穿于项目的整个生命周期,而且围绕项目将企业不同职能部门的成员组成一个有机的整体,项目管理者既是这个团队的领导者,又是项目的执行者,对整个项目及其过程负责,准时、优质地完成全部工作,实现项目的目标。因此,项目管理可以避免目标管理特别是以人工为主的管理模式的弊端,有助于企业处理项目实施过程中需要跨领域解决的复杂问题,能有效地提升企业的运营效率。 PDM系统的项目管理功能是为完成对项目进行管理的任务而设蜀的,进行项目管理,需要定制项目模型,在项目模型中对项目的任务、人员和时间安排进行描述。利用文档管理功能对项目的所有文档和数据进行管理;利用用户管理功能组织项目组,安排项目组成员在

第六章树和二叉树习题数据结构

习题六树和二叉树 一、单项选择题 1.以下说法错误的是 ( ) A.树形结构的特点是一个结点可以有多个直接前趋 B.线性结构中的一个结点至多只有一个直接后继 C.树形结构可以表达(组织)更复杂的数据 D.树(及一切树形结构)是一种"分支层次"结构 E.任何只含一个结点的集合是一棵树 2.下列说法中正确的是 ( ) A.任何一棵二叉树中至少有一个结点的度为2 B.任何一棵二叉树中每个结点的度都为2 C.任何一棵二叉树中的度肯定等于2 D.任何一棵二叉树中的度可以小于2 3.讨论树、森林和二叉树的关系,目的是为了() A.借助二叉树上的运算方法去实现对树的一些运算 B.将树、森林按二叉树的存储方式进行存储 C.将树、森林转换成二叉树 D.体现一种技巧,没有什么实际意义 4.树最适合用来表示 ( ) A.有序数据元素 B.无序数据元素 C.元素之间具有分支层次关系的数据 D.元素之间无联系的数据 5.若一棵二叉树具有10个度为2的结点,5个度为1的结点,则度为0的结点个数是()A.9 B.11 C.15 D.不确定 6.设森林F中有三棵树,第一,第二,第三棵树的结点个数分别为M1,M2和M3。与森林F对应的二叉树根结点的右子树上的结点个数是()。 A.M1 B.M1+M2 C.M3 D.M2+M3 7.一棵完全二叉树上有1001个结点,其中叶子结点的个数是() A. 250 B. 500 C.254 D.505 E.以上答案都不对 8. 设给定权值总数有n 个,其哈夫曼树的结点总数为( ) A.不确定 B.2n C.2n+1 D.2n-1 9.二叉树的第I层上最多含有结点数为() A.2I B. 2I-1-1 C. 2I-1 D.2I -1 10.一棵二叉树高度为h,所有结点的度或为0,或为2,则这棵二叉树最少有( )结点A.2h B.2h-1 C.2h+1 D.h+1 11. 利用二叉链表存储树,则根结点的右指针是()。 A.指向最左孩子 B.指向最右孩子 C.空 D.非空 14.在二叉树结点的先序序列,中序序列和后序序列中,所有叶子结点的先后顺序()A.都不相同 B.完全相同 C.先序和中序相同,而与后序不同 D.中序和后序相同,而与先序不同 15.在完全二叉树中,若一个结点是叶结点,则它没()。 A.左子结点 B.右子结点 C.左子结点和右子结点 D.左子结点,右子结点和兄弟结点 16.在下列情况中,可称为二叉树的是()

