当前位置:文档之家› PCR技术在微生物鉴定中的应用

PCR技术在微生物鉴定中的应用

PCR技术在微生物鉴定中的应用
PCR技术在微生物鉴定中的应用

昆虫分子生物学

课程论文

学院: 植物保护学院

课程: 昆虫分子生物学

学号:

姓名:

任课教师: 职称: 教授

成绩:

2015年8月29日

PCR技术在微生物鉴定中的应用

摘要随着科学技术的发展和突破,PCR技术已在多个领域得到广泛地应用,特别是在微生物检测中的应用。细菌16S rDNA测序鉴定需进行DNA扩增、测序和分析,其设备条件和实验成本比传统的表型鉴定更高,从鉴定的准确率来看,其具有的优势毋庸置疑。同时,随着微生物检测技术的不断发展,BOX-PCR技术在微生物的多样性研究中也已得到应用。使用真菌ITS区域序列通用引物PCR扩增和DNA序列测定的方法,简便快速、成本低稳定性好、结果可靠,适合实验室常规使用,可用于常见的和疑难真菌菌种快速鉴定。

关键词PCR;16S rDNA;BOX-PCR;ITS;细菌;真菌

PCR(polymerase chain reaction, PCR)即聚合酶链式反应,它是一种体外酶促合成扩增特定DNA片段的方法,1985年美国Karray等学者首创了PCR技术并由美国Cetus公司开发研制[1]。随着科学技术的发展和突破,PCR技术已在多个领域得到广泛地应用,如微生物检测、兽医学、水产养殖、环境科学、食品安全等领域,包括基因的克隆、修饰、改建、构建cDNA文库、遗传病传染病的诊断、法医学鉴定、物种起源、生物进化分析、流行病学调查等。由于该技术具有较强的灵敏度、准确度和特异性,又能快速进行检测,因而其应用领域也在不断延伸[2-3]。随着PCR技术的不断发展,在常规PCR技术的基础上又衍生出了许多技术,如多重PCR(mutiplex,PCR)技术[4]、实时荧光定量PCR(real-time fluorescent quantitative PCR, FQ-PCR)技术[5]、单分子PCR技术[6]等。

1 PCR技术原理

PCR技术是根据待扩增的已知DNA片段序列,人工合成与该DNA 2条链末端互补的2段寡核苷酸,引物在体外将待检DNA序列模板在酶促作用下进行扩增。PCR的整个技术过程经若干个循环组成,一个循环包括连续的3个步骤:第1步是高温条件下的DNA 模板变性,即模板DNA在93~94℃的条件下变性解链;第2步是退火,即人工合成的2个寡核苷酸引物与模板DNA链3’端经降温至55℃退火;第3步是延伸,即在4种dNTP 底物同时存在的情况下,借助TaqDNA聚合酶的作用,引物链将沿着5’~3’方向延伸与模板互补的新链[7]。经过这个循环后合成了新链可将其作为DNA模板继续反应,由此循环进行。循环进程中扩增产物的量,以指数级方式增加,一般单一拷贝的基因循环25~30次,DNA可扩增l00万~200万倍[1]。

2 PCR技术在细菌鉴定中的应用

细菌检测包括传统的形态学检查、分离培养、生化鉴定、免疫分析等多种方法,其中

细菌的分离培养最为关键,但对苛养菌及生长缓慢的细菌分离培养很棘手。近年来各种基因诊断技术在细菌检测中不断开发利用,尤其是基于聚合酶链反应(PCR)的基因诊断技术发挥着越来越重要的作用。

2.1 16S rDNA在细菌鉴定中的应用

16S rDNA是编码原核生物16S rRNA的基因,长度约1500bp,存在于所有细菌、衣原体、支原体、立克次体、螺旋体和放线菌等原核生物的基因组中,由多个保守区(conserved region)和与之相间的多个可变区(variable region)组成保守区,为所有细菌共有,细菌之间无显著差异[8];可变区在不同细菌之间存在一定的差异,具有细菌属或种特异性。PCR 扩增16S rDNA包含两层含义:在保守区设计PCR通用引物,理论上可将存在于待测标本中的各种细菌都扩增出来;若选择可变区设计PCR特异性引物,则可将标本中的细菌鉴定到属种乃至菌株水平,因此16S rDNA已成为细菌鉴别与分类研究中较理想的靶序列[9]。

细菌16S rDNA中含有9个可变区,命名为V1-V9区,确定某个可变区内具有细菌种特异性的序列就可能获得细菌实验室诊断的有用靶点,除V2、V3、V4区稍长外,其他各高变区序列都很短,没有哪个高变区能区分所有细菌[10]。目前,已有很多基于16S rDNA 全长或部分序列的应用研究:王永智等在对20余种致病菌进行16S rDNA多序列比对的基础上,设计扩增细菌16S rDNA的荧光定量PCR通用引物,检测血液细菌污染模拟标本[11];应燕玲等通过13种标准菌株建立了一种基于16S rDNA全长特异性扩增和测序的方法,利用与Gene Bank数据库比对,成功鉴定出血制品污染的11种未知细菌[12];美国Maastricht 大学医学中心研究的实时定量16S rDNA PCR扩增系统,利用通用探针外加种或属特异性探针的多探针法,能在2h内对血液感染中常见的几种细菌,包括革兰阴性的假单胞菌、大肠埃希菌及革兰阳性的葡萄球菌、肠球菌、链球菌等进行快速鉴定[13]。细菌16S rDNA 测序鉴定需进行DNA扩增、测序和分析,其设备条件和实验成本比传统的表型鉴定更高,但不能对所有细菌都鉴定至种的水平。从鉴定的准确率来看,建立在细菌分离株基础上的16S rDNA扩增及测序具有的优势毋庸置疑,因此被视为细菌鉴定与分类的“金标准”。2.2 BOX-PCR技术在细菌鉴定中的应用

BOX-PCR指纹图谱分析技术,是根据BOX插入因子设计引物,扩增微生物基因组DNA的重复性片段,补充散布的重复序列,使不同大小的DNA片段与位于这些片段之间的序列得到扩增,最后经琼脂糖凝胶电泳检测其多态性的一种微生物鉴定方法[14]。随着微生物检测技术的不断发展,BOX-PCR技术在微生物的多样性研究中已得到应用。

在细菌的基因组中已发现存在10种以上可用于基因指纹分析鉴定的短重复序列,其

中以REP和ERIC应用较多,后来在细菌重复序列中发现了BOX插入因子,大小为154 bp,由保守性不同的box A(57bp)、box B(43bp)和boxC(50bp)等亚单位组成,其中只有box A存在细菌菌株、种、属水平的分布差异及进化过程中表现出多拷贝和高保守性,Versalovic 等根据BOX片段中的box A亚单位设计寡核苷酸引物,使重复序列之间的不同基因区域得以选择性扩增,得到大小不等的DNA扩增片段,进而对PCR产物进行电泳图谱分析获得分类学信息[15]。

BOX-PCR指纹图谱分析技术与REP-PCR和ERIC-PCR技术相似,但操作更为简单快捷,容易获得较为丰富的扩增条带,不需要菌株、种的特异性DNA探针,只需要一条单引物就能够完成大量菌株的DNA多态性分析,扩增的结果可直接进行琼脂糖电泳检测。BOX-PCR基因指纹分析获得的分类信息来自于完整的基因组,能在种及菌株水平上反映出细菌的基因型、系统发育和分类关系,分辨率高、稳定、可重复性高,是一种快速而有效的DNA指纹技术,因此可作为检测细菌菌株多样性的方法。

3 PCR技术在真菌鉴定中的应用

真菌DNA的碱基组成遗传稳定,不易受环境影响,而且在生活史任何阶段均可获得。ITS区域在不同菌株间存在丰富的变异,对ITS区进行序列分析不仅丰富了真核生物核糖体基因ITS的序列信息,为病原菌的分类鉴定及系统发育等研究提供了十分重要的资料和依据,而且为建立病原菌的分子疫病的快速诊断技术奠定了基础,对植物病害的防治具有一定意义抗药性机理的研究是抗药性治理的基础。

