当前位置:文档之家› 钝化液成分分析技术,钝化液配方原理及生产工艺

钝化液成分分析技术,钝化液配方原理及生产工艺

钝化液成分分析技术,钝化液配方原理及生产工艺
钝化液成分分析技术,钝化液配方原理及生产工艺

钝化液配方成分分析,钝化原理及工艺技术导读:本文详细介绍了钝化液的研究背景,理论基础,参考配方等,本文中的配方数据经过修改,如需更详细资料,可咨询我们的技术工程师。

一种活性金属或合金,其中化学活性大大降低,而成为贵金属状态的现象,叫钝化。禾川化学引进尖端配方破译技术,专业从事钝化液成分分析、配方还原、研发外包服务,为金属表面处理相关企业提供一整套配方技术解决方案。

一.背景

1.1钝化液概念

一种活性金属或合金,其中化学活性大大降低,而成为贵金属状态的现象,叫钝化。金属由于介质的作用生成的腐蚀产物如果具有致密的结构,形成了一层薄膜(往往是看不见的),紧密覆盖在金属的表面,则改变了金属的表面状态,使金属的电极电位大大向正方向跃变,而成为耐蚀的钝态。如Fe→Fe++时标准电位为-0.44V,钝化后跃变到+0.5~1V,而显示出耐腐蚀的贵金属性能,这层薄膜就叫钝化膜。铝合金表面的化学转化膜工艺大体可以分为两种: 一种是铬酸盐钝化处理法,一种是非铬酸盐钝化处理法虽然铬酸盐钝化处理具有许多优越之处,但是由于(Cr)毒性高,易致癌,对环境污染大,许多国家已经严格限制铬酸盐的使用与排放,并且随着欧盟指令的生效使得铬酸盐在金属表面处理中的使用受到极大的限制因此,研制新型无铬钝化工艺取代传统铬酸盐钝化十分必要。

禾川化学技术团队具有丰富的分析研发经验,经过多年的技术积累,可以运用尖端的科学仪器、完善的标准图谱库、强大原材料库,彻底解决众多化工企业

生产研发过程中遇到的难题,利用其八大服务优势,最终实现企业产品性能改进及新产品研发。

样品分析检测流程:样品确认—物理表征前处理—大型仪器分析—工程师解谱—分析结果验证—后续技术服务。有任何配方技术难题,可即刻联系禾川化学技术团队,我们将为企业提供一站式配方技术解决方案!

1.2钝化原理

金属铁,铝在稀硝酸或稀硫酸中能够很快溶解,但在浓硝酸或浓硫酸中溶解现象几乎完全停止,碳钢通常很容易生锈,若在钢中加入适量的Ni、Cr,就成为不锈钢了。金属或合金受一些因素影响,化学稳定性明显增强的现象,称为钝化。由某些钝化剂(化学药品)所引起的金属钝化现象,称为化学钝化。如浓HNO3、浓H2SO4、HClO3、K2Cr2O7、KMnO4等氧化剂都可使金属钝化。金属钝化后,其电极电势向正方向移动,使其失去了原有的特性,如钝化了的铁在铜盐中不能将铜置换出。此外,用电化学方法也可使金属钝化,如将Fe置于H2SO4溶液中作为阳极,用外加电流使阳极极化,采用一定仪器使铁电位升高一定程度,Fe就钝化了。由阳极极化引起的金属钝化现象,叫阳极钝化或电化学钝化。

金属处于钝化状态能保护金属防止腐蚀,但有时为了保证金属能正常参与反应而溶解,又必须防止钝化,如电镀和化学电源等。金属是如何钝化的呢?其钝化机理是怎样的?首先要清楚,钝化现象是金属相和溶液相所引起的,还是由界面现象所引起的。有人曾研究过机械性刮磨对处在钝化状态的金属的影响。实验表明,测量时不断刮磨金属表面,则金属的电势剧烈向负方向移动,也就是修整

金属表面可引起处在钝态金属的活化。即证明钝化现象是一种界面现象。它是在一定条件下,金属与介质相互接触的界面上发生变化的。

传统六价铬的钝化膜是通过锌的溶解及铬酸根的还原以及三价铬凝胶的析出而形成。膜层中因含有六价铬,钝化膜具有自我修复能力。而三价铬膜层是通过锌的溶解形成锌离子,同时锌离子的溶解造成锌表面溶液的pH上升,三价铬直接与锌离子、氢氧根等反应,形成不溶性化合物沉淀在锌表面上而形成耐蚀性好的钝化膜,其反应如下:

(1)溶锌过程:Zn+Ox(氧化剂)→Zn2++Ox-Zn+ZH+→Zn2++H2↑(2)成膜过程:Zn2++xCr(III)+YH2O→ZnCrxOy+2YH+

(3)溶膜过程:ZnCrxOy+2YH+→Zn2+XCr(III))+YH2O

1.2.1钝化膜理论

金属表面的钝化膜是什么结构?是独立相膜还是吸附性膜呢?目前主要有两种学说,即成相膜理论和吸附理论。

成相膜理论认为,当金属溶解时,处在钝化条件下,在表面生成紧密的、复盖性良好的固态物质,这种物质形成独立的相,称为钝化膜或称成相膜,此膜将金属表面和溶液机械地隔离开,使金属的溶解速度大大降低,而呈钝态。实验证据是在某些钝化的金属表面上,可看到成相膜的存在,并能测其厚度和组成。如采用某种能够溶解金属而与氧化膜不起作用的试剂,小心地溶解除去膜下的金属,就可分离出能看见的钝化膜,钝化膜是怎样形成的?当金属阳极溶解时,其周围附近的溶液层成分发生了变化。

一方面,溶解下来的金属离子因扩散速度不够快(溶解速度快)而有所积累。另一方面,界面层中的氢离子也要向阴极迁移,溶液中的负离子(包括OH-)

向阳极迁移。结果,阳极附近有氢氧根离子和其他负离子富集。随着电解反应的延续,处于紧邻阳极界面的溶液层中,电解质浓度有可能发展到饱和或过饱和状态。于是,溶度积较小的金属氢氧化物或某种盐类就要沉积在金属表面并形成一层不溶性膜,这膜往往很疏松,它还不足以直接导致金属的钝化,而只能阻碍金属的溶解,但电极表面被它覆盖了,溶液和金属的接触面积大为缩小。于是,就要增大电极的电流密度,电极的电位会变得更正。这就有可能引起OH-离子在电极上放电,其产物(如OH)又和电极表面上的金属原子反应而生成钝化膜。分析得知大多数钝化膜由金属氧化物组成(如铁之Fe2O3),但少数也有由氢氧化物、铬酸盐、磷酸盐、硅酸盐及难溶硫酸盐和氯化物等组成。

吸附理论认为,金属表面并不需要形成固态产物膜才钝化,而只要表面或部分表面形成一层氧或含氧粒子(如O2-或OH-)的吸附层也就足以引起钝化了。这吸附层虽只有单分子层厚薄,但由于氧在金属表面上的吸附,改变了金属与溶液的界面结构,使电极反应的活化能升高,金属表面反应能力下降而钝化。此理论主要实验依据是测量界面电容和使某些金属钝化所需电量。实验结果表明,不需形成成相膜也可使一些金属钝化。

两种钝化理论都能较好地解释部分实验事实,但又都有成功和不足之处。金属钝化膜确具有成相膜结构,但同时也存在着单分子层的吸附性膜。目前尚不清楚在什么条件下形成成相膜,在什么条件下形成吸附膜。两种理论相互结合还缺乏直接的实验证据,因而钝化理论还有待深入地研究。

1.2.2钝化膜的作用

1)提高钝化膜的附着力。二氧化硅加入钝化液中后形成胶体溶液,在涂敷到镀锌板上并烘干后,会使钝化液固化成凝胶,与镀锌板有较强的附着力。

2)保持六价铬。二氧化硅能将六价铬凝聚在其凝胶内,延迟了六价铬流失的速度,延长了其发挥自愈修复的时间。

3)起到辅助防腐作用。二氧化硅所形成的凝胶本身也有一定的隔离作用,防止外部的水分和气体渗入到镀锌层表面,发挥一定的辅助防腐作用。

4)提高产品的涂装性能。二氧化硅在凝胶中是以极性颗粒存在的,因而除能将钝化层中的其他成分吸附在镀锌板表面以外,它还能起到媒介的作用,能与钝化层外涂层紧密结合,一改钝化后的镀锌板不能彩涂的不足,使钝化后的镀锌板不但能够继续涂装,而且涂装性能更好。事实上,加入二氧化硅以后的钝化液更接近于彩涂预处理液的成分。所以钝化后的产品既可以直接使用,也可作为彩涂基板。

