当前位置:文档之家› 斐波那契数列之美

斐波那契数列之美

斐波那契数列之美
斐波那契数列之美

一、论文

斐波那契数列之美

在人类发展史中,斐波那契数列作为数学界的重大发现,在数学理论和应用领域有着举足轻重的作用。除此之外,斐波那契数列还因其与自然界的诸多联系被人称作“神奇数列”,为人类艺术史的繁荣作出了巨大的贡献。

斐波那契数列是由意大利数学家列昂纳多·斐波那契由“兔子繁殖问题”引出的数列,现代数学使用递归的方法将此数列总结为F(0)=0,F(1)=1,F(n)=F(n-1)+F(n-2)(n≥2,

n∈N*),并进一步通过特征方程计算得出此递推数列的通式为。从数列一经发现便引起了各个领域内的重大反响,人们在对此数列的研究中发现,在数列项数逐渐增大的过程中,前一项与后一项的比越来越接近黄金分割比(√5-1)/2。所谓黄金分割比,是

把一条线段分割为两部分,使其中一部分与全长之比等于另一部分与这部分之比。

几何学中黄金分割比的得出方法

而斐波那契数列在各个学科上的所体现的美,我们普遍也可以从两个方面进行探讨。第一方面,是从斐波那契数列的数字递推性下手,探究斐波那契数列在自然科学中的应用和艺术领域中的应用。第二方面,我们可以从斐波那契数列因递进性而产生的斐波那契曲线于多个学科的体现,以及这种曲线在审美学中的特点;第三方面,是探究斐波那契数列与黄金分割的具体联系,以及斐波那契数列其黄金分割特点在艺术领域的应用。

第一方面,斐波那契数列具有很强的数字特征,即前两项数字之和等于第三项。这一点其来源可以被认为是列昂纳多·斐波那契所推出的“兔子繁殖问题”,即“如果一开始有一对兔子,它们每月生育一对兔子,小兔在出生后一个月又开始生育且繁殖情况与最初的那对兔子一样,那么一年后有多少对兔子?”如图,逐月推算,我们可以得到数列:1-1-2-3-5-8-13-

21-34-55-89-144-233,这个数列后来便以斐波那契的名字命名。

兔子繁殖问题图示

这种递推的数字特征在植物界的体现最为明显,如自然界中大部分花的花瓣瓣数是斐波那契数,其中最为常见的有百合花花瓣数目为3,梅花5瓣,飞燕草8瓣,万寿菊13瓣,向日葵21或34瓣,雏菊有34,55和89三个数目的花瓣。

花瓣数目为34的雏菊

同时,这种体现还有生物学上著名的“鲁德维格定律”,即树木各个年份的枝桠数构成斐

波那契数列。

不同年份树枝桠数目图示

虽然科学已经证实这种花瓣的瓣数和枝桠的生长方式是为了使植物最大效率的利用养分和空间,但我们无法否认这种递进式的由小到大的数字特征可能在人类长久的进化史中潜移默化的印象了人类的审美。同时,以“鲁德维格定律”为例,斐波那契数列本身的增长速度,在项数较小时,形成了一种由快到慢的变化,这种变化在数字增大的趋势中,为整个数列带来了一种层次的丰富性和趣味性。当我们在观察自然界中的树木时,往往会被树木本身的形态所打动,正是这种枝桠的树木变化,使树木产生了动态和美。而与之相比的经人工修剪的树木,往往会失去这种天然形成的生动之美,显得死板沉重,除非与环境产生呼应(如法国

古典主义园林),就毫无欣赏价值。

自然界中的树木经人工修剪的树木

所以,我们可以认为斐波那契数列所具备的这种数字的动态变化之感使人们从中感受到了美。

第二方面,我们可以从斐波那契数列因递进性而产生的斐波那契螺旋线探究斐波那契数列之美。斐波那契螺旋线是根据斐波那契数列作出的一条发散式曲线,具体做法是以斐波那

契数为边的正方形拼成的长方形,然后在正方形里面画一个90度的扇形,连起来的弧线就是斐波那契螺旋线。

标准作图法画出的斐波那契螺旋线

在自然界中,很多生物的形态都精准的契合了这种斐波那契螺旋线,比如在植物界松果、凤梨、树叶的排列、花瓣的排列、向日葵花瓣中葵花籽的排列等;在动物界鹦鹉螺螺壳剖面的曲线、蝴蝶的起飞路线和飞蛾的飞行路线等;在宇宙中,我们可以看到星云和黑洞呈

斐波那契螺旋线式向外扩散。

蝴蝶的起飞路线

在自然界中,这种螺线的形成是因为其曲线与中心发出的射线始终有一固定的夹角。利用现代科学中的物理学,我们可以将其解释为一种支持力与弹力的动态平衡。由此我发现,这种螺旋线对外的张力和其本身构图有对称特征的稳重感形成了巧妙的搭配,使运用了这种

螺旋线的画面具有了一种平衡感,同时在心理上给人造成了微妙的心理体验。

某公司图标设计过程

从这个图标我们可以看出,设计师巧妙的运用了斐波那契数列进行了画面的安排,整个画面看起来平衡但不呆板,具有很强的动感但又不至于使其失去重心与平衡。

同时,在绘画、摄影、设计等方面,人们并不直接利用斐波那契螺旋线的形状,而是运用其螺线发散的走向与其收缩中心的位置关系进行构图暗示。比如很多经典电影场面的设置都利用了斐波那契螺线,将视觉中心放置在了画面最吸引人的地方,是人获得了非常自然且良好的观看体验,从而心理感受良好,进而体会到美。

电影《神探夏洛克》中经典场面

在摄影中,人们也大量的运用斐波那契螺旋线进行画面的布局,将摄影师所期望的视觉中心放置在斐波那契螺旋线的重心,其中最为人所知晓的就是水在空中的走向系列摄影作品。我将这种特性判定为斐波那契螺旋线的重心吸引力,人们在不受外界影响的情况下,会在一些视线首先关注的地方去主动的寻找所希望看到的东西,如果人们的这种愿望得到了满

足,人们便会认为他所看到的事物是美的。

利用斐波那契数列的摄影作品将耶稣基督与施礼约翰置于画面两个重心的油画

但并非所有与斐波那契螺线有关的事物都可以被判定为美。一些过多、过牵强的运用都会使人不但无法感受到美,还会产生迷茫甚至心生不适。比如一种被称作宝塔菜的花椰菜,虽然这种花椰菜可以算是自然界中最完美的分形形态,但由于其外表的斐波那契螺旋线过多,反而打破了本身斐波那契螺旋线所具有的平衡感,使人无法第一时间找到重点。

