当前位置:文档之家› 常用的因式分解公式

常用的因式分解公式

常用的因式分解公式
常用的因式分解公式

常用的因式分解公式:

待定系数法(因式分解)

待定系数法是数学中的一种重要的解题方法,应用很广泛,这里介绍它在因式分解中的应用.

在因式分解时,一些多项式经过分析,可以断定它能分解成某几个因式,但这几个因式中的某些系数尚未确定,这时可以用一些字母来表示待定的系数.由于该多项式等于这几个因式的乘积,根据多项式恒等的性质,两边对应项系数应该相等,或取多项式中原有字母的几个特殊值,列出关于待定系数的方程(或方程组),解出待定字母系数的值,这种因式分解的方法叫作待定系数法.

例1 分解因式:x2+3xy+2y2+4x+5y+3.

分析由于

(x2+3xy+2y2)=(x+2y)(x+y),

若原式可以分解因式,那么它的两个一次项一定是x+2y+m和x+y+n的形式,应用待定系数法即可求出m和n,使问题得到解决.

解设

x2+3xy+2y2+4x+5y+3

=(x+2y+m)(x+y+n)

=x2+3xy+2y2+(m+n)x+(m+2n)y+mn,

比较两边对应项的系数,则有

解之得m=3,n=1.所以

原式=(x+2y+3)(x+y+1).

说明本题也可用双十字相乘法,请同学们自己解一下.

例2 分解因式:x4-2x3-27x2-44x+7.

分析本题所给的是一元整系数多项式,根据前面讲过的求根法,若原式有有理根,则只可能是±1,±7(7的约数),经检验,它们都不是原式的根,所以,在有理数集内,原式没有一次因式.如果原式能分解,只能分解为

(x2+ax+b)(x2+cx+d)的形式.

解设

原式=(x2+ax+b)(x2+cx+d)

=x4+(a+c)x3+(b+d+ac)x2+(ad+bc)x+bd,

所以有

由bd=7,先考虑b=1,d=7有

所以

原式=(x2-7x+1)(x2+5x+7).

说明由于因式分解的唯一性,所以对b=-1,d=-7等可以不加以考虑.本题如果b=1,d=7代入方程组后,无法确定a,c的值,就必须将bd=7的其他解代入方程组,直到求出待定系数为止.

本题没有一次因式,因而无法运用求根法分解因式.但利用待定系数法,使我们找到了二次因式.由此可见,待定系数法在因式分解中也有用武之地.

求根法(因式分解)

我们把形如anxn+an-1xn-1+…+a1x+a0(n为非负整数)的代数式称为关于x 的一元多项式,并用f(x),g(x),…等记号表示,如f(x)=x2-3x+2,g(x)=x5+x2+6,…,当x=a时,多项式f(x)的值用f(a)表示.如对上面的多项式f(x) f(1)=12-3×

我们把形如a

n x n+a

n-1

x n-1+…+a

1

x+a

(n为非负整数)的代数式称为关于x的一元

多项式,并用f(x),g(x),…等记号表示,如

f(x)=x2-3x+2,g(x)=x5+x2+6,…,

当x=a时,多项式f(x)的值用f(a)表示.如对上面的多项式f(x)

f(1)=12-3×1+2=0;

f(-2)=(-2)2-3×(-2)+2=12.

若f(a)=0,则称a为多项式f(x)的一个根.

定理1(因式定理) 若a是一元多项式f(x)的根,即f(a)=0成立,则多项式f(x)有一个因式x-a.

根据因式定理,找出一元多项式f(x)的一次因式的关键是求多项式f(x)的根.对于任意多项式f(x),要求出它的根是没有一般方法的,然而当多项式f(x)的系数都是整数时,即整系数多项式时,经常用下面的定理来判定它是否有有理根.

定理2

的根,则必有p是a

0的约数,q是a

n

的约数.特别地,当a

=1时,整系数

多项式f(x)的整数根均为a

n

的约数.

我们根据上述定理,用求多项式的根来确定多项式的一次因式,从而对多项式进行因式分解.

例2 分解因式:x3-4x2+6x-4.

分析这是一个整系数一元多项式,原式若有整数根,必是-4的约数,逐个检验-4的约数:±1,±2,±4,只有

f(2)=23-4×22+6×2-4=0,

即x=2是原式的一个根,所以根据定理1,原式必有因式x-2.

解法1 用分组分解法,使每组都有因式(x-2).

原式=(x3-2x2)-(2x2-4x)+(2x-4)

=x2(x-2)-2x(x-2)+2(x-2)

=(x-2)(x2-2x+2).

解法2 用多项式除法,将原式除以(x-2),

所以

原式=(x-2)(x2-2x+2).

说明在上述解法中,特别要注意的是多项式的有理根一定是-4的约数,反之不成立,即-4的约数不一定是多项式的根.因此,必须对-4的约数逐个代入多项式进行验证.

例3 分解因式:9x4-3x3+7x2-3x-2.

分析因为9的约数有±1,±3,±9;-2的约数有±1,

为:

所以,原式有因式9x2-3x-2.

解 9x4-3x3+7x2-3x-2

=9x4-3x3-2x2+9x2-3x-2

=x2(9x3-3x-2)+9x2-3x-2

=(9x2-3x-2)(x2+1)

=(3x+1)(3x-2)(x2+1)

说明若整系数多项式有分数根,可将所得出的含有分数的因式化为整系数因式,如上题中的因式

可以化为9x2-3x-2,这样可以简化分解过程.

总之,对一元高次多项式f(x),如果能找到一个一次因式(x-a),那么f(x)就可以分解为(x-a)g(x),而g(x)是比f(x)低一次的一元多项式,这样,我们就可以继续对g(x)进行分解了.

双十字相乘法(因式分解)

分解二次三项式时,我们常用十字相乘法.对于某些二元二次六项式

(ax2+bxy+cy2+dx+ey+f),我们也可以用十字相乘法分解因式.例如,分解因式2x2-7xy-22y2-5x+35y-3.我们将上式按x降幂排列,并把y当作常数,于是上式可变形为 2x2-(5+7y)x-(22y2-35y+3),可

分解二次三项式时,我们常用十字相乘法.对于某些二元二次六项式

(ax2+bxy+cy2+dx+ey+f),我们也可以用十字相乘法分解因式.

例如,分解因式2x2-7xy-22y2-5x+35y-3.我们将上式按x降幂排列,并把y 当作常数,于是上式可变形为

2x2-(5+7y)x-(22y2-35y+3),

可以看作是关于x的二次三项式.

对于常数项而言,它是关于y的二次三项式,也可以用十字相乘法,分解为即

-22y2+35y-3=(2y-3)(-11y+1).

再利用十字相乘法对关于x的二次三项式分解

所以

原式=[x+(2y-3)][2x+(-11y+1)]

=(x+2y-3)(2x-11y+1).

上述因式分解的过程,实施了两次十字相乘法.如果把这两个步骤中的十字相乘图合并在一起,可得到下图:

它表示的是下面三个关系式:

(x+2y)(2x-11y)=2x2-7xy-22y2;

(x-3)(2x+1)=2x2-5x-3;

(2y-3)(-11y+1)=-22y2+35y-3.

这就是所谓的双十字相乘法.

用双十字相乘法对多项式ax2+bxy+cy2+dx+ey+f进行因式分解的步骤是:

(1)用十字相乘法分解ax2+bxy+cy2,得到一个十字相乘图(有两列);

(2)把常数项f分解成两个因式填在第三列上,要求第二、第三列构成的十字交叉之积的和等于原式中的ey,第一、第三列构成的十字交叉之积的和等于原式中的dx.