核糖体DNA是由核糖体基因及与之相邻的间隔区组成,其基因组序列从5’到3’依次为:外部转录间隔区(external transcribed spacer, ETS)、18S基因、内部转录间隔区1(internal transcribed spacer, ITS1)、5.8S基因、内部转录间隔区2(ITS2)、28S基因和基因间隔序列(intergenicspacer, IGS)[16]。核糖体DNA中的18S、5.8S和28S的基因组序列在大多数真菌中趋于保守,在生物种间变化小,而内转录间隔区ITS1和ITS2作为非编码区,承受的选择压力较小,相对变化较大,并且能够提供详尽的系统学分析所需要的可遗传性状。

White等为真菌rRNA基因的ITS设计了3种特异引物,即ITS1、ITS4和ITS5,用于大多数担子菌和子囊菌,但这些引物也能扩增一些植物ITS区域[17]。Gardes等为真菌和担子菌分别设计了特异引物ITS1-F和ITS4-B[18]。杨佩文等应用真菌核糖体基因ITS区段通用引物ITS1和ITS4,对十字花科蔬菜根肿病菌(Plasmodiophora brassicae) rDNA进行PCR扩增,测序分析和特异引物的设计,获得根肿菌一特异性分子片段并对不同寄主植物进行了检测[19]。谢勇等根据从Gene Bank database获得的疫霉属真菌(Pytophthora spp.) rDNA ITS

区段序列,设计合成了烟草寄生性疫霉的特异性引物,并从不同病组织及土壤中均检测到烟草寄生疫霉,而参试的其他菌株如交链孢菌菌株、镰刀菌菌株、炭疽菌菌株、立枯丝核菌菌株、稻瘟病菌菌株和野火病菌菌株均没有扩增产物[20]。

使用通用引物PCR扩增和DNA序列测定的方法,简便快速、成本低稳定性好、结果可靠,适合实验室常规使用,可用于常见的和疑难真菌菌种快速鉴定。使用真菌通用引物虽然无法将所有的菌株鉴定到种,但是可以鉴定到属的水平。相信随着分子生物技术的发展,采用分子方法进行物种间分类、鉴定、确定种间系统进化关系等诸多方面能够更加贴近生物的本原。

4 研究展望

各项研究表明,PCR技术从分子水平上迅速、准确的进行微生物的分类和鉴定。但是,在该技术的广泛应用和不断改进中,某些样品的复杂性等问题会给研究造成一定的困难。首先,由于PCR反应的灵敏度很高,所以环境中存在的抑制剂以及在样品保存、浓缩和提纯过程中所带来的污染会抑制PCR反应,或是造成假阳性后果,从而影响实验结果的准确性;其次,由于DNA检测无需使用活细胞,PCR反应对样品中存在的核酸物质都可以进行扩增,故PCR技术无法区分活细胞和死细胞;此外,分子生物学尚不能完全取代传统微生物技术,还需采用传统微生物技术与分子生物学技术相结合,对微生物进行分类鉴定。随着PCR技术的成熟与发展,以此为基础的分子生物学技术将成为微生物分类鉴定的技术前沿,它必将会为微生物分类学带来广阔的发展前景。

参考文献

[1]常世敏. PCR在食品微生物检测中的应用[J]. 邯郸农业高等专科学校学报, 2004,21(4): 23-25.

[2]唐永凯, 俞菊华, 徐跑等. 实时荧光定量PCR技术及其在水产上的应用[J]. 中国农学通报, 2010, (21): 422-426.

[3] 吴学贵. LPS 刺激点带石斑鱼免疫相关基因的克隆与组织表达差异性分析[D]. 海口: 海南大学, 2011.

[4]侯立华, 黄新, 朱水芳等. 双色荧光多重PCR技术及在禽流感病毒检测中的应用[J]. 生物技术通报, 2010, (1): 168-172.

[5] 查锡良. 生物化学[M]. 7版. 北京人民卫生出版社. 2009, 483-485.

[6] 张杰道. 生物化学实验技术PCR技术及应用[M]. 北京科学出版社, 2005, 12-18.

[7] 谢海燕. 黑线仓鼠LHR部分序列克隆及组织器官的表达差异[D]. 曲阜: 曲阜师范大学, 2011.

[8] Petti CA. Detection and identification of microorganisms by gene amplification and sequencing[J]. Clin Infect Dis, 2007, 44(8): 1108-1114.

[9] Sontakke S, Cadenas MB, Maggi RG. Use of broad range 16S rDNA PCR in clinical microbiology[J]. J Microbiol Methods. 2009, 76(3): 217-225.

[10] Baker GC, Smith JJ, Cowan DA. Review and re-analysis of domain-specific 16S primers[J]. J Microbiol Methods. 2003,

55(3): 541-555.

[11] 王永智, 薛利军, 任浩赵, 等. 基于16S rDNA的快速检测血液细菌污染的荧光定量PCR研究[J]. 中华实验和临床感染病杂志, 2007, 1(4): 204-210.

[12] 应燕玲, 许先国, 朱发明, 等. 16S rDNA快速鉴定血液制品中污染细菌的测序方法的建立[J]. 中华微生物学和免疫学杂志, 2009, 9(10): 880-883.

[13] Hansen WL, Beuving J, Bruggeman VA. Molecular probes for the diagnosis of clinically relevant bacterial infections in blood cultures[J]. J Clin Microbiol, 2010, 48(12): 4432-4438.

[14] 刘佳妍, 金莉莉, 王秋雨. 细菌基因组重复序列PCR技术及其应用[J]. 微生物学杂志, 2006, 26(3): 90-93.

[15]Versalovic J, Schneider M, De Bruijin FJ, et al. Genomic fingerprinting of bacteria using repetitive sequence based PCR (rep-PCR)[J]. Methods in Molecular and Cellular Biology, 1994, 5: 25?40.

[16]陈凤毛. 真菌ITS区序列结构及其应用[J]. 林业科技开发, 2007, 2(21): 5-7.

[17]White TJ, Bruns T, Lee S. A nalysis of phylogenetic relationships by amplification and direct sequencing of ribosomal RNA genes[C]. InnisM A, ed PCR Protocols: A Guide to Methods and Applications. New York: Academic, 1990: 15-22.

[18]Gardes M, Bruns T D. ITS primer with enhanced specificity for basidiomycetes: Application to the identification of mycorrhizae and rusts[J]. Mol Ecol, 1993, 2: 113-118.

[19]杨佩文, 李家瑞, 杨勤忠, 等. 根肿病菌核糖体基因ITS区段的克隆测序及其在检测中的应用[J]. 云南农业大学学报, 2003, 18(3): 228-233.

[20]谢勇, 王云月, 陈建斌, 等. 烟草黑胫病分子检测[J]. 云南农业大学学报, 2000, 15(2): 176.