5)改善产品的耐指纹性。加入二氧化硅以后,硅胶的作用使钝化后的产品表面钝化膜更为均匀,形成了很淡很均匀的淡黄色,即使对指纹的吸附量较多也不易被人们察觉,故在一般目测情况下产品的耐指纹性能得到改善。

6)二氧化硅与磷酸起到相辅相成的作用。二氧化硅的作用与磷酸相比应该说是相反的,二氧化硅是极性的,磷酸是非极性的,磷酸属于反应型的添加剂,二氧化硅属于附着型的添加剂。但二者之间并不相互排斥,不会削弱另一方的作用,而是相互取长补短。综合作用的结果使产品的外观、耐蚀性、涂装性均处于比较好的水平,比两者其中之一单独使用都好。

1.3钝化分类

A.化学钝化

又称自动钝化,金属与钝化剂的自然作用而产生的钝化现象。如铬、铝、钛等金属在空气和很多种含氧的溶液中,都易于被氧所钝化,故这些金属称为自钝化金属。利用它可以使某些金属达到减缓腐蚀的目的。如一般钢铁常采用硝酸、重铬酸钾、亚硝酸钠等溶液进行钝化处理;在铁中加入易钝化金属组分可冶炼成耐蚀不锈钢等。

B.酸洗钝化

用途:对不锈钢全面酸洗钝化,清除各类油污、锈、氧化皮、焊斑等污垢,处理后表面变成均匀银白色,大大提高不锈钢抗腐蚀性能,适用于各种型号不锈钢零件、板材及其设备。特点:操作简单,使用方便、经济实用,同时添加了高效缓蚀剂、抑雾剂,防止金属出现过腐蚀和氢脆现象、抑制酸雾的产生。特别适用于小型复杂工件,不适合涂膏的情况,优于市场同类产品。

1.4钝化工艺指标控制

1.色泽的控制:钝化剂的钝化颜色一般是黄中带紫→紫中带绿→绿色的转变过程。由于钝化液浓度使用范围广,不同厂家完全可根据自身的生产条件及产能状况合理调整新开液浓度及处理液浓度,然后合理调整钝化时间同样可达到颜色鲜艳亮丽的五彩钝化膜,且不影响盐雾效果。实践表明,针对大规模自动线生产的厂家,当处理液按60~70 mL/L开缸时,钝化时间只需25~30秒即可达到理想色泽。对于手工操作的厂家,也可适当调整其浓度的高低及处理时间的长短来达到理想的色泽。

2.钝化液的添加即浓度的控制:每处理7000~8000dm2的工件需补充1 L的

彩色钝化剂。但实际生产中会因工件的形状、大小、带出量的不同导致添加的量也有所不同,但通过长时间的生产跟踪及槽液分析,其Cr3+含量均能控制在2.5~3.0g/L之间,膜层颜色仍鲜艳呈正常的彩虹色,且耐蚀性能较为稳定。

3.pH值的控制:pH值对钝化膜的影响较大,应严格控制在工艺范围内。pH值过低时,钝化膜易发花;pH值过高时膜层易发雾。一般情况下,生产中pH值会自动升高,此时可以用硝酸降低pH值。一般每补充1L的390需补充500 mL 的硝酸即可稳定其pH值在工艺范围之内。添加时可通过人工或机械自动添加。

4.钝化时间的控制:钝化时间一般为20~60秒,生产中不同生产厂家可根据自身的条件合理调整处理液的浓度及依据颜色的标准来确定钝化时间。一般20~30秒即可。当其它条件(浓度、温度、pH值等)一定时,钝化时间短,膜的厚度则薄,而且膜色淡、耐蚀性差。当钝化时间过长时,膜层将变得疏松多孔,结合强度低,耐蚀性降低。

5.钝化膜的老化处理:钝化剂最后一道热水洗的温度一般控制在70~80℃为宜。烘干时的温度最好控制在75~85℃(烘干时间为10~15分钟)。当温度太高时,钝化膜层耐蚀性能下降。

1)连续生产时,槽液中Zn2+会不断积累,当含量大于15g/L时,工件内壁容易出现碎花、黄斑及外壁起雾,此时可采取抽掉底部10%的处理液并用钝化液重新补充调整即可连续生产。

2)生产中每班至少要用磁铁吸取掉入池底的工件,以免Fe2+含量增高。实践证

明,只有频繁及时地打捞掉入工作液的镀件产品,才能极大限度地延长工作液的使用寿命。

3)当钝化液为非连续性使用生产时,由于挥发损失导致钝化液中微量的组分变化,从而导致钝化液更新快。当钝化液久未用时,采用水泵抽取钝化液到线外密封贮存的方式可解决此问题。

4)电镀锌件钝化处理后,应放置24小时至48小时以上,即待钝化膜老化后再放入盐雾箱作耐盐雾试验。结果才会准确,否则,尽管其它工艺条件控制得一致,盐雾试验结果亦会参差不齐。(注意:进行盐雾试验前的工件表面应避免过多地磨擦或碰伤)。

5)三价铬钝化质量也与镀锌层质量有关,当锌槽发黑严重或走位较差时,工件内壁团状雾明显;

1.5钝化体系组成

(1)三价铬盐:三价铬盐是形成钝化膜的主要化合物。目前最广泛应用的是氯化铬、硫酸铬、硝酸铬,也有人提到用磷酸铬、醋酸铬。是钝化膜中Cr(VI)与Cr(1lI)的来源。钝化膜中Cr(V1)化合物易溶目较软,它分布在膜的内部,起着填充空隙的作用:在潮湿的大气中还会从膜层渗出,溶解于膜表面的凝雾中,并离解出铬酸使锌镀层再钝化。而Cr(II)化合物具有较高的稳定性、难溶、强度好,起到膜的骨架作用。没有Cr(Ⅲ)化合物,则钝化膜的颜色很淡,结合力差,但太多时,膜层会变绿色。

三价铬盐的质量浓度在35~70g/L之间,均可得到彩色钝化膜。三价铬盐浓度的高低,影响钝化膜的厚度及色泽。在工艺范围内三价铬盐浓度越高,钝化

膜厚度越厚,色泽越浓,膜表面越均匀。三价铬盐的质量浓度为60g/L时,能得到最佳钝化膜;当三价铬盐的质量浓度超过75g/L时,钝化膜表面粗糙,钝化膜变暗,有暗纹或白斑;三价铬盐的质量浓度低于30g/L时,钝化时间过长,而且膜的色泽很淡;过低时得不到彩色钝化膜。

(2)氧化剂:硫酸有加快成膜速度的作用,同时兼有防止钝化膜发雾的作用。但其含量必须与铬酐含量相适应,也就是说,CrO 与sO的比值是控制钝化膜颜色的关键。当硫酸含量过高时,会加快膜的溶解,反而降低了成膜速度,但过低时,钝化膜的颜色太淡,硝酸能优先溶解锌镀层微凸处而起到整平作用,增强膜的光泽性。但硝酸不宜太多,否则锌镀层溶解太快,使膜层变薄,影响耐蚀性。

硝酸盐是氧化剂,与镀锌层反应生成锌离子,促使钝化膜形成。硝酸根对锌镀层有一定的出光作用,可提高钝化膜上的光亮性。常用的氧化剂有双氧水、硝酸盐、氯酸盐、过硫酸盐、四价铈等。硝酸盐的质量浓度为12g/L时,钝化膜的光泽和其它表观形貌最优。硝酸盐的质量浓度超过30g/L时,得到的钝化膜表观形貌变差;低于5g/L时,钝化膜不光亮。

(3)络合剂:能控制成膜速度和钝化液的稳定性,如有机羧酸及其混合物等,选用适当的配位剂,是获得优质钝化膜和稳定的钝化液的一项十分重要的参数。第一代的络合剂主要为氟化物,其膜层较薄,耐蚀性较差,中性盐雾试验一般难以超过16小时。且该体系的Cr(III)浓度较高,操作温度也较高。第二代早期的三价铬钝化液含有氧化剂,耐蚀性与膜层颜色与六价铬相似,但由于膜层含有六价铬故被淘汰,而后期工艺不含氧化剂但五彩颜色较淡。我们研发第二代的三价铬钝化剂采用有机络合剂为主,并加入其它金属耐蚀性能大大提高,并能得到不