具有强烈斐波那契螺旋线特征的宝塔菜

所以,虽然斐波那契螺旋线在视觉上给人们提供了良好的体验,但在运用之时我们仍需要注意从使人感受美的本质原因出发,合理运用画面构图的平衡感,从而设计出美的视觉感受。

第三方面,我们从斐波那契数列所具有的黄金分割特性来探究斐波那契具有美的原因。我们已经知道,随着数列项数的增加,斐波那契数列前一项与后一项之比越来越逼近黄金分割的数值比例(√5-1)/2,近似成有理数也就是人们常说的黄金分割比0.618。

在五边形中,所有的线段之比均是黄金分割比,达芬奇变运用这一特点绘制了维特鲁威人体比例,并认为这是最完美的比例;同样在达芬奇的画作蒙娜丽莎像中,也有大量的黄金分割比例被运用其中。以其为代表,我们可以看出黄金分割在西方绘画史上作出了巨大的贡

献,为画家提供了绘画的可以参考的比例。

维特鲁威人蒙娜丽莎像

而在建筑领域,人们也大量利用黄金分割比来塑造美感。早在古希腊,人们在建造建筑时便已经在运用黄金分割比作为一种尺寸比例来塑造里面。比如帕特农神庙的立面便精准的

遵循了黄金分割比,使人们所看到的画面唤起熟识感。

帕特农神庙里面中大量运用黄金分割比

而现代主义建筑设计师柯布西耶,在设计马赛公寓时,也运用了黄金分割比进行单元的

设置,最大程度的在集中式建筑单一模版下补充了人的知觉美学。

柯布西耶的马赛公寓

进入工业社会以来,很多产品设计时也运用了黄金分割比例,将人的视觉知觉最大化的与美觉建立联系。比喻苹果公司在设计iCloud应用图标上,将基本要素圆的直径之比设置为最接近黄金分割的1.6:1,创造了人们的知觉熟识度,这种暗示会令人感到愉悦并产生亲切感

和安全感。

苹果公司iCloud产品图标

在艺术的其他领域,人们也发现黄金分割比承担了创造美的重要功能。文学作品中,作家习惯性的将高潮部分设置在文章的三分之二处,这是非常贴合黄金分割的一个常用比例;音乐作品中,作曲家也最喜欢使用三段式结构,将一个停顿设置在最后一段之前。这两个艺术领域,人们利用黄金分割的原因大致相同,即使在已经有足够背景信息输入后,设置一信息量爆发点,使人在原有足够的熟悉感上建立一新的兴趣点,并留给人足够的思考时间分析所汲取的所有信息,并将作品在人们思路达到完整之时停止。

这时的黄金分割点,是整个作品的平衡点,也是最精彩的一点。正是因为黄金风格点的存在象征着一种动态的平衡,人们才会这么愿意去探究它、运用它,并且称其为美。

综合上面我所做的三个方面的分析,可以做出一总结,便是斐波那契数列是一种源自自然的平衡关系,它体现了自然界中静止的支持力与动态的弹力的平衡结果,这种源自自然界的平衡在潜移默化中影响了人们对美的判断,也是人们具有了判断美丑的能力。而且,更多的时候,并不是人们在利用斐波那契数列创造美,而是人们在追求美的时候,恰好因为本能发现了斐波那契数列。

斐波那契数列

第1章绪论 布置的作业共6题: 基础知识题:1.6 1.7 1.8 1.10 算法设计题:1.17 1.20 一、基础知识题 ◆1.6 ③在程序设计中,常用下列三种不同的出错处理方式: (1)用exit语句终止执行并报告错误; (2)以函数的返回值区别正确返回或错误返回; (3)设置一个整型变量的函数参数以区别正确返回或某种错误返回。 试讨论这三种方法各自的优缺点。] 答题思路:查错和容错能力 答:程序出错处理是指发现错误并根据出错的原因作出适当的处理,处理的目的是找到出错的原因。出错的原因一般包括缺乏某些资源和程序设计有问题两类。如果是前者,程序仍然可以继续运行,只是处于等待资源或执行其他流程的状态。如果是后者,则需要修改源代码。

◆1.7 ③在程序设计中,可采用下列三种方法实现输出和输入: (1)通过scanf和printf语句; (2)通过函数的参数显式传递; (3)通过全局变量隐式传递。 试讨论这三种方法的优缺点。 答题思路:错误局部化(软件模块化)、执行效率(内存开销) 答:在正规的软件设计中,要求各模块之间以恰当的方式进行调用,以便使各模块中出现的错误局部化。 其是方式3,在出现错误时查错的开销将很大,尽量不使用。

◆1.8 ④设n为正整数,试确定下列各程序段中前置以记号@的语句的频度。评析:频度≠时间复杂度 注意:(1)、(2)、(3)三个程序段中任何两段都不等效(即k和i的终值不相同 )

书后附有答案 标答:程序段(8)取自著名的McCarthy91函数 ? ??≤+>-=100 ))1((10010)(x x M M x x x M 对任何 x ≤100,M(x)=91。此程序实质上是一个双重循环,对每个y(>0)值,@语句执行11次,其中10次是执行x++。 刘解:请注意x 的初值已经是91了,必须加到101才能终止程序的循环。if 语句从x=91开始直到x=101都执行,共执行11次,其中10次是执行x++。

1生活中的“斐波那契数列”

2014年温州市小学数学小课题评比 学校: 苍南县钱库小学 成员姓名:陈耀坤吴文强金旭杭 指导教师:陈瑞帐

生活中的“斐波那契数列” ——台阶中的数学 一、问题的提出 周末爸爸妈妈带我去龙港影城看3D电影,影城的大门口有16级水泥台阶,我发现老年人大多是一级一级地往上走的,年轻的小伙子喜欢两级两级地往上走,小朋友则是一会儿走一级,一会儿又蹦两级……很快,一个念头闪入我的脑海:按照他们这样不同的走法,走完这16级台阶,一共会有多少种不同的走法呢?会不会有什么规律呢?于是,在爸爸妈妈的鼓励下,我决定开始台阶走法的研究。 二、研究过程 1.从最简单的做起 该怎样开展研究呢?我找了两个好朋友,做合作伙伴。我们想起了老师曾经提到过的华罗庚说的话:“善于退,足够地退,退到最原始的而不失重要的地方是学好数学的一个诀窍。”也就是说可以“从最简单的做起”于是我们通过画楼梯入手。 1个台阶(1种) 2个台阶(2种) 3个台阶(3种) 4个台阶(5种) …… 后来我觉得用这种表示方法实在太麻烦了,有没有更简捷的表达方法呢?于是在数学老师的启发下就想到了用最简单的数字来表达: 楼梯台阶数及方法楼梯上法表示 一个台阶(1种)(1) 二个台阶(2种) (1,1)(2) 三个台阶(3种) (1,1,1)(1,2)(2,1) 四个台阶(5种)(1,1,1 ,1)(1,1,2)(1,2,1)(2,1,1)(2,2) 五个台阶(8种) (1,1,1,1,1)(1,1,1,2)(1,1,2,1)(1,2,1,1)