微生物常规鉴定技术

微生物常规鉴定技术 一、形态结构和培养特性观察 1、微生物的形态结构观察主要是通过染色,在显微镜下对其形状、大小、排列方式、细胞结构(包括细胞壁、细胞膜、细胞核、鞭毛、芽孢等)及染色特性进行观察,直观地了解细菌在形态结构上特性,根据不同微生物在形态结构上的不同达到区别、鉴定微生物的目的。 2、细菌细胞在固体培养基表面形成的细胞群体叫菌落(colony)。不同微生物在某种培养基中生长繁殖,所形成的菌落特征有很大差异,而同一种的细菌在一定条件下,培养特征却有一定稳定性。,以此可以对不同微生物加以区别鉴定。因此,微生物培养特性的观察也是微生物检验鉴别中的一项重要内容。 1)细菌的培养特征包括以下内容:在固体培养基上,观察菌落大小、形态、颜色(色素是水溶性还是脂溶性)、光泽度、透明度、质地、隆起形状、边缘特征及迁移性等。在液体培养中的表面生长情况(菌膜、环)混浊度及沉淀等。半固体培养基穿刺接种观察运动、扩散情况。 2)霉菌酵母菌的培养特征:大多数酵母菌没有丝状体,在固体培养基上形成的菌落和细菌的很相似,只是比细菌菌落大且厚。液体培养也和细菌相似,有均匀生长、沉淀或在液面形成菌膜。霉菌有分支的丝状体,菌丝粗长,在条件适宜的培养基里,菌丝无限伸长沿培养基表面蔓延。霉菌的基内菌丝、气生菌丝和孢子丝都常带有不同颜色,因而菌落边缘和中心,正面和背面颜色常常不同,如青霉菌:孢子青绿色,气生菌丝无色,基内菌丝褐色。霉菌在固体培养表面形成絮状、绒毛状和蜘蛛网状菌落。

革兰氏染色: 革兰氏染色法是1884年由丹麦病理学家C.Gram所创立的。革兰氏染色法可将所有的细菌区分为革兰氏阳性菌(G+)和革兰氏阴性菌(G—)两大类,是细菌学上最常用的鉴别染色法。 该染色法所以能将细菌分为G+菌和G—菌,是由这两类菌的细胞壁结构和成分的不同所决定的。G—菌的细胞壁中含有较多易被乙醇溶解的类脂质,而且肽聚糖层较薄、交联度低,故用乙醇或丙酮脱色时溶解了类脂质,增加了细胞壁的通透性,使初染的结晶紫和碘的复合物易于渗出,结果细菌就被脱色,再经蕃红复染后就成红色。G+菌细胞壁中肽聚糖层厚且交联度高,类脂质含量少,经脱色剂处理后反而使肽聚糖层的孔径缩小,通透性降低,因此细菌仍保留初染时的颜色步骤: (1)涂片:涂片方法与简单染色涂片相同。 (2)晾干:与简单染色法相同。 (3)固定,与简单染色法相同 (4)结晶紫色染色:将玻片置于废液缸玻片搁架上,加适量(以盖满细菌涂面)的结晶紫染色液染色1分钟。 (5)水洗:倾去染色液,用水小心地冲洗。 (6)媒染:滴加卢哥氏碘液,媒染1min。 (7)水洗:用水洗去碘液。 (8)脱色:将玻片倾斜,连续滴加95%乙醇脱色20—25s至流出液无色,立即水洗。 (9)复染:滴加蕃红复染5min。 (10)水洗:用水洗去涂片上的蕃红染色液。 (11)晾干:将染好的涂片放空气中晾干或者用吸水纸吸干。 (12)镜检:镜检时先用低倍,再用高倍,最后用油镜观察,并判断菌体的革兰氏染色反应性。 (13)实验完毕后的处理: ①将浸过油的镜头按下述方法擦拭干净,a.先用擦镜纸将油镜头上的油擦 去。b.用擦镜纸沾少许二甲苯将镜头擦2—3次。c.再用干净的擦镜纸将 镜头擦2—3次。注意擦镜头时向一个方向擦拭。 ②看后的染色玻片用废纸将香柏油擦干

新版GMP与快速微生物检测鉴定技术

A B C D 高鹃 新版GMP 与快速微生物检测鉴定技术新版GMP 与 快速微生物检测鉴定技术 3.快速鉴定技术 4.法规与药典要求 第一部分引言无菌药品生产要求的大幅度提高 新版GMP 无菌药品附录 以上各级别空气悬浮粒子的标准规定如下表: 洁净度级别 悬浮粒子最大允许数静态 ≥0.5μm ≥5.0μm A 级(1) 352020B 级352029C 级3520002900D 级 3520000 29000 洁净级别 浮游菌cfu/m 3 沉降菌(φ90mm )cfu /4小时 表面微生物 接触cfu /碟(φ55m m ) 5指手套cfu /手套A 级<1<1<1<1B 级10555C 级1005025 - D 级 200 100 50- 洁净区微生物监测的动态标准 工业工程技术要求隔离装置隔离器Rabs RTP 公用工程 水系统空调系统氮气压缩 空气真空传送系统动态环境监测系统粒子监测沉降菌浮游菌

动态环境监测带来的新课题 1、大量数据的管理和分析 2、面对细菌培养阳性结果发生争执 是生产管理方面的问题? 是QC 的OOS ?3、细菌培养阳性结果的后续处理明确what where who how 革兰氏染色无法判定 无菌药品生产要求的大幅度提高 未污染 ? 无菌药品生产要求的大幅度提高 无菌药品附录: 产品的无菌或其它质量特性绝不能只依赖 于任何形式的最终处理或成品检验(包括无菌检查)。 微生物检测技术的飞跃发展 快速检测技术(不需进行培养PAT )快速鉴定技术(属种株)为无菌药品生产和质量管理提供了先进技术手段及时发现污染,追溯污染源 案例: 爱吃桔子的员工 一直难以去除的革兰氏阳性短棒状菌燃烧麦秸杆与无菌药品生产车间

微生物检验常规鉴定技术

第一章微生物检验常规鉴定技术 课堂教学计划(1学时) 第一章微生物检验基本知识 包括显微镜、染色技术、培养基制备技术、接种、分离纯化和培养技术等。 接种、分离纯化和培养技术

一、接种 将微生物接到适于它生长繁殖的人工培养基上或活的生物体内的过程叫做接种。 1、接种工具和方法 接种和分离工具 1.接种针 2.接种环 3.接种钩 4.5.玻璃涂棒 6.接种圈 7.接种锄 8.小解剖刀 常用的接种方法有以下几种: 1)划线接种这是最常用的接种方法。即在固体培养基表面作来回直线形的移动,就可达到接种的作用。常用的接种工具有接种环,接种针等。在斜面接种和平板划线中就常用此法。 2)三点接种在研究霉菌形态时常用此法。此法即把少量的微生物接种在平板表面上,成等边三角形的三点,让它各自独立形成菌落后,来观察、研究它们的形态。除三点外,也有一点或多点进行接种的。 3)穿刺接种在保藏厌氧菌种或研究微生物的动力时常采用此法。做穿刺接种时,用的接种工具是接种针。用的培养基一般是半固体培养基。它的做法是:用接种针蘸取少量的菌种,沿半固体培养基中心向管底作直线穿刺,如某细菌具有鞭毛而能运动,则在穿刺线周围能够生长。 4)浇混接种该法是将待接的微生物先放入培养皿中,然后再倒入冷却至45°C 左右的固体培养基,迅速轻轻摇匀,这样菌液就达到稀释的目的。待平板凝固之后,置合适温度下培养,就可长出单个的微生物菌落。 5)涂布接种与浇混接种略有不同,就是先倒好平板,让其凝固,然后再将菌液倒入平板上面,迅速用涂布棒在表面作来回左右的涂布,让菌液均匀分布,就可长出单个的微生物的菌落。 6)液体接种从固体培养基中将菌洗下,倒入液体培养基中,或者从液体培养物中,用移液管将菌液接至液体培养基中,或从液体培养物中将菌液移至

