当前位置:文档之家› 量子物理作业答案

量子物理作业答案

量子物理作业答案
量子物理作业答案

量子力学导论作业

File2~file5

1. 热辐射的峰值波长与辐射体温度之间的关系被维恩位移定律:

b T m =λ

表示,其中K m b ??=-3108978.2。求人体热辐射的峰值波长(设体温为 37)。

解:由定律b T m =λ可得:

m m T t b T b o m 631035.927337108978.2--?=+?=+==λ

即,人体热辐射的峰值波长为9350nm 。

2. 宇宙大爆炸遗留在宇宙空间的均匀各向同性的背景热辐射相当于T=2.726K 黑体辐射。此辐射的峰值波长是多少?在什么波段?

解:根据维恩位移定律b T m =λ,得:

m m T b m 33

1006.1726

.2108978.2--?=?==λ

即该辐射峰值波长为1.06mm ,属于红外波段。

3. 波长λ=0.01nm 的X 射线光子与静止的电子发生碰撞。在与入射方向垂直的方向上观察时,散射X 射线的波长为多大?碰撞后电子获得的能量是多少eV?

解:依题意,在垂直方向观察时散射角, 90=θ

由波长改变量公式()θλλλcos 100-=

-=?c

m h

,得散射后X 射线波长:

m 98

3134

9

0100124.0)90cos 1(10

3101.91063.61001.0----?=-????+?=?+= λλλ X 射线损失的能量等于电子增加的动能

)0124

.0101.01(1011031063.698340-?????=-=

?=∴--λλhc hc E E X e eV J E e 415104.21085.3?=?=∴-

所以,散射X 射线波长为0.0124nm ,电子获得能量为eV 4104.2?

4. 在一束电子束中,单电子的动能为E =20eV ,求此电子的德布罗意波长。

解:电子动能较小,固忽略其相对论效应,所以由

22

1

mv E =

,得电子速率m

E

v 2= 又mv p = ,由德布罗意公式p

h =

λ m

m mv

h 1031

19

3134

1075.2101.910

6.1202101.91063.6-----?=?????

??=

=∴λ即电子德布罗意波长为101075.2-?m 。

File6

1.设归一化波函数:())(222

1∞<<-∞=ψ-x Ae x x a ,a 为常数,求归一

化常数A 。

解:由归一化条件

()12

=ψ?+∞

-dx x ,有

12

2222

22

1

==??∞

+∞

--∞

+∞

--dx e

A

dx Ae

x a x a

2.设归一化波函数:()??

?

??=ψx a n A x n πsin )0(a x <<,n 为正整数,a 为常数,求归一化常数A 。

解:由归一化条件

()12=ψ?+∞

∞-dx x ,有

1)(sin sin 222

==??? ????+∞

-+∞

∞-dx x a n A dx x a n A ππ 令dx a

a

x

π

θπθ=

=

d ,

则上述积分化为:122sin 2

22

2

==?=?aA a A d n a

A ππθθππ

所以,a A 2=

File7

1. 自由粒子的波函数为

)(),(Et r p i Ae t r -?=ψ

其中p

和E 是粒子的动量和能量,r 和t 是空间与时间变量, 是普朗克常数,A 是归一化常数。试建立自由粒子波函数所满足的方程。

解:

波函数两边对时间t 求一次导数,得:

)(Et r p

i

e i AE t -??-=?ψ?

忽略归一化常数A 的影响,显然由上式可得:

ψ=ψ??

E t

i 由力学量的算符表示,?-= i p ,并且由关系m

p E 22

=得:

2

2?-

=m

E 考虑在势场中运动的粒子的经典能量关系式

V m

p E +=22

,得

V m

E +?-

=2

2

所以,综上所述可知自由粒子的波函数满足的方程为

()),(2),(22t r r V m t r t i

ψ??

????+?-=ψ??

File8

设一个微观粒子的哈密顿算符的本征方程为

)()(?x E x H n

n n ψψ= 该粒子的初始波函数为

)()()0,(2211x c x c x ψψ+=ψ

设n c 和)(x n ψ是实数,求任意时刻的波函数),(t x ψ及粒子的几率密度。 解:

含时薛定谔方程的一般解:

∑-

=ψn

n

n n t iE x c t x )exp()(),(

ψ 由题目已知,得:

)()()0exp()()0,(2211x c x c x c x n

n n ψψψ∑+==ψ

显然

)()()(2211x c x c x c n

n

n ψψψ

∑+=

所以任意时刻波函数

[])exp()()(),(2211t iE x c x c t x n

-

+=ψψψ 几率密度

()222112

)()(),()(x c x c t x x ψψρ+=ψ=

(file9)

宽度为a 的一维无限深势阱中粒子的本征函数为

(),...3,2,1sin 2)(=??

? ??=

n x a n a x n πψ 求证本征函数的正交性:

?≠=a

n m

n m dx x x 0

)(0)()(ψψ

证明:

?

?

??? ?????? ??=a

a

n m dx x a

n a x a m a dx x x 0

sin 2sin 2)()(ππψψ

()()()ππ

ππ

π

ππππ

π)sin(1)

sin(1)

sin(1)cos()cos(1)cos()cos(2120

0000n m n m x a n m n m a a x a n m n m a a xdx a n m xdx a n m a dx x a n m x a n m a a

a

a a a --=??????--+??????++-=?

?

?

???--+-=??

?

??

?--+-=

???

显然,n m ≠时,

()0)sin(1

=--ππ

n m n m

即:

?≠=a

n m

n m dx x x 0

)(0)()(ψψ

命题得证。

(file10)

原子核内的质子和中子可以粗略地当成处于无限深势阱中而不能逸出,它们在核中可以认为是自由的。按一维无限深势阱估算,质子从第一激发态(n=2)跃迁到基态(n=1)时,释放的能量是多少MeV ?核的线度按m a 14100.1-?=计算。

解:一维无限深势阱能量满足,...3,2,1,22

2

22==n ma n E n π (

)

(

)

MeV m a E n 1.2J 100.11067.181063.6212

14

272

34

2

221=?????===---π 时,

(

)

(

)

MeV m a E n 5.0J 100.11067.181063.642222

14

272

34

22221=?????=

?==---π 时,

所以,释放的能量

MeV E E E 6.121=-=?

理想金属细杆中的电子可以当成处于一维无限深势阱中而不能逸出,它们在细杆中可以认为是自由的。设细杆的长度为a,电子的初始波函数为

f

x

x<

Ax

=

ψ

=

x

<

a

0(

,

)

A

)

(

(为归一化常数

)0,

试求任意t时刻电子的波函数),(t x

ψ。

设一个微观粒子的哈密顿不含时间,其本征方程为)()(?x E x H n n n ψψ=,如果粒子的初态为)(x k ψ,求粒子在任意时刻的波函数及几率密度。 解:含时薛定谔方程的一般解为

∑-

=ψn

n

n n t iE x c t x )exp()(),(

ψ 由已知条件可知

)()0exp()()0,(x x c x k n

n n ψψ==ψ∑

???++???++=∴n n k c c c x ψψψψ2211)(

则,有

??

?==≠=)(1)

(0k n c k n c n

n 所以

)exp()(),(t iE x t x k

k

-

=ψψ 几率密度

2

2)(),()(x t x x k ψρ=ψ=,不随时间变化

设谐振子处于基态(n=0): 1.写出其波函数的表达式;

2.由哈密顿算符的本征方程及基态波函数计算基态能量。 解:1.一维谐振子的波函数

)

exp()exp()1()(),()2

exp()(222

ξξ

ξξξξξψ--=-

=n n

n n n n n n d d

H A H A 为归一化常数

当n=0时,10=H ,所以

ω

ααπα

ψm x x =???

