当前位置:文档之家› 湍流模型理论DOC

湍流模型理论DOC

湍流模型理论DOC
湍流模型理论DOC

湍流模型理论

§3.1 引言

自然界中的实际流动绝大部分是三维的湍流流动,如河流,血液流动等。湍流是流体粘性运动最复杂的形式,湍流流动的核心特征是其在物理上近乎于无穷多的尺度和数学上强烈的非线性,这使得人们无论是通过理论分析、实验研究还是计算机模拟来彻底认识湍流都非常困难。回顾计算流体力学的发展,特别是活跃的80年代,不仅提出和发展了一大批高精度、高分辨率的计算格式,从主控方程看相当成功地解决了Euler方程的数值模拟,可以说Euler方程数值模拟方法的精度已接近于它有效使用范围的极限;同时还发展了一大批有效的网格生成技术及相应的软件,具体实现了工程计算所需要的复杂外形的计算网格;且随着计算机的发展,无论从计算时间还是从计算费用考虑,Euler方程都已能适用于各种实践所需。在此基础上,80年代还进行了求解可压缩雷诺平均方程及其三维定态粘流流动的模拟。90年代又开始一个非定常粘流流场模拟的新局面,这里所说的粘流流场具有高雷诺数、非定常、不稳定、剧烈分离流动的特点,显然需要继续探求更高精度的计算方法和更实用可靠的网格生成技术。但更为重要的关键性的决策将是,研究湍流机理,建立相应的模式,并进行适当的模拟仍是解决湍流问题的重要途径。

要反映湍流流场的真实情况,目前数值模拟主要有三种方法:1.平均N-S

方程的求解,2.大涡模拟(LES),3.直接数值模拟(DNS)。但是由于叶轮机械内部结构的复杂性以及目前计算机运算速度较慢,大涡模拟和直接数值模拟还很少用于叶轮机械内部湍流场的计算,更多的是通过求解平均N-S方程来进行数值模拟。因为平均N-S方程的不封闭性,人们引入了湍流模型来封闭方程组,所以模拟结果的好坏很大程度上取决于湍流模型的准确度。自70年代以来,湍流模型的研究发展迅速,建立了一系列的零方程、一方程、两方程模型和二阶矩模型,已经能够十分成功的模拟边界层和剪切层流动。但是,对于复杂的工业流动,比如航空发动机中的压气机动静叶相互干扰问题,大曲率绕流,激波与边界层相互干扰,流动分离,高速旋转以及其他一些原因,常常会改变湍流的结构,使那些能够预测简单流动的湍流模型失效,所以完善现有湍流模型和寻找新的湍流模型在实际工作中显得尤为重要。

§3.2 湍流模型概述

§3.2.1 湍流模型的引入

湍流模式理论或简称湍流模型,就是以雷诺平均运动方程与脉动运动方程为基

础,依靠理论与经验的结合,引进一系列模型假设,而建立起的一组描写湍流平

均量的封闭方程组。湍流运动物理上近乎无穷多尺度漩涡流动和数学上的强烈非

线性,使得理论实验和数值模拟都很难解决湍流问题。虽然N-S方程能够准确地

描述湍流运动地细节,但求解这样一个复杂的方程会花费大量的精力和时间。实

际上往往采用平均N-S方程来描述工程和物理学问题中遇到的湍流运动。当我们

对三维非定常随机不规则的有旋湍流流动的N-S方程平均后,得到相应的平均方

u u,从而形成了湍流基本方程,此时平均方程中增加了六个未知的雷诺应力项i j

程的不封闭问题。根据湍流运动规律以寻找附加条件和关系式从而使方程封闭就

促使了几年来各种湍流模型的发展,而且在平均过程中失去了很多流动的细节信

息,为了找回这些失去的流动信息,也必须引入湍流模型。目前虽然许多湍流模

型已经取得了某些预报能力,但至今还没有得到一个有效的统一的湍流模型。同

样,在叶轮机械内流研究中,如何找到一种更合适更准确的湍流模型也有待于进

一步研究。

§3.2.2 湍流模型的发展历程

模型理论的思想可追溯到100多年前,为了求解雷诺应力使方程封闭,早期的处

理方法是模仿粘性流体应力张量与变形率张量关联表达式,直接将脉动特征速度

与平均运动场中速度联系起来。十九世纪后期,Boussinesq提出用涡粘性系数

的方法来模拟湍流流动,通过涡粘度将雷诺应力和平均流场联系起来,涡粘系数

的数值用实验方法确定。到二次世界大战前,发展了一系列的所谓半经验理论,

其中包括得到广泛应用的普朗特混合长度理论,以及G.I泰勒涡量传递理论和

Karman相似理论。他们的基本思想都是建立在对雷诺应力的模型假设上,使雷

诺平均运动方程组得以封闭。1940年,我国流体力学专家周培源教授在世界上

首次推出了一般湍流的雷诺应力输运微分方程;1951年在西德的Rotta又发展

了周培源先生的工作,提出了完整的雷诺应力模型。他们的工作现在被认为是以

二阶封闭模型为主的现代湍流模型理论的最早奠基工作。但因为当时计算机水平

的落后,方程组实际求解还不可能。70年代后期,由于计算机技术的飞速发展,

周培源等人的理论重新获得了生命力,湍流模型的研究得到迅速发展。建立的一

系列的两方程模型和二阶矩模型,已经能十分成功地模拟边界层和剪切层流动,

但是对于复杂的工业流动,比如大曲率绕流,旋转流动,透平叶栅动静叶互相干

扰等,这些因素对湍流的影响还不清楚,这些复杂流动也构成了进入二十一世纪

后学术上和应用上先进湍流模型的研究[48]。

§3.2.3湍流模型研究的现状和进展

湍流模型可根据微分方程的个数分为零方程模型、一方程模型、二方程模型和多方程模型。这里所说的微分方程是指除了时均N-S方程外,还要增加其他方程才能是方程封闭,增加多少个方程,则该模型就被成为多少个模型。下面分别介绍各种湍流模型的研究现状和进展。

3.2.3.1 零方程模型

零方程模型建立在涡粘性假设基础上,把平均N-S方程中的雷诺应力假设为平均物理量的某种函数,使方程组封闭。由于涡粘系数在整个边界层中并不是一个常数,而且湍流边界层仅仅局限于依靠壁面的一个小部分区域内,普朗特在

dU dy)直接1925年提出了动量传递混合长度理论,将湍流应力和平均速度(/

建立关系,此后各国学者在这方面做了大量工作,下面简介几个应用比较广泛的零方程模型。

一种在工程上最为常用的代数模型是由Cebeci-Smith[49]给出的,可用来计算湍流边界层。C-S模型在工程计算中得到了广泛的应用,其准确度和可靠性也得到了较多实验的验证。实践证明,对于逆压力梯度或顺压力梯度很大的平衡湍流边界层及接近分离区的流动,其精度不是很好。后来Baldwin与Lomax对该公式进行了修正,得到了Baldwin-Lomax(B-L)[50]模型。B-L模型以涡粘性假设为基础,属于局部平衡模型,其中系数是不可压缩流体平板附面层实验结果。由于该模型简单,计算工作量小,且对于湍流附面层流动计算具有一定精度,故广泛应用于工程计算中。在应用中人们也发现了B-L模型的不足之处,模型中各系数都是平板附面层经验值,没有考虑压力梯度对附面层的影响。还有很多研究者都曾对代数模型进行了修正,但收效甚微。NASA Ames研究中心曾对代数模型做过广泛系统的研究,发现对于复杂流动的预测它所得到的结果远不如两方程模型精确。虽然零方程模型精度不高,但由于零方程模型简单,因此在全世界得到了广泛的应用。一般来说,零方程模型有如下优缺点,一是零方程模型适用于中等压力梯度的二维流动,能够很好预报主流速度,但对湍流应力仅能做定性预报。二是零模型只适用于预测具有轻微的横向流动的二维边界层。三是零方程模型不适用于绕流,旋转效应及有分离的流动,对三维复杂流动或是湍流运输效应占主导地位的流动会产生较大误差。四是各向同性假设使得零方程模型不能预测大逆压梯度,或是由于湍流输运所造成的二次流动。五是零方程模型不能预测激波引起的分离流动。