数据结构哈夫曼树的实现

#include #include #include #include using namespace std; typedef struct { unsigned int weight; unsigned int parent,lchild,rchild,ch; }HTNode,*HuffmanTree; //动态分配数组存储哈夫曼树 typedef char *HuffmanCode; //动态分配数组存储哈夫曼编码表 int m,s1,s2; HuffmanTree HT; void Select(int n){ //选择两个权值最小的结点 int i,j; for(i=1;i<=n;i++){ if(!HT[i].parent){ s1 = i;break; } } for(j=i+1;j<=n;j++){ if(!HT[j].parent){ s2 = j;break; } } for(i=1;i<=n;i++){ if((HT[s1].weight>HT[i].weight)&&(!HT[i].parent)&&(s2!=i)){ s1=i; } } for(j=1;j<=n;j++){ if((HT[s2].weight>HT[j].weight)&&(!HT[j].parent)&&(s1!=j)) s2=j; } } void HuffmanCoding(HuffmanCode HC[], int *w, int n) { // w存放n个字符的权值(均>0),构造哈夫曼树HT,// 并求出n个字符的哈夫曼编码HC int i, j; char *cd; int p; int cdlen; int start; if (n<=1) return;

最小生成树实验报告

数据结构课程设计报告题目:最小生成树问题 院(系):计算机工程学院 学生姓名: 班级:学号: 起迄日期: 指导教师: 2011—2012年度第 2 学期 一、需求分析 1.问题描述:

在n个城市之间建设网络,只需保证连通即可,求最经济的架设方法。存储结构采用多种。求解算法多种。 2.基本功能 在n个城市之间建设网络,只需要架设n-1条线路,建立最小生成树即可实现最经济的架设方法。 程序可利用克鲁斯卡尔算法或prim算法生成最小生成树。 3.输入输出 以文本形式输出最小生成树,同时输出它们的权值。通过人机对话方式即用户通过自行选择命令来输入数据和生成相应的数据结果。 二、概要设计 1.设计思路: 因为是最小生成树问题,所以采用了课本上介绍过的克鲁斯卡尔算法和 prim算法两种方法来生成最小生成树。根据要求,需采用多种存储结构,所以我选择采用了邻接表和邻接矩阵两种存储结构。 2.数据结构设计: 图状结构: ADT Graph{ 数据对象V:V是具有相同特性的数据元素的集合,称为顶点集。 数据关系R:R={VR} VR={|v,w∈V且P(v,w),表示从v到w的弧, 谓词P(v,w)定义了弧的意义或信息} 基本操作: CreateGraph( &G, V, VR ) 初始条件:V是图的顶点集,VR是图中弧的集合。 操作结果:按V和VR的定义构造图G。 DestroyGraph( &G )

初始条件:图G存在。 操作结果:销毁图G。 LocateVex( G, u ) 初始条件:图G存在,u和G中顶点有相同特征。 操作结果:若G中存在顶点u,则返回该顶点在图中位置;否则返 回其它信息。 GetVex( G, v ) 初始条件:图G存在,v是G中某个顶点。 操作结果:返回v的值。 PutVex( &G, v, value ) 初始条件:图G存在,v是G中某个顶点。 操作结果:对v赋值value。 FirstAdjVex( G, v ) 初始条件:图G存在,v是G中某个顶点。 操作结果:返回v的第一个邻接顶点。若顶点在G中没有邻接顶点, 则返回“空”。 NextAdjVex( G, v, w ) 初始条件:图G存在,v是G中某个顶点,w是v的邻接顶点。 操作结果:返回v的(相对于w的)下一个邻接顶点。若w是v的 最后一个邻接点,则返回“空”。 InsertVex( &G, v ) 初始条件:图G存在,v和图中顶点有相同特征。 操作结果:在图G中增添新顶点v。 DeleteVex( &G, v ) 初始条件:图G存在,v是G中某个顶点。 操作结果:删除G中顶点v及其相关的弧。 InsertArc( &G, v, w )

Excel模版创建pdm

Excel模版创建pdm 一、将数据字典中的数据表结构粘贴到Excel文件中,整理成如下图所示格式 二、在powerdesigner中创建PDM工程,选中该工程,然后打开脚本代码窗口:Tools -Execute Commands -Edit\Run Script ,编写代码脚本。 三、脚本代码