? ??-=,2exp )(22410 2.一维谐振子的哈密顿算符

2222

22

12?x m x m H ω+???-= 将哈密顿算符作用于基态波函数)(0x ψ

()

()

ωψωααψ

ωααψωψαψ 2

12122212212?22242

2222242222220

=???

? ??+?-=??

????+--?-=+-???-=x m x m m x m x m x m x x m H

由哈密顿算符的本征方程

n

n n E H ψψ=? 得基态能量:

ω 2

1

0=

E

(file14)

设想一个质量为m=1g 的小珠子悬挂在一个小弹簧下面做振幅为A=1mm 的简谐振动。已知弹簧的劲度系数为k=0.1N/m 。按量子理论计算,此弹簧振子的能级间隔多大?与它现有的振动能量对应的量子数n 是多少?由此可以看出宏观振子与量子振子的关系是什么?

解:振子的角频率

s rad s rad m k /100/001

.01

.0===

ω 由量子理论,线性谐振子的能量间隔

J E 3234

1006.110021063.6--?=??==?π

ω

其振动能量

J J kA E 522105.001.01.02

1

21-?=??==

由线性谐振子的能级公式

J n E n 5105.0)2

1

(-?=+=ω

得:

26107.4?=n

由以上计算得到结论:宏观世界中谐振子的能级间隔变得非常小()

3210-,此时能量呈现出连续性,而对应的能级n 非常大,即在量子理论中,∞→n 时,量子化已经非常不明显,表现为连续性。

试证谐振子处于第一激发态(n=1)时的波函数为:

???

??-??

? ??=22

121exp 2)(ξξπαξψn

并求处在这个态时谐振子的最可几位置。

解:线性谐振子的波函数:

)

exp()exp()1()(),()2

exp()(222

ξξ

ξξξξξψ--=-

=n n

n n n n n n d d

H A H A 为归一化常数

当n=1时

ξξξξξξ

ξξ2)exp(2)exp()exp()

exp()1()(222211=--?-=--=d d

H 则:

)2exp(22)2exp(!12)()2exp()(22

12211

12

11ξξπαξξπαξξξψ-???

?

??=?-??? ???=-=H A

2H 分子中原子的振动相当于一个谐振子,其等效劲度系数为m N k /1013.13?=,质量为kg m 271067.1-?=。求此分子的能量本征值(以

eV 为单位)。当此谐振子由某一激发态跃迁到相邻下一个激发态时,所发射的光子能量和波长各是多少?

解:振动的角频率

s rad s rad m k /1023.8/10

67.11013.11427

3

?=??==-ω 由一维线性谐振子的能级公式

eV n J n n E n )5.0(54.0)2

1

(1023.821063.6)21(1434+=+???=+=-πω

能量间隔

eV E E E n n 54.01=-=?+

由光子能量公式

eV hc

hv E 54.0==

m 61029.2-?=λ

即发射的光子的能量为0.54eV ,波长为2.29m μ

(file17)

证明:坐标与动量算符构成的算符x p x ??不是厄密算符,已知x x p x x p ????≠。 证明:根据力学量的算符表示

x x x

i p

=??

-=?,? 得:

x

x i p x

??-= ?? p x

x

x i x x i p x

??)()??(≠??

=??-=** 所以,x p x

??不是厄密算符,命题得证

求解角动量Z 分量φ??

-= i L z

?的本征方程: Φ=Φ??

-z l i φ

给出本征函数和本征值。(利用周期性边界条件:)2()0(πΦ=Φ)

解:本征方程

0=Φ+?Φ?

i l z

φ 它的解是

φφφ

i l B i l A z z cos sin

)(+=Φ 由周期性边界条件)2()0(πΦ=Φ

i l B B B z

π

2cos 0cos == 显然B 不能为0,则

,...21,0,2202,12cos ±±====m m i l

i l i l z z z ππππ

,即得 所以,本征值z l 满足:

,...2,1,0,==m im l z

)(φΦ是本征函数。

(file19)

氢原子处于基态()0,0,1===m l n : 1.写出其本征函数;

2.写出电子的径向几率密度;

3.求电子的最可几半径;

4.说明量子理论与玻尔理论的区别。

解:

3.氢离子一般解中,球谐函数),(?θlm Y

π

πθπθ?θφ1

2

)(cos 12)(cos 4!01!0)(cos )1(),(0000==??=-=x P e P e P N Y im m l lm m lm 径向函数)(r R nl

()2102002

30104,),exp(2)1(-==-=πεe e e m a a r a R s s

e

得,氢原子的本征函数

)exp(14),,(0

3

00010100a r a Y R r -?==π?θψ,()210204,-

==πεe e e m a s s e 4.电子在径向dr 出现的概率)(r p

dr

r a r a d drd r a r

a d drd r Y r R r p lm nl 22

02

3

22

3

020

22

20)exp(2)1(sin )exp(14

sin ),()()(???

???-=-?==??

??====?θθπ?

θθ?θπ

θ

π

θ

π

?

所以概率密度

r a r

a r )exp(2)1()(0

230-=ρ

5.r a r

a r )exp(2)1()(0

230-=ρ两边对r 求导,并令其为0,可得

第一轨道半径),得(,0)exp(2)1(

)exp(2)1(1)exp(2)1()(00

2

3

00

230002

30'

a r a r

a r a r a a a r a r =≠-=---=ρ

6.量子理论中电子出现在空间的的形式是以概率的表达的,根据)(r p 的表达式可

知电子在空间的所有位置(除了r=0)处皆有出现的可能,只是出现的概率不一样而已,并且当氢原子处于基态时,电子在0a r =,即第一轨道半径也就是玻尔半径出现的几率最大。

玻尔理论认为氢原子电子绕核运动时是运行在闭合轨道上的,并且在玻尔半径半径上运行时不对外辐射能量,在吸收了能量后会跃迁到其他轨道上,电子只能在轨道上运动而不会出现在其他地方。

(file20)

设氢原子的初始波函数为:

)(2

1)0,(210100ψψ+=ψr

求任意时刻的波函数),(t r

ψ。

解:含时薛定谔方程的一般解为

∑-

=ψn

n

n n t iE x c t x )exp()(),(

ψ 当0=t 时

)(2

1

)()0,(210100ψψψ+=

=ψ∑n

n n x c x 得:

????

?

≠===

2,1,02,1,21n c n c n

n 所以,任意时刻的波函数

?????

?-+-=ψt iE t iE t r )exp()exp(21),(22101100

ψψ

(file21)

设厄密算符F 有正交完备集{}n φ,相应的本征方程为n n n F φλφ=,则任一态矢量可以按n φ展开为∑=ψn

n n c φ。

1.n c 称为什么?2

n c 表示什么? 2.证明ψ=n n c φ;

3.证明算符F 在态ψ中的期待值为:∑=ψψn

n n c F λ2

解:

1.n c 表示一个矢量在另一矢量的投影。2

n c 表示对于本征值出现的几率。 2.∑=ψn

n n c φ两边同乘m φ,得

∑=ψn

n n

m

m c

φφφ

上式右边对n 求和,m φ可以放入求和符号内,并由关系式m n n m δφφ=

m n

mn n n

n m n m c c c ===ψ∑∑δφφφ

所以,用n 代替m 后,有

ψ=n n c φ

得证

3.因为投影算子n n φφ满足1=∑n

n n φφ,所以

()()∑∑∑∑

∑∑===ψ=ψψ=ψ

ψ=ψψ*

*n

n

n n

n n n m m

mn m n

n m m

m m n n n

m

m m n n n

m

m m n

n n

c c c c

c c F F F λλδ

λφλφφφφφφφφφφ

2

得证

(file22)

设一个质量为m 的粒子在一维无限深势阱中运动,势阱表示为:

?