3.2.3.2 一方程模型

一方程模型将湍动能方程作为一个附加的偏微分方程,加上其他代数经验关系式使方程组封闭,一般也称为能量方程模型。它考虑了对流和湍流扩散输运,以湍动能表示特征速度,并由方程求出脉动特征速度,放弃了将脉动特征速度与平均速度梯度直接联系起来的做法,因此能量方程模型比零方程模型更优越。但是能量方程模型也假定了涡粘性系数各向同性,而且特征长度仍需要经验确定,对运动过程影响的考虑也不充分,因而对于复杂流动的应用受到很大的限制。大多数的一方程模型采用涡粘性假设,其精度和计算量介于零方程模型和二方程模型之间。一方程模型的来源由两种,一种从经验和量纲分析出发,针对简单流动逐步发展起来,如Spalart-Allmaras(S-A)模型[51];另一种由二方程模型简化而来,如Baldwin-Barth(B-B)模型[52]。上述两种模型都有相似的特点,不象零方程模型那样需要分内外层模型,也不需要沿法线方向网格线寻找最大值,因此可用到非结构网格中,但是计算量比零方程模型大。随着模型理论的发展和广大科研工作者的努力,一方程模型也不断得到改进和完善。宁方飞等推导了

Splart-Allmaras 模型的守恒形式,将其用于了二维扩压器和三维压气机转子湍流流场的计算,取得了很好的效果,表明Splart-Allmaras 模型用于内流计算是成功的[53]。

3.2.3.3 两方程模型

两方程模型是目前湍流模型研究中的热门,也是目前应用最广泛的一种湍流模型,这与其内在的物理本质有必然联系。应用比较广泛的两方程模型有Jones 与Launder 提出的标准k ε-(S-k-eps )模型[54],和经过修正的各种低雷诺数k ε-模型,以及由k ε-模型发展而来的k ω-模型和q ω-模型。另外还有很多关于k ε-模型的非线性代数应力模型。自Jones 与Launder 提出的标准k ε-模型以来,该模型就以其简单,计算精度精度较高而广泛应用于各种湍流研究中。标准k ε-模型在推演过程中,采用了以下几项基本处理:(1)用湍动能k 反映特征

速度;(2)用湍动能耗散率ε反映特征长度尺度;(3)引进了

2/t C k μνε=的关系式(4)利用Boussinesq 假定进行简化。正因为如此,可以认为k ε-有以下优点:一是通过求解偏微分方程考虑湍流物理量的输运过程,即通过求解偏微分方程来确定脉动特征速度与平均速度梯度的关系,而不是直接将两者联系起来。二是特征长度不是由经验确定,而是以耗散尺度作为特征长度,并由求解相应的偏微分得到,因而k ε-模型在一定程度上考虑了流动场中各点的湍动能传递和流动的历史作用。计算结果表明,它能较好地用于某些复杂流动,例如环流、渠道流、边壁射流和自由湍射流,甚至某些复杂的三维流。然而,标准k ε-模型也有一定的局限性,主要表现在:一是仍然采用了Boussinesq 假定,即采用了

梯度型和湍流粘性系数各向同性的概念,因而使k ε-模型难以准确模拟剪切层中平均场流动方向的改变对湍流场的影响;二是采用了一系列的经验常数,这些系数都是在一定实验条件下得出来的,因而也限制了模型的使用范围。近十年来人们不断对k ε-模型进行了改进。

在近壁面雷诺数较低,雷诺应力具有明显的各向异性,分子粘性对流动的影响相对增强,它不仅影响了平均流的输运,而且直接或间接地影响各种湍流过程,此外,湍流动能k 的产生率及耗散率ε达到极大,近似处于局部平衡,平均流速度和温度的二阶导数大,即平均流参数的梯度变化大。此区内的湍流呈各向异性,从而造成适用于高雷诺数、各向同性湍流的两方程湍流模型不能直接应用到该区。处理低雷诺数湍流流动的工程方法有两大类,即壁面函数法和低雷诺数湍流模型。所谓壁面函数法就是采用简化分析的方法或经验式,给出近壁网格内的速度分量与壁面应力的关系,近壁网格内温度与壁面温差同壁面热流通量的关系,近壁网格内湍流动能的产生率与耗散率。这种方法不需在近壁区内求解平均流场或湍流参量的偏微分方程,不需在近壁区布置精细的网格(y +>30)。它包含了壁面粗糙,且使计算方便,但在诸如低雷诺数时的边界层流、临界雷诺数时的边界层流、非定常和分离流、旋转面或有质量或热量传递的固壁、三维复杂流等情况下,不能应用壁函数[55]。

90年代以来,一种基于重整化群(Renormalization Group -RNG )方法的模型理论引起了人们的兴趣。该理论最早由Yakhot&Orszag [56]提出,其基本思想是:在谱空间内对N-S 方程引入了所谓“对应原理”,利用Gauss 统计法在平衡态展开。经过一系列移去小尺度部分及对余下部分重新标度的运算,得到一针对大尺度运动的方程。其中小尺度对大尺度的影响在方程中以涡粘性的方式体现。若移去的仅是那些最小的尺度就得到大涡模拟中的亚格子模型,若移去的尺度继续增大,最终就得到涡粘性模型,如代数模式、两方程模式、非线性模式。在高雷诺数极限情况下,所得k ε-模式(称RNG k ε-模式)与标准模式形式上完全一样,仅在系数上有所差别。值得注意的是,这里的系数由理论分析而得,不含经验性。更主要的差别在于它们之间近壁处理不同。RNG k ε-模式中的涡粘性在接近壁面时能自动地向分子粘性过渡,因而无须使用经验性地壁函数或衰减因子。

在选择湍流长度尺度或时间尺度时,若不取ε,而取其它标量,如湍流“频率”l k 2

/1,则可以分别形成k ω-的二方程模型。目前工程应用的各种湍流模型,k ω-两方程模型在对逆压梯度有无分离流动、低雷诺数区域流动以及可压缩流

动,特别是高速湍流流动等问题的精确数值模拟上较为理想。在k ω-模型的应用发展中,Wilcox 及Menter [57-58]等做了卓有成效的工作。k ω-模型在边壁附近的低雷诺数区不需要阻尼函数,壁面上ω方程有精确的边界条件,易于处理。特别是在高速内流计算中已初步表现出来良好的性能,所以实际中得到了广泛的应用。k ω-模型主要由k ε-模型演变而来,其中/k ωε=称为比耗散率,主要是一个k 方程,一个ω方程。David.C.Wilcox [59]通过八种低雷诺数k ε-和k ω-模型计算了具有适当逆压梯度的高雷诺数、不可压边界层,结果发现k ε-模型预报此类流动具有不稳定性,甚至更为严重的是k ε-模型被证明和已经建立起来的湍流边界层物理结构不一致,即使低雷诺数修正也不能克服这种不一致性。然而,k ω-模型计算的结果却发现有或者无低雷诺数修正都能得到准确的结果。

q ω-模型是由Coakley [60]在1983年提出的,其中q =。袁新[61]在叶轮机械内流场中分别使用了Chien-k ε-模型、Wilcox-k ω-模型和Coakley-q ω-模型,并进行了比较,得出尽管k ε-模型在工程实际中已得到了广泛的应用,但是由于k ω-和q ω-模型的计算量相对较少,边界条件处理简单,又能适应粗糙的初始湍流流场,所以在求解可压缩流动时倾向于采用后两种湍流模型。

总之,两方程模型在我们目前的各种湍流场计算中,有着广泛的应用。在某些特定的条件下,能得到很好的结果。但是由于认识的局限性以及对湍流场的各种假定,也使得计算结果与实际结果偏差较大。所以在应用两方程模型中,不同条件下应对两方程模型进行相应的修改。

3.2.3.4 雷诺应力方程模型

无论是对于代数涡粘模型,还是对两方程模型,都不能很好的预测复杂流动。两方程模型中雷诺应力都是采取了各种假设而达到简化,之中许多湍流流动的细节被忽略,而雷诺应力模型(RSM )中增加的雷诺应力微分方程考虑了更多的湍流细节,所以雷诺应力模型能更真实地模拟实际的湍流流动,反应其内在本质。这一模型的优点在于可准确地考虑各向异性效应,虽然其通用性不象人们所期望地那么高,但在不少情况下其预报效果确实比其他模型好。但该模型过于复杂,一个完整的雷诺应力模型包括一个连续方程、3个动量方程、雷诺应力的六个方程、k 方程和ε方程,总共12个未知量,12个微分方程。计算量远远高于代数模型,一方程和两方程模型,尤其对复杂的三维流动,从工程角度,其计算量超出了目前计算机的能力。所以现阶段还很难推进这方面的研究工作。

3.2.3.5 代数应力方程模型

代数应力模型(ASM)是雷诺应力模型(RSM)在一定条件下的简化表达式,表达式形式随简化条件而异,但需求解的附加微分方程只有两个(即k方程和ε方程)。代数应力模型是一种既简单经济,又能体现各项异性的具有较高精度的数学模型。应用该模型既可避开求解雷诺应力方程所面临的十分复杂的计算工作量,又能解决kε-两方程模型难以求解的各向异性问题,因而兼有雷诺应力模型的通用性和kε-模型的经济性。