(2,1,1,1) (2,1,2)(2,2,1) (1,2,2)5个台阶有8种走法,那现在求16个台阶有几种走法,该怎么办呢?我们想用这个方法继续进行进去,我尝试着: 六个台阶(13种) (1,1,1,1,1,1)(1,2,1,1,1)(1,1,2,1,1) (1,1,1,2,1)(1,1,1,1,2)(2,1,1,1,1) (1,1,2,2)(2,1,1,2)(2,1,2,1)(2,2,1,1,) (1,2,2,1)(1,2,1,2)(2,2,2) 七个台阶(21种)(1,1,1,1,1,1,1)(1,1,1,1,1,2)(1,1,1,1,2,1) (1,1,1,2,1,1)(1,1,2,1,1,1)(1,2,1,1,1,1) (2,1,1,1,1,1)(1,1,1,2,2) (1,1,2,2,1) (1,2,2,1,1) (2,2,1,1,1) (1,2,1,1,2) (1,2,1,2,1)(1,2,2,1,1,)(2,1,1,1,2) (2,1,1,2,1)(2,1,2,1,1)(2,2,2,1) (2,2,1,2) (2,1,2,2) (1,2,2,2) …… 2.整理数据,发现规律 这样写下去还是很麻烦,数字会越来越大,而且很容易出现遗漏或重复。有没有规律呢?我们重新整理了数据,发现台阶上法数据之间有关联: 7个台阶的走法=6个台阶的走法+5个台阶的走法,也就是13+8=21。6个台阶的走法=5个台阶的走法+4个台阶的走法,也就是8+5=13…… 那走台阶的上法是否有规律?是否是后一个数都是前两个数的和呢?照这样推理,8个台阶数的走法应该是34种呢?我决定用数字拆分来进行验证,发现答案完全符合。

斐波那契数列资料

斐波那契数列

斐波那契数列 一、简介 斐波那契数列(Fibonacci),又称黄金分割数列,由数学家斐波那契最早以“兔子繁殖问题”引入,推动了数学的发展。故斐波那契数列又称“兔子数列”。 斐波那契数列指这样的数列:1,1,2,3,5,8,13,……,前两个数的和等于后面一个数字。这样我们可以得到一个递推式,记斐波那契数列的第i项为F i,则F i=F i-1+F i-2. 兔子繁殖问题指设有一对新生的兔子,从第三个月开始他们每个月都生一对兔子,新生的兔子从第三个月开始又每个月生一对兔子。按此规律,并假定兔子没有死亡,10个月后共有多少个兔子? 这道题目通过找规律发现答案就是斐波那契数列,第n个月兔子的数量是斐波那契数列的第n项。 二、性质 如果要了解斐波那契数列的性质,必然要先知道它的通项公式才能更简单的推导出一些定理。那么下面我们就通过初等代数的待定系数法计算出通项公式。 令常数p,q满足F n-pF n-1=q(F n-1-pF n-2)。则可得: F n-pF n-1=q(F n-1-pF n-2) =q2(F n-2-pF n-3) =…=q n-2(F2-pF1) 又∵F n-pF n-1=q(F n-1-pF n-2) ∴F n-pF n-1=qF n-1-pqF n-2 F n-1+F n-2-pF n-1-qF n-1+pqF n-2=0 (1-p-q)F n-1+(1+pq)F n-2=0 ∴p+q=1,pq=-1是其中的一种方程组 ∴F n-pF n-1= q n-2(F2-pF1)=q n-2(1-p)=q n-1 F n=q n-1+pF n-1=q n-1+p(q n-2+p(q n-3+…))=q n-1+pq n-2+p2q n-3+…+p n-1 不难看出,上式是一个以p/q为公比的等比数列。将它用求和公式求和可以得到: 而上面出现了方程组p+q=1,pq=-1,可以得到p(1-p)=-1,p2-p-1=0,这样就得到了一个标准的一元二次方程,配方得p2-p+0.25=1.25,(p-0.5)2=1.25,p=±√1.25+0.5。随意取出一组解即可: 这就是著名的斐波那契数列通项公式。有了它,斐波那契数列的一些性质 也不难得出了。比如斐波那契数列相邻两项的比值趋向于黄金分割比,即:

斐波那契数列的通项公式推导解析

斐波那契数列的通项公式推导 山西省原平市原平一中任所怀 做了这些年的数学题,我时常有这样的感受。一个新的数学题初次接触时,会觉得这个题的解题技巧很妙,甚至有点非夷所思,但如果把同类型问题多做几个,你就会发现原来所谓的技巧,其实是一种再正常不过的想法,是一种由已知到未知的必然之路。这样我们就由解题的技巧而转化到了通解通法,进一步就会形成解题的思想,所以我对于数学爱好者建议,做题时要把同类型题多种总结和分析,这样你的数学才会有长足的进步。 下面我们就由递推推导通项的问题,进行对比分析。 例1在数列中,,求数列的通项。(普通高中课程标准实验教科书人教A版必修5第69页6题) 分析:此题可分两步来进行,首先由构造一个等比数列,其中 ,并写出的通项;然后利用,两边同除以得 ,由累加法,就可求出数列的通项。 解:( 设,则()所以数列为等比数列,且首项为 ,公比为3。所以。 于是有,两边都除以得 设,则有 由累加法可得

因为所以() 于是有。 总结:上面的求解过程实质,求是一个把已知条件逐步化简的过程,由相邻三项的递推关系化为相邻两项的递推关系,进一步求出通项公式。 下面我们来研究一下著名的斐波那契数列的通项。 已知数列,其中,,求数列的通项。 解:首先我们要构造一个等比数列,于是设 则有。(1) 则由已知得(2) 对照(1)(2)两式得解得或。 我们取前一解,就会有。 设,则有 所以数列为等比数列,首项为,公比为

所以。即(3) 再次构造等比数列,设 则有 对照(3)式,可得所以 x=. 于是有 设,则有数列为等比数列,首项为,公比为,于是= 所以有。

斐波那契数列的性质

斐波那契数列的性质 一、通项公式:a n = 5〔1+ 52〕n - 5 〔1? 52〕n 二、设p,q,u,v 为自然数且p = min{ p ,q , u , v} . 若p + q = u + v , 则对于斐波那契数列{ an} ,以下公式恒成立:a p a q - a u a v = (-1)p+1a u-p a q-u 三、a n +1a n?1 - a n 2 = (?1)n (n >= 1, n 属于 N) 四、a 2n +1 = a n +12 + a n 2 (n 属于N ) 五、a n +12 - a n?12 = a n 2 (n >= 1, n 属于N) 六、a n +m = a n?1a m + a n a m +1 (n >= 1, n 和m 属于N) 七、a 2n +2a 2n?1 - a 2n a 2n +1 = 1(n >= 1, n 属于N) 八、a m +n 2 - a m?n 2 = a 2m * a 2n (m > n >= 1) 九、a n?1?a n +2 - a n ?a n +1 = (?1)n (n >= 2) 十、{f 2n f 2n +1} 有极限且等于黄金分割率 5 ?12