?

?><∞<<=),0(,)

0(,0)(a x x a x x V 1.计算坐标算符的期待值; 2.计算动量算符的期待值;

3.设阱内粒子的状态为Ax x =ψ)(,求归一化常数A 。

解:

3.坐标算符的期望值

?+∞

∞-*=ψψdx x x

ψψ?? 因为在一维无限深势阱中

??

???><<

?

??==*

a x x a x x a n a x n n ,0,00,sin 2)(πψψ 所以

2

21)2cos(11)sin(2)sin(2?0

200a x a dx

x a n x a dx x a

n a x x a n a dx x

a

a a

=

-=??

????-==???∞

+∞-*πππψψ

4.动量算符的期望值

?+∞

∞-*=ψψdx p p

ψψ?? 所以

2sin )cos()sin(2)sin(2)sin(2?0200=??

? ??-=?-=??? ????-=????∞

+∞-*

dx

x a n a n i dx

x a

n x a n a n a i dx x a

n a x i x a n a dx p

a a a

πππππππψψ 5.由波函数的归一性

133)(2

30

32

2

2

2

====ψ?

?

A a x A dx x A dx x a

a

a

得归一化常数

33a

A =

(file23)

设谐振子的初态为基态和第一激发态的叠加态:

[]1043)0(ψψ+=ψA

6.求归一化常数A ;

7.求出谐振子任意时刻的状态)(t ψ; 8.计算在态)(t ψ中能量的期待值。

解: 4.已知,

ω

αm =

2

4

112

4

102

22

22,x x xe

e

αααπ

α

ψπ

αψ--=

=

由归一化条件

???

????????? ?

?--?+-?=???

? ??+=ψ????

∞+∞

--∞+∞

--∞+∞

--∞+∞--∞+∞--∞

+∞

-dx e

xe

e

A dx xe dx e A dx x

x

x

x x 2

224

122412

2412412

2

2

22

22

222222216292169ααα

αααπα

α

απ

ααπαπα

这个世界其实是你想象出来地恐怖地量子力学正彻底颠覆人类地物理世界观

这个世界其实是你想象出来的——恐怖的量子力学正彻底 颠覆人类的物理世界观 朱清时,中国科学技术大学前校长、中国科学院院士、国务院学位委员会委员、第三世界科学院院士、中国绿色化学的主要倡导者和组织者、南方科技大学创校校长、1994年获海外华人物理学会亚洲成就奖和汤普逊纪念奖。量子力学的诡异现象量子力学也是自然科学史上被实验证明最精确的一个理论,但是量子的观念,没有人能够理解。我说的没有人能够理解,绝不是指像我们这个层次的人,而是说连量子力学的创始人都不能理解。 那么量子力学最不好懂的是些什么问题呢?我先把量子力学中人们最不好懂的东西介绍给大家,而最不好懂的东西最后恰好是证明了:意识不能被排除在客观世界之外。一定要把意识加进去你才能够认识搞懂它。 - 1 - 态叠加与坍缩量子力学的第一个诡异现象叫做态叠加原理和坍缩。 为了解释量子力学观念,我先说说普通人的日常经验。一般人认为客观物体一定要有一个确定的空间位置,这种存在,是不以人的意志为转移的、是客观的。比如说,我的女儿现在在客厅里面,或者说我的女儿现在不在客厅里面,两者必居其一。

【女儿可以既在又不在客厅里吗?】但在量子力学里就不一样了。量子力学就像说你的女儿既在客厅又不在客厅,你要去看这个女儿在不在,你就实施了观察的动作。你一观察,这个女儿的存在状态就坍缩了,她就从原来的,在客厅又不在客厅的叠加状态,一下子变成在客厅或者不在客厅的唯一的状态了。 所以量子力学怪就怪在这儿:你不观察它,它就处于叠加态,也就是一个电子既在A点又不在A点。你一观察,它这种叠加状态就崩溃了,它就真的只在A点或者真的只在B点了,只出现一个。 那有人就会说了:这是诡辩,你怎么知道电子不观察它的时候,它既在A点又不在A点呢? 好,这就是量子力学发展过程中,很多实验确证的事情,其中一个最著名最重要的实验,就是干涉实验证实。【电子同时在两处】电子在没有观测的时候,没有确定的状态。所以这件事是量子力学最诡异的事情。懂了这个,就懂了量子力学最诡异的东西,而且随后我们就能来证明:量子力学离不开意识,意识是量子力学的基础。 - 2 -单体的叠加态:薛定谔的猫刚才说的是量子力学第一个诡异之点,现在我们来看看这个诡异之点往下推论,能够推出什么结果。最后结果会使大家认识到,意识是量子力学的基础,物质世界和意识不可分开。这个实验是量子力学的

量子力学思考题及解答

1、以下说法是否正确: (1)量子力学适用于微观体系,而经典力学适用于宏观体系; (2)量子力学适用于η不能忽略的体系,而经典力学适用于η可以忽略的体系。 解答:(1)量子力学是比经典力学更为普遍的理论体系,它可以包容整个经典力学体系。 (2)对于宏观体系或η可以忽略的体系,并非量子力学不能适用,而是量子力学实际上已 经过渡到经典力学,二者相吻合了。 2、微观粒子的状态用波函数完全描述,这里“完全”的含义是什么? 解答:按着波函数的统计解释,波函数统计性的描述了体系的量子态。如已知单粒子(不考虑自旋)波函数)(r ? ψ,则不仅可以确定粒子的位置概率分布,而且如粒子的动量、能量等其他力学量的概率分布也均可通过)(r ? ψ而完全确定。由于量子理论和经典理论不同,它一般只能预言测量的统计结果,而只要已知体系的波函数,便可由它获得该体系的一切可能物理信息。从这个意义上说,有关体系的全部信息显然已包含在波函数中,所以说微观粒子的状态用波函数完全描述,并把波函数称为态函数。 3、以微观粒子的双缝干涉实验为例,说明态的叠加原理。 解答:设1ψ和2ψ是分别打开左边和右边狭缝时的波函数,当两个缝同时打开时,实验说明到达屏上粒子的波函数由1ψ和2ψ的线性叠加2211ψψψc c +=来表示,可见态的叠加不是概率相加,而是波函数的叠加,屏上粒子位置的概率分布由222112 ψψψ c c +=确定,2 ψ中 出现有1ψ和2ψ的干涉项]Re[2* 21* 21ψψc c ,1c 和2c 的模对相对相位对概率分布具有重要作用。 4、量子态的叠加原理常被表述为:“如果1ψ和2ψ是体系的可能态,则它们的线性叠加 2211ψψψc c +=也是体系的一个可能态”。 (1)是否可能出现)()()()(),(2211x t c x t c t x ψψψ+=; (2)对其中的1c 与2c 是任意与r ? 无关的复数,但可能是时间t 的函数。这种理解正确吗? 解答:(1)可能,这时)(1t c 与)(2t c 按薛定谔方程的要求随时间变化。

经典和量子统计物理学的初步认识(高工大作业,第三部分)