3.2.3.6 湍流研究的其他方法

基于平均方程的湍流模型对于一般湍流问题误差较大,湍流计算很难从根本上解决,因为基于平均方程加湍流模型的湍流求解方法仅能模拟小尺度涡的湍流运动,其模拟结果与湍流的真实流动相差甚远,这种方法不能从根本上解决湍流问题。为了使湍流求解更为准确,更能反映湍流不同尺度的旋涡运动,可以在更宽尺度上计算湍流,如大涡模拟LES(Large Eddy Simulation)和直接数值模拟DNS(Direct Numerical Simulation)。

作为一种预测湍流的新型数值工具,大涡模拟[62]正显示出强大的生命力,它的基本思想是:将包括脉动运动在内的湍流瞬时运动通过某种滤波方法分解成大尺度运动和小尺度运动,大尺度量通过直接求解非定常的三维Navier-Stokes方程获得,小尺度运动对大尺度运动的影响将在运动方程中表现为类似于雷诺应力一样的应力项,称之为亚格子雷诺应力,它们将通过建立湍流模型来模拟。尽管大涡模拟法有其独特的优点,但用于实际三维湍流流动计算却有巨大的困难,具体表现[63]在:一、通用的小涡模型需要极密的节点,因而需要庞大的计算机存储能力;

二、大量计算数据和求解非线性偏微分方程需要高速数值处理能力;三、需要非常可观的计算时间和经费,因此用大涡模拟实际计算的例子不多。尽管目前在工程应用中,大涡模拟还不够多,但是随着计算机的发展,这种方法将成为湍流数值模拟的下一个热点。

湍流的直接模拟是指对N-S方程不用时均化,进行直接求解。在理论上N-S 方程本来就是封闭的,并不需要建立有关模型。在直接模拟中,构造尺寸接近Kolmogorov尺度的网格,直接求解原始的非定常N-S方程,初始扰动可以通过随机扰动实现。计算过程自动出现流动线性稳定、层流向湍流过渡的非线性过程和湍流充分发展后的变化。这要求网格尺寸足够小,储存的数据特别多,最后需要进行某种统计处理才能使用。但是由于现有计算机的发展水平,即使在少数拥有世界上最大的超级计算机的科学大国,目前还只能计算中等雷诺数并且几何较为简单的湍流流动。直接数值模拟所用的数字方法主要是谱方法和伪普法,其优

点是精度高,有精确的空间微分,无数值粘性,缺点是只适用于简单的几何形状。在几何边界复杂的叶栅流道总,湍流脉动运动包含很多不同的涡运动,划分计算网格的尺度应小到足以分辨最小涡运动。过多的网格节点使得计算量非常庞大,目前计算机水平还不能满足要求。

§3.3典型湍流模型简介

§3.3.1 Baldwin-Lomax 模型(B-L 模型)

Baldwin-Lomax (B-L )模型是在湍流混合长度理论的基础上所形成的一个二层代数模型,它不需要求解偏微分方程组,因此它相对于其它的各种模型来说,计算量小、对计算机性能要求低,计算速度快;另外B-L 模型为零方程两层代数涡粘模型,内外层的湍流粘性系数采用不同的公式进行求解,不必计算边界层的厚度,而代之以涡量计算混合长度的分布,同时它也可以不寻找边界层的外缘,这对三维流动以及复杂边界的内部等边界层积分计算比较困难的流动是很有利的。为了避免寻找边界层内外层的交界点,计算中可采取首先使用内层与外层的计算公式分别求出对应于整个边界层的湍流粘性系数,然后取二者中的较小者作为有效的湍流粘性系数,避免了因为边界层厚度计算不准确而产生的误差。

])(,)m in[(out t in t t μμμ=(3.1)

其涡粘性系数的假设为:

?????=≤--==++c kleb wake cp out t c

in t t y y y F F KC y y A y ky )()(||)]/exp(1[)()(22ρμωρμμ(3.2)

其中y 是距壁面的法向距离,y c 是内外两层具有相同μt 值的点与壁面的法向

距离。其内层的湍流粘度是由Prandtl 混合长度模型确定的,其外层湍流粘度是由平均流和一个长度尺度(y max )确定的。

222)()()(||z u x w y w z v x v y u ??-??+??-??+??-??=?(3.3)

w w w w w y T y u y μρμρτ?==+

(3.4) )/,min(max 2max max max F y C F y F dif wk wake μ?=(3.5)

m ax F 是函数)]/ex p(1[||)(++--=A y y y F ω的最大值,m ax y 即为m ax F 时的y 值大小。

16max ])(

5.51[)(-?+=y y C y F kleb kleb (3.6) dif u 是给定x 处的速度最大值与最小值之差,即

min 222max 222)()(w v u w v u u dif ++-++=(3.7)

各常数值为+A =26,wk C =1,cp C =1.6,k=0.41,kleb C =0.3,K=0.0168。 §3.3.2 Spalart-Allmaras 模型(S-A 模型)

S-A 湍流模型是个一方程模型。它常被认为是B-L 代数模型和两方程模型之间的桥梁。由于其容错功能好,处理复杂流动的能力强,S-A 模型已得到广泛应用。S-A 模型与B-L 模型相比,其湍流涡粘场是连续的。S-A 模型优于k ε-模型之处在于其容错性好,计算量少。该湍流的原理是建立在一个附加的涡粘输运方程的解决上。方程中包含对流项,扩散项和源项,以非守恒形式建立。S-A 模型不同于其他一些单方程模型,不是从k ε-方程经过简化得到的,而是直接根据经验和量纲分析,从简单流动开始,直接得到最终的控制方程。该模型具有一些很好的特点,相对于两方程模型计算量小和稳定性好,同时又有较高的精度。由于模型方程的因变量函数在对数律区内与到壁面的距离成线性关系,所以可以使用相对与低雷诺数模型较粗的网格。另外,模型是当地型的,方程中没有诸如y +这类非当地型的项在内,所以在有多个物理面的复杂流场中不需要特殊处理,使用方便。

湍流粘性系数有下式给出:νt =νf ν 1 (3.8)

其中,ν是湍流工作变量

湍流模型概述

大多数飞行器都是在高Re数下飞行,表面的流态是湍流。为了准确地确定湍流流态下的摩阻、热流,湍流成为一个重要而困难的研究课题。 (一)DNS 目前处理湍流数值计算问题有三种方法,第一种方法即所谓直接数值模拟方法(DNS方法),直接求解湍流运动的N-S方程,得到湍流的瞬时流场,即各种尺度的随机运动,可以获得湍流的全部信息。随着现代计算机的发展和先进的数值方法的研究,DNS方法已经成为解决湍流的一种实际的方法。但由于计算机条件的约束,目前只能限于一些低Re数的简单流动,不能用于工程应用。目前国际上正在做的湍流直接数值模拟还只限于较低的需诺数(Re~200)和非常简单的流动外形,如平板边界层、完全发展的槽道流,以及后台阶流动等。用直接数值模拟方法处理工程中的复杂流动问题,即使是当前最先进的计算机也还差三个量级。 (二)LES 另一种方法称做大涡模拟方法(LES方法)。这是一种折衷的方法,即对湍流脉动部分直接地模拟,将N-S方程在一个小空间域内进行平均(或称之为滤波),以使从流场中去掉小尺度涡,导出大涡所满足的方程。小涡对大涡的影响会出现在大涡方程中,再通过建立模型(亚格子尺度模型)来模拟小涡的影响。由于湍流的大涡结构强烈地依赖于流场的边界形状和边界条件,难以找出普遍的湍流模型来描述具有不同的边界特征的大涡结构,宜做直接模拟。相反地,小尺度涡对边界条件不存在直接依赖关系,而且一般具有各向同性性质。所以亚格子模型具有更大的普适性,比较容易构造,这是它比雷诺平均方法要优越的地方。自从1970年Deardorff第一次给出具有工程意义的LES计算以来,LES方法已经成为计算湍流的最强有力的工具之一,应用的方向也在逐步扩展,但是仍然受计算机条件等的限制,使之成为解决大量工程问题的成熟方法仍有很长的路要走。 (三)RANS 目前能够用于工程计算的方法就是模式理论。所谓湍流模式理论,就是依据湍流的理论知识、实验数据或直接数值模拟结果,对Reynolds应力做出各种假设,即假设各种经验的和半经验的本构关系,从而使湍流的平均Reynolds方程封闭。随着计算流体力学的发展,湍流模式理论也有了很大的进步,有了非常丰硕的成果。从对模式处理的出发点不同,可以将湍流模式理论分类成两大类:一类称为二阶矩封闭模式,另一类称涡粘性封闭模式。 (1)雷诺应力模式 所谓二阶矩封闭模式,是从Reynolds应力满足的方程出发,将方程右端未知的项(生成项,扩散项,耗散项等)用平均流动的物理量和湍流的特征尺度表示出来。典型的平均流动的变量是平均速度和平均温度的空间导数。这种模式理论,由于保留了Reynolds应力所满足的方程,如果模拟的好,可以较好地反映Reynolds应力随空间和时间的变化规律,因而可以较好地反映湍流运动规律。因此,二阶矩模式是一种较高级的模式,但是,由于保留了Reynolds应力的方程,加上平均运动的方程整个方程组总计15个方程,是一个庞大的方程组,应用这样一个庞大的方程组来解决实际工程问题,计算量很大,这就极大地限制了二阶矩模式在工程问题中的应用。 (2)涡粘性模式