例1 分解因式:

(1)x2-3xy-10y2+x+9y-2;

(2)x2-y2+5x+3y+4;

(3)xy+y2+x-y-2;

(4)6x2-7xy-3y2-xz+7yz-2z2.

解 (1)

原式=(x-5y+2)(x+2y-1).

(2)

原式=(x+y+1)(x-y+4).

(3)原式中缺x2项,可把这一项的系数看成0来分解.

原式=(y+1)(x+y-2).

(4)

原式=(2x-3y+z)(3x+y-2z).

说明 (4)中有三个字母,解法仍与前面的类似.

笔算开平方

对于一个数的开方,可以不用计算机,也不用查表,直接笔算出来,下面通过一个例子来说明如何笔算开平方,对于其它数只需模仿即可

例求316.4841的平方根.

第一步,先将被开方的数,从小数点位置向左右每隔两位用逗号,分段,如把数316.4841分段成3,16.48,41.

第二步,找出第一段数字的初商,使初商的平方不超过第一段数字,而初商加1的平方则大于第一段数字,本例中第一段数字为3,初商为1,因为12=1<3,而(1+1)2=4>3.

第三步,用第一段数字减去初商的平方,并移下第二段数字,组成第一余数,在本例中第一余数为216.

第四步,找出试商,使(20×初商+试商)×试商不超过第一余数,而【20×初商+(试商+1)】×(试商+1)则大于第一余数.

第五步,把第一余数减去(20×初商+试商)×试商,并移下第三段数字,组成第二余数,本例中试商为7,第二余数为2748.依此法继续做下去,直到移完所有的段数,若最后余数为零,则开方运算告结束.若余数永远不为零,则只能取某一精度的近似值.

第六步,定小数点位置,平方根小数点位置应与被开方数的小数点位置对齐.本例的算式如下:

根式的概念

【方根与根式】数a的n次方根是指求一个数,它的n次方恰好等于a.a的n 次方根记为(n为大于1的自然数).作为代数式,称为根式.n称为根指数,

a称为根底数.在实数范围内,负数不能开偶次方,一个正数开偶次方有两个方根,其绝对值相同,符号相反.

【算术根】正数的正方根称为算术根.零的算术根规定为零.

【基本性质】由方根的定义,有

根式运算

【乘积的方根】乘积的方根等于各因子同次方根的乘积;反过来,同次方根的乘积等于乘积的同次方根,即

≥0,b≥0)

【分式的方根】分式的方根等于分子、分母同次方根相除,即

≥0,b>0)

【根式的乘方】≥0)

【根式化简】

≥0)

≥0,d≥0)

≥0,d≥0)

【同类根式及其加减运算】根指数和根底数都相同的根式称为同类根式,只有同类根式才可用加减运算加以合并.

进位制的基与数字

任一正数可表为通常意义下的有限小数或无限小数,各数字的值与数字所在的位置有关,任何位置的数字当小数点向右移一位时其值扩大10倍,当小数点向左移一位时其值缩小10倍.例如

一般地,任一正数a可表为

这就是10进数,记作a(10),数10称为进位制的基,式中ai在{0,1,2,L,9}中取值,称为10进数的数字,显然没有理由说进位制的基不可以取其他的数.现在取q为任意大于1的正整数当作进位制的基,于是就得到q进数表示

(1)

式中数字ai在{0,1,2,...,q-1}中取值,a

n a

n-1

...a

1

a

称为q进数a(q)的整数部

分,记作[a(q)];

a-1a-2 ...称为a(q)的分数部分,记作{a(q)}.常用进位制,除10进制外,还有2进制、8进制、16进制等,其数字如下

2进制 0, 1

8进制 0, 1, 2, 3, 4, 5, 6, 7

16进制 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

各种进位制的相互转换

1 q→10转换适用通常的10进数四则运算规则,根据公式(1),可以把q进数a(q)转换为10进数表示.例如

2 10→q转换转换时必须分为整数部分和分数部分进行.

对于整数部分其步骤是:

(1) 用q去除[a(10)],得到商和余数.

(2) 记下余数作为q进数的最后一个数字.

(3) 用商替换[a(10)]的位置重复(1)和(2)两步,直到商等于零为止.

对于分数部分其步骤是:

(1)用q去乘{a(10)}.

(2)记下乘积的整数部分作为q进数的分数部分第一个数字.

(3)用乘积的分数部分替换{a(10)}的位置,重复(1)和(2)两步,直到乘积变为整数为止,或直到所需要的位数为止.例如:

103.118(10)=147.074324 (8)

整数部分的草式分数部分的草式

3 p→q转换通常情况下其步骤是:a(p)→a(10)→a(q).如果p,q是同一数s的不同次幂,其步骤是:a(p)→a(s)→a(q).例如,8进数127.653(8)转换为16进数时,由于8=23,16=24,所以s=2,其步骤是:首先把8进数的每个数字根据8-2转换表转换为2进数(三位一组)

127.653(8)=001 010 111.110 101 011(2)

然后把2进数的所有数字从小数点起(左和右)每四位一组分组,从16-2转换表中逐个记下对应的16进数的数字,即

正多边形各量换算公式

n为边数 R为外接圆半径 a为边长爎为内切圆半径为圆心角 S为多边形面积重心G与外接圆心O重合正多边形各量换算公式表各量正三角形

n为边数 R为外接圆半径

a为边长爎为内切圆半径

为圆心角 S为多边形面积

重心G与外接圆心O重合

正多边形各量换算公式表

或许你还对作图感兴趣:正多边形作图

所谓初等几何作图问题,是指使用无刻度的直尺和圆规来作图.若使用尺规有限次能作出几何图形,则称为作图可能,或者说欧几里得作图法是可能的,否则称为作图不可能.

很多平面图形可以用直尺和圆规作出,例如上面列举的正五边形、正六边形、正八边形、正十边形等.而另一些就不能作出,例如正七边形、正九边形、正十一边形等,这些多边形只能用近似作图法.如何判断哪些作图可能,哪些作图不可能呢?直到百余年前,用代数的方法彻底地解决了这个问题,即给出一个关于尺规作图可能性的准则:作图可能的充分必要条件是,这个作图问题中必需求出的未知量能够由若干已知量经过有限次有理运算及开平方运算而算出.几千年来许多数学家耗费了不少的精力,企图解决所谓“几何三大问题”:

立方倍积问题,即作一个立方体,使它的体积二倍于一已知立方体的体积.

三等分角问题,即三等分一已知角.

化圆为方问题,即作一正方形,使它的面积等于一已知圆的面积.

后来已严格证明了这三个问题不能用尺规作图.

代数式的求值

代数式的求值与代数式的恒等变形关系十分密切.许多代数式是先化简再求值,特别是有附加条件的代数式求值问题,往往需要利用乘法公式、绝对值与算术根的性质、分式的基本性质、通分、

求值中的方法技巧主要是代数式恒等变形的技能、技巧和方法.下面结合例题逐一介绍.

1.利用因式分解方法求值

因式分解是重要的一种代数恒等变形,在代数式化简求值中,经常被采用.

分析 x的值是通过一个一元二次方程给出的,若解出x后,再求值,将会很麻烦.我们可以先将所求的代数式变形,看一看能否利用已知条件.解已知条件可变形为3x2+3x-1=0,所以

6x4+15x3+10x2

=(6x4+6x3-2x2)+(9x3+9x2-3x)+(3x2+3x-1)+1

=(3x2+3x-1)(2z2+3x+1)+1

=0+1=1.