同颜色的钝化膜,如蓝白、五彩、黑色,操作条件要求相对较低。

(4)成膜促进剂:能调整钝化膜层颜色,如某些无机或有机阴离子等。(5)其它金属:调整外观颜色,与耐蚀性。如镧系稀土元素等。

(6)稳定剂:稳定钝化剂中的三价铬价态及钝化剂的pH值,醋酸是缓冲剂,起稳定钝化液pH值的作用,但对钝化膜的色泽也有影响。

(7)新型封闭剂:引入纳米材料及纳米新技术,大大提高了钝化膜的耐蚀性能。(8)配位剂:酒石酸盐或柠檬酸盐是配位剂,控制成膜的速率和钝化液的稳定性。通常用的配位剂有氟化物、铵盐、醋酸盐、柠檬酸盐、酒石酸盐等。其质量浓度为12~25g/L时,钝化膜的质量都不错。当低于12g/L时,钝化膜色泽暗淡;但高于30g/L时,钝化膜很薄,色泽极淡,且膜层不均匀;当其质量浓度为20g/L 时,钝化膜的表观形貌最佳。

(9)催化剂:催化剂的作用主要影响钝化膜的外观与耐蚀性。通常用过渡金属离子,如二价铁离子、镍离子、锰离子、钴离子、钛离子、钼离子、铈离子等。催化剂的质量浓度在4~5g/L时,钝化膜的表观形貌都很好。在工艺范围内过渡金属的浓度越高,钝化膜越厚,颜色越深。当低于2g/L时,钝化膜颜色较淡,膜不均匀;但高于17g/L时,钝化膜有白斑和灰色。

二.钝化液参考配方

组分投料量(g/L)

氟化镁98~100

三聚磷酸钠10~30

氟锆酸10~30

氟硅酸钠23~25

盐酸45~46

硝酸10~30

磷酸100~120

乙烯基三乙酰氧基硅烷10~30

硫酸30~40

硝酸钙30~50

水余量

通过对化工产品的配方分析还原,有利于企业了解现有技术的发展水平,实现知己知彼;有利于在现有产品上进行自主创新,获得知识产权;有利于在生产过程中发现问题、解决问题。通过对化工产品的配方改进,配方研发,可以加快企业产品更新换代的速度,提升市场竞争力,因此,对于化工产品的分析、研发已变得刻不容缓!

PCA主成分分析原理及应用

主元分析(PCA)理论分析及应用 什么是PCA? PCA是Principal component analysis的缩写,中文翻译为主元分析/主成分分析。它是一种对数据进行分析的技术,最重要的应用是对原有数据进行简化。正如它的名字:主元分析,这种方法可以有效的找出数据中最“主要”的元素和结构,去除噪音和冗余,将原有的复杂数据降维,揭示隐藏在复杂数据背后的简单结构。它的优点是简单,而且无参数限制,可以方便的应用与各个场合。因此应用极其广泛,从神经科学到计算机图形学都有它的用武之地。被誉为应用线形代数最价值的结果之一。 在以下的章节中,不仅有对PCA的比较直观的解释,同时也配有较为深入的分析。首先将从一个简单的例子开始说明PCA应用的场合以及想法的由来,进行一个比较直观的解释;然后加入数学的严格推导,引入线形代数,进行问题的求解。随后将揭示PCA与SVD(Singular Value Decomposition)之间的联系以及如何将之应用于真实世界。最后将分析PCA理论模型的假设条件以及针对这些条件可能进行的改进。 一个简单的模型 在实验科学中我常遇到的情况是,使用大量的变量代表可能变化的因素,例如光谱、电压、速度等等。但是由于实验环境和观测手段的限制,实验数据往往变得极其的复杂、混乱和冗余的。如何对数据进行分析,取得隐藏在数据背后的变量关系,是一个很困难的问题。在神经科学、气象学、海洋学等等学科实验中,假设的变量个数可能非常之多,但是真正的影响因素以及它们之间的关系可能又是非常之简单的。 下面的模型取自一个物理学中的实验。它看上去比较简单,但足以说明问题。如图表 1所示。这是一个理想弹簧运动规律的测定实验。假设球是连接在一个无质量无摩擦的弹簧之上,从平衡位置沿轴拉开一定的距离然后释放。

免疫分析技术的应用

时间分辨荧光免疫分析技术的研究进展及在食品安全领域中的应用 应化1001 王旸慧 随着分析方法的飞速发展,无论是食品中有毒有害物质,还是环境中 痕量元素的检测,或者生物体内功能因子的分析,都迫切需要一种灵敏度高、快速准确、性能稳定的痕量分析方法。时间分辨荧光免疫分析技术(time-resolved fluoroimmunoassay,简称为TRFIA)是20世纪80 年代中 期发展起来的一种新的荧光标记技术。这种方法应用某些特殊的稀土金属,能够区分背景光的散射所引起的干扰,从而大大地提高了分析的灵敏度。与传统的酶免疫法(EIA)、发射免疫分析法(RIA)相比,它具有很多优点:灵敏度高达10-19;稳定性好,克服了酶和放射性荧光物质的不稳定性; 动态范围宽;试剂货架期长;无放射性危害等,时间分辨荧光分析目前被公 认为是灵敏度最高的分析方法之一。 一、时间分辨荧光免疫分析法的原理及优势 时间分辨荧光免疫分析法(TRFIA)是在荧光分析(FIA)的基础上发展 起来的一种特殊的荧光分析法。它利用了具有独特荧光特性的镧系元素及 其螯合物为示踪物,标记抗体、抗原、激素、多肽、蛋白质、核酸探针及 生物细胞,以代替传统的荧光物质、酶、同位素、化学发光物质。用时间 分辨荧光免疫分析检测仪测定反应产物中的荧光强度,根据产物荧光强度 和相对荧光强度的比值,准确地测定反应体系中被分析物的浓度。TRFIA 所 使用的荧光标记物是镧系稀土金属,由于镧系稀土金属离子螯合物有很长 的荧光寿命(微秒级),有别于传统荧光的短荧光寿命,使其能通过时间分 辨方式区别于背景荧光(钠秒级),正是由于荧光衰变时间长,可以延缓 测量时间,待测样品中短寿命的本底荧光衰变后再测稀土离子的特异荧光,因此可完全消除本底荧光的干扰。镧系稀土金属离子螯合物荧光很宽的Stokes 位移使其容易通过波长分辨方式进一步区别于背景荧光,提高方法 学的稳定性。镧系稀土金属离子螯合物狭窄的荧光发射峰使其荧光检测具 有很高的效率,进一步提高了信号检测的特异性和灵敏性。此外,由于检 测时加入了荧光增强液,它可使原来荧光增强100万倍,以上各种因素使TRFIA 的检测灵敏度和准确性大大提高。 二、TRFIA 的反应模式 目前在实践中应用的主要有固相双位点夹心法和竞争法。夹心法多用 于蛋白质类大分子化合物的测定,竞争法多用于小分子半抗原的检测。反 应模式流程如下:

主成分分析原理及详解

第14章主成分分析 1 概述 1.1 基本概念 1.1.1 定义 主成分分析是根据原始变量之间的相互关系,寻找一组由原变量组成、而彼此不相关的综合变量,从而浓缩原始数据信息、简化数据结构、压缩数据规模的一种统计方法。 1.1.2 举例 为什么叫主成分,下面通过一个例子来说明。 假定有N 个儿童的两个指标x1与x2,如身高和体重。x1与x2有显著的相关性。当N较大时,N观测量在平面上形成椭圆形的散点分布图,每一个坐标点即为个体x1与x2的取值,如果把通过该椭圆形的长轴取作新坐标轴的横轴Z1,在此轴的原点取一条垂直于Z1的直线定为新坐标轴的Z2,于是这N个点在新坐标轴上的坐标位置发生了改变;同时这N个点的性质也发生了改变,他们之间的关系不再是相关的。很明显,在新坐标上Z1与N个点分布的长轴一致,反映了N个观测量个体间离差的大部分信息,若Z1反映了原始数据信息的80%,则Z2只反映总信息的20%。这样新指标Z1称为原指标的第 358

一主成分,Z2称为原指标的第二主成分。所以如果要研究N个对象的变异,可以只考虑Z1这一个指标代替原来的两个指标(x1与x2),这种做法符合PCA提出的基本要求,即减少指标的个数,又不损失或少损失原来指标提供的信息。 1.1.3 函数公式 通过数学的方法可以求出Z1和Z2与x1与x2之间的关系。 Z1=l11x1+ l12x2 Z2=l21x1+ l22x2 即新指标Z1和Z2是原指标x1与x2的线性函数。在统计学上称为第一主成分和第二主成分。 若原变量有3个,且彼此相关,则N个对象在3维空间成椭圆球分布,见图14-1。 通过旋转和改变原点(坐标0点),就可以得到第一主成分、第二主成分和第三主成分。如果第二主成分和第三主成分与第一主成高度相关,或者说第二主成分和第三主成分相对于第一主成分来说变异很小,即N个对象在新坐标的三维空间分布成一长杆状时,则只需用一个综合指标便能反映原始数据中3个变量的基本特征。 359