计算流体力学

1、数值的耗散与频散: 在数值解中出现的振幅衰减波长加宽的现象叫数值耗散,与高阶偶次空间偏导数有关;在数值解中出现解得主波后有一系列频及传播速度不等的尾波的现象叫数值频散,与高阶奇次偏导数有关。 2、湍流模型理论:湍流模式理论或简称湍流模型,就是以雷诺平均运动方程与脉动运动方程为基础,依靠理论与经验的结合,引进一系列模型假设,而建立起得一组 描写湍流平均量的封闭方程组。 3、修正的偏微分方程:与差分方程相等价的微分方程称之为修正的微分方程。 4、自适应网格:为了计算具有高雷诺数的流场,必须将流场内的网格加密,但是实际计算中并不需要对全流场的网格所有部分同样加密,只需在某些部分,如物面附近、尾流区等得网格加密即可。因此需要事先估计一些变化较快的区域,但这种估计又是是正确的。有时则不正确。特别是不定常流动,流动过程本身就是变化的,所以需要不断的调整网格的位置和疏密,这样就产生了自适应网格。 5、CFL 条件:定义t C x μ ?=? ,不等式1C ≤ 称为CFL 条件,此条件一般应用于双曲线偏微分方程的显式格式。物理意义:即在时间步长内,波的位移应小于空间步长。 数学意义:差分方程解的依赖区域包含微分方程解得依赖区域。 1、简答CFD 方法求解流动问题的基本步骤 答:①确定流动模型;②计算区域离散化;③用离散节点变量代替场;④将控制方程中偏导数进行离散,得到线性方程组;⑤边界条件和初值条件离散化;⑥离散的线性方程组求解,得到离散值;⑦计算结果数据处理。 2、简述离散偏微分方程的三个原则及LAX 定理 三原则;相容性、稳定性、收敛性。 LAX 定理:对于一个选定的线性偏微分方程的初值问题,对应的差分方法是相容的,则差分方程解得收敛性和稳定性事等价的或者说稳定性是收敛性的充要条件。 3、简述差分格构造的基本规律,并应用规律方程 0t x μμ λ??+=?? 利用网格点() ()()构造方程的差分格式,并验证其离散格式的精度等级。 答:构造的基本规律 :①为保证均匀流场,差分的分子各项系数之和为零 ②分母向量级与微分的阶数一致 ③构造差分级指明针对哪点构造 ④差分格式的精度 由网格点()()()规律方程()构造得 1 11 1 0n n n n j j j j x x μμμμλ +++---+=?? 令112j j x k k x μμμ-+= ? 用泰勒公 式展开的23 126j j x xx x x x x μμμμμ-??=-?+- 所以12101k k k +=?? -=? 得12 11k k =-??=? 所以1j j x x μμμ--+=? 所以具有一阶精度 4、简要概括流动的数值计算对网格的基本要求 答:①计算域边界上的网格节点都应在边界上 ②物理域上的特点与计算域上的节点要求一一对应 ③网格应尽量尺寸匀称,相邻网格长度比应小于2 ④物理域网格夹角不宜太小(≥45°) ⑤流动参数梯度大的地方网格要加密,否则稀疏。 5、简述人工压缩方法(时间相关法)的基本思想 答:用非定常流动方程来求解定常流动问题,用其稳态求解定常流动的解,将不可压缩的粘性流动的连续方程,添加到可压缩项。则与动量方程构成定常粘性流动时间相关方程,可把非定常流动的稳态解作为非定常流动的解。

湍流模型发展综述

湍流模型发展综述 摘要:在概述了湍流问题的基础上,本文简要介绍了湍流的四种模型,对湍流模型在不同情况下的模拟能力进行了对比,最后简述了湍流模型的发展方向。 关键词:湍流模型;Navier-Stokes方程组;J-K模型 Abstract:On the basis of introducing the problems of turbulence, this paper briefly analyzed four kinds of turbulence models and compared their ability of simulation in different situations. At last, the paper expounded the development direction of the turbulence model. Key words:Turbulence model; Navier-Stokes equations; J-K model 一、引言 湍流又称紊流,是自然界中常见的一种很不规则的流动现象。当粘性阻尼无法消除惯性的影响时,自然界中的绝大部分流动都是湍流。 湍流运动的实验研究表明,虽然湍流结构十分复杂,但它仍然遵循连续介质的一般动力学规律,湍流流动的各物理量的瞬时值也应该服从一般的N-S方程。对粘性流体服从的N-S方程进行时均化,就可以得到雷诺平均方程。与定常的N-S方程相比,不同之处是在该式右边多了九项与脉动量有关的项,这脉动量的乘积的平均值与密度的乘积是湍流流动中的一种应力,称为湍流应力或雷诺应力。其中,法向雷诺应力和切向雷诺应力各有三个。 湍流问题就是在给定的边界条件下解雷诺方程。由于雷诺平均方程中未知数个数远多于方程个数而出现了方程不封闭的问题,这就需要依据各种半经验理论提出相应的补充方程式,即各种湍流模型。一般按照所用湍流量偏微分方程的物理含义或者数量进行区分,分别称为梅罗尔—赫林方法和雷诺方法。而后者又将湍流模型分成四类。(1)零方程模型;(2)一方程模型;(3)二方程模型;(4)应力方程模型。下面就对这些模型进行简单的描述。 二、湍流模型简介 1、零方程模型 最初的湍流模型只考虑了一阶湍流计算统计量的动力学微分方程,即平均方程,没有引进高阶统计量的微分方程,因而称之为一阶封闭模式或零方程模型。零方程模型又称为代数模型,代数模型又可以分成以下几种模型:(1)Cebeci —Smith 模型,(2)Baldwin—Lomax 模型,(3)Johnson—King 模型。 其中,B-L与C-S模型的不同之处在于外层湍流粘性系数取法不同。后者适用于湍流边界层,而前者则可用于 N-S方程的计算。此两模型已在工程计算中

第15章 预混燃烧模拟

第十五章预混燃烧模拟FLUENT有一个预混湍流燃烧模型,基于反应过程参数方法。有关这一模型的内容按以下节次给出: ●15.1 概述和限制 ●15.2 预混燃烧模型 ●15.3 使用预混燃烧模型 15.1 概述和限制 15.1.1 概述 在预混燃烧中,燃料和氧化剂在点火之前进行分子级别的混合。火焰前锋传入未燃烧的反应物产生燃烧。预混燃烧的例子有吸气式内燃机,稀薄燃气轮机的燃烧器,气体泄露爆炸。 预混燃烧比非预混燃烧更难以模拟。原因在于(亚音速)预混燃烧通常做为薄层火焰产生,并被湍流拉伸和扭曲。火焰传播的整体速率受层流火焰速度和湍流涡旋控制。层流火焰速度由物质和热量逆流扩散到反应物并燃烧的速率决定。为得到层流火焰速度,需要确定内部火焰结构以及详细的化学动力学和分子扩散过程。由于实际的层流火焰厚度只有微米量级或更小,求解所需要的开销是不可承受的。 湍流的影响是使传播中的层流火焰层皱折、拉伸,增加了薄层的面积,并因此提高了火焰速度。大的湍流涡使火焰层皱折,而小的湍流涡,如果它们比层流火焰的厚度还小,将会穿过火焰层并改变层流火焰结构。 与之相比,非预混燃烧可以极大地简化为一个混合问题(例如,14.1节中介绍的混合物组分方法)。预混燃烧模拟的要点在于捕获湍流火焰速度,它受层流火焰速度和湍流的影响。 在预混火焰中,燃料和氧化剂在进入燃烧设备之前已经紧密混合。反应在燃烧区发生,这一区域将未燃烧的反应物和燃烧产物隔开。部分预混火焰具有预混和扩散火焰两方面的性质。它们发生在有额外的氧化剂或燃料气流进入预混系统,或是当扩散火焰离开燃烧器以在燃烧前产生某些预混的情况。 预混和部分预混火焰FLUENT的有限速率公式(见13章)模拟。还可以参阅16章了解更多有关FLUENT部分预混燃烧模型方面的信息。如果火焰是完全预混合的,则只有一股具有单一混合比的气流进入燃烧器,可以使用预混燃烧模型。 15.1.2 限制 在使用预混燃烧模型时有以下限制: ●必须使用非耦合求解器。预混燃烧模型在两种耦合求解器中都不能得到。 ●预混燃烧模型只对湍流、亚音速模型有效。这一类型的火焰成为爆燃。在爆炸中, 可燃混合物被冲击波后面的热量点燃,这一类型的燃烧可以使用非耦合和耦合求解 器用有限速率模型模拟。有关限速率模型见13章。 ●预混燃烧模型不能和污染物(如碳烟和NOx)模型一起使用。但完全预混系统可以 用部分预混模型(见16章)模拟。 ●不能用预混燃烧模型模拟反应的离散相粒子。只有惰性粒子可以使用预混燃烧模 型。 15.2 预混燃烧理论 湍流预混燃烧模型基于Zimont等人的工作[275,276,278],涉及求解一个关于反应过