下面是一篇文章:

斐波那契数列通项公式 斐波那契数列指的是这样一个数列:1、1、2、3、5、8、13、21、…… 这个数列从第三项开始,每一项都等于前两项之和。它的通项公式为:(见图)(又叫“比内公式”,是用无理数表示有理数的一个范例。) 有趣的是:这样一个完全是自然数的数列,通项公式居然是用无理数来表达的。 奇妙的属性 随着数列项数的增加,前一项与后一项之比越来越逼近黄金分割的数值0.6180339887…… 从第二项开始,每个奇数项的平方都比前后两项之积多1,每个偶数项的平方都比前后两项之积少1。(注:奇数项和偶数项是指项数的奇偶,而并不是指数列的数字本身的奇偶,比如第四项3是奇数,但它是偶数项,第五项5是奇数,它是奇数项,如果认为数字3和5都是奇数项,那就误解题意,怎么都说不通) 如果你看到有这样一个题目:某人把一个8*8的方格切成四块,拼成一个5*13的长方形,故作惊讶地问你:为什么64

小学奥数 斐波那契数列典型例题

拓展目标: 一:周期问题的解决方法 (1)找出排列规律,确定排列周期。 (2)确定排列周期后,用总数除以周期。 ①如果没有余数,正好有整数个周期,那么结果为周期里的最后一个 ②如果有余数,即比整数个周期多n个,那么结果为下一个周期的第n个。 例1: (1)1,2,1,2,1,2,…那么第18个数是多少? 这个数列的周期是2,1829 ÷=,所以第18个数是2.(2)1,2,3,1,2,3,1,2,3,…那么第16个数是多少? 这个数列的周期是3,16351 ÷=???,所以第16个数是1.二:斐波那契数列 斐波那契是 的有关兔子的问题:

假设一对刚出生的小兔,一个月后就能长成大兔,再过一个月便能生下一对小兔,并且此后每个月都生一对小兔。一年内没有发生死亡。那么,由一对刚出生的兔子开始,12个月后会有多少对兔子呢? 斐波那契数列(兔子数列) 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, … 你看出是什么规律:。【前两项等于1,而从第三项起,每一项是其前两项之和,则称该数列为斐波那契数列】 【巩固】 (1)2,2,4,6,10,16,(),() (2)34,21,13,8,5,(),2,() 例1:有一列数:1,1,2,3,5,8,13,21,34…..这个有趣的“兔子”数列,在前120个数中有个偶数?个奇数?第2004个数是数(奇或偶)?

【解析】120÷3=40 2004÷3=668 【巩固】有一列数按1、1、2、3、5、8、13、21、34……的顺序排列,第500个数是奇数还是偶数? 例2:(10秒钟算出结果!) (1)1+1+2+3+5+8+13+21+34+55= (2)1+2+3+5+8+13+21+34+55+89= 数学家发现:连续10个斐波那契数之和,必定等于第7个数的11 倍! 巩固:34+55+89+144+233+377+610+987+1597+2584== 例3:1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, … (1)这列数中第2013个数的个位数字是几? 分析:相加,只管个位,发现60个数一循环

(完整版)斐波那契数列、走台阶问题

走台阶问题 如: 总共100级台阶(任意级都行),小明每次可选择走1步、2步或者3步,问走完这100级台阶总共有多少种走法? 解析: 这个问题本质上是斐波那契数列,假设只有一个台阶,那么只有一种跳法,那就是一次跳一级,f(1)=1;如果有两个台阶,那么有两种跳法,第一种跳法是一次跳一级,第二种跳法是一次跳两 级,f(2)=2。如果有大于2级的n级台阶,那么假如第一次跳一级台阶,剩下还有n-1级台阶,有f(n-1)种跳法,假如第一次条2级台阶,剩下n-2级台阶,有f(n-2)种跳法。这就表示f(n)=f(n- 1)+f(n-2)。将上面的斐波那契数列代码稍微改一下就是本题的答案f(n)=f(n-1)+f(n+2) 斐波那契数列 斐波那契数列:0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ... 如果设F(n)为该数列的第n项(n∈N*),那么这句话可以写成如下形式:F(n)=F(n-1)+F(n-2) 递推数列显然这是一个线性。 数学定义: 递归斐波纳契数列以如下被以的方法定义:F(0)=0,F(1)=1,F(n)=F(n-1)+F(n-2)(n≥2,n∈N*) 由兔子生殖问题引出、生物 (计算科学)

特性: 这个数列从第3项开始,每一项都等于前两项之和。 特别指出:第1项是0,第2项是第一个1。 代码: public class Test { static final int s = 100; //自定义的台阶数 static int compute(int stair){ if ( stair <= 0){ return0; } if (stair == 1){ return1; } if (stair == 2){ return2; } return compute(stair-1) + compute(stair-2); //return 递归进行计算 --->递归思想进行数据计算处理 在斐波那契数列中后一项的值等于前两项的和 } public static void main(String args[]) { System.out.println("共有" + compute(s) + "种走法"); } } return compute(stair-1) + compute(stair-2); 在return子句中调用调用compute函数 由斐波那契数列特性得到最后的值 分值拆分

斐波那契数列的来历

斐波那契是意大利的数学家.他是一个商人的儿子.儿童时代跟随父亲到了阿尔及利亚,在那里学到了许多阿拉伯的算术和代数知识,从而对数学产生了浓厚的兴趣. 长大以后,因为商业贸易关系,他走遍了许多国家,到过埃及,叙利亚,希腊,西西里和法兰西.每到一处他都留心搜集数学知识.回国后,他把搜集到的算术和代数材料,进行研究,整理,编写成一本书,取名为《算盘之书》,于1202年正式出版. 这本书是欧洲人从亚洲学来的算术和代数知识的整理和总结,它推动了欧洲数学的发展.其中有一道"兔子数目"的问题是这样的: 一个人到集市上买了一对小兔子,一个月后,这对小兔子长成一对大兔子.然后这对大兔子每过一个月就可以生一对小兔子,而每对小兔子也都是经过一个月可以长成大兔子,长成大兔后也是每经过一个月就可以生一对小兔子.那么,从此人在市场上买回那对小兔子算起,每个月后,他拥有多少对小兔子和多少对大兔子? 这是一个有趣的问题.当你将小兔子和大兔子的对数算出以后,你将发现这是一个很有规律的数列,而且这个数列与一些自然现象有关.人们为了纪念这位兔子问题的创始人,就把这个数列称为"斐波那契数列". 你能把兔子的对数计算出来吗? 解: 可以这么推算: 第一个月后,小兔子刚长成大兔子,还不能生小兔子,所以只有一对大兔子. 第二个月后,大兔子生了一对小兔子,他有了一对小兔子和一对大兔子. 第三个月后,原先的大兔子又生了一对小兔子,上月出生的小兔子也长成了大兔子,他共有一对小兔子和两对大兔子. 第四个月后,两对大兔子各生一对小兔子,上月出生的小兔子又长成了大兔子,他共有两对小兔子和三对大兔子.