化学发光免疫分析技术原理简介

化学发光免疫分析技术原理简介 20 世纪60 年代即有人利用化学发光法测定水样中细菌含量和菌尿症患者尿液检查。1977 年Halman 等将化学发光系统与抗原抗体反应系统相结合,创建了化学发光免疫分析法,保留了化学发光的高度灵敏性,又克服了它特异性不足的缺陷。近年来对技术与仪器的不断改进,使此技术已成为一种特异,灵敏,准确的自动化的免疫学检测方法。1996 年推出的电化学发光免疫技术,在反应原理上又具有一些新的特点。这两种技术目前已在国内一些大型医院实验室用于常规免疫学检验。 一、化学发光免疫分析法 化学发光免疫分析法( chemiluminescence immunoassay , CLlA) 是把免疫反应与发光反应结合起来的一种定量分析技术,既具有发光检测的高度灵敏性,又具有免疫分析法的高度特异性。在CLIA中,主要有两个部分,即免疫反应系统和化学发光系统。免疫反应系统与放射免疫测定中的抗原抗体反应系统相同化学发光系统则是利用某些化合物如鲁米诺( luminol) 、异鲁米诺(isolu-minol) 、金刚烷( AMPPD) 及吖啶酯( AE) 等经氧化剂氧化或催化剂催化后成为激发态产物,当其回到基态时就会将剩余能量转变为光子,随后利用发光信号测量仪器测量光量子的产额。将发光物质直接标记于抗原(称为化学发光免疫分析)或抗体上(称为免疫化学发光分析) ,经氧化剂或催化剂的激发后,即可快速稳定的发光,其产生的光量子的强度与所测抗原的浓度可成比例。亦可将氧化剂(如碱性磷酸酶等)或催化剂标记于抗原或 抗体上,当抗原抗体反应结束后分离多余的标记物,再与发光底物反应,其产生的光量子的强度也与待测抗原的浓度成比例。发光免疫分析的灵敏度高于包括RIA 在内的传统检测方法,检测范围宽,测试时间短,仅需30 - 60min 即可。试

化学发光免疫分析技术及其应用研究进展

化学发光免疫分析技术及其应用研究进展 发表时间:2014-12-16T16:00:48.107Z 来源:《科学与技术》2014年第10期下供稿作者:岳伦 [导读] 通过对化学发光免疫分析技术及其应用的相关研究,我们可以发现,该项技术的良好效果已经被普遍应用在临床检验与检测当中岳伦 重庆热展建筑工程咨询服务中心重庆 400012 【摘要】本文首先介绍了化学发光免疫分析技术的基本原理,分析了其基本装置。在探讨化学发光免疫分析技术在临床检验中应用的基础上,研究了其应用进展。 【关键词】化学发光;免疫分析技术;应用;研究进展 一、前言 作为一项效果较为理想的分析技术,化学发光免疫分析技术近期得到了长足的发展。研究该项技术的应用进展情况,能够更好地把握其运用动态,以更好地指导该项技术的实际应用。本文从介绍该项技术的基本原理着手本课题的研究。 二、化学发光免疫分析技术的基本原理 化学发光免疫分析技术是由免疫分析和化学发光分析两个系统构成的。其中免疫分析是用标记物直接标记在抗原或抗体之上的,然后再经过抗原与抗体反应生成抗体免疫复合物,其中标记物可以是化学发光物质,也可以是某种酶。化学发光免疫分析系统是在免疫反应结束后,加入氧化剂或酶的发光底物,待发光物质氧化后就会形成一个处于激发态的中间体,会发射光子释放能量以回到稳定的基态,发光强度可以利用发光信号测量仪器进行检测,其中被测物的含量就是根据化学发光标记物与发光强度的关系利用标准曲线计算出来的。 化学发光的原理是指分子或原子中的电子吸收能量后,发生能级跃迁而释放光子的过程,能级跃迁过程是电子从基态到激发态的过程,实现了从较低能级向较高能级的跃迁。其中可以根据形成激发态分子的能量来源不同将发光过程分为化学发光、光照发光和生物发光。 化学发光又可分为直接化学发光和间接化学发光,若参加反应的物质是一个反应产物分子,且被激发到能发射光的电子激发态,那么这就是直接化学发光过程。若参加反应的物质激发能传递到另一个未参加化学反应的分子D上,使D分子激发到电子激发态,D分子从激发态回到基态时发光,这种过程叫间接化学发光。 三、化学发光免疫分析的基本装置 1.电极材料的选择与制备 化学发光检测的基本模式决定了其在免疫传感中必须使用特定的光电活性电极。而免疫探针分子则在这种电极表面固定,随后的免疫识别反应也在该表面发生,所以光电活性材料的选择和制备与免疫传感的检测性能密切相关。理想的光电活性电极应该具有较低的电子空穴复合率,以便获得稳定的光电流密度。一般而言,在化学发光免疫传感中,光电活性电极的选择主要取决于所设计的检测路径与传感过程。常用的电极有整体电极和氧化铟锡(ITO)修饰电极。整体电极如二氧化钛纳米管阵列电极,ITO修饰电极则由ITO基底和光电修饰材料两部分构成。 2.免疫探针分子的固定 电极制备好后,免疫探针分子的固定是传感器制备中重要的一步,直接决定着传感器性能的优劣。原则上,电化学免疫传感器中可以使用的固定方法都可以用于化学发光传感。但因后者使用的电极材料有所不同,所以具体采用的固定方法往往和电极材料的种类以及实验的设计有关。另外,为了保证探针分子的准确定位与吸附以使探针分子在固定后保持较高的活性和稳定性并形成具有适宜厚度、密度、多孔性的敏感膜,同时为了避免非特异性吸附和结合的干扰,在固定这一步骤中需对电极的表面化学性质进行严格控制,因此需要对实验条件进行多重优化以便确定最佳条件。 四、化学发光免疫分析技术在临床检验中的应用 1.激素分析 所谓的激素,其实就是内分泌腺或者内分泌细胞所分泌出来的活性物质,是细胞之间进行信息传递的一种化学媒介。各种激素通过化学发光面积分析技术进行测定,然后由化学发光面积分析技术提供各种检测数据,化学发光面积分析技术检测能够为临床治疗、诊断,以及预后等提供相关数据,且数据可靠性非常高,将检测的灵敏度与特异性大大地提高了。 2.对肿瘤标志物的分析 所谓的肿瘤标志物,其实是肿瘤在增殖的过程中,有肿瘤相关细胞的合成与释放,或者是机体与该细胞产生反应后,生成的一种物质,如激素、蛋白质、酶以及癌基因等。在患者的体液、血液以及细胞与组织中都存在肿瘤标志物。化学发光面积分析技术对肿瘤患者(良性及恶性肿瘤)在早期进行辅助诊断,并且对术后进行监测,同时,它还能用于对新肿瘤标志物的寻找。相关检测人员对血清中的相关抗原及cyfra21-1的浓度进行了检测,结果显示,对于食管癌患者的诊断,以及对预后的监测,它们能够达到相关标准。相关检测人员对肝病中,细胞色素的含量进行了检测,结果显示,作为肝衰竭病症的新标志物,细胞色素C达标。 3.病原诊断 对于乙型肝炎病症,其病毒表面的抗原与抗体是在感染后,对免疫功能及治疗效果的评价指标是血清标志物。如果应用常规的酶检测法,很有可能会漏检一些病毒携带量少的患者。而化学发光面积分析技术的灵敏度以及线性范围比酶法更高。相关检测人员对容易感染相关病毒的围产期儿童体内的相关病毒进行了检测,结果显示,化学发光面积分析技术检测法比常规酶法的灵敏度更高。 五、化学发光免疫分析技术的应用进展 1.检测细菌及病毒细胞的是一切生命活动的基本组成单位,人体就是由千千万万的细胞集合而成,每个细胞就是一个独立的小生命,而控制着细胞的核心物质就是核酸,核酸是遗传物质基础,具有贮存、传递和表达遗传信息的功能。因此对标本中的核酸进行定量检测,对于临床准确、及时的诊断疾病,监测治疗效果是十分必要的。传统采用普通的细菌培养方法往往存在培养时间过长等诸多缺陷,因此,现在很多实验室都在寻求快速、灵敏的检测方法。研究表明用放大核酸序列分析的方法对食物中沙门杆菌进行检测,结果表明,应用化学