湍流模型

我们知道,描述流体运动(层流)的流体力学基本方程组是封闭的,而描述湍流运动的方程组由于采用了某种平均(时间平均或网格平均等)而不封闭,须对方程组中出现的新未知量采用模型而使其封闭,这就是CF D中的湍流模型。湍流模型的主要作用是将新未知量和平均速度梯度联系起来。目前,工程应用中湍流的数值模拟主要分三大类:直接数值模拟(D NS);基于雷诺平均N-S方程组(RANS)的模型和大涡模拟(LES)。DNS是直接数值求解N-S方程组,不需要任何湍流模型,是目前最精确的方法。其优点在于可以得出流场内任何物理量(如速度和压力)的时间和空间演变过程,旋涡的运动学和动力学问题等。由于直接求解N-S方程,其应用也受到诸多方面的限制。第一:计算域形状比较简单,边界条件比较单一;第二:计算量大。影响计算量的因素有三个:网格数量、流场的时间积分长度(与计算时间长度有关)和最小旋涡的时间积分长度(与时间步长有关),其中网格数量是重要因素。为了得到湍流问题足够精确的解,要求能够数值求解所有旋涡的运动,因此要求网格的尺度和最小旋涡的尺度相当,即使采用子域技术,其网格规模也是巨大的。为了求解各个尺度旋涡的运动,要求每个方向上网格节点的数量与Re3/4成比例,考虑一个三维问题,网格节点的数量与Re9/4成比例。目前,DNS能够求解Re(104)的范围。 基于RANS的湍流模型采用雷诺平均的概念,将物理量区分为平均量和脉动量,将脉动量对平均量的影响用模型表示出来。目前,基于RANS方程已经发展了许多模型,几乎能对所有雷诺数范围的工程问题求解,并得出一些有用的结果。其缺点在于:第一:不同的模型解决不同类型的问题,

计算流体力学实例

汽车外部气体流动模拟 振动和噪声控制研究所 1.模型概述 在汽车外部建立一个较大的长方体几何空间,长度约为30m,宽度和高度约为5m,在空间内部挖出汽车形状的空腔,汽车尺寸参照本田CRV为4550mm*1820mm*1685mm。由于汽车向前开进,气体从车头流向车尾,因此将汽车前方空间设为气体入口,后方空间设为气体出口,模拟气体在车外的流动。另外为了节省计算成本将整个模型按1:100的比例缩小,考虑到模型和流体均是对称的,因此仅画出几何模型的一半区域,建立对称面以考虑生成包含理想气体的流体域。在Catia中建立的模型如图1.1所示。 图1.1几何模型 2.利用ICEM CFD进行网格划分 a)导入有Catia生成的stp格式的模型; b)模型修复,删除多余的点、线、面,允许公差设为0.1; c)生成体,由于本模型仅为流体区域,因此将全部区域划分为一个体,选取方法可以 使用整体模型选取; d)为了后面的设置边界方便,因此将具有相同特性的面设为一个part,共设置了in, out,FreeWalls,Symmetry和Body; e)网格划分,设置Max element=2,共划分了1333817个单元,有225390个节点; f)网格输出,设置求解器为ANSYS CFX,输出cfx5文件。 3.利用ANSYS CFX求解 a)生成域,物质选定Air Ideal Gas,参考压强设为1atm,浮力选项为无浮力模型,

域运动选项为静止,网格变形为无;流体模型设定中的热量传输设定为Isothermal,流体温度设定为288k,湍流模型设定为Shear Stress Transport模型,壁面函数 选择Automatic。 b)入口边界设定,类型为Inlet,位置选定在in,质量与栋梁选定Normal Speed,设 定为15m/s,湍流模型设定类型为Intensity and Length Scale=0.05,Eddy Len.Scale=0.1m。 c)出口边界设定,边界类型为Outlet,位置选out。质量与动量选项为Static Pressure,相对压强为0pa。 d)壁面边界设定,边界类型为Wall,位置选在FreeWalls。壁面边界详细信息中指定 WallInfluence On Flow为Free Slip。 e)对称边界设定,边界类型为Symmetry,位置选在Symmetry。 f)汽车外壁面设定,边界类型为Wall,位置设在Body,壁面详细信息选项中指定Wall Influence On Flow为No Slip,即汽车壁面为无滑移壁面。 g)初始条件设定,初始速度分量设为U方向为15m/s,其他两个方向的速度为零。 h)求解设置,残差类型选为RMS,残差目标设定为1e-5,当求解达到此目标时,求解 自动终止。求解之前的模型如图3.1所示。 图3.1求解之前的模型 4.结果后处理 从图4.1中可以看出计算收敛。

fluent湍流模型

第十章湍流模型 本章主要介绍Fluent所使用的各种湍流模型及使用方法。 各小节的具体内容是: 10.1 简介 10.2 选择湍流模型 10.3 Spalart-Allmaras 模型 10.4 标准、RNG和k-e相关模型 10.5 标准和SST k-ω模型 10.6 雷诺兹压力模型 10.7 大型艾迪仿真模型 10.8 边界层湍流的近壁处理 10.9 湍流仿真模型的网格划分 10.10 湍流模型的问题提出 10.11 湍流模型问题的解决方法 10.12 湍流模型的后处理 10.1 简介 湍流出现在速度变动的地方。这种波动使得流体介质之间相互交换动量、能量和浓度变化,而且引起了数量的波动。由于这种波动是小尺度且是高频率的,所以在实际工程计算中直接模拟的话对计算机的要求会很高。实际上瞬时控制方程可能在时间上、空间上是均匀的,或者可以人为的改变尺度,这样修改后的方程耗费较少的计算机。但是,修改后的方程可能包含有我们所不知的变量,湍流模型需要用已知变量来确定这些变量。 FLUENT 提供了以下湍流模型: ·Spalart-Allmaras 模型 ·k-e 模型 -标准k-e 模型 -Renormalization-group (RNG) k-e模型 -带旋流修正k-e模型 ·k-ω模型 -标准k-ω模型 -压力修正k-ω模型 -雷诺兹压力模型 -大漩涡模拟模型 10.2 选择一个湍流模型 不幸的是没有一个湍流模型对于所有的问题是通用的。选择模型时主要依靠以下几点:流体是否可压、建立特殊的可行的问题、精度的要求、计算机的能力、时间的限制。为了选择最好的模型,你需要了解不同条件的适用范围和限制 这一章的目的是给出在FLUENT中湍流模型的总的情况。我们将讨论单个模型对cpu 和内存的要求。同时陈述一下一种模型对那些特定问题最适用,给出一般的指导方针以便对于你需要的给出湍流模型。 10.2.1 雷诺平均逼近vs LES 在复杂形体的高雷诺数湍流中要求得精确的N-S方程的有关时间的解在近期内不太可能实现。两种可选择的方法用于把N-S方程不直接用于小尺度的模拟:雷诺平均和过滤。