说明在求代数式的值时,若已知的是一个或几个代数式的值,这时要尽可能避免解方程(或方程组),而要将所要求值的代数式适当变形,再将已知的代数式的值整体代入,会使问题得到简捷的解答.

例2 已知a,b,c为实数,且满足下式:

a2+b2+c2=1,①

求a+b+c的值.

解将②式因式分解变形如下

所以

a+b+c=0或bc+ac+ab=0.

若bc+ac+ab=0,则

(a+b+c)2=a2+b2+c2+2(bc+ac+ab)

=a2+b2+c2=1,

所以a+b+c=±1.所以a+b+c的值为0,1,-1.

说明本题也可以用如下方法对②式变形:

前一解法是加一项,再减去一项;这个解法是将3拆成1+1+1,最终都是将②式变形为两个式子之积等于零的形式.

2.利用乘法公式求值

例3 已知x+y=m,x3+y3=n,m≠0,求x2+y2的值.

解因为x+y=m,所以

m3=(x+y)3=x3+y3+3xy(x+y)=n+3m·xy,

所以

求x2+6xy+y2的值.

分析将x,y的值直接代入计算较繁,观察发现,已知中x,y的值正好是一对共轭无理数,所以很容易计算出x+y与xy的值,由此得到以下解法.解 x2+6xy+y2=x2+2xy+y2+4xy

=(x+y)2+4xy

3.设参数法与换元法求值

如果代数式字母较多,式子较繁,为了使求值简便,有时可增设一些参数(也叫辅助未知数),以便沟通数量关系,这叫作设参数法.有时也可把代数式中某一部分式子,用另外的一个字母来替换,这叫换元法.

分析本题的已知条件是以连比形式出现,可引入参数k,用它表示连比的比值,以便把它们分割成几个等式.

x=(a-b)k,y=(b-c)k,z=(c-a)k.

所以

x+y+z=(a-b)k+(b-c)k+(c-a)k=0.

u+v+w=1,①

由②有

把①两边平方得

u2+v2+w2+2(uv+vw+wu)=1,

所以u2+v2+w2=1,

两边平方有

所以

4.利用非负数的性质求值

若几个非负数的和为零,则每个非负数都为零,这个性质在代数式求值中经常被使用.

例8 若x2-4x+|3x-y|=-4,求y x的值.

分析与解x,y的值均未知,而题目却只给了一个方程,似乎无法求值,但仔细挖掘题中的隐含条件可知,可以利用非负数的性质求解.

因为x2-4x+|3x-y|=-4,所以

x2-4x+4+|3x-y|=0,

即 (x-2)2+|3x-y|=0.

所以 y x=62=36.

例9 未知数x,y满足

(x2+y2)m2-2y(x+n)m+y2+n2=0,其中m,n表示非零已知数,求x,y的值.分析与解两个未知数,一个方程,对方程左边的代数式进行恒等变形,经过配方之后,看是否能化成非负数和为零的形式.

将已知等式变形为

m2x2+m2y2-2mxy-2mny+y2+n2=0,

(m2x2-2mxy+y2)+(m2y2-2mny+n2)=0,即 (mx-y)2+(my-n)2=0.

5.利用分式、根式的性质求值

分式与根式的化简求值问题,内容相当丰富,因此设有专门讲座介绍,这里只分别举一个例子略做说明.

例10 已知xyzt=1,求下面代数式的值:

分析直接通分是笨拙的解法,可以利用条件将某些项的形式变一变.

解根据分式的基本性质,分子、分母可以同时乘以一个不为零的式子,分式的值不变.利用已知条件,可将前三个分式的分母变为与第四个相同.

同理

分析计算时应注意观察式子的特点,若先分母有理化,计算反而复杂.因为这样一来,原式的对称性就被破坏了.这里所言的对称性是

分利用这种对称性,或称之为整齐性,来简化我们的计算.

同样(但请注意算术根!)

将①,②代入原式有

练习六

2.已知x+y=a,x2+y2=b2,求x4+y4的值.

3.已知a-b+c=3,a2+b2+c2=29,a3+b3+c3=45,求ab(a+b)+bc(b+c)+ca(c+a)的值.

5.设a+b+c=3m,求(m-a)3+(m-b)3+(m-c)3-3(m-a)(m-b)(m-c)的值.8.已知13x2-6xy+y2-4x+1=0,求(x+y)13·x10的值.

因式分解法(提公因式法、公式法)

因式分解法(提公因式 法、公式法) -CAL-FENGHAI.-(YICAI)-Company One1

【知识要点】 1、提取公因式:型如()ma mb mc m a b c ++=++,把多项式中的公共部分提取出来。 ☆提公因式分解因式要特别注意: (1)如果多项式的首项系数是负的,提公因式时要将负号提出,使括号内第一项的系数是 正的,并且注意括号内其它各项要变号。 (2)如果公因式是多项式时,只要把这个多项式整体看成一个字母,按照提字母公因式的办法提出。 (3)有时要对多项式的项进行适当的恒等变形之后(如将a+b-c 变成-(c-a-b )才能提公 因式,这时要特别注意各项的符号)。 (4)提公因式后,剩下的另一因式须加以整理,不能在括号中还含有括号,并且有公因式的还应继续提。 (5)分解因式时,单项式因式应写在多项式因式的前面。 2、运用公式法:把我们学过的几个乘法公式反过来写就变成了因式分解的形式: ()()22a b a b a b -=+-; ()2 222a ab b a b ±+=±。 平方差公式的特点是:(1) 左侧为两项;(2) 两项都是平方项;(3) 两项的符号相反。 完全平方公式特点是: (1) 左侧为三项;(2) 首、末两项是平方项,并且首末两项的符号相同; (3) 中间项是首末两项的底数的积的2倍。 ☆运用公式法分解因式,需要掌握下列要领: (1)我们学过的三个乘法公式都可用于因式分解。具体使用时可先判断能否用公式分解,然后再选择适当公式。(2)各个乘法公式中的字母可以是数,单项式或多项式。 (3)具体操作时,应先考虑是否可提公因式,有公因式的要先提公因式再运用公式。 (4)因式分解一定要分解到不能继续分解为止,分解之后一定要将同类项合并。 【典例分析】 例1.分解下列因式: (1)2 2321084y x y x y x -+ (2)233272114a b c ab c abc --+

(完整版)因式分解练习题(公式法)

因式分解习题(二)公式法分解因式 专题训练一:利用平方差公式分解因式 题型(一):把下列各式分解因式 1、24x - 2、29y - 3、21a - 4、224x y - 5、2125b - 6、222x y z - 7、2240.019m b - 8、2219 a x - 9、2236m n - 10、2249x y - 11、220.8116a b - 12、222549p q - 13、2422a x b y - 14、41x - 15、4416a b - 16、 44411681a b m - 题型(二):把下列各式分解因式 1、22()()x p x q +-+ 2、 22(32)()m n m n +-- 3、2216()9()a b a b --+ 4、229()4()x y x y --+ 5、22()()a b c a b c ++-+- 6、224()a b c -+