Dim mdl ' the current model Set mdl = ActiveModel If (mdl Is Nothing) Then MsgBox "没有活动的模版" End If Dim HaveExcel Dim RQ RQ = vbYes 'MsgBox("Is Excel Installed on your machine ?", vbYesNo + vbInformation, "Confirmation") If RQ = vbYes Then HaveExcel = True ' Open & Create Excel Document Dim x1 ' Set x1 = CreateObject("Excel.Application") x1.Workbooks.Open "C:\Users\Administrator\Desktop\Book1.xls" '指定excel文档路径 Else HaveExcel = False End If a x1, mdl sub a(x1, mdl) dim rwIndex dim tableName dim colname dim table dim col dim count on error Resume Next set table = mdl.Tables.CreateNew '创建一个表实体 https://www.doczj.com/doc/b315942981.html, = "国家信息表" '指定表名,如果在Excel文档里有,也可以.Cells(rwIndex, 3).Value 这样指定 table.Code = "LU_STATUS" '指定表名编码 count = count + 1 For rwIndex = 2 To 1000 '指定要遍历的Excel行标,此处第一列为列名,古从第二行开始循环 With x1.Workbooks(1).Worksheets("sheet1")'需要循环的sheet名称 If .Cells(rwIndex, 1).Value = "" Then Exit For End If

目前最完整的数据结构1800题包括完整答案树和二叉树答案

第6章树和二叉树 部分答案解释如下。 12. 由二叉树结点的公式:n=n0+n1+n2=n0+n1+(n0-1)=2n0+n1-1,因为n=1001,所以1002=2n0+n1,在完全二叉树树中,n1只能取0或1,在本题中只能取0,故n=501,因此选E。 42.前序序列是“根左右”,后序序列是“左右根”,若要这两个序列相反,只有单支树,所以本题的A和B均对,单支树的特点是只有一个叶子结点,故C是最合适的,选C。A或B 都不全。由本题可解答44题。 47. 左子树为空的二叉树的根结点的左线索为空(无前驱),先序序列的最后结点的右线索为空(无后继),共2个空链域。 52.线索二叉树是利用二叉树的空链域加上线索,n个结点的二叉树有n+1个空链域。 部分答案解释如下。 6.只有在确定何序(前序、中序、后序或层次)遍历后,遍历结果才唯一。 19.任何结点至多只有左子树的二叉树的遍历就不需要栈。 24. 只对完全二叉树适用,编号为i的结点的左儿子的编号为2i(2i<=n),右儿子是2i+1(2i+1<=n) 37. 其中序前驱是其左子树上按中序遍历的最右边的结点(叶子或无右子女),该结点无右孩子。 38 . 新插入的结点都是叶子结点。 42. 在二叉树上,对有左右子女的结点,其中序前驱是其左子树上按中序遍历的最右边的结点(该结点的后继指针指向祖先),中序后继是其右子树上按中序遍历的最左边的结点(该结点的前驱指针指向祖先)。 44.非空二叉树中序遍历第一个结点无前驱,最后一个结点无后继,这两个结点的前驱线索和后继线索为空指针。 三.填空题