湍流燃烧模型-PDF

PDF 模型 概率密度函数PDF方法以随机的观点来对待湍流问题,对解决湍流化学反应流的问题具有很强的优势。在湍流燃烧中存在一些非输运量( 如反应速率, 密度, 温度及气相体积分数等) 的湍流封闭问题。尽管这些量没有输运方程, 但它们常常是输运变量的已知函数。平均或者过滤高度非线性的化学反应源项会引起方程的封闭问题。因此,用PDF的方法来解决这些非输运量的湍流封闭问题显然是一个既简单又直接的途径。 PDF方法是一种较为流行的湍流燃烧模型,能够较为精确的模拟任何详细的化学动力学过程, 适用于预混、非预混和部分预混的任何燃烧问题。目前, 确定输运变量脉动概率密度函数的方法有输运方程和简化假定两种, 分别称之为输运方程的PDF和简化的PDF。前者建立输运变量脉动的概率密度输运方程,通过求解该方程来获得输运变量脉动的概率分布。后者假定输运变量脉动的概率密度函数的具体形式, 通过确定其中的一些待定参数来获得输运变量脉动的概率分布。湍流燃烧中, 后者应用最为普遍和广泛。在简化的PDF 中, 输运变量脉动的概率密度函数常常采用双 D 分布、截尾高斯分布和B 函数分布等形式。 PDF在理论上可以精确考虑任意详细的化学反应机理,但是其具体求解时需借助其它的模型和算法,而且计算量相对较大。PDF的方程是由N-S方程推导而来,其中的化学反应源项是封闭的,但压力脉动梯度项以及分子粘性和分子扩散引起的PDF的分子输运项是不封闭的,需要引入模型加以封闭。例如,在速度- 标量-湍流频率PDF中,必须采用小尺度混合模型、随机速度模型和湍流频率模型加以封闭。 模化后的输运方程难以用有限容积、有限差分和有限元等方法来求解,比较可行的一种方法是蒙特卡洛(MonteCarlo)方法,在该方法中输运方程被转化为拉格朗日(Lagrangian)方程,流体由大量遵循Lagrang ian方程的随机粒子的系统来描述, 最后对粒子作统计平均得到流场物理量和各阶统计矩。另有与有限容积法相结合的蒙特卡洛法。 PDF 模型的发展 1969年Lungdren首先推导、计算了速度的联合PDF运输方程,避免了对梯度扩散模型进行模拟,对很简单的流动过程得到了简析解[1]。

第二章计算流体力学的基本知识

第二章计算流体力学的基本知识 流体流动现象大量存在于自然界及多种工程领域中,所有这些工程都受质量守恒、动量守恒和能量守恒等基本物理定律的支配。这章将首先介绍流体动力学的发展和流体力学中几个重要守恒定律及其数学表达式,最后介绍几种常用的商业软件。 2.1 计算流体力学简介 2.1.1计算流体力学的发展 流体力学的基本方程组非常复杂,在考虑粘性作用时更是如此,如果不靠计算机,就只能对比较简单的情形或简化后的欧拉方程或N-S方程进行计算。20世纪30~40年代,对于复杂而又特别重要的流体力学问题,曾组织过人力用几个月甚至几年的时间做数值计算,比如圆锥做超声速飞行时周围的无粘流场就从1943年一直算到1947年。 数学的发展,计算机的不断进步,以及流体力学各种计算方法的发明,使许多原来无法用理论分析求解的复杂流体力学问题有了求得数值解的可能性,这又促进了流体力学计算方法的发展,并形成了"计算流体力学"。 从20世纪60年代起,在飞行器和其他涉及流体运动的课题中,经常采用电子计算机做数值模拟,这可以和物理实验相辅相成。数值模拟和实验模拟相互配合,使科学技术的研究和工程设计的速度加快,并节省开支。数值计算方法最近发展很快,其重要性与日俱增。 自然界存在着大量复杂的流动现象,随着人类认识的深入,人们开始利用流动规律来改造自然界。最典型的例子是人类利用空气对运动中的机翼产生升力的机理发明了飞机。航空技术的发展强烈推动了流体力学的迅速发展。 流体运动的规律由一组控制方程描述。计算机没有发明前,流体力学家们在对方程经过大量简化后能够得到一些线形问题解析解。但实际的流动问题大都是复杂的强非线形问题,无法求得精确的解析解。计算机的出现以及计算技术的迅速发展使人们直接求解控制方程组的梦想逐步得到实现,从而催生了计算流体力

第章预混燃烧模拟

第十五章预混燃烧模拟 FLUENT 有一个预混湍流燃烧模型,基于反应过程参数方法。有关这一模型的内容按以下节次给出: 15.1概述和限制 15.2 预混燃烧模型 15.3 使用预混燃烧模型 15.1 概述和限制 15.1.1概述在预混燃烧中,燃料和氧化剂在点火之前进行分子级别的混合。火焰前锋传入未燃烧的反应物产生燃烧。预混燃烧的例子有吸气式内燃机,稀薄燃气轮机的燃烧器,气体泄露爆炸。 预混燃烧比非预混燃烧更难以模拟。原因在于(亚音速)预混燃烧通常做为薄层火焰产生,并被湍流拉伸和扭曲。火焰传播的整体速率受层流火焰速度和湍流涡旋控制。层流火焰速度由物质和热量逆流扩散到反应物并燃烧的速率决定。为得到层流火焰速度,需要确定内部火焰结构以及详细的化学动力学和分子扩散过程。由于实际的层流火焰厚度只有微M 量级或更小,求解所需要的开销是不可承受的。 湍流的影响是使传播中的层流火焰层皱折、拉伸,增加了薄层的面积,并因此提高了火焰速度。大的湍流涡使火焰层皱折,而小的湍流涡,如果它们比层流火焰的厚度还小,将会穿过火焰层并改变层流火焰结构。 与之相比,非预混燃烧可以极大地简化为一个混合问题(例如,14.1节中介绍的混 合物组分方法)。预混燃烧模拟的要点在于捕获湍流火焰速度,它受层流火焰速度和湍流的影响。 在预混火焰中,燃料和氧化剂在进入燃烧设备之前已经紧密混合。反应在燃烧区发生,这一区域将未燃烧的反应物和燃烧产物隔开。部分预混火焰具有预混和扩散火焰两方面的性质。它们发生在有额外的氧化剂或燃料气流进入预混系统,或是当扩散火焰离开燃烧器以在燃烧前产生某些预混的情况。 预混和部分预混火焰FLUENT的有限速率公式(见13章濮拟。还可以参阅16章了解更多有关FLUENT部分预混燃烧模型方面的信息。如果火焰是完全预混合的,则只有一股具有单一混合比的气流进入燃烧器,可以使用预混燃烧模型。 15.1.2限制 在使用预混燃烧模型时有以下限制:必须使用非耦合求解器。预混燃烧模型在两种耦合求解器中都不能得到。预混燃烧模型只对湍流、亚音速模型有效。这一类型的火焰成为爆燃。在爆炸中,可燃混合物被冲击波后面的热量点燃,这一类型的燃烧可以使用非耦合和耦合求解器用有限速率模型模拟。有关限速率模型见13章。预混燃烧模型不能和污染物(如碳烟和 NOx )模型一起使用。但完全预混系统可以用部分预混模型(见16 章)模拟。 不能用预混燃烧模型模拟反应的离散相粒子。只有惰性粒子可以使用预混燃烧模型。 15.2预混燃烧理论 湍流预混燃烧模型基于Zimont 等人的工作[275,276,278],涉及求解一个关于反应过程变量的输运方程。这一方程的封闭基于湍流火焰速度的定义。 15.2.1 火焰前锋的传播 在许多工业预混系统中,燃烧发生在一个非常薄的火焰层中。当火焰前锋移动时,未燃的反应物燃烧,变为燃烧产物。因此预混燃烧模型用火焰层将反应的流场分为已燃物区和未燃物区。反应的传播等同于火焰前锋的传播。 火焰前锋传播的模拟通过求借一个关于标量c的输送方程,c为(Favre平均)反应进 程变量。