数学建模主成分分析方法

主 成分分析方法 地理环境是多要素的复杂系统,在我们进行地理系统分析时,多变量问题是经常会遇到的。变量太多,无疑会增加分析问题的难度与复杂性,而且在许多实际问题中,多个变量之间是具有一定的相关关系的。因此,我们就会很自然地想到,能否在各个变量之间相关关系研究的基础上,用较少的新变量代替原来较多的变量,而且使这些较少的新变量尽可能多地保留原来较多的变量所反映的信息事实上,这种想法是可以实现的,这里介绍的主成分分析方法就是综合处理这种问题的一种强有力的方法。 一、主成分分析的基本原理 主成分分析是把原来多个变量化为少数几个综合指标的一种统计分析方法,从数学角度来看,这是一种降维处理技术。假定有n个地理样本,每个样本共有p个变量描述,这样就构成了一个n×p阶的地理数据矩阵:

111212122212p p n n np x x x x x x X x x x ???=????L L L L L L L (1) 如何从这么多变量的数据中抓住地理事物的内在规律性呢要解决这一问题,自然要在p 维空间中加以考察,这是比较麻烦的。为了克服这一困难,就需要进行降维处理,即用较少的几个综合指标来代替原来较多的变量指标,而且使这些较少的综合指标既能尽量多地反映原来较多指标所反映的信息,同时它们之间又是彼此独立的。那么,这些综合指标(即新变量)应如何选取呢显然,其最简单的形式就是取原来变量指标的线性组合,适当调整组合系数,使新的变量指标之间相互独立且代表性最好。 如果记原来的变量指标为x 1,x 2,…,x p ,它们的综合指标——新变量指标为z 1,z 2,…,zm (m≤p)。则 11111221221122221122,,......................................... ,p p p p m m m mp p z l x l x l x z l x l x l x z l x l x l x =+++??=+++????=+++?L L L (2)

免疫分析技术研究进展

免疫分析技术研究进展 摘要:目的:综述免疫分析技术的最新研究进展。方法:通过查阅国内外有关免疫分析技术的研究论文,对放射免疫分析(RIA)、酶免疫分析(EIA)、荧光免疫分析(FIA)、化学发光免疫分析(CLIA)等免疫分析技术进行了综述,同时指出了发展前景和尚待解决的问题。结果:多种免疫分析方法相互结合,可大大提高分析方法的灵敏度,增大检测范围;CLIA和TRFIA是非放射免疫分析的两大主流,其中,CLIA更具有竞争力。结论:目前还没有一种免疫分析技术是完美无缺的,各种技术还需要不断发展和完善,以开发出更新、更理想的免疫分析技术。 关键词:药物分析学;免疫分析;放射免疫分析;酶免疫分析;荧光免疫分析;化学发光免疫分析 免疫分析法(immunoassay ,IA)是基于抗原和抗体特征性反应的一种技术。由于免疫分析试剂在免疫反应中所体现出的独特的选择性和极低的检测限,使这种分析手段在临床、生物制药和环境化学等领域得到广泛应用。各种标记技术(放射性标记、荧光标记、化学发光、酶标记等)的发展,使免疫分析的选择性更加突出。免疫分析法起始于本世纪50年代,首先应用于体液大分子物质的分析,1960年,美国学者Yalow和Berson等将放射性同位素示踪技术和免疫反应结合起来测定糖尿病人血浆中的胰岛素浓度,开创了放射免疫分析方法的先河。1968年,Oliver将地高辛同牛血清白蛋白结合,使之成为人工抗原,免疫动物后成功获得了抗地高辛抗体,从而开辟了用免疫分析法测定小分子药物的新领域。在RIA的基础上,随着新的标记物质的发现及新的标记方法的使用,以及电子计算机、自动控制技术的广泛应用,派生出许多新的检测技术[1],使免疫分析法逐渐发展成为一门新型的独立学科。 1 免疫分析方法分类 (1)根据标记物的不同,可以免疫分析主要分为放射免疫分析(radioimmunoassay,RIA)、酶免疫分析(enzyme immuoassay,EIA)、化学发光免疫分析(chemiluminescent immunoassay,CLIA)、荧光免疫分析法(fluorescence immunoassay,FIA)等。 (2)按反应机制的不同,可以分为竞争法和非竞争法。非竞争法是将待测抗原与足够的标记抗体充分反应形成抗原-标记抗体复合物,产生的信号强度与抗原的量成正比。竞争法是将过量的待测抗原与定量标记抗原竞争结合形成定量的特异性抗体,待测抗原的量越大,与抗体结合的标记抗原量越少,产生的信号强度越小,由此定量待测抗原的量。 (3)还可以按测定过程中的某些步骤的差异分为均相免疫分析和非均相免疫分析两大类。均相酶免疫测定法的特点是抗原-抗体反应达到平衡,对结合与游

化学发光免疫分析技术及其应用研究进展 蒋恩彬

化学发光免疫分析技术及其应用研究进展蒋恩彬 发表时间:2014-12-25T08:59:42.297Z 来源:《防护工程》2014年第9期供稿作者:蒋恩彬 [导读] 由于化学发光免疫分析技术具有灵敏度高、适用范围广泛等特点,所以受到了人们的认可。 蒋恩彬 重庆热展建筑工程咨询服务中心重庆 400012 [摘要]本文主要对化学发光免疫分析技术及其应用研究进展进行了分析,首先对化学发光免疫分析技术的相关概念进行了分析;然后从临床检验和兽医学应用化学发光免疫分析技术进行了分析;最后对化学发光免疫分析技术进行了新进展研究,希望对有关人士有所帮助。 [关键词]化学发光免疫分析、临床检验、兽医学 一、前言 由于化学发光免疫分析技术具有灵敏度高、适用范围广泛等特点,所以受到了人们的认可,在医学、药品等众多领域得到广泛的应用。同时化学发光免疫分析主要利用了化学发光测定技术和免疫反应,化学发光测定技术传统的免疫分析,需要的培育时间比较长。 二、化学发光免疫技术的工作原理 1、检测器的检测原理 化学反应的检测过程中,一些化学基团在处于被氧化状态之后,会形成一个激发态,在回归至基态的过程中,会发射出光子,实质上就是免疫反应与化学反应有机结合在一起之后形成的一种分析方法,即微量倍增技术。微量倍增技术在临床检验中的应用,主要是通过粒径比较小的颗粒磁粉增大复合物表面的面积,提升复合物的吸附量,加强表面能,以此加快反应速度。 2、基本原理 化学发光免疫技术,反应过程主要包括两类,即化学发光反应与免疫反应。化学发光免疫技术的工作原理,主要是在抗体或者抗原上对化学发光物质或者其它一系列处于发光状态的酶标记物进行标记,使其产生免疫反应,使抗体与抗原能够特异性结合,产生一种复合物,然后在该复合物中加入发光底物或者氧化剂,使复合物可以发光。根据待测物质具备的浓度与仪器监测中获取的发光强度之间存在的线性关系,实现浓度的合理测定。 三、化学发光免疫分析的分类 化学发光免疫分析根据应用于免疫分析体系中的方式不同,可以分为以下三类: 1、直接标记发光物质的免疫分析这种分析方式是用吖啶酯直接标记抗体,作为抗原,然后与待测标本中相应抗体发生免疫反应,就会形成固相包被抗体一待测抗原一吖啶酯标记抗体复合物,到这一步后再加入双氧水氧化剂,这样环境就会呈碱性,吖啶酯就会在不需要催化剂的情况下分解、发光。 2、酶催化化学发光免疫分析标本中的抗原在发生免疫反应时所用的标记物为发光的酶,这种化学发光免疫分析方法是酶催化化学发光免疫分析。 3、电化学发光免疫分析,这种分析过程包括电化学和化学发光两个过程,具体是以三丙胺(TPA)为电子供体,用电化学发光剂三联吡啶钌标记抗体(抗原),在电场中因电子转移而发生特异性化学发光反应。 四、化学发光免疫分析技术的应用 1、化学发光免疫分析在临床检验中的应用 就目前而言,化学发光免疫分析技术已经成为替代RIA的首选技术,且已经被广泛地应用于基础和临床医学的各个领域。下面就简要地谈谈化学发光免疫分析技术在临床检验中的几个应用。 (1)应用于传染性疾病的病原诊断作为评价和治疗机体免疫功能重要指标的重要血清学标志物乙型肝炎病毒表面抗原、抗体,以前诊断是否感染乙肝病毒用的是常规酶法,常规酶法的缺陷是可能使得部分低病毒含量携带者漏检。但是化学发光免疫分析具有高灵敏度和线性范围宽的特点,在传染性疾病的病原诊断方面其检测灵敏度比常规酶法高,Bowser等在测定感染人类免疫缺陷病毒的围产期儿童体内的单纯疱疹病毒、乙型肝炎病毒甲型肝炎病毒、及丙型肝炎病毒时给出了证明。 (2)应用于肿瘤标志物的分析肿瘤标志物包括蛋白质、酶、癌基因产物、激素等,它是由肿瘤细胞合成释放或机体对肿瘤细胞反应而产生的一类物质。在患者的细胞中,血液中以及组织中都存在肿瘤标志物。化学发光免疫分析可以用于寻找新的肿瘤标志物,也可以进行体外早期辅助诊断和对术后的监测,对恶性肿瘤患者的具有重要意义。Mac等达到了对食管癌患者的诊断和病情监测,他们采用的方法就是检测血清中癌胚抗原的浓度、cyfra21-1的浓度、鳞状细胞癌抗原的浓度。 (3)应用于心脏疾病的特征标记物测定临床上的心脏疾病常常采用同工酶定量测定,标记物为肌酸激酶和肌钙蛋白T\肌红蛋白。Dutra等运用心肌肌钙蛋白受体分子制成了免疫传感器,可用于临床上早期检测心肌梗死。有关资料显示,同时检测了肌酸激酶同工酶和肌红蛋白,相关系数分别为cTnT0.953-0.982;CK—MB0.835-0.999;肌红蛋白0.776-0.992,具有很好的相关性可用于检测临床标本。 2、化学发光免疫分析技术在兽医学中的应用 化学发光免疫分析技术在兽医学中的应用还处于早期阶段,因此没有得到较多的应用。主要原因则是化学发光免疫分析技术在兽医学的应用中会跨越化学、兽医以及生物学科方面的知识,而这样加大了化学发光免疫分析技术的应用难度,因此没有在兽医学中得到较多的应用。但是化学发光免疫分析技术仍然是兽医学中一项疾病快速检测的方法,即通过化学发光免疫分析技术可以精准快速的判定动物所发生疾病的原因,而且通过这项技术的运用还可以监测动物体内的疾病发生概率。化学发光免疫分析技术在我国没有较多的应用到兽医学中,而且技术也没有国外先进,这进一步制约了化学发光免疫分析技术在我国的应用。国外化学发光免疫分析技术在兽医学中的应用较多,比如国外利用化学发光免疫分析技术来进行动物肠道病毒检测试验、猪肉中沙门菌抗体检测以及评价胰岛素浓度对奶牛繁殖性能的影响,并且取得了较好的成果。 五、化学发光免疫分析技术的新研究进展 化学发光免疫分析技术运用的重点就是检测内部微观化学反应的情况,而为了达到更好的检测效果就需要发光物质发光时间更加持久发光更加明亮,而这可以通过标记新的标记物来得以实现。各国科学家都致力于研究标记物的发光时间以及发光强度,标记物发光需要特定酶的催化,这需要科学家通过长时间的实践才能够证明哪一种标记物在哪一种酶的催化下才能够达到长时间的发光以及高强度的发光,