第五个月后,三对大兔子各生一对小兔子,上月出生的两对小兔子也长成了大兔子,他共有三对小兔子和五对大兔子. …… 以此类推,可知: 每月的小兔子对数等于上月大兔子的对数,每月大兔子的对数等于上月大兔子与小兔子的对数之和. 我们把大小兔子的对数写成上下两行,从买回小兔子算起,每个月后他所拥有的兔子对数便是: 仔细观察两行数发现它们是很有规律的: 每行数,相邻的三项中,前两项的和便是第三项. 有趣的是: 雏菊花花蕊的蜗形小花,有21条向右转,有34条向左转,而21和34,恰是斐波那契数列中相邻的两项;松果树和菠萝表面的凸起,它们的排列也分别成5:8和8:13这样的比例,也是斐波契数列中相邻两项的比. 这个数列不仅在数学,生物学中,还在物理,化学中经常出现,而且它还具有很奇特的数学性质,真是令人叫绝!

数学-斐波那契数列01

内蒙古自治区中小学教师教育技术水平(初级)试卷(试卷科目:中学数学)01 第一部分:基本知识题(本部分共8个题,每题2.5分,满分20分) 第1题 (单选题)根据您对教育技术及相关基础知识的理解,下例选项不正确的一项是( C)。 (2.5分) A.教育技术就是为了促进学习,对有关的学习过程和资源进行设计、开发、利用、管理和评价的理论与实践 B.教学设计是运用系统方法分析教学问题和确定教学目标,建立解决教学问题的策略方案、试行解决方案、评价试行结果和对方案进行修改的过程C.教育技术与信息技术的涵义是一样的,只是用不同的名词来表述而已D.教育信息化是指在教育教学的各个领域中,积极开发充分应用信息技术和信息资源,以促进教育现代化,培养满足社会需求人才的过程 第2题 (单选题)在美国,教育技术作为一个新兴的实践和研究领域而出现始于下列选项内容的是( A)。 (2.5分) A.视听运动 B.计算机辅助教育 C.程序教学法 D.网络技术应用 第3题 (单选题)"教师不应一味以传统集体传授教学的方式进行教学,而应使用能够让学生进行操作或进行社会活动的方式来学习",这反映的是( A )的学习观。 (2.5分) A.建构主义 B.人本主义 C.行为主义 D.认知主义 第4题 (单选题)在视听教学运动背景下,对教育技术基本内涵表述不恰当的是( C)。 (2.5分) A.在教学过程中所应用的媒体技术手段和技术方法 B.在教学过程中所应用的媒体技术和系统技术 C.在教学过程中所应用的媒体技术 D.在教学过程中所应用的媒体开发和教学设计 第5题 (单选题)关于教学方法的选择,下列选项中说法正确的是( C )。 (2.5分) A.教学方法的选择不涉及学习者特征方面因素

斐波拉契数列

斐 波 拉 契 数 列 一、斐波拉契数列的出现 “如果一对兔子每月能生1对小兔子,而每对小兔在它出生后的第3个月裏,又能开始生1对小兔子,假定在不发生死亡的情况下,由1对初生的兔子开始,1年后能繁殖成多少对兔子?” 一般而言,兔子在出生两个月后,就有繁殖能力,一对兔子每个月能生出一对小兔子来。如果所有兔都不死,那么一年以后可以繁殖多少对兔子? 我们不妨拿新出生的一对小兔子分析一下: 第一个月小兔子没有繁殖能力,所以还是一对; 两个月后,生下一对小兔民数共有两对; 三个月以后,老兔子又生下一对,因为小兔子还没有繁殖能力,所以一共是三对; ------ 依次类推可以列出下表: 经过月数:0 1 2 3 4 5 6 7 8 9 10 11 12 兔子对数:1 1 2 3 5 8 13 21 34 55 89 144 233 表中数字1,1,2,3,5,8---构成了一个数列。这个数列有关十分明显的特点,那是:前面相邻两项之和,构成了后一项。 这个数列是意大利中世纪数学家斐波那契在<算盘全书>中提出的,这个级数的通项公式,除了具有21n n n a a a ++=+的性质外, 11122n n n a ??????+-?=- ? ? ? ??????? (n=1,2,3.....) 这串数里隐含着一个规律:从第3个数起,后面的每个数都是它前面那两个数的和。而根据这个规律,只要作一些简单的加法,就能推算出以后各个月兔子的数目了。于是,按照这个规律推算出来的数,构成了数学史上一个有名的数列。大家都叫它“斐波拉契数列”,又称“兔子数列”。 二、斐波拉契数列的某些性质 1、随着数列项数的增加,前一项与后一项之比的比值逐渐趋于黄金分割比的。即f(n-1)/f(n)-→0.618…。

斐波那契提出的问题

斐波那契是欧洲中世纪颇具影响的数学家,公元1170年生于意大利的比萨,早年曾就读于阿尔及尔东部的小港布日,后来又以商人的身份游历了埃及、希腊、叙利亚等地,掌握了当时较为先进的阿拉伯算术、代数和古希腊的数学成果,经过整理研究和发展之后,把它们介绍到欧洲。公元1202年,斐波那契的传世之作《算法之术》出版。在这部名著中,斐波那契提出了以下饶有趣味的问题:假定一对刚出生的小兔一个月后就能长成大兔,再过一个月便能生下一对小兔,并且此后每个月都生一对小兔。一年内没有发生死亡。问一对刚出生的兔子,一年内能繁殖成多少对兔子?图 1 逐月推算,我们可以得到数列:1,1,2,3,5,8,13,21,34,55,89,144,233。这个数列后来便以斐波那契的名字命名。数列中的每一项,则称为“斐波那契数”。第十三位的斐波那契数,即为一对刚出生的小兔,一年内所能繁殖成的兔子的对数。这个数字等于233。从斐波那契数的构造明显看出:斐被那契数列从第三项起,每项都等于前面两项的和。假定第n项斐波那契数为,于是我们有:通过以上关系式,我们可以一步一个脚印地算出任意,不过,当n很大时,推算是很费事的。我们必须找到更为科学的计算方法。为此,我们在以下一列数中去导求满足关系式的解答。解上述q的一元二次方程得: [!--empirenews.page--] 。据此,设,并结合,可确定α,β,从而可以求出:以上公式是法国数学家比内首先求得的,通称比内公式。令人惊奇的是,比内公式中的是用无理数的幂表示的,然而它所得的结果却是整数。读者不信,可以找几个n的值代进去试试看!斐波那契数列有许多奇妙的性质,其中有一个性质是这样的:有兴趣的读者,不难自行证明上述等式。斐波那契数列的上述性质,常被用来构造一些极为有趣的智力游戏。例如,美国《科学美国人》杂志就曾刊载过一则故事:一位魔术师拿着一块边长为8英尺的正方形地毯,对他的地毯匠朋友说:“请您把这块地毯分成四小块,再把它们缝成一块长13英尺,宽5英尺的长方形地毯。”这位匠师对魔术师算术之差深感惊异,因为商者之间面积相差达一平方英尺呢!可是魔术师竟让匠师用图2和图3的办法达到了他的目的!这真是不可思议的事!亲爱的读者,你猜得到那神奇的一平方英尺究竟跑到哪儿去呢?斐波那契数列在自然科学的其他分支,也有许多应用。例如,树木的生长,由于新生的枝条,往往需要一段“休息”时间,供自身生长,而后才能萌发新枝。所以,一株树苗在一段间隔(如图4),例如一年,以后长出一条新枝;第二年新枝“休息”,老枝依旧萌发;此后,老枝与“休息”过一年的枝同时萌发,当年生的新枝则次年“休息”。这样,一株树木各个年份的枝桠数,便构成斐波那契数列。这个规律,就是生物学上著名的“鲁德维格定律”。