1.(1)根结点(2)左子树(3)右子树 2.(1)双亲链表表示法(2)孩子链表表示法(3)孩 子兄弟表示法 3.p->lchild==null && p->rchlid==null 4.(1) ++a*b3*4-cd (2)18 5.平衡 因子 6. 9 7. 12 8.(1)2k-1 (2)2k-1 9.(1)2H-1 (2)2H-1 (3)H=?log2N?+1 10. 用顺序存储二叉树时,要按完全二叉树的形式存储,非完全二叉树存储时,要加“虚结 点”。设编号为i和j的结点在顺序存储中的下标为s 和t ,则结点i和j在同一层上的条 件是?log2s?=?log2t?。 11. ?log2i?=?log2j?12.(1)0 (2)(n-1)/2 (3)(n+1)/2 (4) ?log2n?+1 13.n 14. N2+1 15.(1) 2K+1-1 (2) k+1 16. ?N/2? 17. 2k-2 18. 64 19. 99 20. 11 21.(1) n1-1 (2)n2+n3 22.(1)2k-2+1(第k层1个结点,总结点个数是2H-1,其双亲是2H-1/2=2k-2)(2) ?log2i?+1 23.69 24. 4 25.3h-1 26. ?n/2? 27. ?log2k?+1 28.(1)完全二叉树 (2)单枝树,树中任一结点(除最后一个结点是叶子外),只有左子女或 只有右子女。 29.N+1 30.(1) 128(第七层满,加第八层1个) (2) 7 31. 0至多个。任意二叉树,度为1的结点个数没限制。只有完全二叉树,度为1的结点个 数才至多为1。 32.21 33.(1)2 (2) n-1 (3) 1 (4) n (5) 1 (6) n-1 34.(1) FEGHDCB (2)BEF(该二叉树转换成森林,含三棵树,其第一棵树的先根次序是 BEF) 35.(1)先序(2)中序 36. (1)EACBDGF (2)2 37.任何结点至多只有右子女 的二叉树。 38.(1)a (2) dbe (3) hfcg 39.(1) . (2) ...GD.B...HE..FCA 40.DGEBFCA 41.(1)5 (2)略 42.二叉排序树 43.二叉树 44. 前序 45.(1)先根次序(2)中根次序46.双亲的右子树中最左下的叶子结点47.2 48.(n+1)/2 49.31(x的后继是经x的双亲y的右子树中最左下的叶结点) 50.(1)前驱 (2)后 继 51.(1)1 (2)y^.lchild (3)0 (4)x (5)1 (6) y (7)x(编者注:本题按 中序线索化) 52.带权路径长度最小的二叉树,又称最优二叉树 53.69 54.(1)6 (2)261 55.(1)80 (2)001(不唯一)56.2n0-1 57.本题①是表达式求值,②是在二叉排序树中删除值为x的结点。首先查找x,若没有x, 则结束。否则分成四种情况讨论:x结点有左右子树;只有左子树;只有右子树和本身是叶 子。 (1)Postoder_eval(t^.Lchild) (2) Postorder_eval(t^.Rchild) (3)ERROR(无此运 算符)(4)A (5)tempA^.Lchild (6)tempA=NULL(7)q^.Rchild (8)q (9)tempA^.Rchild (10)tempA^.Item

数据结构哈夫曼树和代码

#include #include #include #define N 50 //叶?子哩?结á点?数簓 #define M 2*N-1 //树骸?中D结á点?总哩?数簓 typedef struct { char data; //结á点?值μ int weight; //权ü?重? int parent; //双?亲×结á点? int lchild; //左哩?孩¢子哩?结á点? int rchild; //右 ?孩¢子哩?结á点? } HTNode; typedef struct { char cd[N]; //存?放?哈t夫え?曼?码? int start; } HCode; HTNode ht[M]; HCode hcd[N]; int n; void CreateHT(HTNode ht[],int n) { int i,k,lnode,rnode; int min1,min2; for (i=0;i<2*n-1;i++) //所ù有瓺结á点?的?相à关?域 ?置?初?值μ0 ht[i].parent=ht[i].lchild=ht[i].rchild=0; printf("哈t夫え?曼?树骸?初?态?为a:\n"); printf("data weight parent lchild rchild\n"); for (i=0;i<2*n-1;i++) { printf("%-6c %-6d %-6d %-6d %-6d\n",ht[i].data,ht[i].weight,ht[i].parent,ht[i].lchild, ht[i].rchild); } for (i=n;i<2*n-1;i++) //构1造ì哈t夫え?曼?树骸? {