西安交通大学 高等工程热力学 报告 学号:XXXXXXXXXX 姓名:XXXXX 专业:工程热物理 班级:XXXXXX 能源与动力工程学院 2015/12/26

经典和量子统计物理学的初步认识 经典统计物理学是建立在经典力学基础上的学科,而量子统计物理学是建立在量子力学基础上的学科,从经典统计到量子统计,它们之间存在着一定的区别和联系,并在一定的条件下可以相互转换。利用经典统计方法推证热力学中的能量均分定理,并结合热容量的定义求解某些系统内能及热容量时,发现其理论值与实际值存在差异,这是经典统计物理难以解决的问题,本文采用量子统计理论做出了合理的解释,从而使理论值和实际值吻合的很好。因此,可以看出经典统计的局限性是量子统计理论建立的基础,量子统计理论很好的补充了经典统计理论的不足。 1. 理想气体物态方程的经典统计推导 在普通物理的热学中,从气体的实验定律(如:玻意耳—马略特定律、查理定律及盖吕萨克定律)出发推导理想气体物态方程,而在理论物理中热力学统计利用经典统计方法仍能给出相应的理论,它是经典统计物理应用的一个典型的实例。对自由粒子而言,其自由度r=3,其坐标表示为(x ,y ,z),与之相对应的动量为(p x ,p y ,p z ),那么它的能量为: 2222x y z p 1==(p +p +p )2m 2m ε()1 将(1)式代入玻耳兹曼系统下的配分函数: 1222x y z l (p +p +p )2m l l z e e β βεωω--==∑∑()2 由于玻耳兹曼系统的特点是每个粒子可以分辨,可看成经典系统,则系统看成连续分布的,即配分函数中的求和变为积分,则有: 131...222(p +p +p )x y z 2m x y z z e dxdydzdp dp dp h β -=??()3 求解积分可得: 3 2122()z V h β =πm ()4 其中V dxdydz =???是气体的体积,根据玻耳兹曼系统广义力的统计表达式类比压强的统计表达式为: 1lnz N P V β?=?()5 将(4)式带入(5)式,求导可得理想气体的压强: NkT P V = ()6

量子力学与经典物理

从薛定谔方程谈量子力学与经典物理的区别 梁辉(滁州师范专科学校物理系,安徽滁州239012) 摘要:薛定谔方程是量子力学的基本方程,其地位与经典物理中的牛顿运动方程相当。文章从薛定谔方程中关于微观粒子运动状态的描述和微观粒子力学量的表达等方面谈量子力学与经典物理的区别。 文章阐明,量子力学的基本规律是统计规律,而经典物理的基本规律是决定论、严格的因果律。但在普朗克常数h→0的极限情况下,量子力学就过渡到经典物理学。 关键词:薛定谔方程;运动状态;状态量;力学量;算符 1薛定谔方程 薛定谔在“微观粒子具有波粒二象性”概念的指导下,找到了单粒子量子系统的运动方程,即薛定谔方程i99tΨ(珒r,t)=^HΨ(珒r,t)这一方程将微观粒子的波动性与粒子性统一起来,用波函数Ψ(珒r,t)来描述微观粒子的状态,用^H表示微观粒子的能量算符。薛定谔方程给出了这样一幅图象[1,2]:微观粒子的状态用波函数描述,波函数Ψ(珒r,t)传递了粒子的一切力学信息;力学量用算符表达;状态的变化由薛定谔方程决定。薛定谔方程揭示了原子世界物质运动的基本规律,其地位与经典力学中的牛顿方程及电磁学中的麦克斯韦方程相当。 2量子力学与经典物理的区别 2.1关于运动状态的描述 经典力学中,质点的运动状态由坐标珒r与动量珗p(或速度珤V)描述;电磁学[3]中,场的运动状态由电场强度珝E(珒r,t)与磁感应强度珝B(珒r,t)描述。在经典物理中,运动状态描述的特点为状态量都是一些实验可以测得的量,即在理论上这些量是描述运动状态的工具,实际上它们又是实验直接可测量的量,并可以通过测量这些状态量来直接验证理论。量子力学中,微观粒子的运动状态由波函数珤Ψ(珒r,t)描述。但波函数珤Ψ(珒r,t)却不是实验直接可测的,即量子力学中运动状态的描述与实验直接测量的量的表达是割裂的。量子力学中的态函数珤Ψ(珒r,t)一般是一个复数,是一个理论工具。实验上仍可直接测量量子系统中粒子的坐标、动量以及场的强度,但它们并不直接代表量子态。 2.2关于状态量的解释 经典力学中,描述质点运动状态的状态量为坐标珒r(t)和动量珗p(t),且任一时刻t,质点有确定的坐标珒r和动量珗p;电磁学中,描述电磁场运动状态的状态量为电场强度珝E(珒r,t)和磁感应强度珝B(珒r,t),且任一时刻t空间任一点珒r有确定的电场强度珝E和磁感应强度珝B。这就是经典物理对状态量的解释,即所谓的经典决定论、严格的因果律[4]。量子力学中,微观粒子的运动状态由状

量子力学教程课后习题答案

量子力学习题及解答 第一章 量子理论基础 1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即 m λ T=b (常量); 并近似计算b 的数值,准确到二位有效数字。 解 根据普朗克的黑体辐射公式 dv e c hv d kT hv v v 1 1 833 -? =πρ, (1) 以及 c v =λ, (2) λρρd dv v v -=, (3) 有 ,1 18)()(5-?=?=?? ? ??-=-=kT hc v v e hc c d c d d dv λλλ πλλρλλ λρλρ ρ 这里的λρ的物理意义是黑体波长介于λ与λ+d λ之间的辐射能量密度。 本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下: 011511 86 ' =???? ? ?? -?+--?= -kT hc kT hc e kT hc e hc λλλλλ πρ

? 0115=-?+ -- kT hc e kT hc λλ ? kT hc e kT hc λλ= -- )1(5 如果令x= kT hc λ ,则上述方程为 x e x =--)1(5 这是一个超越方程。首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有 xk hc T m =λ 把x 以及三个物理常量代入到上式便知 K m T m ??=-3109.2λ 这便是维恩位移定律。据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。 1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。 解 根据德布罗意波粒二象性的关系,可知 E=h v , λ h P = 如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么 e p E μ22 = 如果我们考察的是相对性的光子,那么 E=pc 注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0?,因此利用非相对论性的电子的能量——动量关系式,这样,便有 p h = λ