题型(三):把下列各式分解因式 1、53x x - 2、224ax ay - 3、322ab ab - 4、316x x - 5、2433ax ay - 6、2(25)4(52)x x x -+- 7、324x xy - 8、343322x y x - 9、4416ma mb - 10、238(1)2a a a -++ 11、416ax a -+ 12、 2216()9()mx a b mx a b --+ 题型(四):利用因式分解解答下列各题 1、证明:两个连续奇数的平方差是8的倍数。 2、计算 ⑴22758258- ⑵22429171- ⑶223.59 2.54?-? ⑷2222211111(1)(1)(1)(1)(1)234910 - --???--

因式分解之套公式法

因式分解之套公式法 【知识精读】 1.把乘法公式反过来,就可以得到因式分解的公式。 常用公式有:平方差公式 a b a b a b 2 2 -=+-()() 完全平方公式 a ab b a b 2 2 2 2±+=±() 立方和、立方差公式 a b a b a ab b 3 3 2 2 ±=±?+()()μ 2. 补充:欧拉公式: a b c abc a b c a b c ab bc ca 3 3 3 2 2 2 3++-=++++---()() = ++-+-+-1 2 222()[()()()]a b c a b b c c a 特别地:(1)当a b c ++=0时,有a b c abc 3333++= (2)当c =0时,欧拉公式变为两数立方和公式。 【典例精析】 (一)运用公式分解因式 1. 把a a b b 22 22+--分解因式的结果是( ) A. ()()()a b a b -++22 B. ()()a b a b -++2 C. ()()a b a b -++2 D. ()()a b b a 2 2 22-- 分析:a a b b a a b b a b 2 2 2 2 2 2 22212111+--=++---=+-+()()。 再利用平方差公式进行分解,最后得到()()a b a b -++2,故选择B 。 说明:解这类题目时,一般先观察现有项的特征,通过添加项凑成符合公式的形式。同时 要注意分解一定要彻底。 2.因式分解:x xy 3 2 4-=________。 解:x xy x x y x x y x y 3 2 2 2 4422-=-=+-()()()

因式分解公式法、十字相乘法教师版

2、运用公式法进行因式分解 【知识精读】 把乘法公式反过来,就可以得到因式分解的公式。 主要有:平方差公式 a b a b a b 22-=+-()() 完全平方公式 a ab b a b 2222±+=±() 立方和、立方差公式 a b a b a ab b 3322±=±?+()()μ 补充:欧拉公式: 特别地:(1)当a b c ++=0时,有a b c abc 3333++= (2)当c =0时,欧拉公式变为两数立方和公式。 运用公式法分解因式的关键是要弄清各个公式的形式和特点,熟练地掌握公式。但有时需要经过适当的组合、变形后,方可使用公式。 用公式法因式分解在求代数式的值,解方程、几何综合题中也有广泛的应用。因此,正确掌握公式法因式分解,熟练灵活地运用它,对今后的学习很有帮助。 下面我们就来学习用公式法进行因式分解 【分类解析】 1. 把a a b b 2222+--分解因式的结果是( ) A. ()()()a b a b -++22 B. ()()a b a b -++2 C. ()()a b a b -++2 D. ()()a b b a 2222-- 分析:a a b b a a b b a b 22222222212111+--=++---=+-+()()。 再利用平方差公式进行分解,最后得到()()a b a b -++2,故选择B 。 说明:解这类题目时,一般先观察现有项的特征,通过添加项凑成符合公式的形式。同时要注意分解一定要彻底。 2. 在简便计算、求代数式的值、解方程、判断多项式的整除等方面的应用 例:已知多项式232x x m -+有一个因式是21x +,求m 的值。 分析:由整式的乘法与因式分解互为逆运算,可假设另一个因式,再用待定系数法即可求出m 的值。 解:根据已知条件,设221322x x m x x ax b -+=+++()() 则222123232x x m x a x a b x b -+=+++++()() 由此可得211120 23a a b m b +=-+==???????()()()

初二数学利用公式法(完全平方公式)因式分解课堂

设计思路: 教师是学习活动的引导者和组织者,学生是课堂的主人。教师在教学中要充分体现教师的导向作用,尊重学生的个体差异,选择适合自己的学习方式,鼓励学生自主探索与合作交流,让学生经历数学知识的形成与应用过程,鼓励学生的直觉并且运用基本方法进行相关的验证,指导学生注重数学知识之间的联系,不断提高解决问题的能力。 教学过程: 师生问好,组织上课。 师:我们在初一第二学期就已经学习了乘法完全平方公式,请一位同学用文字语言来描述一下这个公式的内容? 生1:(答略) 师:你能用符号语言来表示这个公式吗? 生1:(a+b)2=a2+2ab+b2(a-b)2=a2-2ab+b2 师:不错,请坐。由此我们可以看出完全平方公式其实包含几个公式? 生齐答:两个。 师:接下来有两道填空题,我们该怎么进行填空? a2++1=(a+1)24a2-4ab+=(2a-b)2 生2:(答略) 师:你能否告诉大家,你是根据什么来进行填空的吗? 生2:根据完全平方公式,将等号右边的展开。 师:很好。(将四个式子分别标上○1○2○3○4) 问题:○1、○2两个式子由左往右是什么变形? ○3、○4两个式子由左往右是什么变形? 生3:(答略) 师:刚才的○1和○2是我们以前学过的完全平方公式,那么将这两个公式反过来就有:

a2+2ab+b2=(a+b)2a2-2ab+b2=(a-b)2(板书) 问题:这两个式子由左到右的变形又是什么呢? 生齐答:因式分解。 师:可以看出,我们已将左边多项式写成完全平方的形式,即将左边的多项式分解因式了。 这两个公式我们也将它们称之为完全平方公式,也是我们今天来共同学习的知识(板书课题) 师:既然这两个是公式,那么我们以后遇到形如这种类型的多项式可以直接运用这个公式进行分解。这个公式到底有哪些特征呢?请同学们仔细观察思考一下,同座的或前后的同学可以讨论一下。 (经过讨论之后) 生4:左边是三项,右边是完全平方的形式。 生5:左边有两项能够写成平方和的形式。 师:说得很好,其他同学有没有补充的? 生6:还有一项是两个数的乘积的2倍。 师:这“两个数的乘积”中“两个数”是不是任意的? 生6:不是,而是刚才两项的底数。 师:刚才三位同学都回答得不错,每人都找出了一些特征。再请一位同学来综合一下。 生7:左边的多项式要有三项,有两项是平方和的形式,还有一项是这两个数的积的2倍。右边是两个数的和或差的平方。 教师在学生回答的基础上总结: 1)多项式是三项式 2)有两项都为正且能够写成平方的形式 3)另一项是刚才写成平方项两底数乘积的2倍,但这一项可以是正,也可以是负 4)等号右边为两平方项底数和或差的平方。