主成分分析法的原理应用及计算步骤..

一、概述 在处理信息时,当两个变量之间有一定相关关系时,可以解释为这两个变量反映此课题的信息有一定的重叠,例如,高校科研状况评价中的立项课题数与项目经费、经费支出等之间会存在较高的相关性;学生综合评价研究中的专业基础课成绩与专业课成绩、获奖学金次数等之间也会存在较高的相关性。而变量之间信息的高度重叠和高度相关会给统计方法的应用带来许多障碍。 为了解决这些问题,最简单和最直接的解决方案是削减变量的个数,但这必然又会导致信息丢失和信息不完整等问题的产生。为此,人们希望探索一种更为有效的解决方法,它既能大大减少参与数据建模的变量个数,同时也不会造成信息的大量丢失。主成分分析正式这样一种能够有效降低变量维数,并已得到广泛应用的分析方法。 主成分分析以最少的信息丢失为前提,将众多的原有变量综合成较少几个综合指标,通常综合指标(主成分)有以下几个特点: ↓主成分个数远远少于原有变量的个数 原有变量综合成少数几个因子之后,因子将可以替代原有变量参与数据建模,这将大大减少分析过程中的计算工作量。 ↓主成分能够反映原有变量的绝大部分信息 因子并不是原有变量的简单取舍,而是原有变量重组后的结果,因此不会造成原有变量信息的大量丢失,并能够代表原有变量的绝大部分信息。 ↓主成分之间应该互不相关 通过主成分分析得出的新的综合指标(主成分)之间互不相关,因子参与数据建模能够有效地解决变量信息重叠、多重共线性等给分析应用带来的诸多问题。 ↓主成分具有命名解释性 总之,主成分分析法是研究如何以最少的信息丢失将众多原有变量浓缩成少数几个因子,如何使因子具有一定的命名解释性的多元统计分析方法。 二、基本原理 主成分分析是数学上对数据降维的一种方法。其基本思想是设法将原来众多的具有一定相关性的指标X1,X2,…,XP (比如p 个指标),重新组合成一组较少个数的互不相关的综合指标Fm 来代替原来指标。那么综合指标应该如何去提取,使其既能最大程度的反映原变量Xp 所代表的信息,又能保证新指标之间保持相互无关(信息不重叠)。 设F1表示原变量的第一个线性组合所形成的主成分指标,即 11112121...p p F a X a X a X =+++,由数学知识可知,每一个主成分所提取的信息量可 用其方差来度量,其方差Var(F1)越大,表示F1包含的信息越多。常常希望第一主成分F1所含的信息量最大,因此在所有的线性组合中选取的F1应该是X1,X2,…,XP 的所有线性组合中方差最大的,故称F1为第一主成分。如果第一主成分不足以代表原来p 个指标的信息,再考虑选取第二个主成分指标F2,为有效地反映原信息,F1已有的信息就不需要再出现在F2中,即F2与F1要保持独立、不相关,用数学语言表达就是其协方差Cov(F1, F2)=0,所以F2是与F1不

主成分分析原理

主成分分析原理 (一)教学目的 通过本章的学习,对主成分分析从总体上有一个清晰地认识,理解主成分分析的基本思想和数学模型,掌握用主成分分析方法解决实际问题的能力。 (二)基本要求 了解主成分分析的基本思想,几何解释,理解主成分分析的数学模型,掌握主成分分析方法的主要步骤。 (三)教学要点 1、主成分分析基本思想,数学模型,几何解释 2、主成分分析的计算步骤及应用 (四)教学时数 3课时 (五)教学内容 1、主成分分析的原理及模型 2、主成分的导出及主成分分析步骤 在实际问题中,我们经常会遇到研究多个变量的问题,而且在多数情况下,多个变量之间常常存在一定的相关性。由于变量个数较多再加上变量之间的相关性,势必增加了分析问题的复杂性。如何从多个变量中综合为少数几个代表性变量,既能够代表原始变量的绝大多数信息,又互不相关,并且在新的综合变量基础上,可以进一步的统计分析,这时就需要进行主成分分析。 第一节主成分分析的原理及模型 一、主成分分析的基本思想与数学模型 (一)主成分分析的基本思想 主成分分析是采取一种数学降维的方法,找出几个综合变量来代替原来众多的变量,使这些综合变量能尽可能地代表原来变量的信息量,而且彼此之间互不相关。这种将把多个变量化为少数几个互相无关的综合变量的统计分析方法就叫做主成分分析或主分量分析。