四种湍流模型介绍

由于航发燃烧室中的流动特性极其复杂,要想提高数值计算的预测能力,必须要慎重选择湍流模型。用四种不同的湍流模型对带双径向旋流杯的下游流场进行数值模拟,将计算结果与实验结果作对比,比较各湍流模型的原理和物理基础,优劣,并分析流场速度分布和回流区特性。 涉及的湍流模型: 标准k-ε湍流模型(SKE) 1标准k-ε湍流模型有较高的稳定性,经济性和计算精度,应用广泛,适合高雷诺数湍流,但不适合旋流等各向异性较强的流动。 2简单的湍流模型是两个方程的模型,需要解两个变量,即速度和长度。在fluent中,标准 k-ε湍流模型自从被Launderand Spalding 提出之后,就变成流场计算中的主要工具。其在工业上被普遍应用,其计算收敛性和准确性都非常符合工程计算的要求。 3但其也有某些限制,如ε方程包含不能在壁面计算的项,因此必须使用壁面函数。另外,其预测强分离流,包含大曲率的流动和强压力梯度流动的结果较弱。 它是个半经验的公式,是从实验现象中总结出来的。 动能输运方程是通过精确的方程推导得到,耗散率方程是通过物理推理,数学上模拟相似原型方程得到的。 应用范围:该模型假设流动为完全湍流,分子粘性的影响可以忽略,此标准κ-ε模型只适合完全湍流的流动过程模拟。 可实现的k-ε模型是才出现的,比起标准k-ε模型来有两个主要的不同点:·可实现的k-ε模型为湍流粘性增加了一个公式。 ·为耗散率增加了新的传输方程,这个方程来源于一个为层流速度波动而作的精确方程。 术语“realizable”,意味着模型要确保在雷诺压力中要有数学约束,湍流的连续性。 应用范围: 可实现的k-ε模型直接的好处是对于平板和圆柱射流的发散比率的更精确的预测。而且它对于旋转流动、强逆压梯度的边界层流动、流动分离和二次流有很好的表现。 可实现的k-ε模型和RNG k-ε模型都显现出比标准k-ε模型在强流线弯曲、漩涡和旋转有更好的表现。由于带旋流修正的k-ε模型是新出现的模型,所以还没有确凿的证据表明它比RNGk-ε模型有更好的表现。但是最初的研究表明可实现的k-ε模型在所有k-ε模型中流动分离和复杂二次流有很好的作用。 该模型适合的流动类型比较广泛,包括有旋均匀剪切流,自由流(射流和混合层),腔道流动和边界层流动。对以上流动过程模拟结果都比标准k-ε模型的结果好,特别是可再现k-ε模型对圆口射流和平板射流模拟中,能给出较好的射流扩张。

湍流燃烧及其数值模拟

湍流燃烧及其数值模拟研究 1. 湍流燃烧 1.1湍流燃烧基本概念 当流动雷诺数数较小时,由于流体粘性的作用,流体呈层流流态。当流动的特征雷诺数超过相应的临界值,流动从层流转捩到湍流。湍流燃烧是指湍流流动中可燃气的燃烧,在能源、动力、航空和航天等工程领域,经常遇到的实际燃烧过程几乎全部都是湍流燃烧过程。湍流燃烧实质是湍流,化学反应和传热传质等过程相耦合的结果。湍流对燃烧的影响与湍流强度和湍流涡旋尺度有关。小尺度湍流通过湍流扩散使火焰区内的输运效应增加,从而使化学反应速率增加。但气流脉动不会火焰面产生皱褶,只能把火焰变成波纹状。大尺度湍流对火焰内部结构没有影响,但使火焰阵面出现皱褶,增加其燃烧面积,造成火焰表现传播速度增加。当湍流强度及湍流尺度均较大时,火焰前沿不再连续而分裂成四分五裂。 燃烧对湍流的影响主要表现在燃烧释放的热流流团膨胀,影响气体的密度和运动速度,从而影响当地的涡旋,湍流强度和湍流结构。 1.2湍流燃烧分类 湍流燃烧按其燃料和氧化剂的初始混合状态可以分类为:湍流非预混燃烧、预混燃烧和部分预混燃烧。在湍流非预混燃烧燃料和氧化剂事先是分离的,燃料和氧化剂一边混合一边燃烧,燃烧速率主要受湍流混合过程控制,而在湍流预混燃烧中,燃料和氧化剂在进入核心燃烧区以前已经充分混合,化学反应的速率由火焰前缘从炽热的燃烧区向冷态无反应区的传播所控制。上面两种燃烧方式是湍流燃烧的两个极限情形,很多情况下两种燃烧模式是并存的,称为部分预混燃烧。部分预混燃烧可出现在下列情形中叫:(1)在一个完全以非预混燃烧为配置的燃烧装置发牛了局部熄火;(2)当预混火焰前缘穿过非均匀的混气时;(3)射流非预混火焰发生抬举,其根部是一个典型的部分预混火焰。这三种部分预混燃烧情形涉及了经常受到关注的燃烧研究话题如局部熄火、火焰稳定等,它们对研究湍流燃烧过程的机理有很大意义。 在湍流燃烧中,湍流流动过程和化学反应过程有强烈的相互关联和相互影响.湍流通过强化混合而影响着时平均化学反应速率,同时化学反应放热过程又影响着湍流,如何定量地来描述和确定这种相互作用是湍流燃烧研究的一个重要内容. 湍流是非常复杂的,它包括湍流问题,湍流与燃烧的相互作用,流动参数与化学动力参数之间的耦合机理等问题。因此湍流燃烧是工程科学中最复杂的领域之一。 湍流燃烧的研究已进行多年,研究的方法有试验研究,理论分析和数值模拟等。计算流体力学和计算机技术的发展,数值模拟由于它的廉价性和可操作性在国际上受到越来越多的重视,得到了广泛的应用。 2.湍流燃烧数值模拟 2.1湍流燃烧数值模拟简介 湍流燃烧数值模拟(Numerical Simulation of Turbulent Combustion)是指应用计算机为工

湍流模型介绍

湍流模型介绍 因为湍流现象是高度复杂的,所以至今还没有一种方法能够全面、准确地对所有流动问题中的湍流现象进行模拟。在涉及湍流的计算中,都要对湍流模型的模拟能力以及计算所需系统资源进行综合考虑后,再选择合适的湍流模型进行模拟。FLUENT 中采用的湍流模拟方法 包括Spalart-Allmaras模型、standard(标准)k ?ε模型、RNG(重整化群)k ?ε模型、Realizable(现实)k ?ε模型、v2 ?f 模型、RSM(Reynolds Stress Model,雷诺应力模型)模型和LES(Large Eddy Simulation,大涡模拟)方法。 7.2.1 雷诺平均与大涡模拟的对比 因为直接求解NS 方程非常困难,所以通常用两种办法对湍流进行模拟,即对NS 方程进行雷诺平均和滤波处理。这两种方法都会增加新的未知量,因此需要相应增加控制方程的数量,以便保证未知数的数量与方程数量相同,达到封闭方程组的目的。雷诺平均NS 方程是流场平均变量的控制方程,其相关的模拟理论被称为湍流模式理论。湍流模式理论假定湍流中的流场变量由一个时均量和一个脉动量组成,以此观点处理NS 方程可以得出雷诺平均NS 方程(简称RNS 方程)。在引入Boussinesq 假设,即认为湍流雷诺应力与应变成正比之后,湍流计算就归结为对雷诺应力与应变之间的比例系数(即湍流粘性系数)的计算。根据计算中使用的变量数目和方程数目的不同,湍流模式理论中所包含的湍流模型又被分为二方程模型、一方程模型和零方程模型(代数模型)等大类。 FLUENT 中使用的三种k ?ε模型、Spalart-Allmaras 模型、k ?ω模型及雷诺应力模型RSM)等都属于湍流模式理论。 大涡模拟(LES)方法是通过滤波处理计算湍流的,其主要思想是大涡结构(又称拟 序结构)受流场影响较大,小涡则可以认为是各向同性的,因而可以将大涡计算与小涡计算分开处理,并用统一的模型计算小涡。在这个思想下,大涡模拟通过滤波处理,首先将小于某个尺度的旋涡从流场中过滤掉,只计算大涡,然后通过求解附加方程得到小涡的解。过滤尺度一般就取为网格尺度。显然这种方法比直接求解NS 方程的DNS 方程效率更高,消耗系统资源更少,但却比湍流模式方法更精确。尤其应该注意的是,湍流模式理论无法准确模拟大涡结构,因此在需要模拟大涡结构时,只能采用LES 方法1。 尽管大涡模拟理论比湍流模式理论更精确,但是因为大涡模拟需要使用高精度的网格,对计算机资源的要求比较高,所以还不能在工程计算中被广泛使用。在绝大多数情况下,湍流计算还要采用湍流模式理论,大涡模拟则可以在计算资源足够丰富的时候尝试使用。 7.2.2 Spalart-Allmaras 模型 Spalart-Allmaras 模型是一方程模型里面最成功的一个模型,最早被用于有壁面限制情 况的流动计算中,特别在存在逆压梯度的流动区域内,对边界层的计算效果较好,因此经常被用于流动分离区附近的计算,后来在涡轮机械的计算中也得到广泛应用。 最早的Spalart-Allmaras 模型是用于低雷诺数流计算的,特别是在需要准确计算边界层 粘性影响的问题中效果较好。FLUENT 对Spalart-Allmaras 进行了改进,主要改进是可以在网格精度不高时使用壁面函数。在湍流对流场影响不大,同时网格较粗糙时,可以选用这个模型。 Spalart-Allmaras 模型是一种新出现的湍流模型,在工程应用问题中还没有出现多少成