1.生活中的“斐波那契数列”

2014年温州市小学数学小课题评比 学校:苍南县钱库小学 成员姓名:陈耀坤吴文强金旭杭 小课题题目:生活中的“斐波那契数列”——台阶中的数学 指导教师:陈瑞帐

生活中的“斐波那契数列” ——台阶中的数学 一、问题的提出 周末爸爸妈妈带我去龙港影城看3D电影,影城的大门口有16级水泥台阶,我发现老年人大多是一级一级地往上走的,年轻的小伙子喜欢两级两级地往上走,小朋友则是一会儿走一级,一会儿又蹦两级……很快,一个念头闪入我的脑海:按照他们这样不同的走法,走完这16级台阶,一共会有多少种不同的走法呢?会不会有什么规律呢?于是,在爸爸妈妈的鼓励下,我决定开始台阶走法的研究。 二、研究过程 1.从最简单的做起 该怎样开展研究呢?我找了两个好朋友,做合作伙伴。我们想起了老师曾经提到过的华罗庚说的话:“善于退,足够地退,退到最原始的而不失重要的地方是学好数学的一个诀窍。”也就是说可以“从最简单的做起”于是我们通过画楼梯入手。 1个台阶(1种) 2个台阶(2种) 3个台阶(3种) 4个台阶(5种) …… 后来我觉得用这种表示方法实在太麻烦了,有没有更简捷的表达方法呢?于是在数学老师的启发下就想到了用最简单的数字来表达: 楼梯台阶数及方法楼梯上法表示 一个台阶(1种)(1) 二个台阶(2种)(1,1)(2) 三个台阶(3种)(1,1,1)(1,2)(2,1) 四个台阶(5种)(1,1,1 ,1)(1,1,2)(1,2,1)(2,1,1)(2,2)五个台阶(8种)(1,1,1,1,1)(1,1,1,2)(1,1,2,1)(1,2,1,1) (2,1,1,1)(2,1,2)(2,2,1)(1,2,2) 5个台阶有8种走法,那现在求16个台阶有几种走法,该怎么办呢?我们想用这个方法继

用初等数学方法求斐波那契数列的通项公式

用初等数学方法求斐波那契数列的通项公式 斐波那契 (Fibonacci) 数列是着名的数列,有很高的实用价值。多年来,学者们一直在探究它的通项公式的求解方法,已经涌现出了多种方法。但据笔者们所知,这些方法大都需要比较高深的数学知识,例如组合数学的方法、概率的方等等,让人比较难理解,不容易接受。基于此,研究给出了一种简易的初等数学方法,先探求它们的特征多项式,然后通过求解线性方程组的思想,得出它们的通项公式。这种方法深入浅出,有一定的实用价值。 1.斐波那契数列的由来 13 世纪意大利数学家斐波那契在他的《算盘书》的修订版中增加了一道着名的兔子繁殖问题. 问题是这样的: 如果每对兔子(一雄一雌)每月能生殖一对小兔子(也是一雄一雌,下同),每对兔子第一个月没有生殖能力,但从第二个月以后便能每月生一对小兔子.假定这些兔子都没有死亡现象,那么从第一对刚出生的兔子开始,12 个月以后会有多少对兔子呢解释说明为:一个月:只有一对兔子;第二个月:仍然只有一对兔子;第三个月:这对兔子生了一对小兔子,共有1+1=2 对兔子.第四个月:最初的一对兔子又生一对兔子,共有2+1=3对兔子.则由第一个月到第十二个月兔子的对数分别是:1,1,2,3,5,8,13,21,34,55,89,144,……,人为了纪念提出兔子繁殖问题的斐波纳契,将这个兔子数列称为斐波那契数列,即把 1,1,2,3,5,8,13,21,34…这样的数列称为斐波那契数列。 2.斐波那契数列的定义 定义:数列F1,F2,… ,Fn,…如果满足条件121==F F ,21--+=n n n F F F (对所有的正整数n ≥ 3),则称此数列为斐波那契(Fibonacci)数列。

试验一斐波那契数列

试验一 斐波那契数列 一、 实验目的与要求 1.认识Fibonacci 数列,体验发现其通项公式的过程; 2.了解matlab 软件中进行数据显示与数据拟合的方式; 3.掌握matlab 软件中plot, polyfit 等函数的基本用法; 4.提高对数据进行分析与处理的能力。 二、 问题描述 某人养了一对兔,一个月后生育了一对小兔。假设小兔一个月后就可以长大成熟,而每对成熟的兔每月都将生育一对小兔,且兔子不会死亡。问:一年后共有多少对兔子? 三、 问题分析 这个问题,最早由意大利数学家斐波那契(Fibonacci),于1202年在其著作《珠算原理》中提出。根据问题的假设,兔子的总数目是如下数列: 1,1,2,3,5,8,13,21,34,55,89,144,233,… 问题的答案就是此数列的第12项,即一年后共有144对兔子。 这个数列通常被称为斐波那契(Fibonacci)数列,研究这个问题就是研究Fibonacci 数列。把这个问题作更深入的研究,我们会问:第n 个月后,总共有多少对兔子?即Fibonacci 数列的第n 项是多少?这就需要我们探素Fibonacci 数列的通项公式。根据问题的描述,我们知道第n+2个月后兔子的对数,等于第n+1个月后兔子的对数(表示原来就有的老兔子对数),加上第n 个月后兔子的对数(表示生育出来的新兔子对数)。这样就得到关于Fibonacci 数列的一个递推公式: 21n n n F F F ++=+ 利用matlab 软件的数据可视化功能将这些数据显示成平面曲线的形式后,我们可以观察到Fibonacci 数列的变化规律;通过matlab 软件的数据拟合功能,我们可以大概知道Fibonacci 数列的函数关系式,结合上面的递推公式,就可以推导出来Fibonacci 数列的通项公式。 四、 背景知识介绍 1. 数据的可视化。 将离散的数据:1234,,,,,,n F F F F F , 看成平面坐标系里的点:1234(1,),(2,),(3,),(4,),,(,),n F F F F n F , 利用matlab 软件的plot 函数在平面坐标系里划出一个点列,就可以实现离散数据的可视化。plot 函数的基本使用格式为:plot(y),其中参数y 表示竖坐标,即需要显示的数据。