主成分分析所要做的就是设法将原来众多具有一定相关性的变量,重新组合为一组新的相互无关的综合变量来代替原来变量。通常,数学上的处理方法就是将原来的变量做线性组合,作为新的综合变量,但是这种组合如果不加以限制,则可以有很多,应该如何选择呢?如果将选取的第一个线性组合即第一个综合变量记为1F ,自然希望它尽可能多地反映原来变量的信息,这里“信息”用方差来测量,即希望)(1F Var 越大,表示1F 包含的信息越多。因此在所有的线性组合中所选取的1F 应该是方差最大的,故称1F 为第一主成分。如果第一主成分不足以代表原来p 个变量的信息,再考虑选取2F 即第二个线性组合,为了有效地反映原来信息,1F 已有的信息就不需要再出现在2F 中,用数学语言表达就是要求0),(21=F F Cov ,称2F 为第二主成分,依此类推可以构造出第三、四……第p 个主成分。 (二)主成分分析的数学模型 对于一个样本资料,观测p 个变量p x x x ,,21,n 个样品的数据资料阵为: ?? ? ? ? ? ? ??=np n n p p x x x x x x x x x X 2 1 22221 11211 ()p x x x ,,21= 其中:p j x x x x nj j j j ,2,1, 21=???? ?? ? ??= 主成分分析就是将 p 个观测变量综合成为p 个新的变量(综合变量),即 ?? ???? ?+++=+++=+++=p pp p p p p p p p x a x a x a F x a x a x a F x a x a x a F 22112222121212121111 简写为: p jp j j j x x x F ααα+++= 2211 p j ,,2,1 = 要求模型满足以下条件:

主成分分析法PCA的原理

主成分分析法原理简介 1.什么是主成分分析法 主成分分析也称主分量分析,是揭示大样本、多变量数据或样本之间内在关系的一种方法,旨在利用降维的思想,把多指标转化为少数几个综合指标,降低观测空间的维数,以获取最主要的信息。 在统计学中,主成分分析(principal components analysis, PCA)是一种简化数据集的技术。它是一个线性变换。这个变换把数据变换到一个新的坐标系统中,使得任何数据投影的第一大方差在第一个坐标(称为第一主成分)上,第二大方差在第二个坐标(第二主成分)上,依次类推。主成分分析经常用减少数据集的维数,同时保持数据集的对方差贡献最大的特征。这是通过保留低阶主成分,忽略高阶主成分做到的。这样低阶成分往往能够保留住数据的最重要方面。但是,这也不是一定的,要视具体应用而定。 2.主成分分析的基本思想 在实证问题研究中,为了全面、系统地分析问题,我们必须考虑众多影响因素。这些涉及的因素一般称为指标,在多元统计分析中也称为变量。因为每个变量都在不同程度上反映了所研究问题的某些信息,并且指标之间彼此有一定的相关性,因而所得的统计数据反映的信息在一定程度上有重叠。在用统计方法研究多变量问题时,变量太多会增加计算量和增加分析问题的复杂性,人们希望在进行定量分析的过程中,涉及的变量较少,得到的信息量较多。主成分分析正是适应这一要求产生的,是解决这类题的理想工具。 对同一个体进行多项观察时必定涉及多个随机变量X1,X2,…,X p,它们之间都存在着相关性,一时难以综合。这时就需要借助主成分分析来概括诸多信息的主要方面。我们希望有一个或几个较好的综合指标来概括信息,而且希望综合指标互相独立地各代表某一方面的性质。

主成分分析法的步骤和原理 (1)

(一)主成分分析法的基本思想 主成分分析(Principal Component Analysis )是利用降维的思想,将多个变量转化为少数几个综合变量(即主成分),其中每个主成分都是原始变量的线性组合,各主成分之间互不相关,从而这些主成分能够反映始变量的绝大部分信息,且所含的信息互不重叠。[2] 采用这种方法可以克服单一的财务指标不能真实反映公司的财务情况的缺点,引进多方面的财务指标,但又将复杂因素归结为几个主成分,使得复杂问题得以简化,同时得到更为科学、准确的财务信息。 (二)主成分分析法代数模型 假设用p 个变量来描述研究对象,分别用X 1,X 2…X p 来表示,这p 个变量构成的p 维随机向量为X=(X 1,X 2…X p )t 。设随机向量X 的均值为μ,协方差矩阵为Σ。对X 进行线性变化,考虑原始变量的线性组合: Z 1=μ11X 1+μ12X 2+…μ1p X p Z 2=μ21X 1+μ22X 2+…μ2p X p …… …… …… Z p =μp1X 1+μp2X 2+…μpp X p 主成分是不相关的线性组合Z 1,Z 2……Z p ,并且Z 1是X 1,X 2…X p 的线性组合中方差最大者,Z 2是与Z 1不相关的线性组合中方差最大者,…,Z p 是与Z 1,Z 2 ……Z p-1都不相关的线性组合中方差最大者。 (三)主成分分析法基本步骤 第一步:设估计样本数为n ,选取的财务指标数为p ,则由估计样本的原始数据可得矩阵X=(x ij )m ×p ,其中x ij 表示第i 家上市公司的第j 项财务指标数据。 第二步:为了消除各项财务指标之间在量纲化和数量级上的差别,对指标数据进行标准化,得到标准化矩阵(系统自动生成)。 第三步:根据标准化数据矩阵建立协方差矩阵R ,是反映标准化后的数据之间相关关系密切程度的统计指标,值越大,说明有必要对数据进行主成分分析。其中,R ij (i ,j=1,2,…,p )为原始变量X i 与X j 的相关系数。R 为实对称矩阵 (即R ij =R ji ),只需计算其上三角元素或下三角元素即可,其计算公式为: 2211)()() ()(j kj n k i kj j kj n k i kj ij X X X X X X X X R -=--=-=∑∑ 第四步:根据协方差矩阵R 求出特征值、主成分贡献率和累计方差贡献率,确定主成分个数。解特征方程0=-R E λ,求出特征值λi (i=1,2,…,p )。 因为R 是正定矩阵,所以其特征值λi 都为正数,将其按大小顺序排列,即λ1≥λ2≥…≥λi ≥0。特征值是各主成分的方差,它的大小反映了各个主成分的影响力。主成分Z i 的贡献率W i =∑=p j j j 1λλ,累计贡献率为

常用免疫学检验技术的基本原理

常用免疫学检验技术的基本原理 免疫学检测即是根据抗原、抗体反应的原理,利用已知的抗原检测未知的抗体或利用已知的抗体检测未知的抗原。由于外源性和内源性抗原均可通过不同的抗原递呈途径诱导生物机体的免疫应答,在生物体内产生特异性和非特异性T 细胞的克隆扩增,并分泌特异性的免疫球蛋白(抗体)。由于抗体-抗原的结合具有特异性和专一性的特点,这种检测可以定性、定位和定量地检测某一特异的蛋白(抗原或抗体)。免疫学检测技术的用途非常广泛,它们可用于各种疾病的诊断、疗效评价及发病机制的研究。 最初的免疫检测方法是将抗原或抗体的一方或双方在某种介质中进行扩散,通过观察抗原-抗体相遇时产生的沉淀反应,检测抗原或抗体,最终达到诊断的目的。这种扩散可以是蛋白的自然扩散,例如环状沉淀试验、单向免疫扩散试验、双向免疫扩散实验。单向免疫扩散试验就是在凝胶中混入抗体,制成含有抗体的凝胶板,而将抗原加入凝胶板预先打好的小孔内,让抗原从小孔向四周的凝胶自然扩散,当一定浓度的抗原和凝胶中的抗体相遇时便能形成免疫复合物,出现以小孔为中心的圆形沉淀圈,沉淀圈的直径与加入的抗原浓度成正比。 利用蛋白在不同酸碱度下带不同电荷的特性,可以利用人为的电场将抗原、抗体扩散,例如免疫电泳试验和双向免疫电泳。免疫电泳首先将抗原加入凝胶中电泳,将抗原各成分依次分散开。然后沿电泳方向平行挖一直线形槽,于槽内加入含有针对各种抗原的混合抗体,让各抗原成分与相应抗体进行自然扩散,形成沉淀线。然后利用标准的抗原-抗体沉淀线进行抗原蛋白(或抗体)的鉴别。上述的方法都是利用肉眼观察抗原-抗体反应产生的沉淀,因此灵敏度有很大的局限。比浊法引入沉淀检测产生的免疫比浊法就是利用浊度计测量液体中抗原-抗体反应产生的浊度,根据标准曲线来计算抗原(或抗体)的含量。该方法不但大大提高了检测的灵敏度,且可对抗原、抗体进行定量的检测。