量子信息论简介

量子信息论简介 一、什么是量子信息论? 近20年来,量子力学除了更深入地应用于物理学本身许多分支学科之外,还迅速广泛地应用到了化学、生物学、材料科学、信息科学等领域。量子理论这种广泛,深入应用的结果、极大地促进了这些学科的发展,从根本上改变了它们的面貌,形成了众多科学技术研究热点,产生了许多崭新的学科;与此同时,量子力学本身也得到了很大的丰富和发展。 热点之一就是已经诞生、正在形成和发展中的量子信息科学———量子通信和量子计算机,简称为量子信息论。它是将量子力学应用于现有电子信息科学技术而形成的交叉学科。量子信息论不但将以住的经典信息扩充为量子信息,而且直接利用微观体系的量子状态来表达量子信息。从而进入人为操控、存储和传输量子状态的崭阶段。 近10多年来,量子信息论从诞生到迅猛发展,显示出十分广阔的科学和技术应用前景。这种崭新的交叉结合已经并正在继续大量生長出许多科学技术研究热点,并逐渐形成一片新兴广阔的研究领域,不断取得引人瞩目的輝煌成就。 量子信息论的诞生和发展,在科学方面有着深远的意义。因为它反过来极大地丰富了量子理论本身的内容,并且有助于加深对量子理论的理解,突出暴露并可能加速解决量子理论本身存在的基础性问题。借助这一新兴交叉学科的实验技术,改造量子力学基础,加速变革现有时空观念,加深对定域因果律的认识也许是可能的。 量子信息论在技术方面也有着重大影响。因为它的发展前景是量子信息技朮(QIT)产业,它是更新换代目前庞大IT产业的婴儿,是推动IT产业更新换代的动力,指引IT技朮彻底变革的方向。在这方面大量、迅猛、有效的探索性研究正在逐步导致以下各色各样的新兴分支学科的诞生:量子比特和量子存储器的构造,人造可控量子微尺度结构,量子态的各类超空间传送,量子态的制备、存诸、调控与传送,量子编码及压缩、纠错与容错,量子中继站技朮,量子网络理论,量子计算机,量子算法等等。它们必将对国际民生和金融安全技朮以及国防技朮产生深刻的影响。 目前,一方面是寻求各色各样存取量子信息的载体———量子比特和量子信息处理器。相关的实验和理论研究正在蓬勃开展。实验中的量子信息载体,不仅包括自然的微观系统,更着重于形形色色的人造可控微尺度结构———也就是人造可控量子系统。在研制可控量子比特和量子存储器件时,必须考虑它们和传送环节的光场之间的可控耦合,以保证量子信息的有效写入和取出。这里最重要的是研究光场和人造原子系综的相互作用。 第二方面是关于量子信息的传送。量子通信是量子信息论领域中首先走向实用化的研究方向。目前量子通信主要以极化光子作为信息载体,釆用纠缠光子对作为传送的量子通道。量子通信可以分为光纤量子通信和自由空间量子通信两个方向。关于光纤量子通信方面,建立光纤量子通信局域网和延长光纤量子通信鉅离的时机已经到来。而利用纠缠光子实施自由空间量子通信,其最终目标是通过卫星实现全球化量子通信。量子通信要求长程、高品质、高強度的纠缠光源。这需要掌握包括纠缠纯化、纠缠交换与纠缠焊接的量子中继器技术。同时还需要展开各类量子编码(纠错码、避错码、防错码)研究,各类量子态超空间传送方式研究,进而逐步创立完善的量子网络理论。 第三方面是关于量子计算机。目前的经典计算机受到经典物理原理限制,己经接近其处理能力的极限。而由于量子态迭加原理和量子纠缠特性,量子计算机具有经典计算机无法比拟的、快速的、高保密的计算功能,所以,有必要研究量子计算机。制造量子计算机的核心任务是造出可控多位量子比特的量子信息处理器。这里的关键是寻求能够避免退相干、易于操控和规模化的多位量子比特。这正是制约量子计算机研制进度的主要困难。1994年,计算机专家Chair C.H.Bennett宣布,量子计算机的研制己进入工程阶段。根据近10年来各国量子计算机研制己报导的有关资料预计,量子计算机技术的长远发展,最终有赖于固体方案。关于量子计算机研制进度:乐观估计是到20l0年可以在硅片技朮基础上制造出10多位可控量子比特,从而造出简单的台式计算机; 较稳健的估计是可能在下一个l0年之內; 持悲观估计的人们有个比喻:现在不必做出发展量子计算机的“哈曼顿计划”,因为现在还没有发现“核裂变”。 二、国內外量子信息专业的发展状况 2006年9月1日~4日,来自世界21个国家和地区的近200名科技人员聚集在北京友谊宾馆,参加由中国科大量子信息国家重点实验室举办的亚洲量子信息科学会议。在这次会议中首次提出量子隐形传态思想、首次提出第一个量子密钥分配协议的IBM研究机构科学家Chair C.H.Bennett接受采访时说:“量子信息现在还是个婴儿!”但鉴于量子信息科学技术的巨大发展潜力,目前已受到各国政府、科技专家和公众的广泛关注。 1、国外量子信息的研究和进展: 国际上重要的西方国家(美、英、法、加拿大、以色列、日本、瑞典、奥地利、意大利、瑞士等),特别是美国和欧盟均投入大量人力物力于量子通讯和量子计算的理论和实验研究,量子信息已成为学术界的热门课题,其发展十分迅猛,参与研究的国家、机构和人员日益增多,有关国际会议连接不断。以美国为例,加州理工大学、MIT和南加州大学联合成立了量子信息和计算研究所,其长远目标就是

热力学统计物理期末复习试题 (2)

一.填空题 1.设一多元复相系有个?相,每相有个k 组元,组元之间不起化学反应。此系统平衡时必同时满足条件: T T T αβ ? == =、 P P P αβ ? == =、 (, )i i i 1,2i k α β ? μμμ== == 2.热力学第三定律的两种表述分别叫做:能特斯定律和绝对零度不能达到定律。 3.假定一系统仅由两个全同玻色粒子组成,粒子可能的量子态有4种。则系统可能的微观态数为:10。 4.均匀系的平衡条件是0 T T =且 P P =;平衡稳定性条件是 V C >且() T P V ?

清华大学大学物理习题库量子物理

清华大学大学物理习题库:量子物理 一、选择题 1.4185:已知一单色光照射在钠表面上,测得光电子的最大动能是1.2 eV ,而钠的红限波长是5400 ?,那么入射光的波长是 (A) 5350 ? (B) 5000 ? (C) 4350 ? (D) 3550 ? [ ] 2.4244:在均匀磁场B 内放置一极薄的金属片,其红限波长为??。今用单色光照射,发现有电子放出,有些放出的电子(质量为m ,电荷的绝对值为e )在垂直于磁场的平面内作半径为R 的圆周运动,那末此照射光光子的能量是: (A) 0λhc (B) 0λhc m eRB 2)(2+ (C) 0λhc m eRB + (D) 0λhc eRB 2+ [ ] 3.4383:用频率为??的单色光照射某种金属时,逸出光电子的最大动能为E K ;若改用 频率为2??的单色光照射此种金属时,则逸出光电子的最大动能为: (A) 2 E K (B) 2h ??- E K (C) h ??- E K (D) h ??+ E K [ ] 4.4737: 在康普顿效应实验中,若散射光波长是入射光波长的1.2倍,则散射光光子能量?与反冲电子动能E K 之比??/ E K 为 (A) 2 (B) 3 (C) 4 (D) 5 [ ] 5.4190:要使处于基态的氢原子受激发后能发射赖曼系(由激发态跃迁到基态发射的各谱线组成的谱线系)的最长波长的谱线,至少应向基态氢原子提供的能量是 (A) 1.5 eV (B) 3.4 eV (C) 10.2 eV (D) 13.6 eV [ ] 6.4197:由氢原子理论知,当大量氢原子处于n =3的激发态时,原子跃迁将发出: (A) 一种波长的光 (B) 两种波长的光 (C) 三种波长的光 (D) 连续光谱 [ ] 7.4748:已知氢原子从基态激发到某一定态所需能量为10.19 eV ,当氢原子从能量为-0.85 eV 的状态跃迁到上述定态时,所发射的光子的能量为 (A) 2.56 eV (B) 3.41 eV (C) 4.25 eV (D) 9.95 eV [ ] 8.4750:在气体放电管中,用能量为12.1 eV 的电子去轰击处于基态的氢原子,此时氢原子所能发射的光子的能量只能是 (A) 12.1 eV (B) 10.2 eV (C) 12.1 eV ,10.2 eV 和 1.9 eV (D) 12.1 eV ,10.2 eV 和 3.4 eV [ ] 9.4241: 若?粒子(电荷为2e )在磁感应强度为B 均匀磁场中沿半径为R 的圆形轨道运动,则?粒子的德布罗意波长是 (A) )2/(eRB h (B) )/(eRB h (C) )2/(1eRBh (D) )/(1eRBh [ ] 10.4770:如果两种不同质量的粒子,其德布罗意波长相同,则这两种粒子的 (A) 动量相同 (B) 能量相同 (C) 速度相同 (D) 动能相同 [ ]