斐波那契数列的通项公式推导

斐波那契数列的通项公式推导 一个新的数学题初次接触时,会觉得这个题的解题技巧很妙,甚至有点非夷所思,但如果把同类型问题多做几个,你就会发现原来所谓的技巧,其实是一种再正常不过的想法,是一种由已知到未知的必然之路。这样我们就由解题的技巧而转化到了通解通法,进一步就会形成解题的思想,所以我对于数学爱好者建议,做题时要把同类型题多种总结和分析,这样你的数学才会有长足的进步。 下面我们就由递推推导通项的问题,进行对比分析。 例1 在数列{}n a 中,1=5a ,2=2a ,13=23n n n a a a --+ (3)n ≥,求数列{}n a 的通项。 (普通高中课程标准实验教科书人教A 版必修5第69页6题) 分析:此题可分两步来进行,首先由构造一个等比数列,其中 ,并写出的通项;然后利用,两边同除以得 ,由累加法,就可求出数列{}n a 的通项。 解:( 设,则()所以数列 为等比数列,且首项为 ,公比为3。所以 。 于是有,两边都除以得 设,则有 由累加法可得 因为 所以() 于是有。 总结:上面的求解过程实质,求是一个把已知条件逐步化简的过程,由相邻三项的递推关系化为相邻两项的递推关系,进一步求出通项公式。 下面我们来研究一下著名的斐波那契数列的通项。 已知数列{}n a ,其中,,求数列{}n a 的通项。

解:首先我们要构造一个等比数列,于是设 则有。(1) 则由已知得(2) 对照(1)(2)两式得解得或。 我们取前一解,就会有。 设,则有 所以数列为等比数列,首项为,公比为 所以。即(3) 再次构造等比数列,设 则有 对照(3)式,可得所以 x=. 于是有 设,则有数列为等比数列,首项为,公比为,于是= 所以有。

斐波那契数列通项求法

斐波那契数列通项求法 为求得費波那西數列的一般表达式,可以借助线性代数的方法。高中的初等数学知识也能求出。 初等代数解法 已知 ? a 1 = 1 ? a 2 = 1 ? a n = a n ? 1 + a n ? 2 首先构建等比数列 设a n + αa n ? 1 = β(a n ? 1 + αa n ? 2) 化简得 a n = (β ? α)a n ? 1 + αβa n ? 2 比较系数可得: 不妨设β > 0,α > 0 解得: 所以有a n + αa n ? 1 = β(a n ? 1 + αa n ? 2), 即 为等比数列。 求出数列{a n + αa n ? 1} 由以上可得:

变形得:。令 求数列{b n}进而得到{a n} 设,解得。故数列为等比数列 即。而,故有 又有和 可得 得出a n表达式 线性代数解法 构建一个矩阵方程 设J n为第n个月有生育能力的兔子数量,A n为这一月份的兔子数量。

上式表达了两个月之间,兔子数目之间的关系。而要求的是,A n+1的表达式。求矩阵的特征值:λ 行列式:-λ*(1-λ)-1*1=λ2-λ-1 当行列式的值为0,解得λ1=或λ2= 特征矢量 将两个特征值代入 求特征矢量得 = = 分解首矢量 第一个月的情况是兔子一对,新生0对。 将它分解为用特征矢量表示。

(4)用数学归纳法证明 从 = 可得 (5) 化简矩阵方程 将(4)代入(5) 根据 3 求A的表达式 现在在6的基础上,可以很快求出A n+1的表达式,将两个特征值代入 6 中

(7) (7)即为A n+1的表达式 近似值 用计算机求解 可通过编程观察斐波那契数列。分为两类问题,一种已知数列中的某一项,求序数。第二种是已知序数,求该项的值。 可通过递归递推的算法解决此两个问题。事实上当n相当巨大的时候,O(n)的递推/递归非常慢……这时候要用到矩阵加速这一技巧。

斐波那契数列问题

斐波那契数列问题。(专业C++作业ch4-1) 题目描述 著名意大利数学家斐波那契(Fibonacci)1202年提出一个有趣的问题。某人想知道一年内一对兔子可以生几对兔子。他筑了一道围墙,把一对大兔关在其中。已知每对大兔每个月可以生一对小兔,而每对小兔出生后第三个月即可成为“大兔”再生小兔。问一对小兔一年能繁殖几对小兔? 提示: 由分析可以推出,每月新增兔子数Fn={1,1,2,3,5,8,13,21,34,…}(斐波那契数列),可归纳出F1=1,F2=1,……,Fn=Fn-2+Fn-1。 仿照课本P128页的“2.基本题(1)”进行编程。注意,(1)课本上的程序显示出数列的前16项的所有数值,这里要求只显示第n项数值;(2)课本上的程序在每次循环时显示数列中的两个数值(i=3时,显示了数列的第3项和第4项)。输入描述 一个正整数n,表示求第n个月的新增的兔子数。 输出描述 对输入的n,求第n个月的新增的兔子数。 输入样例 16 输出样例 987 2. (18分) 求阶乘和。(专业C++作业ch4-2) 题目描述 编程求出阶乘和1!+2!+3!+…+n!。 注意:13!=6 227 020 800已经超出unsigned long的范围,故程序中不宜采用整型数据类型,而应使用双精度类型存放结果。 输入描述 一个正整数n,n的值不超过18。 输出描述 对输入的n,求阶乘和1!+2!+3!+…+n!。(输出结果时,可以用输出格式控制“cout<

中学数学-1(斐波那契数列)