梅里埃全自动微生物鉴定仪参数

设备名称:全自动微生物鉴定及药敏分析系统 一、具体用途:对食品,环境中的微生物进行快速,全自动的鉴定及药物敏感性测试。 二、技术参数与性能要求: 1. 系统可同时处理》30个标本,系统具有扩容功能,至少可以两台联机; 2. 分析组件可对环境中和食品中的细菌进行全自动鉴定,种类包括革兰阴性菌、革兰阳性 球菌、革兰氏阳性杆菌、酵母样真菌、假丝酵母类真菌、苛养菌、厌氧菌及棒状杆菌等的 鉴定; 3. ★分析组件可对芽孢杆菌进行全自动鉴定; 4. ★大于500种可鉴定细菌,鉴定结果通过美国FDA认证,细菌鉴定采用GB推荐生化鉴定 显色法,药敏检测采用比浊法,并且鉴定方法原理可在GB4789中查询(提供具体细菌库); 5. ^分析组件可自动进行革兰阴性菌、革兰阳性菌、酵母样真菌、肺炎链球菌等药敏试验, 以上所有药敏试验均得到美国FDA批准用于临床应用(提供FDA证明资料); 6. ★在对标本的鉴定及药敏试验过程中,无需添加任何额外附加试剂; 7. 快速全自动对细菌进行鉴定和药敏试验,采用实时检测系统,系统每隔15分钟对试剂卡 进行一次扫描读数,一旦确认结果,可马上出报告; & ★细菌最快鉴定时间V 4个小时,平均鉴定时间不超过5小时; 9?最快药敏实验时间5小时,平均药敏实验时间不大于6小时; 10. ★系统可同时进行鉴定和药敏实验,并且可同时上机的鉴定试剂卡种类不少于4种,可 同时上机的药敏试剂卡的种类不少于6种; 11. ★系统自动填充悬浮液至试剂卡,自动密封拭卡,并自动将拭卡装载于设备内置读数系 统/孵育系统,测试结束时可自动丢弃拭卡,操作都在仪器内部自动进行,不需要额外设 备; 12. 卡片填充菌液后为封闭式卡片,不会造成污染; 13. ★鉴定卡和药敏卡必须独立包装; 14. 鉴定卡应至少提供3种不同试剂的SFDA注册证; 15. 药敏卡应至少提供5种不同试剂的SFDA注册证; 16. 测试完成后,经分析软件分析后得出结果并可自动打印报告,并保存结果; 17. 具备中文报告软件系统; 18?双向联网软件,可传输报告结果;

2020年(生物科技行业)微生物常规鉴定技术

(生物科技行业)微生物常 规鉴定技术

微生物常规鉴定技术 壹、形态结构和培养特性观察 1、微生物的形态结构观察主要是通过染色,在显微镜下对其形状、大小、排列方式、细胞结构(包括细胞壁、细胞膜、细胞核、鞭毛、芽孢等)及染色特性进行观察,直观地了解细菌在形态结构上特性,根据不同微生物在形态结构上的不同达到区别、鉴定微生物的目的。 2、细菌细胞在固体培养基表面形成的细胞群体叫菌落(colony)。不同微生物在某种培养基中生长繁殖,所形成的菌落特征有很大差异,而同壹种的细菌在壹定条件下,培养特征却有壹定稳定性。,以此能够对不同微生物加以区别鉴定。因此,微生物培养特性的观察也是微生物检验鉴别中的壹项重要内容。 1)细菌的培养特征包括以下内容:在固体培养基上,观察菌落大小、形态、颜色(色素是水溶性仍是脂溶性)、光泽度、透明度、质地、隆起形状、边缘特征及迁移性等。在液体培养中的表面生长情况(菌膜、环)混浊度及沉淀等。半固体培养基穿刺接种观察运动、扩散情况。 2)霉菌酵母菌的培养特征:大多数酵母菌没有丝状体,在固体培养基上形成的菌落和细菌的很相似,只是比细菌菌落大且厚。液体培养也和细菌相似,有均匀生长、沉淀或在液面形成菌膜。霉菌有分支的丝状体,菌丝粗长,在条件适宜的培养基里,菌丝无限伸长沿培养基表面蔓延。霉菌的基内菌丝、气生菌丝和孢子丝都常带有不同颜色,因而菌落边缘和中心,正面和背面颜色常常不同,如

青霉菌:孢子青绿色,气生菌丝无色,基内菌丝褐色。霉菌在固体培养表面形成絮状、绒毛状和蜘蛛网状菌落。 革兰氏染色: 革兰氏染色法是1884年由丹麦病理学家C.Gram所创立的。革兰氏染色法可将所有的细菌区分为革兰氏阳性菌(G+)和革兰氏阴性菌(G—)俩大类,是细菌学上最常用的鉴别染色法。 该染色法所以能将细菌分为G+菌和G—菌,是由这俩类菌的细胞壁结构和成分的不同所决定的。G—菌的细胞壁中含有较多易被乙醇溶解的类脂质,而且肽聚糖层较薄、交联度低,故用乙醇或丙酮脱色时溶解了类脂质,增加了细胞壁的通透性,使初染的结晶紫和碘的复合物易于渗出,结果细菌就被脱色,再经蕃红复染后就成红色。G+菌细胞壁中肽聚糖层厚且交联度高,类脂质含量少,经脱色剂处理后反而使肽聚糖层的孔径缩小,通透性降低,因此细菌仍保留初染时的颜色步骤: (1)涂片:涂片方法和简单染色涂片相同。 (2)晾干:和简单染色法相同。 (3)固定,和简单染色法相同 (4)结晶紫色染色:将玻片置于废液缸玻片搁架上,加适量(以盖满细菌涂面)的结晶紫染色液染色1分钟。 (5)水洗:倾去染色液,用水小心地冲洗。 (6)媒染:滴加卢哥氏碘液,媒染1min。 (7)水洗:用水洗去碘液。

PCR技术的种类及其应用

PCR技术的种类及其应用 1PCR技术的基本原理 PCR技术是在模板DNA引物和四种dNTP等存在的条件下,依赖于DNA聚合酶(T aq酶)的酶促合成反应。其具体反应分三步:变性、退火、聚合。以上三步为一个循环,每一循环的产物DNA又可以作为下一个循环模板,数小时后,介于两个引物之间的目的DNA得到了大量的复制,经25?30次循环DN数量可达2X106~7拷贝数。 2PCR技术的种类 2.1反向PCR( Inverse PCR, IPCR技术 原理:反向PC是克隆已知序列旁侧序列的一种方法.主要原理是用一种在已知序列中无切点的限制性内切酶消化基因组I) NA?后酶切片段自身环化?以环化的DNA 作为模板,用一对与已知序列两端特异性结合的引物,扩增夹在中间的未知序列。该扩增产物是线性的DNA片段,大小取决于上述限制性内切酶在已知基闲侧翼DNA 序列内部的酶切位点分布情况。用不同的限制性内切酶消化,可以得到大小不同的模板DNA再通过反向PCR获得未知片段。 该方法的不足是:①需要从许多酶中选择限制酶,或者说必须选择一种合适的酶进行酶切才能得到合理大小的DNA片段。这种选择不能在非酶切位点切断靶 DNA。②大多数有核基因组含有大量中度和高度重复序列,而在YAC或Cosmid 中的未知功能序列中有时也会有这些序列,这样,通过反向PCR得到的探针就 有可能与多个基因序列杂交。 2.2锚定PCR( Anchored PCR, APCR)技术 用酶法在一通用引物反转录cDNA3 '末端加上一段已知序列,然后以此序列为引物结合位点对该cDNA进行扩增,称为APCR。 应用:它可用于扩增未知或全知序列,如未知cDNA的制备及低丰度cDNA文库的构建。 2.3不对称PCR(asymmetric PCR)技术 两种引物浓度比例相差较大的PCR技术称不对称PCR在扩增循环中引入不同的引物浓度,常用50?100T比例。在最初的10?15个循环中主要产物还是双链DNA,但当低浓度引物被消耗尽后,高浓度引物介导的PCR反应就会产生大量单链DNA 应用:可制备单链DNA