数据结构树和二叉树习题

树与二叉树 一.选择题 1.假定在一棵二叉树中,双分支结点数为15,单分支结点数为30个,则叶子结 点数为()个。 A.15B.16C.17D.47 2.按照二叉树的定义,具有3个结点的不同形状的二叉树有()种。 A. 3 B. 4 C. 5 D. 6 3.按照二叉树的定义,具有3个不同数据结点的不同的二叉树有()种。 A. 5 B. 6 C. 30 D. 32 4.深度为5的二叉树至多有()个结点。1 A. 16 B. 32 C. 31 D. 10 5.设高度为h的二叉树上只有度为0和度为2的结点,则此类二叉树中所包含的 结点数至少为()。 A. 2h B. 2h-1 C. 2h+1 D. h+1 6.对一个满二叉树2,m个树叶,n个结点,深度为h,则()。 A. n=h+m3 B. h+m=2n C. m=h-1 D. n=2 h-1 1深度为n的二叉树结点至多有2n-1 2满二叉树是除最后一层无任何子节点外,每一层上的所有结点都有两个子结点的二叉树7.任何一棵二叉树的叶结点在先序.中序和后序遍历序列中的相对次序()。 A.不发生改变 B.发生改变 C.不能确定 D.以上都不对 8.如果某二叉树的前根次序遍历结果为stuwv,中序遍历为uwtvs,那么该二叉 树的后序为()。 A. uwvts B. vwuts C. wuvts D. wutsv 9.某二叉树的前序遍历结点访问顺序是abdgcefh,中序遍历的结点访问顺序是 dgbaechf,则其后序遍历的结点访问顺序是()。 A. bdgcefha B. gdbecfha C. bdgaechf D. gdbehfca 10.在一非空二叉树的中序遍历序列中,根结点的右边()。 A. 只有右子树上的所有结点 B. 只有右子树上的部分结点 C. 只有左子树上的部分结点 D. 只有左子树上的所有结点 11.树的基本遍历策略可分为先根遍历和后根遍历;二叉树的基本遍历策略可分为 先序遍历.中序遍历和后序遍历。这里,我们把由树转化得到的二叉树4叫做这棵数对应的二叉树。结论()是正确的。 A.树的先根遍历序列与其对应的二叉树的先序遍历序列相同 B.树的后根遍历序列与其对应的二叉树的后序遍历序列相同 3对于深度为h的满二叉树,n=20+21+…+2h-1=2h-1,m=2h-1。故而n=h+m。 4树转化为二叉树的基本方法是把所有兄弟结点都用线连起来,然后去掉双亲到子女的连线,只留下双亲到第一个子女的连线。因此原来的兄弟关系就变为双亲与右孩子的关系。 1/ 9

完整word版数据结构课程设计:电文编码译码哈夫曼编码

福建农林大学计算机与信息学院 数据结构课程设计 设计:哈夫曼编译码器 姓名:韦邦权 专业:2013级计算机科学与技术 学号:13224624 班级:13052316 完成日期:2013.12.28

1 哈夫曼编译码器 一、需求分析 在当今信息爆炸时代,如何采用有效的数据压缩技术节省数据文件的存储空间和计算机网络的传送时间已越来越引起人们的重视,哈夫曼编码正是一种应用广泛且非常有效的数据压缩技术。哈夫曼编码是一种编码方式,以哈夫曼树—即最优二叉树,带权路径长度最小的二叉树,经常应用于数据压缩。哈夫曼编码使用一张特殊的编码表将源字符(例如某文件中的一个符号)进行编码。这张编码表的特殊之处在于,它是根据每一个源字符出现的估算概率而建立起来的(出现概率高的字符使用较短的编码,反之出现概率低的则使用较长的编码,这便使编码之后的字符串的平均期望长度降低,从而达到无损压缩数据的目的)。哈夫曼编码的应用很广泛,利用哈夫曼树求得的用于通信的二进制编码称为哈夫曼编码。树中从根到每个叶子都有一条路径,对路径上的各分支约定:指向左子树的分支表示“0”码,指向右子树的分支表示“1”码,取每条路径上的“0”或“1”的序列作为和