因式分解一_提取公因式法和公式法_超经典

因式分解(一) ——提取公因式与运用公式法 【学习目标】(1)让学生了解什么是因式分解; (2)因式分解与整式的区别; (3)提公因式与公式法的技巧。 【知识要点】 1、提取公因式:型如()ma mb mc m a b c ++=++,把多项式中的公共部分提取出来。 ☆提公因式分解因式要特别注意: (1)如果多项式的首项系数是负的,提公因式时要将负号提出,使括号内第一项的系数是正的, 并且注意括号内其它各项要变号。 (2)如果公因式是多项式时,只要把这个多项式整体看成一个字母,按照提字母公因式的办法提出。 (3)有时要对多项式的项进行适当的恒等变形之后(如将a+b-c 变成-(c-a-b )才能提公因式, 这时要特别注意各项的符号)。 (4)提公因式后,剩下的另一因式须加以整理,不能在括号中还含有括号,并且有公因式的还应继续提。 (5)分解因式时,单项式因式应写在多项式因式的前面。 2、运用公式法:把我们学过的几个乘法公式反过来写就变成了因式分解的形式: ()()22a b a b a b -=+-; ()2 222a ab b a b ±+=±。 平方差公式的特点是:(1) 左侧为两项;(2) 两项都是平方项;(3) 两项的符号相反。 完全平方公式特点是: (1) 左侧为三项;(2) 首、末两项是平方项,并且首末两项的符号相同; (3) 中间项是首末两项的底数的积的2倍。 ☆运用公式法分解因式,需要掌握下列要领: (1)我们学过的三个乘法公式都可用于因式分解。具体使用时可先判断能否用公式分解,然后再选择适当公式。(2)各个乘法公式中的字母可以是数,单项式或多项式。 (3)具体操作时,应先考虑是否可提公因式,有公因式的要先提公因式再运用公式。 (4)因式分解一定要分解到不能继续分解为止,分解之后一定要将同类项合并。 【经典例题】 例1、找出下列中的公因式: (1) a 2b ,5ab ,9b 的公因式 。 (2) -5a 2,10ab ,15ac 的公因式 。 (3) x 2y(x -y),2xy(y -x) 的公因式 。

《公式法因式分解》教学设计

《公式法因式分解》教学设计 永年县第八中学——胡平亮 一、教学内容:冀教版七年级数学第十一章公式法分解因式 二、教学目标: 知识与技能 1、经历逆用平方差公式的过程. 2、会运用平方差公式,并能运用公式进行简单的分解因式. 过程与方法 1、在逆用平方差公式的过程中,培养符号感和推理能力. 2、培养学生观察、归纳、概括的能力. 情感与价值观要求: 在分解过程中发现规律,并能用符号表示,从而体会数学的简捷美;让学生在合作探究的学习过程中体验成功的喜悦;培养学生敢于挑战;勇于探索的精神和善于观察、大胆创新的思维品质。 三、教学重点: 利用平方差公式进行分解因式 四、教学难点: 领会因式分解的解题步骤和分解因式的彻底性。 五、教学准备: 深研课标和教材,分析学情,制作课件 六、教学过程; 一、知识回顾 1、根据因式分解的概念,判断下列由左边到右边的变形,哪些是因式分解,哪些不是,为什么? (1)、(2x-1)2=4x2-4x+1 否 (2)、 3x2+9xy-3x=3x(x+3y-1) 是 (3)、4x2-1-4xy+y2=(2x+1)(2x-1)-y(4x-y) 否 2、把下列各式进行因式分解

(1). a3b3-a2b-ab (2)(3x+y)(3x-y) (3)、(x+5)(x-5) 利用一组整式的乘法运算复习平方差公式,为探究运用平方差公式进行分解因式打下基础。 二、导入新课: 你能把多项式:x2 -25、9x2 -y2分解因式吗? 利用一组运用平方差公式分解因式的习题,引导学生利用逆向思维去探究如何分解 a2- b2类的二次二项式。学生从对比整式的乘法去探索分解因式方法,可以感受到这种互逆变形以及它们之间的联系。 三、探究与交流 a2- b2=(a+b)(a-b) (1)用语言怎样叙述公式? (2)公式有什么结构特征? (3)公式中的字母a、b可以表示什么?引导学生观察平方差公式的结构特征, 学生在互动交流中,既形成了对知识的全面认识,又培养了观察、分析能力以及合作交流的能力。 判断:下列多项式能不能运用平方差公式分解因式? (1) m2-1 (2)4m2-9 (3)(3)4m2+9 (4)(4)x2-25y + (5) -x2-25y2 (6) -x2-25y2 通过这一组判断,使学生加深理解和掌握平方差公式的结构特征,既突出了重点,也培养了学生的应用意识。 四、体验新知: (A)通过自学例1: 分解因式(1)25-16x2 (2)9a2 -1/4b2 引导学生得出分解因式的一般步骤,向学生渗透“化归”思想。 要让学生明确: (1)要先确定公式中的a和b; (2)学习规范的步骤书写。 (B)例2、分解因式9(m+n)2-(m-n)2

公式法因式分解知识点讲解及练习

公式法因式分解知识点讲解及练习 1.平 方 差公式: )b a )(b a (b a 22-+=- 因式分解 22)b a )(b a (b a -=-+ 整式乘法 2、分解因式的一般步骤为: (1)若多项式各项有公因式,则先提取公因式。 (2)若多项式各项没有公因式,则根据多项式特点,选用平方差公式或完全平方公式。 (3)每一个多项式都要分解到不能再分解为止。 3、分组分解法,适用于四项以上的多项式,例如22a b a b -+-没有公因式,又不能直接利用分式法分 解,但是如果将前两项和后两项分别结合,把原多项式分成两组。再提公因式,即可达到分解因式的目 的。例如:22a b a b -+-= 22()()()()()()(1)a b a b a b a b a b a b a b -+-=-++-=-++, 这种利用分组来分解因式的方法叫分组分解法。 4、原则:分组后可直接提取公因式或可直接运用公式,但必须使各组之间能继续分解。 5、有些多项式用分组分解法时,分解方法并不唯一,无论怎样分组,只要能将多项式正确分解即可。 题型一 公式法因式分解 例 1将下列各式因式分解 225-36x 22916b a - 点评::能用平方差公式因式分解的多项式的特征:(1)有且只有两个平方项: (2)两个平方项异号。 知识梳理

巩 固1、计算 (1)22758258- (2)22429171- (3)223.59 2.54?-? 2、已知0001.03,100003=-=+b a b a ,求229a b -的值。 3、把多项式()()2 249b a b a --+分解因式 * 平方差公式中字母b a 、不仅可以表示数,而且也可以表示其他代数式。 例2判断下列各式是不是完全平方式 (1) 222y xy x ++ (2)2244y xy x ++ (3)226b ab a +- (5)222y x xy ++- (6)2242b ab a ++ (4) 412++x x

45.3.2因式分解公式法(第1课时)

14.3.2公式法导学案(第1课时) 备课时间: 主备:张洪波 高永爱 审核:高永爱 使用时间: 【学习目标】 1.运用平方差公式分解因式,能说出平方差公式的特点. 2.会用提公因式法与平方差公式法分解因式. 3.会两次运用平方差公式分解因式,知道因式分解必须进行到不能分解为止. 【学习重难点】 学习重点:用平方差公式法进行因式分解. 学习难点:把多项式进行必要变形,灵活运用平方差公式分解因式 【自主学习】 1、对于等式x 2+x = x (x+1): 1) 如果从左到右看,是一种什么变形? 2) 什么叫因式分解?这种因式分解的方法叫什么? 3) 如果从右到左看,是一种什么变形? 4) 因式分解和整式乘法是两种互为_______的变形. 【合作探究】 探究一: 1.计算:(1)(x-1)(x+1)=_________;(2)(y+4)(y-4)=_______ 2.根据1题的结果分解因式:(1)21_____x -=;(2)216________y -= 3.你能将22a b -进行因式分解吗?你是如何思考的? 分析:要将22a b -进行因式分解,可以发现它_________公因式,不能用提公因式法分解因式,但我们还可以发现这个多项式是两个数的 ____________ 形式,所以用平方差公式可以写成如下 形式:

结论:多项式的乘法公式的逆向应用,就是多项式的因式分解公式,如果被分解的多项式符合公式的条件,就可以直接写出因式分解的结果,这种分解因式的方法称为运用公式法。 拓展延伸: 1.把一个单项式写成平方的形式: (1)24a =( )2;(2)40.16a =( )2;(3)221.21a b =( )2; 例1:分解因式:(1);249x -; (2)22()()x p x q +-+ (3).22221.1b b a - 结论:(1)中的_______(2)中的________和(3)中的________相当于平方差公式中的a ;(1)中的______(2)中的_________和(3)中的__________相当于平方差公式中的b ,这说明公式中的a 和b 可以表示一个数,也可以表示一个单项式,或是多项式,只要符合公式的特点( )()22-,就可以运用公式分解因式. 总结平方差公式的特点: ①左边是二项式,每项都是 的形式,两项的符号 . ②右边是两个多项式的 ,一个因式是两数的 ,另一个因式是这两数的 . 例2:因式分解:(1)44x y - ; (2)3a b ab -; 【尝试应用】 1.口答:①24x -=_________ ②29t -= ③21649____m -= ④2254______x -+= 2.因式分解: (1)22125 a b -; (2)2294a b -; (3)24x y y -;

分解因式--二次三项式的因式分解(用公式法)

初三代数教案 第十二章:一元二次方程 第12课时:二次三项式的因式分解(用公式法)(一) 教学目标: 1、使学生理解二次三项式的意义; 2、了解二次三项式的因式分解与解一元二次方程的关系; 3、使学生会利用一元二次方程的求根公式在实数范围内将二次三项式分解因式; 4、通过本节课的教学,提高学生研究问题的能力。 教学重点: 用公式法将二次三项式因式分解. 教学难点: 一元二次方程的根与二次三项式因式分解的关系. 教学过程: 二次三项式的因式分解常用的方法是公式法、十字相乘法等.但对有些二次三项式,用这两种方法比较困难,如将二次三项式4x2+8x-1因式分解.在学习了一元二次方程的解法后,我们知道,任何一个有实根的一元二次方程,用求根公式都可以求出.那么一元二次方程ax2+bx+c=0(a≠0)的两个根与二次三项式ax2+bx+c的因式分解有无关系呢?这就是我们本节课研究的问题,也就是研究和探索二次三项式因式分解的又一种方法——用公式法. 一元二次方程的一般形式是ax2+bx+c=0(a≠0),观察方程的特点:左边是一个二次三项式,曾经借助于将左边二次三项式因式分解来解一元二次方程.反之,我们还可以利用方程的根,来将二次三项式因式分解.即在分解二次三项式ax2+bx+c的因式时,可先用公式求出方程ax2+bx+c=0的两个根x1,x2,然后写成ax2+bx+c=a(x-x1)(x-x2).通过知识之间的相互联系、相互作用和相互促进,对学生进行辩证唯物主义思想教育.公式ax2+bx+c=a(x-x1)(x-x2)的得出的依据是根与系数的关系.一元二次方程根与系数的关系为公式ax2+bx+c=a(x-x1)(x-x2)的得出奠定了基础.通过因式分解新方法的导出,不仅使学生学习了一个新方法,还能进一步启发学生学习的兴趣,提高他们研究问题的能力. 一、新课引入: (1)写出关于x的二次三项式? (2)将下列二次三项式在实数范围因式分解. ①x2-2x+1;②x2-5x+6;③6x2+x-2;④4x2+8x-1. 由④感觉比较困难,引出本节课所要解决的问题. 二、新课讲解: .①由新课引入观察上式①,②,③方程的两个根与方程左边的二次三项式的因式分解之关系. ①x2-2x+1=0; 解:原式变形为(x-1)(x-1)=0. ∴ x1=x2=1, ②x2-5x+6=0; 解原方程可变为

因式分解—公式法

14.3.2 公式法(平方差公式) 授课时间: 教学目标: 1.知识与技能:会应用平方差公式进行因式分解,发展学生推理能力。 2.过程与方法:经历探索利用平方差公式进行因式分解的过程,发展学生的逆向思维,感受数学知识的完整性。 3.情感、态度与价值观: 培养学生良好的互动交流的习惯,体会数学在实际问题中的应用价值。 教学重点:掌握平方差公式的特点及运用平方差公式进行因式分解的方法。 教学难点:提取公因式与平方差公式结合进行因式分解的思路和方法。 教学过程: (一) 复习提问: 1. 讲评上节课作业,复习用提取公因式法分解因式。 2. 计算:(1)))((b a b a -+; (2))3)(3(-+a a ; (3))35)(35(y x y x -+; (4))43 1)(431(n m n m +-。 (设计意图:通过以上练习,复习用平方差公式进行整式的乘法计算,进一步引导学生理解整式的乘法与因式分解的关系) (二)讲解新课: 我们知道,整式乘法与因式分解相反,因此,利用这种关系,可以得到因式分解的方法,如果把乘法公式反过来,就可以用来把某些多项式分解因式, 这种分解因式的方法叫做运用公式法,今天我们学习公式中的一种。 板书“平方差公式”。 把乘法公式22))((b a b a b a -=-+,反过来,就得到))((22b a b a b a -+=-, 这就是说,两个数的平方差,等于这两个数的和与这两个数的差的积。 公式特征:二项式、差的形式、两项分别是平方数或平方式,符合此特征的二项式可用平方差公式进行因式分解,分解为这两个底数的和与这两个底数的差的积。解题的关键在于找出这两项的底数,相当于公式中的a 、b 。 如:把22925y x -进行因式分解,因为22)5(25x x =,22)3(9y y =,底数分别为x 5、y 3,则22925y x -分解为)35)(35(y x y x -+。 下面我们举例说明,如何利用平方差公式分解因式:

公式法因式分解练习

运用公式法分解因式 思维导航:运用公式法是分解因式的常用方法,运用公式法分解因式的思路主要有以下几种情况: 一、直接用公式:当所给的多项式是平方差或完全平方式时,可以直接利用公式法分解因式。 例1、 分解因式:(1)x 2-9; (2)9x 2-6x+1。 二、提公因式后用公式:当所给的多项式中有公因式时,一般要先提公因式,然后再看是否能利用公式法。 例2、 分解因式:(1)x 5y 3-x 3y 5; (2)4x 3y+4x 2y 2+xy 3。 三、系数变换后用公式:当所给的多项式不能直接利用公式法分解因式,往往需要调整系数,转换为符合公式的形式,然后再利用公式法分解. 例3、 分解因式:(1)4x 2-25y 2; (2)4x 2-12xy 2+9y 4. 四、指数变换后用公式:通过指数的变换将多项式转换为平方差或完全平方式的形式,然后利公式法分解因式,应注意分解到每个因式都不能再分解为止. 例4、 分解因式:(1)x 4-81y 4; (2)16x 4-72x 2y 2+81y 4. 五、重新排列后用公式:当所给的多项式不能直接看出是否可用公式法分解时,可以将所给多项式交换位置,重新排列,然后再利用公式。 例5、 分解因式:(1)-x 2+(2x-3)2; (2)(x+y)2+4-4(x+y). 六、整理后用公式:当所给的多项式不能直接利用公式法分解时,可以先将其中的项去括号整理,然后再利用公式法分解。 例6 、分解因式: (x-y)2-4(x-y-1). 七、连续用公式:当一次利用公式分解后,还能利用公式再继续分解时,则需要用公式法再进行分解,到每个因式都不能再分解为止。 例7、 分解因式:(x 2+4)2-16x 2. 练习: 1、多项式2244x xy y -+-分解因式的结果是( ) (A)2(2)x y - (B)2(2)x y -- (C)2(2)x y -- (D)2()x y + 2、 41x -的结果为( ) A.22(1)(1)x x -+ B.22(1)(1)x x +- C.2(1)(1)(1)x x x -++ D.3(1)(1)x x -+ 3、222516a kab a ++是一个完全平方式,那么k 值为( )