微生物自动化鉴定系统的工作原理

微生物自动化鉴定系统的工作原理 微生物鉴定的自动化技术近十几年得到了快速发展。数码分类技术集数学、计算机、信息及自动化分析为一体,采用商品化和标准化的配 套鉴定和抗菌药物敏感试验卡或条板,可快速准确地对临床数百种常见分离菌进行自动分析鉴定和药敏试验。目前自动化微生物鉴定和药 敏分析系统已在世界范围内临床实验室中广泛应用。 一、微生物数码鉴定法 早在七十年代中期,一些国外公司就研究出借助生物信息编码鉴定细菌的新方法。这些技术的应用,为医学微生物检验工作 提供了一个简便、科学的细菌鉴定程序,大大提高了细菌鉴定的准确性。目前,微生物编码鉴定技术已经得到普遍应用,并早已商品化和 形成独特的不同细菌鉴定系统。如、、、和等系统。这种鉴定系统是自动化鉴定系统的基础。 ( 一)数码鉴定法基本原理 数码鉴定是指通过数学的编码技术将细菌的生化反应模式转换成数学模式,给每种细菌的反应模式赋予一组数码,建立数据库或编成检索 本。通过对未知菌进行有关生化试验并将生化反应结果转换成数字(编码),查阅检索本或数据库,得到细菌名称。其基本原理是计算并 比较数据库内每个细菌条目对系统中每个生化反应出现的频率总和。随着电脑技术的进步,这一过程已变得非常容易。 1.简要介绍计算步骤: (1)出现频率(概率)的计算:将记录成阳性或阴性结果转换成出现频率:①对阳性特征,则除以100即得。②对阴性特征,除以1

00的商被1减去即可。③说明:对“0”和“100”,因这2个数太超量,为了使结果不出现过小或过大,而用相似值0.01或0 .99值代替。 (2)在每一个分类单位中,将所有测定项目的出现频率相乘,得出总出现频率。 (3)在每个分类菌群中的所有菌的总出现频率相加,除以一个分类单位的总出现频率,乘100,即得鉴定%() (4)在每个菌群中,再按值大小顺序重新排列。将未知菌单次总发生频率除以最典型反应模式单次总发生频率,得到模式频率T 值,代表个体与总体的近似值。T值越接近1,个体与总体越接近,鉴定价值越大。按大小排序,将相邻两项的之比为R, 代表着首选条目与次选条目的差距,差距越大,价值越大。如果≥80,参考T及R值可作出鉴定。 2.在编码检索本中检索数据谱得出的结果有以下几种形式(以鉴定系统为例)。 (1)有此数码谱:①有一个或几个菌名条目及相应的鉴定值(和T值)。②对鉴定结果好坏的评价,最佳……等。 ③用小括号列出关键的生化结果及阳性百分率。④有时,鉴定结果不佳或有多条菌名条目,需进一步补充试验项目才能得出良好的鉴定结 果。⑤指出某些注意要点,需用“推测性鉴定”,并将此菌送至参考实验室;需用“血清学鉴定”,作进一步的证实等。 (2)无此数码谱:可能有以下原因:①此生化谱太不典型。②不能接受,鉴定值低(<80.0)。③可疑。需进一步确认是否 纯培养,重新鉴定,可与供应商技术服务部联系。 3. 结果解释

微生物的鉴定方法总结2020

微生物的鉴定方法总结2020 微生物鉴定技术新技术新方法 32、1 细胞壁组分分析 32、2 红外光谱IR 32、3 气相色谱GC 42、4 高效液相色谱HPLC 42、5 质谱分析MS43 微生物鉴别方法传统方法在传统的分类鉴定中,微生物分类鉴定的主要依据是形态学特征、生理生化反应特征、生态学特征以及血清学反应、对噬菌体的敏感性等。在鉴定时,我们把这些依据作为鉴定项目,进行一系列的观察和鉴定工作。 1、1 细菌微菌落技术细菌的形态、大小、颜色及其它特征与细菌的基本生物学特性如代谢类型、分裂方式、繁殖速度等有密切关系。肉眼所见菌落,即大菌落是由大量的菌体紧密堆积而成,有不少生物学特性不能辨别;微菌落则是指细菌生长繁殖早期在固相载体上形成的只能借助显微镜进行观察的细菌集落。与大菌落相比,微菌落边缘及中央有明显不同的表形特征。可据此对微生物的种类进行鉴定。缺点:受操作人员主观性影响大。(1)细胞形态在显微镜下观察细胞外形大小、形状、排列等,细胞构造,革兰氏染色反应,能否运动、鞭毛着生部位和数目,有无芽孢和荚膜、芽孢的大小和位置,放线菌和真菌的繁殖器官

的形状、构造,孢子的数目、形状、大小、颜色和表面特征等。(2)群体形态群体形态通常是指以下情况的特征:在一定的固体培养基上生长的菌落特征,包括外形、大小、光泽、黏稠度、透明度、边缘、隆起情况、正反面颜色、质地、气味、是否分泌水溶性色素等;在一定的斜面培养基上生长的菌苔特征,包括生长程度、形状、边缘、隆起、颜色等;在半固体培养基上经穿刺接种后的生长情况;在液体培养基中生长情况,包括是否产生菌膜,均匀浑浊还是发生沉淀,有无气泡,培养基的颜色等。如是酵母菌,还要注意是成醭状、环状还是岛状。 1、2 生理生化反应特征(1)利用物质的能力包括对各种碳源利用的能力(能否以CO2为唯一碳源、各种糖类的利用情况等)、对各种氮源的利用能力(能否固氮、硝酸盐和铵盐利用情况等)、能源的要求(光能还是化能、氧化无机物还是氧化有机物等)、对生长因子的要求(是否需要生长因子以及需要什么生长因子等)。(2)代谢产物的特殊性这方面的鉴定项目非常多,如是否产生H2S、吲哚、CO 2、醇、有机酸,能否还原硝酸盐,能否使牛奶凝固、冻化等。(3)与温度和氧气的关系测出适合某种微生物生长的温度范围以及它的最适生长温度、最低生长温度和最高生长温度。对氧气的关系,看它是好氧、微量好氧、兼性好氧、耐氧还是专性厌氧。

9204 微生物鉴定指导原则

9204
微生物鉴定指导原则
本指导原则为非无菌产品微生物限度控制菌检查中疑似菌的鉴定, 以及药物 原料、辅料、制药用水、生产环境、中间体和终产品中检出微生物的鉴定提供指 导。当微生物的鉴定结果有争议时,以《伯杰氏系统细菌学手册》 (《Bergey, s Manual of Systematic Bacteriology》)现行版的鉴定结果为准。 微生物鉴定是指借助现有的分类系统,通过对未知微生物的特征测定,对其 进行细菌、酵母菌和霉菌大类的区分,或属、种及菌株水平确定的过程,它是药 品微生物检验中的重要环节, 药典附录相应章节中对检出微生物的鉴定做了明确 规定,如“非无菌产品的微生物检查:控制菌检查” (通则 1106)中选择培养 基或指示培养基上发现的疑似菌落需进行鉴定; 对“无菌检查法” (通则 1101) 的阳性实验结果中分离的微生物进行鉴定,以判定试验是否重试;药品洁净实验 室微生物监测和控制指导原则(通则 9203)建议对洁净室和其他受控环境分离 到的微生物进行鉴定,以掌握环境微生物污染情况,有助于污染调查。此外,在 药品生产中,有时亦需对药物原料、辅料、制药用水、生产环境、中间产物和终 产品中检出的微生物进行适当水平的鉴定。 微生物鉴定需达到的水平视情况而定,包括种、属鉴定和菌株分型。大多数 非无菌药品生产过程和部分无菌生产环境的风险评估中, 对所检出微生物的常规 特征包括菌落形态学、细胞形态学(杆状、球状、细胞群、孢子形成模式等)、革 兰染色或其它染色法,某些能够给出鉴定结论的关键生化反应(如氧化酶、过氧 化氢酶和凝固酶反应)进行分析,一般即可满足需要;非无菌药品产品的控制菌 检查应达到种的水平;无菌试验结果阳性和无菌生产模拟工艺(如培养基灌装) 失败时,对检出的微生物鉴定一般需达到菌株水平。 一、微生物的鉴定程序 微生物鉴定的基本程序包括分离纯化和鉴定,鉴定时,一般先将待检菌进行 初步的分类。鉴定的方法有表型微生物鉴定和基因型微生物鉴定,根据所需达到 的鉴定水平选择鉴定方法。微生物鉴定系统是基于不同的分析方法,其局限性与 方法和数据库的局限性息息相关, 未知菌鉴定时通过与微生物鉴定系统中的标准 微生物(模式菌株)的特征(基因型和/或表型)相匹配来完成。如果数据库中没 有此模式菌株,就无法获得正确的鉴定结果。在日常的微生物鉴定试验中,用户
1