各个叶子对应的字符的编码,这就是哈夫曼编码。哈夫曼译码输入字符串可以把它编译成二进制代码,输入二进制代码时可以编译成字符串。 二、设计要求 对输入的一串电文字符实现哈夫曼编码,再对哈夫曼编码生成的2 代码串进行译码,输出电文字符串。通常我们把数据压缩的过程称为编码,解压缩的过程称为解码。电报通信是传递文字的二进制码形式的字符串。但在信息传递时,总希望总长度能尽可能短,即采用最短码。假设每种字符在电文中出现的次数为Wi,编码长度为Li,电文中有n种字符,则电文编码总长度为∑WiLi。若将此对应到二叉树上,Wi为叶结点的权,Li为根结点到叶结点的路径长度。那么,∑WiLi 恰好为二叉树上带权路径长度。因此,设计电文总长最短的二进制前缀编码,就是以n种字符出现的频率作权,构造一棵哈夫曼树,此构造过程称为哈夫曼编码。设计实现的功能: (1) 哈夫曼树的建立; (2) 哈夫曼编码的生成; (3) 编码文件的译码。 三、概要设计 哈夫曼编\译码器的主要功能是先建立哈夫曼树,然后利用建好的哈夫曼树生成哈夫曼编码后进行译码。 在数据通信中,经常需要将传送的文字转换成由二进制字符0、1组成的二进制串,称之为编码。构造一棵哈夫曼树,规定哈夫曼树中的左分之代表0,右分支代表1,则从根节点到每个叶子节点所经过的

PDM系统功能介绍

1 PDM的常见功能介绍 到目前为止,还没有一个商用PDM软件拥有全部可罗列的PDM功能,其中有的功能构件还有待于进一步发展和完善。 但是,一般PDM系统都包括文档管理、产品配置管理及工作流程管理等最基本的功能,能对产品的整个生命周期进行完整的描述和控制,因此,PDM在企业中的作用已经普遍为大家所认同。 1.1 电子仓库 1.1.1 电子仓库介绍 在企业中,大量与产品相关的数据往往分布在多部门,甚至是多区域中,而且这些数据的格式也是多样的,如文本文件、数据库、图纸文件等,对这些数据的查询、浏览、共享,以及结合工作流程来管理这些数据等,都是企业在进行信息集成时经常遇到的问题。 PDM管理的主要对象是产品的“元数据”,即有关产品信息的信息,其实现基础是电子仓库(Electronic Data Vault)。实施并行工程所需要的“在正确的时间、把正确的数据、按正确的方式、传递给正确的人”对PDM数据管理提出了更高的要求。 电子仓库(Data Vault)是PDM最基本的功能,也是PDM的核心,通常是建立在通用的关系数据库基础上,主要保证数据的安全性和完整性,并支持各种查询和检索功能。 PDM系统中的电子仓库用以取代人工方式的纸质档案管理,使用户方便、快捷、安全地存取、维护及处理各种有关产品的文档,如从设计阶段产生的AutoCAD图纸的数据文件、3D实体造型的数据文件、CAE的分析报告,到制造阶段可能产生的变更单等,都是电子仓库管理的对象。 电子仓库为用户和应用之间的数据传递提供一种安全的手段,其透明性可使用户无需考虑分布式环境下各种数据的实际物理存放位置,允许用户迅速地、集中地处理访问全企业的产品信息,并且使整个企业的各部门共享产品数据。 PDM的电子仓库和文档管理提供了对分布式异构数据生成,存储,查询,控制存取,恢复,编辑,电子检查和记录,电子对象的历史及通用文件管理等能力。 在PDM中,数据的访问对用户来说是完全透明的,用户无需了解应用软件的运行路径、安装版本以及文档的物理位置,以及自己得到的是否是最新版本等信息,所有描述产品、部件或零件的数据都由PDM统一管理,自动集中修改。 PDM系统通过建立在数据库之上的相关联指针,建立不同类型的或异构的产品数据之