内蒙古自治区中小学教师教育技术水平(初级)试卷 (试卷科目:中学数学) 第一部分:基本知识题(本部分共8个题,每题2.5分,满分20分) 第1题 (单选题)教育技术的本质特征是( C )。 (2.5分) A.运用技术手段去优化教育、教学过程,以提高教育、教学的效果、效率和效益的教学实践B.本题答案中所给出的其它3个选项都不对 C.运用技术手段去优化教育、教学过程,以提高教育、教学的效果、效率和效益的理论和实践D.运用技术手段去优化教育、教学过程,以提高教育、教学的效果、效率和效益的理论研究 第2题 (单选题)关于教学评价中收集数据的工具与方法,下列说法中不正确的是( D )。 (2.5分) A.形成性练习是教学评价中经常使用的方法 B.结构化观察是教学评价中经常使用的方法 C.总结性测验是教学评价中经常使用的方法 D.在教学评价中无需使用态度量表 第3题 (单选题)课程结束时进行期末考试,考试依据课程标准来确定试题范围,采用纸笔测验试卷评分的方式。就这一评价(考试)的类型,以下选项中不准确的一项是( B )。 (2.5分) A.它是一种定量评价 B.它是诊断性评价 C.它是总结性评价 D.它是一种绝对评价 第4题 (单选题)将认知领域的教学目标分为了解(识记)、理解、运用、分析、综合、评价六个层次的美国心理学家是( C )。 (2.5分) A.加涅 B.布鲁纳 C.布卢姆 D.奥苏贝尔 第5题 (单选题)"知识积累的关键因素是刺激、反应以及两者之间的联系",持这一观点的学习理论流派是( D )。 (2.5分) A.建构主义 B.认知主义 C.人本主义 D.行为主义 第6题 (单选题)根据您对教育技术及相关基础知识的理解,下例选项不正确的一项是( B )。 (2.5分) A.教学设计是运用系统方法分析教学问题和确定教学目标,建立解决教学问题的策略方案、试行解决方案、评价试行结果和对方案进行修改的过程 B.教育技术与信息技术的涵义是一样的,只是用不同的名词来表述而已 C.教育信息化是指在教育教学的各个领域中,积极开发充分应用信息技术和信息资源,以促进教育现代化,培养满足社会需求人才的过程 D.教育技术就是为了促进学习,对有关的学习过程和资源进行设计、开发、利用、管理和评价的理论与实践

斐波那契数列(1)

摘要 本论文主要研究斐波那契数列的性质及其应用,从“兔子繁殖”问题建立数学模型,引出斐波那契数列的定义;运用二阶常系数齐次线性递归方程的特征根解法推导出了斐波那契数列的通项公式。论述并证明了有关斐波那契数列的恒等式和相关结论,涉及斐波那契数列相邻两项之比(即黄金分割比率)在广泛的应用,以及运用斐波那契数列解决一些实际数学问题。 目录 绪论 (1) 论文提出的背景和价值及国内外研究动态 (1) 一斐波那契数列的提出 (2) 1.1 问题的引出 (2) 1.2 斐波那契额数列的定义迭代表示 (3) 二斐波那契数列通项公式的推导 (3) 2.1 线性递归数列线性递归方程及其特征方程的解法 (3) 2.2 斐波那契数列通项公式的特征方程方法的推导 (4) 三斐波那契数列的部分相关性质 (5) 3.1 有关斐波那契数列的等式关系性质 (5) 3.2 有关斐波那契数列的结论 (12) 四斐波那契数列的有关应用 (13) 4.1 斐波那契数列前项与后项比例极限和黄金分割比例 (13) 4.2 运用斐波那契数列解决实际问题 (14) 绪论 论文提出的背景和价值及国内外研究动态 斐波那契数列十三世纪初叶就已经提出了,但是现如今我们学习工作生活中仍然对它有所触及。随着它的一些奇妙属性慢慢被世人所发现:从埃及金字塔到准晶体结构,从艾略特波浪理论到华罗庚的优选法(0.618),从达芬?奇的《蒙娜丽莎的微笑》到生物学的“鲁德维格定律”……吸引了国内外许多学者去研究它。斐波那契数列在现代物

理、准晶体结构、化学、生物、金融﹑美术等领域都有直接的应用,为此,美国数学会从1960年代起出版了《斐波那契数列》季刊,专门刊载这方面的研究成果。 我在这片论文中主要研究了有关斐波那契数列的关系式和结论,通过观察斐波那契数列前几项,猜测推算提出结论,验证、论证命题,采用了数学建模的思想,数学归纳法,线性递归等方法论述论文。 一斐波那契数列的提出 1.1 问题的引出 斐波那契数列是由13世纪的意大利数学家列昂纳多·斐波那契提出的。在1202年他所撰写的《珠算原理》(由于翻译差别,有多种中文译名)以兔子繁殖问题为例而引人,故称“兔子数列”。下面引述该问题: 一般的,兔子在出生一个月后就有繁殖能力。假设一对兔子(一雌一雄)每个月可繁殖出一对小兔子来,并且所有的兔子都不死,这样在笼中圈养一对有繁殖能力的兔子,那么一年后可以繁殖多少对兔子。 分析: 经过一个月,原来的大兔子繁殖了一对小兔子,小兔子没繁殖能力,大兔子一对,小兔子一对; 经过二个月,原来的大兔子继续繁殖了一对小兔子,上个月的小兔子长成了大兔子,现在大兔子有两对,小兔子一对 经过三个月,上个月大兔子繁殖了一共两对小兔子,上个月的小兔子长成了大兔子,现在大兔子有三对,小兔子两对; …… 依次类推列下表: 经过月数123456789101112小兔子对数1123581321345589144大兔子对数123581321345589144233兔子总对数23581324345589144233377

斐波那契数列、走台阶问题

i m e a n d A l t h i n t h e i r b e i n g o o 走台阶问题如: 总共100级台阶(任意级都行),小明每次可选择走1步、2步或者3步 ,问走完这100级台阶总共有多少种走法? 解析: 这个问题本质上是斐波那契数列,假设只有一个台阶,那么只有一种 跳法,那就是一次跳一级,f(1)=1;如果有两个台阶,那么有两种跳法,第一种跳法是一次跳一级,第二种跳法是一次跳两级,f(2)=2。如果有大于2级的n 级台阶,那么假如第一次跳一级台阶,剩下还有n- 1级台阶,有f(n-1)种跳法,假如第一次条2级台阶,剩下n-2级台阶,有f(n-2)种跳法。这就表示f(n)=f(n-1)+f(n-2)。将上面的斐波那契数列代码稍微改一下就是本题的答案f(n)=f(n-1)+f(n+2) 斐波那契数列 斐波那契数列:0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ... 如果设F(n )为该数列的第n 项(n ∈N*),那么这句话可以写成如下形式:F(n)=F(n-1)+F(n-2)递推数列显然这是一个线性。 数学定义: 递归斐波纳契数列以如下被以的方法定义:F (0)=0,F (1)=1 ,F (n )=F(n-1)+F(n-2)(n≥2,n ∈N*)

g s i n t h e i r b e i n g a r 由兔子 生殖问题引出、生物 (计算科学) 特性: 这个数列从第3项开始,每一项都等于前两项之和。特别指出:第1项是0,第2项是第一个1。 代码: public class Test { static final int s = 100; //自定义的台阶数 static int compute(int stair){ if ( stair <= 0){ return 0; } if (stair == 1){ return 1; } if (stair == 2){ return 2; } return compute(stair-1) + compute(stair-2); //return 递归进行计算 --->递归思想进行数据计算处理 在斐波那契数列中后一项的值等于前两项的和 } public static void main(String args[]) { System.out .println("共有" + compute(s) + "种走法"); } } return compute(stair-1) + compute(stair-2); 在return 子句中调用调用compute 函数 由斐波那契数列特性得到最后的值 分值拆分

相关主题
文本预览
相关文档 最新文档