VITEK全自动微生物检测系统原理及其应用

VITEK全自动微生物检测系统原理及其应用 近年来,微生物的检测鉴定技术已逐步由手工检测走向仪器化和电脑化,并力求简便、快速、准确。由生物梅里埃公司出品的全自动微生物鉴定/药敏分析系统VITEK是目前世界上最先进、自动化程度最高的细菌鉴定仪器之一。 近年来,微生物的检测鉴定技术已逐步由手工检测走向仪器化和电脑化,并力求简便、快速、准确。由生物梅里埃公司出品的全自动微生物鉴定/药敏分析系统VITEK是目前世界上最先进、自动化程度最高的细菌鉴定仪器之一。VITEK已被许多国家定为细菌最终鉴定设备,并获美国药品食品管理局(FDA)认可。该系统有高度的特异性、敏感性和重复性,还具有操作简便、检测速度快的特点,绝大多数细菌的鉴定在2~18 h内可得出结果。现将该系统的工作原理、主要结构、功能并结合我们使用后的一些体会介绍如下。 1工作原理 VITEK对细菌的鉴定是以每种细菌的微量生化反应为基础,不同种类的VITEK试卡(检测卡)含有多种的生化反应孔,可达30种。将手工分离的待检菌的纯菌落制成符合一定浊度要求的菌悬液,经充填机将菌悬液注入试卡内,封口后放入读数器/恒温培养箱,根据试卡各生化反应孔中的生长变化情况,由读数器按光学扫描原理,定时测定各生化介质中指示剂的显色(或浊度反应,然后把读出信息输入电脑储存并进行分析,再和预定的阈值进行比较,判定反应,再通过数值编码技术与数据库中反应文件进行比较,最后鉴定报告将在显示器上自动显示)并在打印机上自动打印。 2VITEK系统的结构组成 2.1检测卡 目前VITEK系统的检测卡有14种,微生物常用的有7种,即:革兰氏阳性菌鉴定卡(GPI)、革兰氏阴性菌卡(GNI+)、非发酵菌卡(NFC)、酵母菌卡(YBC)、厌氧菌卡(ANI)、芽胞杆菌卡(BAC)、奈瑟氏菌嗜血杆菌卡(NHI),以及药敏检测卡等。每张检测卡对应接种1份标本,检测卡为一次性消耗品。 2.2充填机将待测菌的菌悬液注入试卡内。 2.3读数器/恒温箱可在培养过程中定时读出细菌在试卡内培养基中的生长变化值。 2.4电脑主机/显示器/键盘/打印机用于储存和分析资料、系统的操作和结果分析鉴定,实验结果的自动显示报告和打印。 2.5电源稳压器和UPS在外围断电的情况下提供电脑主机约10 min持续电源。 3VITEK系统的功能

PCR技术的种类及应用

PCR技术的发展及应用 平骏 14112822276摘要:聚合酶链式反应(Polymerase Chain Reaction, PCR)是1985年由美国PE- Cetus 公司的科学家Kary Banks Mullis发明的一种可在体外快速扩增特定基因或DNA序列的技术。经历了近30年的技术发展,现如今PCR技术在生命科学研究以及相关的很多领域都得到广泛的应用。本文主要对PCR的基本原理、反应组份作简要的介绍;同时也对在PCR基础上发展起来的相关技术作简要综述。 关键词:PCR技术;PCR原理;PCR新技术 对核酸的研究己有100多年的历史,20世纪70年代初人们就致力于研究基因的体外分离技术,Korana于1971年最早提出核酸体外扩增的设想,该设想在1985年被Mullis等人实现,他们发明了具有划时代意义的聚合酶链反应[6]。这项新技术是根据生物体内DNA序列能进行快速复制的特点,实现在体外对特定DNA序列进行快速扩增,可在短时间内从试管中获得数百万个特异DNA序列拷贝。PCR技术操作简便、结果可靠,被世界各国广泛应用于医学、农业、考古学等各个领域的基因研究和分析,对分子生物学的发展产生了深远的影响[18]。发明人Kary Banks Mulis也因此荣获了1994年的诺贝尔化学奖。 1、PCR 技术的原理[1,2] PCR技术是模拟细胞内DNA的天然复制过程,DNA 聚合酶以单链DNA为模板,借助一小段双链DNA 来启动合成,通过一个或两个人工合成的寡核苷酸引物与单链DNA 模板中的一段互补序列结合,形成部分双链。在适宜的温度和环境下,DNA 聚合酶将脱氧单核苷酸加到引物3,- OH 末端,并以此为起始点,沿模板5,→3,方向延伸,合成一条新的DNA互补链。简言之,其基本原理包括3个基本反应过程:变性→退火→延伸。PCR 反应的基本成分包括:模板DNA( 待扩增DNA )、引物、4种脱氧核苷酸( dNTPs)、DNA 聚合酶和适宜的缓冲液。每一循环中所合成的新链,又都可作为下一循环中的模板。PCR 合成的特定的DNA序列产量随着循环次数呈指数增加,每完成一次循环需2-4min,2-3h就能将目的基因扩增,从而达到迅速大量扩增的目的。 2、PCR技术的反应组份 2.1 模板DNA PCR反应的模板可以是单链DNA也可以是双链DNA,可以是基因组DNA 或cDNA,

微生物分类鉴定

第三节微生物的分类鉴定方法 一、微生物鉴定的依据 获得纯化的微生物分离菌株后,首先判定是原核微生物还是真核微生物,这实际上在分离过程中所使用的方法和选择性培养基已经决定了分离菌株的大类的归属,从平板菌落的特征和液体培养的性状都可加以判定。然后,如是原核微生物,便可根据表14-3 所示的经典分类鉴定指标进行鉴定,如条件允许,可做碳源利用的BIOLOG-GN 分析和16S rDNA 序列分析。多项结果结合起来确定分离菌株的属和种。 表14-3 微生物经典分类鉴定方法的指标依据 二、微生物鉴定的技术与方法 根据目前微生物分类学中使用的技术和方法,可把它们分成四个不同的水平:①细胞形态和行为水平,②细胞组分水平,③蛋白质水平,④基因组水平; 在微生物分类学发展的早期,主要的分类鉴定指标是以在细胞形态和习性为主,可称为经典的分类鉴定法。其他三种实验技术主要是60 年代以后采用的,称为化学分类和遗传学分类法,这些方法再加上数值分类鉴定法,可称为现代的分类鉴定方法。 (一)、经典分类鉴定法 经典分类法是一百多年来进行微生物分类的传统方法。其特点是人为地选择几种形态生理生化特征进行分类,并在分类中将表型特征分为主、次。一般在科以上分类单位以形态特征、科以下分类单位以形态结合生理生化特征加以区分。最后,采用双歧法整理实验结果,排列一个个的分类单元,形成双歧检索表(图14-4 )。 A. 能在60 o C 以上生长 B. 细胞大,宽度1.3~1.8mm ……………………………………… 1. 热微菌属 ( Thermomicrobium )