数据结构课程设计最小生成树的构建实验报告

《数据结构课程设计》题目二:最小生成树的构建 学院:XXXXXXXXXXX 班级:XXXXXXXXXXX 学号:XXXXXXXXXXX 姓名:XXXXXXXXXXX 设计时间:XXXXXXXXXXX

目录: 1.需求分析--------------------------------------------- 1 2.课题设计内容--------------------------------------- 1 (1)课程设计基本流程------------------------------------------ 1 (2)详细设计说明------------------------------------------------1 (3)界面操作流程图:----------------------------------------- 2 (4)主要程序------------------------------------------------------3 (5)运行结果截图----------------------------------------------- 5 3.得意之处--------------------------------------------- 6 4.设计实践过程中的收获与体会------------------ 6 5.设计目前存在的问题------------------------------ 7 6.主要参考文献-------------------------------------- 7

一、需求分析 本课程主要是完成一个最小生成树的构建,要求用克鲁斯卡尔算法或者普利姆算法求网的最小生成树(此程序我用的是 普利姆算法),并输出各条边及他们的权值。要求用户在使用 时可以准确输入顶点及每个顶点的关系,运算出可以建立的关 系网,最后利用普利姆算法准确输出最短路径。 二、课程设计内容 1、课程设计基本流程: 关于此课程的设计,是从设计要求入手的。根据对知识的掌握程度,我选择了用普利姆算法进行设计。 根据实验要求,我定义了一个prims类,在类中定义一个私有成员函数和一个公有成员函数。定义相关变 量和相关函数,并完善程序。 2、详细设计说明: 首先在私有成员private中定义节点个数n、图中边的个数g,树的边的个数t,源节点s。定义二维数组 graph_edge[99][4]和tree_edge[99][4],分别为图的边 和树的边。因为普利姆算法是把图分为两部分进行运算, 所以我定义了T1[50],t1为第一部分, T2[50],t2为第 二部分。在公有成员public中定义输入函数input()、 算法函数algorithm()、输出函数output()。 1

数据结构课程设计哈夫曼编码

题目:哈夫曼编码器 班级:031021班姓名:李鑫学号:03102067 完成日期:2011/12 1. 问题描述 利用赫夫曼编码进行通信可以大大提高信道利用率,缩短信息传输时间,降低传输成本。这要求在发送端通过一个编码系统对待传输数据预先编码,在接收端将传来的数据进行译码(复原)。对于双工信道(即可以双向传输信息的信道),每端都需要一个完整的编/译码系统。试为这样的信息收发站编写一个赫夫曼码的编/译码系统。 2.基本要求 一个完整的系统应具有以下功能: (1) I:初始化(Initialization)。从终端读入字符集大小n,以及n个字符和n个权值,建立赫夫曼树,并将它存于文件hfmTree中。 (2) E:编码(Encoding)。利用已建好的赫夫曼树(如不在内存,则从文件hfmTree中读入),对文件ToBeTran中的正文进行编码,然后将结果存入文件CodeFile中。 (3) D:译码(Decoding)。利用已建好的赫夫曼树将文件CodeFile中的代码进行译码,结果存入文件Textfile中。 以下为选做: (4) P:印代码文件(Print)。将文件CodeFile以紧凑格式显示在终端上,每行50个代码。同时将此字符形式的编码文件写入文件CodePrin中。 (5) T:印赫夫曼树(Tree printing)。将已在内存中的赫夫曼树以直观的方式(比如树)显示在终端上,同时将此字符形式的赫夫曼树写入文件TreePrint 中。 3.测试 (1)利用教科书例6-2中的数据调试程序。 (2) 用下表给出的字符集和频度的实际统计数据建立赫夫曼树,并实现以下报文的编码和译码:“THIS PROGRAME IS MY FA VORITE”。 字符 A B C D E F G H I J K L M 频度186 64 13 22 32 103 21 15 47 57 1 5 32 20 字符N O P Q R S T U V W X Y Z 频度57 63 15 1 48 51 80 23 8 18 1 16 1 4.实现提示 (1) 编码结果以文本方式存储在文件Codefile中。 (2) 用户界面可以设计为“菜单”方式:显示上述功能符号,再加上“Q”,表示退出运行Quit。请用户键入一个选择功能符。此功能执行完毕后再显示此菜单,直至某次用户选择了“Q”为止。 (3) 在程序的一次执行过程中,第一次执行I,D或C命令之后,赫夫曼树已经在内存了,不必再读入。每次执行中不一定执行I命令,因为文件hfmTree可能早已建好。