主成分分析原理

第七章主成分分析 (一)教学目的 通过本章的学习,对主成分分析从总体上有一个清晰地认识,理解主成分分析的基本思想和数学模型,掌握用主成分分析方法解决实际问题的能力。 (二)基本要求 了解主成分分析的基本思想,几何解释,理解主成分分析的数学模型,掌握主成分分析方法的主要步骤。 (三)教学要点 1、主成分分析基本思想,数学模型,几何解释 2、主成分分析的计算步骤及应用 (四)教学时数 3课时 (五)教学内容 1、主成分分析的原理及模型 2、主成分的导出及主成分分析步骤 在实际问题中,我们经常会遇到研究多个变量的问题,而且在多数情况下,多个变量之间常常存在一定的相关性。由于变量个数较多再加上变量之间的相关性,势必增加了分析问题的复杂性。如何从多个变量中综合为少数几个代表性变量,既能够代表原始变量的绝大多数信息,又互不相关,并且在新的综合变量基础上,可以进一步的统计分析,这时就需要进行主成分分析。 第一节主成分分析的原理及模型 一、主成分分析的基本思想与数学模型 (一)主成分分析的基本思想 主成分分析是采取一种数学降维的方法,找出几个综合变量来代替原来众多的变量,使这些综合变量能尽可能地代表原来变量的信息量,而且彼此之间互不相关。这种将把多个变量化为少数几个互相无关的综合变量的统计分析方法就叫做主成分分析或主分量分析。

主成分分析所要做的就是设法将原来众多具有一定相关性的变量,重新组合为一组新的相互无关的综合变量来代替原来变量。通常,数学上的处理方法就是将原来的变量做线性组合,作为新的综合变量,但是这种组合如果不加以限制,则可以有很多,应该如何选择呢?如果将选取的第一个线性组合即第一个综合变量记为1F ,自然希望它尽可能多地反映原来变量的信息,这里“信息”用方差来测量,即希望)(1F Var 越大,表示1F 包含的信息越多。因此在所有的线性组合中所选取的1F 应该是方差最大的,故称1F 为第一主成分。如果第一主成分不足以代表原来p 个变量的信息,再考虑选取2F 即第二个线性组合,为了有效地反映原来信息,1F 已有的信息就不需要再出现在2F 中,用数学语言表达就是要求0),(21=F F Cov ,称2F 为第二主成分,依此类推可以构造出第三、四……第p 个主成分。 (二)主成分分析的数学模型 对于一个样本资料,观测p 个变量p x x x ,,21,n 个样品的数据资料阵为: ??????? ??=np n n p p x x x x x x x x x X 21 222 21112 11()p x x x ,,21= 其中:p j x x x x nj j j j ,2,1,21=?????? ? ??= 主成分分析就是将p 个观测变量综合成为p 个新的变量(综合变量),即 ???????+++=+++=+++=p pp p p p p p p p x a x a x a F x a x a x a F x a x a x a F 22112222121212121111 简写为: p jp j j j x x x F ααα+++= 2211 p j ,,2,1 = 要求模型满足以下条件:

免疫学检验技术的研究进展

2011年2月第49卷第6期 免疫学检验技术的研究进展 贺天辉 (贵州省德江县民族中医院检验科,贵州德江565200) [摘要]免疫学检验技术在临床医学和科研分析中占有重要作用,其发展也会为其他医学学科提供理论依据和技术支持。本 文主要综述目前免疫学检验技术的应用及研究状况。 [关键词]免疫学检验技术;荧光素标记;酶标记 [中图分类号]R392.33[文献标识码]A[文章编号]1673-9701(2011)06-14-02 现代免疫学检验技术源于标记技术在免疫学中的应用。科技的进步推动免疫检验技术的迅速发展,正从单一的免疫诊断技术向单细胞、多基因、微量化等方面发展。而哮喘、器官和骨髓移植、自身免疫性疾病、变态反应、淋巴细胞和浆细胞的恶性肿瘤以及继发性和原发性免疫缺陷的临床诊断都客观要求免疫学检验技术更加精确,并且能够定量评价临床治疗的有效性。 1研究进展 1.1荧光素标记抗体技术 1.1.1流式细胞免疫荧光分析技术流式荧光免疫微球分析技术是建立在免疫荧光、免疫微球和流式细胞分析等实验技术基础上的一种新的血清学实验方法。利用荧光对抗体进行染色可以获得所需信息的原理而研制的流式细胞仪,具有激光技术、电子计算机技术和单克隆抗体技术特点,主要用于细胞表型、细胞内及核膜成分、DNA含量等领域的分析。它具有在同一试管中同步检测多种靶物质的潜在特征,受到许多临床检验学者的关注。迄今尚未进入临床应用。 1.1.2四聚体分析技术该技术利用T细胞表面的TCR可与构建的四聚体的表位肽相互作用而精确识别,从而可以高亲和力结合,进而达到检验抗原特异性T细胞的作用[1]。在此分析技术上衍生的检验方法主要有M HC-肽四聚体流式细胞技术、原位M HC-肽四聚体染色法、M HC-肽四聚体磁分离技术、M HC-肽四聚体ELISA技术、M HC-肽四聚体分子微阵列技术等,主要用于肿瘤抗原特异性T细胞、病毒等的检验。 1.1.3间接免疫荧光技术用作细胞内抗原定位或相应抗体检测的对照标准,主要用于抗病原体、抗核抗体、抗平滑肌抗体等以及其他呼吸道病原体抗体的检测等。可降低手工操作的误差以及提高标准化检测和自动化程度。该技术比较成熟,已经可以进行商品开发。 1.2酶标记免疫检验技术 1.2.1酶联免疫吸附试验技术理论上只要是某一抗原纯品或相应的抗体,都可以用酶联免疫技术进行检测,因此,可溶性抗原、抗体系统都可以用该技术进行检测,广泛应用于各种微量蛋白(例如细胞因子、小分子激素、肿瘤标志物等)和血源病原体(抗原和抗体)。酶联免疫吸附试验技术(ELISA)以免疫过氧化物技术为基础,敏感性高,特异性强,操作简便,易于观察,便于大规模检查。已经用于临床应用。1.2.2酶联免疫斑点技术酶联免疫斑点技术是一种用于测定B细胞分泌免疫球蛋白、T细胞分泌细胞因子功能的分析技术,是定量酶联免疫吸附试验技术的发展和延伸。 酶联免疫斑点技术的原理是在微孔培养板底部植入抗CK 或Ig的特异性单克隆抗体。待检测样本进入微孔板内培养时,在有丝分裂原或者特异性抗原的作用下,活化记忆型T细胞或B 细胞,产生CK或Ig。细胞下方的固相单克隆抗体就会捕获CK 或Ig物质。细胞被清洗后,加入生物素化的第二抗体,抗体和CK 或Ig物质结合后,再加以酶做标记的生物素或亲和素反应,以酶底物显色,阳性细胞就可形成直径约50~200μm大小不等的圆形着色斑点[2],每一个斑点对应分泌CK或Ig的一个细胞,而特定阳性T、B细胞族群的产生则可以通过斑点直径的大小可以直接反映。酶联免疫斑点技术既可用于分泌抗体的B细胞,也可用于分泌各类CK的T细胞。酶联免疫斑点技术也是T细胞功能检测的标准技术,具有较高的检测灵敏度[3]。 1.3新型标记免疫检验技术 1.3.1元素标记免疫检验技术元素标记免疫检验技术中的标记元素主要有镧系元素(Eu3+,Tb3+,Sm3+)和钌元素(Ru),其检验技术分别是分辨荧光免疫分析技术和电化学发光免疫分析技术。前者可以应用在两种指标的同时测定[4],后者可以在电场作用下反复被激发而使信号得以放大。 1.3.2核酸标记免疫检验技术其设计原理是核酸的扩增或转录翻译[5],扩增是DNA通过聚合酶链反应在较短的时间内按几何级数扩增,可以达到数百万倍;而转录翻译则是通过标记的抗体DNA与抗原反应后进行胞外转录翻译成相应的酶进行测定。这两种方法的检测都有较大的灵敏性,但还处在研究阶段。 1.3.3量子点标记免疫检验技术在传统的标记免疫分析技术中,放射免疫分析存在污染,酶免疫分析灵敏度较低,发光免疫分析和荧光免疫分析发光时间短,容易淬灭。早在20世纪70年代就引起科学家重视的量子点由于良好的光电性能重新引起了人们的广泛关注,开始在标记免疫分析中初步应用,并取得了令人满意的效果。量子尺寸很小,电子和孔穴被量子陷域,连续能带变成分立能级结构,能够接受激发产生荧光,因此它实际上是一种探针。目前应用较多的是Ⅱ~Ⅵ族或Ⅲ~V族元素组成的纳米微粒。研究较多的主要集中在CdX(X=S、Se、Te),粒径范围为2~20nm,还有一些复合结构以及多层结构。在免疫示踪定位、生物多组分同时测定、细胞成像及疾病早期诊断中具有较广泛的应用价值[6-8]。 ·综述· 14中国现代医生CHINA MODERN DOCTOR

相关主题
文本预览
相关文档 最新文档