BB. 细胞小,宽度0.4~0.8mm C. 能以葡萄糖为碳源生长 D. 能在pH4.5 生长…………………………………………… 2. 热酸菌属 ( Acidothermus ) DD. 不能在pH4.5 生长………………………………………………… 3. 栖热菌属( Thermus ) CC. 不能以葡萄糖为唯一碳源……………………… 4. 栖热嗜油菌属( 栖热嗜狮菌 属Thermoleophilum ) AA. 不能在60 o C 以上生长 图14-4 双歧法检索表例样 应用BIOLOG-GN 仪检测分离菌株对众多碳源的利用情况判断分离菌株的分类地位,近年来也时有应用。在BIOLOG-GN 仪上有96 个小孔,其中95 孔内分装有95 种不同碳源的缓冲液,1 孔为无碳源的缓冲液对照,各孔接入适宜菌浓度和液量的分离菌株培养物,定温培养,每日定时读取BIOLOG-GN 仪计算机上各碳源利用情况,一般为时1 周,BIOLOG-GN 仪可显示出该鉴定菌株的最可能归属。 (二)、数值分类法 又称阿德逊氏分类法() 。它的特点是根据较多的特征进行分类,一般为50 ~60 个,多者可达100 个以上,在分类上,每一个特性的地位都是均等重要。通常是以形态、生理生化特征,对环境的反应和忍受性以及生态特性为依据。最后,将所测菌株两两进行比较,并借用电子计算机计算出菌株间的总相似值,列出相似值矩阵( 图14-5) 。为便于观察,应将矩阵重新安排,使相似度高的菌株列在一起,然后将矩阵图转换成树状谱(dendrogram)( 图14-6) ,再结合主观上的判断( 如划分类似程度大于85 %者为同种,大于65 %者为同属等) ,排列出—个个分类群。 图14-5 显示 6 个细菌菌株的遗传相似矩阵图

微生物鉴别方法

微生物鉴别方法 一、微生物鉴别方法——传统方法 在传统的分类鉴定中,微生物分类鉴定的主要依据是形态学特征、生理生化反应特征、生态学特征以及血清学反应、对噬菌体的敏感性等。在鉴定时,我们把这些依据作为鉴定项目,进行一系列的观察和鉴定工作。 1、形态学特征 (1)细胞形态 在显微镜下观察细胞外形大小、形状、排列等,细胞构造,革兰氏染色反应,能否运动、鞭毛着生部位和数目,有无芽孢和荚膜、芽孢的大小和位置,放线菌和真菌的繁殖器官的形状、构造,孢子的数目、形状、大小、颜色和表面特征等。(2)群体形态 群体形态通常是指以下情况的特征:在一定的固体培养基上生长的菌落特征,包括外形、大小、光泽、黏稠度、透明度、边缘、隆起情况、正反面颜色、质地、气味、是否分泌水溶性色素等;在一定的斜面培养基上生长的菌苔特征,包括生长程度、形状、边缘、隆起、颜色等;在半固体培养基上经穿刺接种后的生长情况;在液体培养基中生长情况,包括是否产生菌膜,均匀浑浊还是发生沉淀,有无气泡,培养基的颜色等。如是酵母菌,还要注意是成醭状、环状还是岛状。 2、生理生化反应特征 (1)利用物质的能力

包括对各种碳源利用的能力(能否以CO2为唯一碳源、各种糖类的利用情况等)、对各种氮源的利用能力(能否固氮、硝酸盐和铵盐利用情况等)、能源的要求(光能还是化能、氧化无机物还是氧化有机物等)、对生长因子的要求(是否需要生长因子以及需要什么生长因子等)。 (2)代谢产物的特殊性 这方面的鉴定项目非常多,如是否产生H2S、吲哚、CO2、醇、有机酸,能否还原硝酸盐,能否使牛奶凝固、冻化等。 (3)与温度和氧气的关系 测出适合某种微生物生长的温度范围以及它的最适生长温度、最低生长温度和最高生长温度。对氧气的关系,看它是好氧、微量好氧、兼性好氧、耐氧还是专性厌氧。 3、生态学特征 生态学特征主要包括它与其他生物之间的关系(是寄生还是共生,寄主范围以及致病的情况)。在自然界的分布情况(pH情况、水分程度等)、渗透压情况(是否耐高渗、是否有嗜盐性等)。 4、血清学反应 很多细菌有十分相似的外表结构(如鞭毛)或有作用相同的酶(如乳酸杆菌属内各种细菌都有乳酸脱氢酶)。虽然它们的蛋白质分子结构各异,但在普通技术下

微生物自动鉴定及药敏系统的研究进展

微生物自动鉴定及药敏系统的研究进展 一、细菌自动鉴定及药敏系统的发展史 细菌的鉴定是细菌分类的实验过程,长期以来,临床微生物实验室一直沿用100多年前由Gram、Pasteur、Koch、Petri等创造的传统的微生物学鉴定方法。这些传统的鉴定方法不仅过程烦琐,费时费力,且在方法学和结果的判定、解释等方面易发生主观片面而引起的错误,难以进行质量控制。 20世纪60年代以后,微生物学家和工程技术人员密切合作,对微生物的研究采用了物理的、化学的分析方法,发明了许多自动化仪器,并根据细菌不同的生物学性状和代谢产物的差异,逐步发展了微量快速培养基和微量生化反应系统,使原来缓慢、烦琐的手工操作变得快速、简单,并实现了自动化和机械化。微生物鉴定自动化方法,包括(1)临床微生物鉴定系统;(2)气液色谙分析;鉴定厌氧菌和分枝杆菌多用于研究;(3)核酸杂交;多用于研究; (4)化学发光技术;可鉴定一些细菌少数分枝杆菌属和一些真菌。80到90年代发展迅速,并广泛用于临床。1985年第一台自动化细菌分析仪器Vitek-AMS进入中国并成功使用。1999年底法国梅里埃公司推出VITEK2系统,从接种物稀释、密度计比较及卡冲填和封卡等步骤均实现了全自动化。目前已有多种微生物自动鉴定及药敏测试系统问世,如 VITEK-AutoMicrobicSystem(AMS)、PHOENIXTM、MicroScan、Sensititre、ABBott(MS-2 System)、AUTOBACIDXSys-tern等。这地自动化系统具有先进的微机系统,广泛的鉴定功能,适用于临床微生物实验室、卫生防疫和商检系统,主要功能包括细菌鉴定、细菌药物敏感性试验及最低抑菌浓度(MIC)的测定等。其准确性和可靠性均已大大提高。 二、细菌自动鉴定及药敏系统原理及性能比较 1.原理: 临床微生物鉴定系统使细菌鉴定过程规范化和程序化,将细菌对底物的生化类型与已建立数据库类型相比较。测试原理主要是利用物质产生PH值变化,能释放色源或荧光源复合物的酶学反应,四氮唑标记碳水化合物代谢活性的产生,挥发或非挥发酸产生,或可见生长。鉴定系统反应原理 非发酵菌,革兰阳性球菌,革兰阴性球菌,厌氧菌和酵母

PCR 技术的种类及其应用

PCR 技术的种类及其应用 1PCR 技术的基本原理 PCR技术是在模板DNA、引物和四种dNTP等存在的条件下, 依赖于DNA聚合酶(T aq酶)的酶促合成反应。其具体反应分三步:变性、退火、聚合。以上三步为一个循环,每一循环的产物DNA又可以作为下一个循环模板,数小时后,介于两个引物之间的目的DNA得到了大量的复制,经25~30次循环DNA数量可达2×106~7拷贝数。2PCR技术的种类 2.1反向PCR( Inverse PCR, IPCR)技术 原理:反向PCR是克隆已知序列旁侧序列的一种方法.主要原理是用一种在已知序列中无切点的限制性内切酶消化基因组I)NA.后酶切片段自身环化.以环化的DNA 作为模板,用一对与已知序列两端特异性结合的引物,扩增夹在中间的未知序列。该扩增产物是线性的DNA片段,大小取决于上述限制性内切酶在已知基闲侧翼DNA 序列内部的酶切位点分布情况。用不同的限制性内切酶消化,可以得到大小不同的模板DNA,再通过反向PCR获得未知片段。 该方法的不足是:①需要从许多酶中选择限制酶,或者说必须选择一种合适的酶进行酶切才能得到合理大小的DNA片段。这种选择不能在非酶切位点切断靶DNA。②大多数有核基因组含有大量中度和高度重复序列,而在YAC或Cosmid 中的未知功能序列中有时也会有这些序列,这样,通过反向PCR得到的探针就有可能与多个基因序列杂交。 2.2锚定PCR(Anchored PCR, APCR)技术 用酶法在一通用引物反转录cDNA3’-末端加上一段已知序列, 然后以此序列为引物结合位点对该cDNA进行扩增, 称为APCR。 应用:它可用于扩增未知或全知序列, 如未知cDNA的制备及低丰度cDNA文库的构建。 2.3不对称PCR(asymmetric PCR)技术 两种引物浓度比例相差较大的PCR技术称不对称PCR。在扩增循环中引入不同的引物浓度, 常用50~100÷1比例。在最初的10~15个循环中主要产物还是双链DNA, 但