数据结构—— 树和二叉树知识点归纳

第6章树和二叉树 6.1 知识点概述 树(Tree)形结构是一种很重要的非线性结构,它反映了数据元素之间的层次关系和分支关系。在计算机科学中具有广泛的应用。 1、树的定义 树(Tree)是n(n≥0)个数据元素的有限集合。当n=0时,称这棵树为空树。在一棵非空树T中: (1)有一个特殊的数据元素称为树的根结点,根结点没有前驱结点。 (2)若n>1,除根结点之外的其余数据元素被分成m(m>0)个互不相交的集合T1,T2,…,Tm,其中每一个集合Ti(1≤i≤m)本身又是一棵树。树T1,T2,…,Tm称为这个根结点的子树。 2、树的基本存储结构 (1)双亲表示法 由于树中的每一个结点都有一个唯一确定的双亲结点,所以我们可用一组连续的 存储空间(即一维数组)存储树中的结点。每个结点有两个域:一个是data域,存放结点信息,另一个是parent域,用来存放双亲的位置(指针)。 (2)孩子表示法 将一个结点所有孩子链接成一个单链表形,而树中有若干个结点,故有若干个单 链表,每个单链表有一个表头结点,所有表头结点用一个数组来描述这种方法通常是把每个结点的孩子结点排列起来,构成一个单链表,称为孩子链表。 (3)双亲孩子表示法 双亲表示法是将双亲表示法和孩子表示法相结合的结果。其仍将各结点的孩子结点分别组成单链表,同时用一维数组顺序存储树中的各结点,数组元素除了包括结点本身的信息和该结点的孩子结点链表的头指针之外,还增设一个域,存储该结点双亲结点在数组中的序号。 (4)孩子兄弟表示法 这种表示法又称为树的二叉表示法,或者二叉链表表示法,即以二叉链表作为树的存储结构。链表中每个结点设有两个链域,分别指向该结点的第一个孩子结点和下一个兄弟(右兄弟)结点。 3、二叉树的定义 二叉树(Binary Tree)是个有限元素的集合,该集合或者为空、或者由一个称为根(root)的元素及两个不相交的、被分别称为左子树和右子树的二叉树组成。当集合为空时,称该二叉树为空二叉树。在二叉树中,一个元素也称作一个结点。 4、满二叉树 定义:在一棵二叉树中,如果所有分支结点都存在左子树和右子树,并且所有叶子结点都在同一层上,这样的一棵二叉树称作满二叉树。 5、完全二叉树 定义:一棵深度为k的有n个结点的二叉树,对树中的结点按从上至下、从左到右的顺序进行编号,如果编号为i(1≤i≤n)的结点与满二叉树中编号为i的结点在二叉树中的位置相同,则这棵二叉树称为完全二叉树。完全二叉树的特点是:叶子结点只能出现在最下层和次下层,且最下层的叶子结点集中在树的左部。 6、二叉树的性质

相关主题
文本预览
相关文档 最新文档