因式分解 公式法(一)

因式分解——公式法(一) 一、教学目标: (一)知识与技能: 1.使学生了解运用公式法分解因式的意义; 2.会用平方差公式进行因式分解; 3.使学生了解提公因式法是分解因式首先考虑的方法,再考虑用平方差公式分解因式. (二)过程与方法: 1.发展学生的观察能力和逆向思维能力; 2.培养学生对平方差公式的运用能力。 (三)情感与态度: 在引导学生逆用乘法公式的过程中,培养学生逆向思维的意识。 二、教学重点和难点: 1.教学重点:利用平方差公式分解因式. 2.教学难点:领会因式分解的解题步骤和分解因式的彻底性.应用逆向思维的方向,演绎出平方差公式,?对公式的应用首先要注意其特征,其次要做好式的变形,把问题转化成能够应用公式的方面上来. 三、教学方法:采用“问题解决”的教学方法,让学生在问题的牵引下,推进自己的思维. 四、教学用具:多媒体 五、教学过程: 一知识回顾: 1 什么叫多项式的分解因式? 2 分解因式和整式乘法有何关系? 3 我们学了什么方法进行因式分解?

练习1:根据因式分解的概念,判断下列由左边到右边的变形,哪些是因式分解,哪些不是,为什么? 1.(2x-1)2=4x2-4x+1 2. 3x2+9xy-3x=3x(x+3y-1) 3.4x2-1-4xy+y2=(2x+1)(2x-1)-y(4x-y) 练习2把下列各式进行因式分解 (1). a3b3-a2b-ab (2). -9x2y+3xy2-6xy 二观察探讨,体验新知 在横线内填上适当的式子,使等式成立: (1)(x+5)(x-5)= - (2)(a+b)(a-b) = () (3) x2-25 = (4) a2-b2= 知识探索 平方差公式:a2-b2=(a+b)(a-b). 评析:平方差公式中的字母a、b,教学中还要强调一下,可以表示数、含字母的代数式(单项式、多项式). 公式的结构特征:什么形式的多项式能用平方差公式进行分解 下列多项式能转化成()2-()2的形式吗?如果能,请将其转化成()2-()2的形式。 (1) m2-1 (2)4m2-9 (3)4m2+9 (4)x2-25y 2

因式分解公式法

知识点一:因式分解的概念 因式分解是把一个多项式分解成几个整式乘积的形式,它和整式乘法互为逆运算,在初中代数中占有重要地位和作用,在其它学科中也有广泛应用,学习本章知识时,应注意以下几点。 4、(a-b)(a2+ab+b2) = a3-b3 ------a3-b3=(a-b)(a2+ab+b2). 5、a2+b2+c2+2ab+2bc+2ca=(a+b+c)2; 6、a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca);知识点三:方法及典型例题一、直接用公式:当所给的多用公式法分解因式。 例1、分解因式: 1)x2-9; :当所 分解因式: 1)x5y3-x3y5; :当 ,转换为 分解因式: 2-25y2; :通过方式的形式,然后利公式 再分解为止. 例4、分解因式: (1)x4-81y4;

五、重新排列后用公式:当所给的多项式不能直接看出是否可用公式法分解时,可以将所给多项式交换位置,重新排列,然后再利用公式。 例5、 分解因式: (1)-x 2+(2x-3)2; (2)(x+y)2+4-4(x+y). 2、下列多项式中,能用公式法进行因式分解的是( ) (A)22x y + (B)222x xy y -+ (C)222x xy y +- (D)22x xy y ++ 3、 41x -的结果为( ) A.22(1)(1)x x -+BD.3(1)(1)x x -+ 4、代数式42819x x --,, A.3x - B.(3 x +11、把下列各式分解因式. (1)249x -; (2)4 220.01625m n -. 12、把下列各式分解因式.

因式分解公式法

因 式 分 解 公式法 因式分解中,多项式的第一项的符号一般不能为负;分数系数一般化为整系数。 1.利用平方差公式因式分解:()()b a b a b a -+=-2 2 ①条件:两个二次幂的差的形式; ②平方差公式中的a 、b 可以表示一个数、一个单项式或一个多项式; ③在用公式前,应将要分解的多项式表示成22b a -的形式,并弄清a 、b 分别表示什么。 2.利用完全平方公式因式分解:()2 2 22b a b ab a ±=+± 注意: ①是关于某个字母(或式子)的二次三项式; ②其首尾两项是两个符号相同的平方形式; ③中间项恰是这两数乘积的2倍(或乘积2倍的相反数); ④使用前应根据题目结构特点,按“先两头,后中间”的步骤,把二次三项式整理成 222)(2b a b ab a ±=+±公式原型,弄清a 、b 分别表示的量。 ⑤在使用完全平方公式时,要保证平方项前的符号为正,当平方项前的符号是负号 时,先提出负号. ⑴分解因式时,首先考虑有无公因式可提,当有公因式时,先提再分解. ⑵分解因式必须进行彻底,直至每个因式都不能再分解为止.

典型例题分析: 利用平方差公式: 例1. 用平方差公式分解因式: (1)2 2 )(9y x x -+-; (2)2233 1n m -.

例2.分解因式: (1)ab b a -5; (2))()(4 4 n m b n m a +-+ (3)2 2 2 2 )23()32(4y x m y x m ---; (4)b a b a 2418321822+-- 例3. 简算 (1) 226778- (2)22991001- 例4. 解方程:.36)321()321(2 2 =--+x x 【拓展提升】 例5. 分解因式:(1)8 8y x +-; (2) 2 2 2 16)4(x x -+. 例6. 1)12 ()12)(12)(12(32 3 2 +++++Λ的个位数字是 . 例7.若12 48 -能被60与70之间的两个整数整除,这两个数是 . 针对性训练: 1. 若)2)(2)(4(162 x x x x n -++=-,则n 的值是( ) A. 6 B. 4 C. 3 D. 2 2. 把多项式2 22 22 4)(b a b a -+分解因式的结果是( ) A. 222)4(ab b a ++ B. 2 22)4(ab b a ++ C. )4)(4(2 2 2 2 ab b a ab b a -+++ D. 22)()(b a b a -+ 3. 分解因式: (1)2 2536x -; (2)2201.094n m +- ; (3)624 9 8116x y -; (4)224)32(x y x --

初二公式法因式分解练习题

14.3.2公式法因式分解练习题 思维导航:运用公式法是分解因式的常用方法,运用公式法分解因式的思路主要有以下几种情况: 一、直接用公式:当所给的多项式是平方差或完全平方式时,可以直接利用公式法分解因式。 例1、分解因式: (1)x2-9 (2)9x2-6x+1 二、提公因式后用公式:当所给的多项式中有公因式时,一般要先提公因式,然后再看是否能利用公式法。 例2、分解因式: (1)x5y3-x3y5(2)4x3y+4x2y2+xy3 三、系数变换后用公式:当所给的多项式不能直接利用公式法分解因式,往往需要调整系数,转换为符合公 式的形式,然后再利用公式法分解. 例3、分解因式: (1)4x2-25y2 (2)4x2-12xy2+9y4 四、指数变换后用公式:通过指数的变换将多项式转换为平方差或完全平方式的形式,然后利公式法分解因 式,应注意分解到每个因式都不能再分解为止. 例4、分解因式: (1)x4-81y4 (2)16x4-72x2y2+81y4 五、重新排列后用公式:当所给的多项式不能直接看出是否可用公式法分解时,可以将所给多项式交换位 置,重新排列,然后再利用公式。 例5、分解因式: (1)-x2+(2x-3)2 (2)(x+y)2+4-4(x+y) 六、整理后用公式:当所给的多项式不能直接利用公式法分解时,可以先将其中的项去括号整理,然后再 利用公式法分解。 例6 、分解因式: (x-y)2-4(x-y-1) 七、连续用公式:当一次利用公式分解后,还能利用公式再继续分解时,则需要用公式法再进行分解,到 每个因式都不能再分解为止。 例7、分解因式:(x2+4)2-16x2