PCR_技术的种类及其应用

PCR 技术的种类及其应用 1 PCR 技术的基本原理 PCR 技术是在模板DNA、引物和四种dNTP等存在的条件下, 依赖于DNA聚合酶(T aq 酶)的酶促合成反应。其具体反应分三步:变性、退火、聚合。以上三步为一个循环,每一循环的产物DNA又可以作为下一个循环模板,数小时后,介于两个引物之间的目的DNA得到了大量的复制,经25~30次循环DNA数量可达2×106~7拷贝数。 2PCR技术的种类 2.1 反向PCR( Inverse PCR, IPCR)技术 原理:反向PCR是克隆已知序列旁侧序列的一种方法.主要原理是用一种在已知序列中无切点的限制性内切酶消化基因组I)NA.后酶切片段自身环化.以环化的DNA作为模板,用一对与已知序列两端特异性结合的引物,扩增夹在中间的未知序列。该扩增产物是线性的DNA片段,大小取决于上述限制性内切酶在已知基闲侧翼DNA序列内部的酶切位点分布情况。用不同的限制性内切酶消化,可以得到大小不同的模板DNA,再通过反向PCR获得未知片段。 该方法的不足是:①需要从许多酶中选择限制酶,或者说必须选择一种合适的酶进行酶 切才能得到合理大小的DNA片段。这种选择不能在非酶切位点切断靶DNA。②大多数有核基因组含有大量中度和高度重复序列,而在YAC或Cosmid中的未知功能序列中有时也会有这些序列,这样,通过反向PCR得到的探针就有可能与多个基因序列杂交。 2.2锚定PCR(Anchored PCR, APCR)技术 用酶法在一通用引物反转录cDNA3’-末端加上一段已知序列, 然后以此序列为引物结合位点对该cDNA进行扩增, 称为APCR。 应用:它可用于扩增未知或全知序列, 如未知cDNA的制备及低丰度cDNA文库的构建。 2.3不对称PCR(asymmetric PCR)技术 两种引物浓度比例相差较大的PCR技术称不对称PCR。在扩增循环中引入不同的引物浓度, 常用50~100÷1比例。在最初的10~15个循环中主要产物还是双链DNA, 但当低浓度引物被消耗尽后, 高浓度引物介导的PCR反应就会产生大量单链DNA。 应用:可制备单链DNA片段用于序列分析或核酸杂交的探针。 2.4反转录PCR(reverse transcription, RT- PCR)技术 当扩增模板为RNA时, 需先通过反转录酶将其反转录为cDNA才能进行扩增。RT - PCR应用非常广泛, 无论是分子生物学还是临床检验等都经常采用。 2.5修饰引物PCR技术 为达到某些特殊应用目的, 如定向克隆、定点突变、体外转录及序列分析等, 可在引物的5’-端加上酶切位点、突变序列、转录启动子及序列分析结合位点等。 2.6巢式PCR(NEST PCR)技术 先用一对靶序列的外引物扩增以提高模板量, 然后再用一对内引物扩增以得到特异的PCR带, 此为巢式PCR。若用一条外引物作内引物则称之为半巢式PCR。为减少巢式PCR的操作步骤可将外引物设计得比内引物长些, 且用量较少, 同时在第一次PCR时采用较高的退火温度而第二 次采用较低的退火温度, 这样在第一次PCR时, 由于较高退火温度下内引物不能与模板结合, 故只有外引物扩增产物, 经过若干次循环, 待外引物基本消耗尽, 无需取出第一次PCR产物, 只需降低退火即可直接进行PCR扩增。这不仅减少操作步骤, 同时也降低了交叉污染的机会。这种PCR称中途进退式PCR( drop-in, drop-out PCR)。上述三种方法主要用于极少量DNA模板的扩增。 2.7等位基因特异性PCR(Allele- specificPCR, ASPCR)技术 ASPCR依赖于引物3’- 端的一个碱基错配,不仅减少多聚酶的延伸效率,而且降低引物-模板复合物的热稳定性。这样有点突变的模板进行PCR扩增后检测不到扩增产物,可用于检测基因点突变。 2.8单链构型多态性PCR(single- strandconformational polymorphism PCR, SSCPPCR)技术SSCP- PCR是根据形成不同构象的等长DNA单链在中性聚丙烯酰胺凝胶中的电泳迁移率变化来

微生物的快速检测与鉴定

微生物的快速检测与鉴定 微生物论文 学院:食品科学与工程学院 班级:生工091 学生:彭彩连 学号:42号

【关键词】微生物快速检测 随着人们生活水平不断提高,各种安全问题越来越受到人们的重视,微生物的污染问题也相应地备受关注。在食品和环境等各个方面都有微生物污染的可能,一旦污染,微生物将大量繁殖而导致食源性疾病或环境污染甚至医院内感染。特别是近年来随着环境污染的加剧和生态平衡的不断破坏,导致感染的致病菌的种类越来越多,病原微生物对人类的威胁越来越大。传统的检验方法,主要包括形态检查和生化方法,其准确性、灵敏性均较高,但涉及的实验较多、操作烦琐、需要时间较长、准备和收尾工作繁重,而且要有大量人员参与[1,2]。所以,迫切需要准确、省时、省力和省成本的快速检验方法。本文对微生物快速检测方法的进展情况及实际应用进行综述,以利于预防食源性疾病及公共卫生突发事件的发生。 1 即用型纸片法 3M公司的perrifilmTMPlate系列微生物测试片,可分别检测菌落总数、大肠菌群计数、霉菌和酵母计数[3]。由RCP Scientific Inc 公司开发上市的Regdigel系列,除上述项目外还有检测乳杆菌、沙门氏菌、葡萄球菌的产品[4],这两个系列的产品与传统检测方法之间的相关性非常好。如用大肠菌群快检纸片检测餐具的表面,操作简便、快速、省料,特异性和敏感性与发酵法符合率高,已经被列为国标方法。使用时应正确掌握操作技术和判断标准,从而达到理想的检测效果[5]。美国3M公司生产的PF(Petrifilm)试纸还加入了染色剂、显色剂,增强了菌落的目视效果,而且避免了热琼脂法不适宜受损细菌恢复的缺陷。霉菌快速检验纸片,应用于食品检验中的霉菌具有操作简便,仅需36℃培养,不需要低温设备;快速,仅需2 d就可观察结果,比现在的国家标准检验方法缩短3~5 d,大大提高了工作效率。纸片法与国标法在霉菌检出率上差异无统计学意义,且菌落典型,易判定。纸片荧光法利用细菌产生某些代谢酶或代谢产物的特点而建立的一种酶—底物反应法。只需检测时纸片可高压灭菌处理,4℃保存,简化了实验准备、操作和判断[6]。但由于它们价格昂贵,限制了在基层单位的实际应用。 2 生物化学技术 2.1 PCR技术PCR技术采用体外酶促反应合成特异性DNA片段,再通过扩增产物来识别细菌。由于PCR灵敏度高,理论上可以检出一个细菌的拷贝基因,因此在细菌的检测中只需短时间增菌甚至不增菌,即可通过PCR进行筛选,节约了大量时间,但PCR技术也存在一些缺点:食物成分、增菌培养基成分和其他微生物DNA对Taq酶具有抑制作用,可能导致检验结果假阴性;操作过程要求严格,微量的外源性DNA进入PCR后可以引起无限放大产生假阳性结果,扩增过程中有一定的装配误差,会对结果产生影响。由于以上原因,PCR技术对操作者的自身素质要求很高,对于基层单位而言难以做到。短时间内也不会有经济效益和社会效益,因此影响了这项技术在基层的应用。

相关主题
文本预览
相关文档 最新文档