经典力学与量子力学中的一维谐振子

经典力学与量子力学中的一维谐振子 物理与电子信息工程学院物理学 [摘要]一维谐振动是一种最简单的振动形式,许多复杂的运动都可分析为一维谐振动。本文以一维谐振子为研究对象,首先讨论经典力学与量子力学中的一维谐振子的运动方程和能量特征,然后分析坐标表象以及粒子数表象下的一维谐振子,最后讨论经典力学与量子力学中的一维谐振子的区别与联系。 [关键词]谐振子经典力学量子力学运动方程能量分布 1 前言 所谓谐振,在运动学中就是简谐振动。一个劲度系数为k的轻质弹簧的一端固定,另一端固结一个可以自由运动的质量为m的物体,就构成一个弹簧振子[1]。该振子是在一个位置(即平衡位置)附近做往复运动。在这种振动形式下,物体受力的大小总是和它偏离平衡位置的距离成正比,并且受力方向总是指向平衡位置。这种情况即为一维谐振子。 一维谐振子在应用上有很大价值,因为经典力学告诉我们只要选择适当的坐标,任意粒子体系的微小振动都可以认为是一些相互独立的振子的运动的集合。普朗克在他的辐射理论中将辐射物质的中心当作一些谐振子,从而得到和实验相符合的结果。在分子光谱中,我们可以把分子的振动近似地当作谐振子的波函数。另外在量子场论中电磁场的问题也能归结成谐振子的形式。因此在量子力学中,谐振子问题的地位较经典物理中来得重要。应用线性谐振子模型可以解决许多量子力学中的实际问题。 本文将以一维谐振子为研究对象,首先分别讨论经典力学与量子力学中一维谐振子的运动方程和能量特征,然后讨论坐标表象以及粒子数表象下的一维谐振子,最后分析经典力学与量子力学中的一维谐振子的区别与联系并简要讨论经典力学与量子力学的过渡问题。从而帮助我们更加深入的理解一维谐振子的物理实质,充分认识微观粒子的波粒二象性。

量子信息学

量子信息学 20世纪前半叶,自然学科诞生了最具影响力的两门学科,量子力学和信息学。前者成为目前研究微观粒子运动规律离不开的理论基础,使人类对自然界的认识发生了里程碑的突破,它解释和预言了大量奇妙的物理现象,如微观粒子的波粒二象性、隧道效应和纠缠现象等等。利用量子力学原理,不仅解释了原子结构、化学键、超导现象、基本粒子的产生和湮灭等重要物理问题,而且也促成了现代微电子技术、激光技术和核能利用技术等的出现。而后者已明显地改变了人们的生产和生活方式,提高了工作效率和生活质量。20世纪末叶,它们交汇在一起,产生了一门新的交叉学科——量子信息学。 鉴于量子信息学研究与应用的巨大潜力,特别是关系到国家信息安全的重大问题,许多国家投入了大量人力物力开展相关方面的研究工作,促进了这一学科在诞生后的10多年时间内飞速发展。目前主要在以下几个方面开展研究。下面简单介绍两个方面。 纠缠理论的研究:在量子信息学中,量子态是信息的载体,量子信息的许多技术是建立在量子态纠缠的基础之上

的。因此,量子纠缠是量子信息学中最重要的研究课题,在理论和实验上均有重要意义。但遗憾的是,对此问题的研究还处于初级阶段。现在只有2×3量子系统纠缠的充要判断|,而对一般量子体系仅有充分性或必要性判据。对于不同纠缠态,其内部的关联程度也是不同的。如果量子态之间纠缠,那么就要掌握其纠缠的程度(即纠缠度)。纠缠度是系统各个部分之间纠缠程度的量度,理想的纠缠度应满足3个条件:①对任意量子态,纠缠度大于零;对正交直积态,纠缠度等于零;②在子系统的么正变换下纠缠度不变;③在局域操作和经典通信条件下纠缠度不能增加。对对多粒子多维纠缠态的纠缠性质研究是目前量子信息学最重要、最活跃的研究方向之一。 量子计算机设计和硬件研究:由于量子计算机具有很高的商业价值,所以研制量子计算机从一开始就是各个国家关注的一个研究重点。目前,关于量子计算机的可行性问题已经解决,IBM公司在实验室中已经研制出7位量子计算机原型系统。由于量子计算机的信息媒介是量子比特,因此对它的储存、处理、提取所使用的方法与设备和经典计算机相比是完全不同的。虽然利用核磁共振、离子阱等物理技术已实现了量子态的纠缠与储存,但总的来说量子器件实现技术还处于实验研究阶段。由于量子态储存过程中,量子系统不可

最新量子力学期末考试题解答题

最新量子力学期末考试题解答题 (简述波尔的原子理论,为什么说玻尔的原子理论是半经典半量子的?) 答:Bohr 理论中核心的思想有两条:一是原子具有能量不连续的定态的概念;二是两个定态之间的量子跃迁的概念及频率条件.首先,Bohr 的量子理论虽然能成功的说明氢原子光谱的规律性,但对于复杂原子光谱,甚至对于氦原子光谱,Bohr 理论就遇到了极大的困难(这里有些困难是人们尚未认识到电子的自旋问题),对于光谱学中的谱线的相对强度这个问题,在Bohr 理论中虽然借助于对应原理得到了一些有价值的结果,但不能提供系统解决它的办法;其次,Bohr 理论只能处理简单的周期运动,而不能处理非束缚态问题,例如:散射;再其次,从理论体系上来看,Bohr 理论提出的原子能量不连续概念和角动量量子化条件等,与经典力学不相容的,多少带有人为的性质,并未从根本上解决不连续性的本质. 2. 什么是光电效应?光电效应有什么规律?爱因斯坦是如何解释光电效应的? 答:当一定频率的光照射到金属上时,有大量电子从金属表面逸出的现象称为光电效应;光电效应的规律:a.对于一定的金属材料做成的电极,有一个确定的临界频率0υ,当照射光频率0υυ<时,无论光的强度有多大,不会观测到光电子从电极上逸出;b.每个光电子的能量只与照射光的频率有关,而与光强无关;c.当入射光频率0υυ>时,不管光多微弱,只要光一照,几乎立刻910s -≈观测到光电子.爱因斯坦认为:(1)电磁波能量被集中在光子身上,而不是象波那样散布在空间中,所以电子可以集中地、一次性地吸收光子能量,所以对应弛豫时间应很短,是瞬间完 成的.(2)所有同频率光子具有相同能量,光强则对应于光子的数目,光强越大,光子数目越多,所以遏止电压与光强无关,饱和电流与光强成正比.(3)光子能量与其频率成正比,频率越高,对应光子能量越大,所以光电效应也容易发生,光子能量小于逸出功时,则无法激发光电子. 3.简述量子力学中的态叠加原理,它反映了什么? 答:对于一般情况,如果1ψ和2ψ是体系的可能状态,那么它们的线性叠加:1122c c ψψψ=+(12c c ,是复数)也是这个体系的一个可能状态.这就是量子力学中的态叠加原理.态叠加原理的含义表示当粒子处于态1ψ和2ψ的线性叠加态ψ时,粒子是既处于态1ψ,又处于态2ψ.它反映了微观粒子的波粒二象性矛盾的统一.量子力学中这种态的叠加导致在叠加态下观测结果的不确定性. 4. 什么是定态?定态有什么性质? 答:体系处于某个波函数()()[]exp r t r iEt ψψ=-,所描写的状态时,能量具有确定值.这种状态称为定态.定态的性质:(1)粒子在空间中的概率密度及概率流密度不随时间变化;(2)任何力学量(不显含时间)的平均值不随时间变化;(3)任何力学量(不显含时间)取各种可能测量值的概率分布也不随时间变化. 5. 简述力学量与力学量算符的关系? 答:算符是指作用在一个波函数上得出另一个函数的运算符号.量子力学中采用算符来表示微观粒子的力学量.如果量子力学中的力学量F 在经典力学中有相应的力学量,则表示这个力学量的算符?F 由经典表示式F (r,p )中将p 换为算符?p 而得出的,即:

经典力学与量子力学中的一维谐振子

经典力学与量子力学中的一维谐振子 [摘要]一维谐振动是一种最简单的振动形式,许多复杂的运动都可分析为一维谐振动。本文以一维谐振子为研究对象,首先讨论经典力学与量子力学中的一维谐振子的运动方程和能量特征,然后分析坐标表象以及粒子数表象下的一维谐振子,最后讨论经典力学与量子力学中的一维谐振子的区别与联系。 [关键词]谐振子经典力学量子力学运动方程能量分布 1 前言 所谓谐振,在运动学中就是简谐振动。一个劲度系数为k的轻质弹簧的一端固定,另一端固结一个可以自由运动的质量为m的物体,就构成一个弹簧振子[1]。该振子是在一个位置(即平衡位置)附近做往复运动。在这种振动形式下,物体受力的大小总是和它偏离平衡位置的距离成正比,并且受力方向总是指向平衡位置。这种情况即为一维谐振子。 一维谐振子在应用上有很大价值,因为经典力学告诉我们只要选择适当的坐标,任意粒子体系的微小振动都可以认为是一些相互独立的振子的运动的集合。普朗克在他的辐射理论中将辐射物质的中心当作一些谐振子,从而得到和实验相符合的结果。在分子光谱中,我们可以把分子的振动近似地当作谐振子的波函数。另外在量子场论中电磁场的问题也能归结成谐振子的形式。因此在量子力学中,谐振子问题的地位较经典物理中来得重要。应用线性谐振子模型可以解决许多量子力学中的实际问题。 本文将以一维谐振子为研究对象,首先分别讨论经典力学与量子力学中一维谐振子的运动方程和能量特征,然后讨论坐标表象以及粒子数表象下的一维谐振子,最后分析经典力学与量子力学中的一维谐振子的区别与联系并简要讨论经典力学与量子力学的过渡问题。从而帮助我们更加深入的理解一维谐振子的物理实质,充分认识微观粒子的波粒二象性。 2 经典力学中的一维谐振子 在经典力学中基本方程以牛顿定律为基础,研究质点位移随时间变化的规

量子力学习题答案

量子力学习题答案 1.2 在0k 附近,钠的价电子能量约为3eV ,求其德布罗意波长。 解:由德布罗意波粒二象性的关系知: E h =ν; p h /=λ 由于所考虑的电子是非相对论的电子(26k e E (3eV)c (0.5110)-μ? ),故: 2e E P /(2)=μ 69 h /p h / hc / 1.2410/0.7110 m 0.71nm --λ====?=?=1.3氦原子的动能是E=1.5kT ,求T=1K 时,氦原子的德布罗意波长。 解:对于氦原子而言,当K 1=T 时,其能量为 J 10 2.07K 1K J 10 381.12 32 323 1 23 ---?=????= = kT E 于是有 一维谐振子处于2 2 /2 ()x x Ae α ψ-=状态中,其中α为实常数,求: 1.归一化系数; 2.动能平均值。 (22 x e dx /∞-α-∞ = α?) 解:1.由归一化条件可知: 22 * 2x 2 (x)(x)dx A e dx 1 A /1 ∞∞-α-∞ -∞ ψψ===α=? ? 取相因子为零,则归一化系数1/21/4A /=απ 2.

2222 2 2 22 2 2 22 22 22 22 2 * 2x /2 x /22 2 2 x /2 x /2 2 2 x /2 2x /2 2 222x 2x /2 2 2 24 2x 2T (x)T (x)dx A e (P /2)e dx d A e ()e dx 2dx d A e (xe )dx 2dx A {xe (xe )dx} 2A x e dx A 22∞∞-α-α-∞-∞ ∞-α-α-∞∞-α-α-∞ ∞ ∞-α-α-∞ -∞ ∞-α-∞ = ψψ=μ=- μ =- -αμ=- -α- -αμ = α = μμ ? ?? ? ? ? =(= = 22 2 2 2 2 4 x 22 24 x x 2 2 22 24 21()xd(e ) 21A (){xe e dx}221A ()2442∞-α-∞ ∞ ∞-α-α-∞ -∞ α- α =α- -- μααα- - μ α μ μ α ? ? 若αT 4 ω= 解法二:对于求力学量在某一体系能量本征态下的平均值问题,用F-H 定理是 非常方便的。 一维谐振子的哈密顿量为: 2 2 22 d 1H x 2dx 2 =- + μωμ 它的基态能量01E 2 = ω 选择 为参量,则: 0dE 1d 2 = ω ; 2 2 2 d H d 2d 2()T d dx 2dx =- = - = μμ d H 20 0T d = 由F-H 定理知: 0dE d H 210 T d d 2= ==ω 可得: 1T 4 = ω

量子力学与统计力学各章习题Word版

《量子力学与统计力学》各章习题 习题一 1.1、一颗质量为20克的子弹以仰角30o初速率500米/秒从60米的高度处射出。求在重力 作用下该子弹着地前的轨道以及射出50秒后对射出点的位矢、速度、动量、角动量、动 能和机械能。(不考虑空气阻力,重力加速度取10米/秒2 ,地面为零重力势能面)。 1.2、在极坐标平面中任取两点P 1和P 2,但它们和极点三者不共线。试分别画出在P 1和P 2处 的极坐标单位矢。 1.3、在球坐标系中任取一点P ,试画出P 点的球坐标单位矢。 1.4、对于做斜上抛运动的子弹,以抛出点为坐标系原点建立直角坐标系。试分别选取两组不 同的广义坐标,并用之表示子弹在任一时刻的直角坐标。 1.5、氢原子由一个质子和一个电子组成。试说明一个孤立氢原子体系是基本形式的Lagrange 方程适用的体系。 1.6、证明: Lagrange 方程的基本形式(1.59)式可写为如下的Nielsen 形式: αα αQ q T q T =??-??2 ,s ,,2,1 =α 1.7、设一个s 自由度的体系的广义坐标为αq ),,2,1(s =α。试证明存在一个任意可微函 数),,,,(21t q q q F s ,由它与该体系的Lagrange 函数构成的如下函数 dt t q q q dF s ) ,,,,(L L 21 + =' 满足Langrange 方程(1.67)式。 1.8、设一个s 自由度的体系的广义坐标为αq ),,2,1(s =α,满足Langrange 方程(1.67) 式的Lagrange 函数为),,,,,,,,(L 2121t q q q q q q s s 。设存在另一组广义坐标αξ,),,2,1(s =α,且有变换方程 ),,,,(21t q q s ξξξαα =,s ,,2,1 =α 此变换叫做点变换。证明: 若通过上述点变换将),,,,,,,,(L 2121t q q q q q q s s 变 换为),,,,,,,,(L L 2121t s s ξξξ ξξξ =,则有 s dt d , ,2 ,1 ,0L )L ( ==??-??αξξα α 这就是说,Lagrange 方程的形式与所选用的广义坐标无关。 1.9、一个质量为m 的物体在地球(质量为M )引力场中做周期运动。以地心为极点在轨道平面 上建立极坐标系),(?r ,并选极坐标为广义坐标。 1)、写出该物体的Lagrange 函数,广义动量,所受的广义力,并由Lagrange 方程导出 该物体的径向和横向运动方程; 2)、写出该物体的Hamilton 函数, 并由Hamilton 正则方程导出该物体的径向和横向运动方程。