因式分解(公式法之完全平方公式与平方差公式)

因式分解基础习题 (公式法) 专题训练一:利用平方差公式分解因式 题型(一):把下列各式分解因式 1.24x - 2.2 9y - 3.21a - 4.224x y - 5.2125b - 6.222 x y z - 7.2240.019m b - 8.2219 a x - 9.2236m n - 10.2249x y - 11.220.8116a b - 12.222549p q - 13.2422a x b y - 14.41x - 15. 44411681 a b m - 题型(二):把下列各式分解因式 1.22()()x p x q +-+ 2. 22 (32)()m n m n +-- 3.2216()9()a b a b --+ 4.22 9()4()x y x y --+ 5.22()()a b c a b c ++-+- 6.22 4()a b c -+ 题型(三):把下列各式分解因式 1.53x x - 2.22 4ax ay - 3.322ab ab -

4.316x x - 5.2433ax ay - 6.2 (25)4(52)x x x -+- 7.324x xy - 8.343 322x y x - 9.4416ma mb - 10.238(1)2a a a -++ 11.416ax a -+ 12.2216()9()mx a b mx a b --+ 题型(四):利用因式分解解答下列各题 1.证明:两个连续奇数的平方差是8的倍数。 2.计算 ⑴22758258- ⑵22429171- ⑶223.59 2.54?-? ⑷222221 1111(1)(1)(1)(1)(1) 234910---???-- 专题训练二:利用完全平方公式分解因式 题型(一):把下列各式分解因式 1.221x x ++ 2.2441a a ++ 3. 2169y y -+ 4.2 14m m ++ 5. 221x x -+ 6.2816a a -+

用公式法进行因式分解

第二章第4节用公式法进行因式分解 郝戈庄初中八年级王春美 一、课前预习: 课本43页---44页。 二、课内探究 (一)、学习目标 1.会用公式法进行因式分解. 2.了解因式分解的一般步骤. (二)、学习重难点: 学习重难点:用公式法进行因式分解. (三)、学习准备: 1 / 10

学生复习平方差公式和完全平方公式 (四)、学习过程: 1.自主探究 1、乘法公式:(a+b)(a-b)=______________; (a+b)2 =___________________ 2、将以上公式反过来,就得到: a2-b2 =_____________________; a2+2ab+b2 =________________________ 把2作为公式,就可以把某些多项式进行因式分解,这种因式分解的方法叫做公式法。(注意:公式中的字母a和b可以表示任意的数、单项式或多项式) 例1 把下列各式进行因式分解: 2 / 10

1b2 (1)4x2–25 (2)16a2 - 9 在(1)式中公式中的a相当于_______________; b相当于_______________ 在(2)式中公式中的a相当于_______________; b相当于_______________ 1b2解:(1)4x2–25 (2)16a2 - 9 = = 练习1:把下列各式进行因式分解: 1、课本44页练习1 3 / 10

2、(1) a4 -81b4 (2) (m+n)2-(m-n)2 例2 把下列各式进行因式分解: 1n2 (1) 25x2+20x+4 (2) 9m2-3mn+ 4 在(1)式中公式中的a相当于_______________; b相当于_______________ 在(2)式中公式中的a相当于_______________; b相当于_______________ (小组讨论交流) 练习2:把下列各式进行因式分解: 1、课本44页练习2 2、(1) x2-ax+9是完全平方公式,则a的值为() 4 / 10

初中数学 因式分解练习题(公式法)

因式分解习题(二)公式法分解因式 专题训练一:利用平方差公式分解因式 题型(一):把下列各式分解因式 1、24x - 2、29y - 3、21a - 4、224x y - 5、2125b - 6、222x y z - 7、2240.019 m b - 8、2219 a x - 9、2236m n - 10、2249x y - 11、220.8116a b - 12、222549p q - 13、2422a x b y - 14、41x - 15、4416a b - 16、4 4411681 a b m - 题型(二):把下列各式分解因式 1、22()()x p x q +-+ 2、 22(32)()m n m n +-- 3、2216()9()a b a b --+ 4、229()4()x y x y --+ 5、22()()a b c a b c ++-+- 6、224()a b c -+ 题型(三):把下列各式分解因式 1、53x x - 2、224ax ay - 3、322ab ab - 4、316x x - 5、2433ax ay - 6、2(25)4(52)x x x -+- 7、324x xy - 8、343322x y x - 9、4416ma mb - 10、238(1)2a a a -++ 11、416ax a -+ 12、2216()9()mx a b mx a b --+ 题型(四):利用因式分解解答下列各题 1、证明:两个连续奇数的平方差是8的倍数。 2、计算⑴22758258- ⑵22429171- ⑶223.59 2.54?-? ⑷22222 11111(1)(1)(1)(1)(1)234910- --???--

因式分解法(提公因式法、公式法)

【知识要点】 1、提取公因式:型如()ma mb mc m a b c ++=++,把多项式中的公共部分提取出来。 ☆提公因式分解因式要特别注意: (1)如果多项式的首项系数是负的,提公因式时要将负号提出,使括号内第一项的系数是 正的,并且注意括号内其它各项要变号。 (2)如果公因式是多项式时,只要把这个多项式整体看成一个字母,按照提字母公因式的办法提出。 (3)有时要对多项式的项进行适当的恒等变形之后(如将a+b-c 变成-(c-a-b )才能提公 因式,这时要特别注意各项的符号)。 (4)提公因式后,剩下的另一因式须加以整理,不能在括号中还含有括号,并且有公因式的还应继续提。 (5)分解因式时,单项式因式应写在多项式因式的前面。 2、运用公式法:把我们学过的几个乘法公式反过来写就变成了因式分解的形式: ()()2 2 a b a b a b -=+-; ()2 2 2 2a ab b a b ±+=±。 平方差公式的特点是:(1) 左侧为两项;(2) 两项都是平方项;(3) 两项的符号相反。 完全平方公式特点是: (1) 左侧为三项;(2) 首、末两项是平方项,并且首末两项的符号相同; (3) 中间项是首末两项的底数的积的2倍。 ☆运用公式法分解因式,需要掌握下列要领: (1)我们学过的三个乘法公式都可用于因式分解。具体使用时可先判断能否用公式分解,然后再选择适当公式。(2)各个乘法公式中的字母可以是数,单项式或多项式。 (3)具体操作时,应先考虑是否可提公因式,有公因式的要先提公因式再运用公式。 (4)因式分解一定要分解到不能继续分解为止,分解之后一定要将同类项合并。 【典例分析】 例1.分解下列因式: (1)2 2 3 2 1084y x y x y x -+ (2)233272114a b c ab c abc --+

相关主题
文本预览
相关文档 最新文档