第四章从经典物理学到量子力学

第四章从经典物理学到量子力学 §4 - 1 从经典物理学到前期量子论 到19世纪末,经典物理学已经建立了比较完整的理论体系。 力学分析力学,存在海王星的预言及其被证实 电磁学麦克氢原子光谱斯韦方程组,预言了电磁波的存在 热力学+统计物理学 量子力学的研究对象:微观粒子。

量子理论的发展轨迹: 能量子:黑体辐射 光量子:光电效应 固体比热 氢原子光谱 一黑体辐射普朗克的能量子假说( 1 ) 热辐射的基本概念 热辐射:一切物体的分子热运动将导致物体向外不断地发射电磁波。这种辐射与温度有关。温度越高,发射的能量越大,发射的电磁波的波长越短。

平衡热辐射或平衡辐射:如果物体辐射出去的能量恰好等于在同一时间内所吸收的能量,则辐射过程达到了平衡。 单色辐射出射度(简称单色辐出度,用)(T M λ表示):在单位时间内从物体表面单位面积上所辐射出来的,单位波长范围内的电磁波能量,即 λλd )(d )(T M T M =, (4. 1) where d M ( T ):在单位时间内从物体表面单位面积上所辐射出来的,波长在λ 到

λ+d λ 范围内的电磁波能量。 辐射出射度(简称辐出度,在单位时间内从物体表面单位面积上辐射出来的各种波长电磁波能量的总和) ?? ∞==0d )()(d )(λλT M T M T M . (4. 2) 单色吸收比),(T λα和单色反射比),(T λρ:在温度为T 时,物体吸收和反射波长在λ 到λ + d λ 范围内的电磁波能量,与相应波长的入射电磁波能量之比,分别称为该物体的单

色吸收比),(T λα和单色反射比),(T λρ。对于不透明的物体,有 1),(),(=+T T λρλα. (4. 3) ( 2 ) 基尔霍夫定律和黑体 基尔霍夫辐射定律: 对每一个物体来说,单色辐出度与单色吸收比的比值),(/)(T T M λαλ,是一个与物体性质无关(而只与温度和辐射波长有关)的普适函数。即 ),(),()(),()(2211T I T T M T T M λλαλαλλ===Λ, (4. 4)

量子物理习题解答

量子物理习题解答文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]

量子物理习题解答 习题17—1 用频率为1ν的单色光照射某一金属时,测得光电子的最大初动能为E k 1;用频率为2ν的单色光照射另一种金属时,测得光电子的最大初动能为E k 2。那么[ ] (A) 1ν一定大于2ν。 (B) 1ν一定小于2ν。 (C) 1ν一定等于2ν。 (D) 1ν可能大于也可能小于2ν。 解:根据光电效应方程,光电子的最大初动能为 由此式可以看出,E k 不仅与入射光的频率ν有关,而且与金属的逸出功A 有关,因此我们无法判断题给的两种情况下光电子的最大初动能谁大谁小,从而也就无法判断两种情况下入射光的频率的大小关系,所以应该选择答案(D)。 习题17—2 根据玻尔的理论,氢原子中电子在n =5的轨道上的角动量与在第一激发态的角动量之比为[ ] (A) 5/2。 (B) 5/3。 (C) 5/4。 (D) 5。 解:根据玻尔的理论,氢原子中电子的轨道上角动量满足 n L = n =1,2,3…… 所以L 与量子数n 成正比。又因为“第一激发态”相应的量子数为n =2,因此应该选择答案(A)。 习题17—3 根据玻尔的理论,巴耳末线系中谱线最小波长与最大波长之比为[ ] (A) 5/9。 (B) 4/9。 (C) 7/9。 (D) 2/9。 解:由巴耳末系的里德佰公式 ??? ??-==22 12 11~n R H λν n =3,4,5,…… 可知对应于最大波长m ax λ,n =3;对应于最小波长min λ,n =∞。因此有 H H R R 536312111 22max =?? ? ??-=-λ; H H R R 4 2111 2min = ?? ? ??=-λ 所以 最后我们选择答案(A)。 习题17—4 根据玻尔的理论,氢原子中电子在n =4的轨道上运动的动能与在 基态的轨道上运动的动能之比为[ ] (A) 1/4。 (B) 1/8。 (C) 1/16。 (D) 1/32。

量子物理基础--习题资料讲解

量子物理基础--习题

习题十五 15-1 将星球看做绝对黑体,利用维恩位移定律测量m λ便可求得T .这是测量星球表面温度的方法之一.设测得:太阳的m 55.0m μλ=,北极星的 m 35.0m μλ=,天狼星的m 29.0m μλ=,试求这些星球的表面温度. 解:将这些星球看成绝对黑体,则按维恩位移定律: K m 10897.2,3??==-b b T m λ 对太阳: K 103.51055.010897.236 311 ?=??== --m b T λ 对北极星:K 103.81035.010897.236 322 ?=??== --m b T λ 对天狼星:K 100.110 29.010897.246 333 ?=??== --m b T λ 15-2 用辐射高温计测得炉壁小孔的辐射出射度(总辐射本领)为22.8W ·cm -2,求炉内温度. 解:炉壁小孔视为绝对黑体,其辐出度 242 m W 108.22cm W 8.22)(--??=?=T M B 按斯特藩-玻尔兹曼定律: =)(T M B 4T σ 41 8 44 )10 67.5108.22() (-??==σ T M T B K 1042.110)67 .58.22( 334 1?=?= 15-3 从铝中移出一个电子需要4.2 eV 的能量,今有波长为2000ο A 的光投射到铝表面.试问:(1)由此发射出来的光电子的最大动能是多少?(2)遏止电势差为多大?(3)铝的截止(红限)波长有多大? 解:(1)已知逸出功eV 2.4=A

据光电效应公式2 2 1m mv hv =A + 则光电子最大动能: A hc A h mv E m -=-== λ υ2max k 21 eV 0.2J 1023.310 6.12.41020001031063.61919 10 834=?=??-????=---- m 2 max k 2 1)2(mv E eU a = =Θ ∴遏止电势差 V 0.210 6.11023.319 19 =??=--a U (3)红限频率0υ,∴0 00,λυυc A h = =又 ∴截止波长 198 34010 60.12.41031063.6--?????==A hc λ m 0.296m 10 96.27 μ=?=- 15-4 在一定条件下,人眼视网膜能够对5个蓝绿光光子(m 105.0-7?=λ)产生光的感觉.此时视网膜上接收到光的能量为多少?如果每秒钟都能吸收5个这样的光子,则到 达眼睛的功率为多大? 解:5个兰绿光子的能量 J 1099.1100.51031063.65187 8 34---?=?????= ==λ υhc n nh E 功率 W 1099.118-?== t E 15-5 设太阳照射到地球上光的强度为8 J ·s -1 ·m -2 ,如果平均波长为5000ο A ,则每秒钟落到地面上1m 2的光子数量是多少?若人眼瞳孔直径为3mm ,每秒钟进入人眼的光子数是多少?

相关主题
文本预览
相关文档 最新文档