我所知道的计算流体力学(CFD)大牛们

我所知道的计算流体力学(CFD)大牛们 (1) Jameson的故事 Jameson是当今CFD届的超级大牛。偶的超级偶像哦。Jameson是个英国人,出生在军人世家。从小随老爹驻守印度。于是长大了也抗起枪到海外保卫日不落帝国,军衔是Second Lieutenant。无奈“日不落”已落,皇家陆军已经不需要他了。大概有什么立功表现把,退役后就直接进了剑桥大学。在那里拿到博士学位。辗转间从英国来到了美国,从工厂又到了学校。成了Princeton的教授。在那里提出了著名的中心差分格式和有限体积法。就是在这里,发表了他那篇著名的中心差分离散的有限体积法。中心差分格式,大家都知道,是二阶,但是稳定范围特别小,Pe不能超过2,于是就得加人工粘性(一听这名字,数学家就倔嘴巴,不科学嘛),这是大学生都知道的事,怎么加就是学问了。Jameson用二阶项做背景粘性,用四阶项抑制激波振荡(也亏他想得出来),配合他提出的有限体积法,获得了极大的成功,很快风靡世界,工程界几乎无一例外在使用他的方法,原因很简单,他的方法乐百氏,而且又有相当精度。从此大行于市,座上了P大的航空系系主任,也确立了CFD界第一大牛人的地位。 Jameson发文章有个特点,喜欢发在小会议上或者烂杂志上,反正是SCI检索不到地方。包括后来关于非结构网格,多重网格等等经典的开创性文章,都是这样。(如果按照清华的唯SCI论的评判标准,我估计在清华最多只能给他评一个副教授当当。)牛牛的人总是遭人忌妒,哪里都这样。看着Jameson的有限体积方法这么受欢迎,有些人就红眼了。于是说,有限体积方法不错,可惜只适合于定常问题计算,非定常计算就不怎么样嘛。Jameson那里能容忍别人对他的得意之做胡说。于是,灵机一动,想出了一个双时间尺度的方法,引进一个非物理时间,把非定常问题变成了一个定常问题计算,还真好使,又风靡世界,从此天下太平。97年,Jameson年龄到了,就从P大退休了,结果又被聘请到Standford大学当Thomas V. Jones Professor搞起了湍流来。前不久偶导师见他回来,对欧们边摇头边说,“几年不见,老得快不行了”,言下之意,我们如果想多活几年,不要去搞什么湍流。 (2) Steven A. Orszag的故事 Steven A. Orszag是一个天才级别的人物啦。在直接数值模拟,谱方法,湍流模型等等许多方面都有开创性的贡献。天才嘛,总是有缺陷的,不是生活不能自理,就是不懂得处理人际关系。前者还好办,只是lp不舒服,后者嘛,让同事和同行不舒服,可麻烦就大了。 不幸的是,Orszag属于后者。对于他的恃才傲物,有人早就恨得牙根痒痒,报复的机会终于来了。 三十年前,湍流模型的先驱们,是通过数值试验,再连懵带猜的确定下了双方程湍流模型的参数。20年前,Orszag突发奇想,能否用RNG(重整化群理论)从理论上推导这些参数呢?RNG理论在相变上取得了很大的成功,发明者也在81年获得了Nobel奖。牛人就是牛人很快居然真从理论上推出了这些参数。这下湍流模型界可炸开了锅,这岂不是要砸掉很多人的饭碗?这不等于说那些老家伙几十年前的工作一钱不值么?这帮大学霸可不是省油的灯。环顾地球之大,Orszag居然找不到一本杂志愿意接受他这篇文章。Orszag这个郁闷呀,这个生

fluent湍流模型技巧

湍流模型 目前计算流体力学常用的湍流的数值模拟方法主要有以下三种: ?直接模拟(direct numerical simulation, DNS) 直接数值模拟(DNS)特点在湍流尺度下的网格尺寸内不引入任何封闭模型的前提下对Navier-Stokes方程直接求解。这种方法能对湍流流动中最小尺度涡进行求解,要对高度复杂的湍流运动进行直接的数值计算,必须采用很小的时间与空间步长,才能分辨出湍流中详细的空间结构及变化剧烈的时间特性。基于这个原因,DNS目前仅限于相对低的雷诺数中湍流流动模型。另外,利用DNS模型对湍流运动进行直接的数值模拟对计算工具有很高的要求,计算机的内存及计算速度要非常的高,目前DNS模型还无法应用于工程数值计算,还不能解决工程实际问题。 ?大涡模拟(large eddy simulation, LES) 大涡模拟(LES)是基于网格尺度封闭模型及对大尺度涡进行直接求解N-S方程,其网格尺度比湍流尺度大,可以模拟湍流发展过程的一些细节,但其计算量仍很大,也仅用于比较简单的剪切流运动及管流。大涡模拟的基础是:湍流的脉动与混合主要是由大尺度的涡造成的,大尺度涡是高度的非各向同性,而且随流动的情形而异。大尺度的涡通过相互作用把能量传递给小尺度的涡,而小尺度的涡旋主要起到耗散能量的作用,几乎是各向同性的。这些对涡旋的认识基础就导致了大涡模拟方法的产生。Les大涡模拟采用非稳态的N-S方程直接模拟大尺度涡,但不计算小尺度涡,小涡对大涡的影响通过近似的模拟来考虑,这种影响称为亚格子Reynolds应力模型。大多数亚格子Reynolds模型都是将湍流脉动所造成的影响用一个湍流粘性系数,既粘涡性来描述。LES对计算机的容量和CPU的要求虽然仍然很高,但是远远低于DNS方法对计算机的要求,因而近年来的研究与应用日趋广泛。 ?应用Reynolds时均方程(Reynolds-averaging equations)的模拟方法 许多流体力学的研究和数值模拟的结果表明,可用于工程上现实可行的湍流模拟方法仍然是基于求解Reynolds时均方程及关联量输运方程的湍流模拟方法,即湍流的统观模拟方法。统观模拟方法的基本思想是用低阶关联量和平均流性质来模拟未知的高阶关联项,从而封闭平均方程组或关联项方程组。虽然这种方法在湍流理论中是最简单的,但是对工程应用而言仍然是相当复杂的。即便如此,在处理工程上的问题时,统观模拟方法仍然是最有效、最经济而且合理的方法。在统观模型中,使用时间最长,积累经验最丰富的是混合长度模型和K-E模型。其中混合长度模型是最早期和最简单的湍流模型。该模型是建立在层流粘性和湍流粘性的类比、平均运动与湍流的脉动的概念上的。该模型的优点是简单直观、无须增加微分方程。缺点是在模型中忽略了湍流的对流与扩散,对于复杂湍流流动混合长度难以确定。到目前为止,工程中应用最广泛的是k-ε模型。另外针对k-ε模型的不足之处,许多学者通过对K-E模型的修正和发展,开始采用雷诺应力模型(DSM)和代数应力模型(ASM)。近年来,DSM模型已用来预报燃烧室及炉内的强旋及浮力流动。很多情况下能够给出优于k-ε模型的结果。但是该模型也有不足之处,首先它对工程预报来说太复杂,其次经验系数太多难以确定,此外,对压力应变项的模拟还有争议。更主要的是,尽管这一模型考虑了各种应变效应,但是其总精度并不总是高于其它模型,这些缺点导致了DSM模型没有得到广泛的应用。总之,虽然从本质上讲DSM模型和ASM模型比k-ε模型对湍流流场的模拟更加合理,但DSM和ASM中仍然采用精度不高的E方程,模型中常数的通用性还没有得到广泛的验证,边界条件不好给定,计算也比较复杂。正因为如此,目前用计算解决湍流问题时仍然采用比较成熟的K-E模型。 需要注意的是: 1、大涡模拟有自己的亚格子封闭模型,这和k-ε模型完全是两回事。LES的亚格子模型表现的是过滤掉的小涡对大涡的影响(这种影响是相互的)。而Reynolds时均方程的k-ε是建

湍流模型理论

湍流模型理论 §3.1 引言 自然界中的实际流动绝大部分是三维的湍流流动,如河流,血液流动等。湍流是流体粘性运动最复杂的形式,湍流流动的核心特征是其在物理上近乎于无穷多的尺度和数学上强烈的非线性,这使得人们无论是通过理论分析、实验研究还是计算机模拟来彻底认识湍流都非常困难。回顾计算流体力学的发展,特别是活跃的80年代,不仅提出和发展了一大批高精度、高分辨率的计算格式,从主控方程看相当成功地解决了Euler方程的数值模拟,可以说Euler方程数值模拟方法的精度已接近于它有效使用范围的极限;同时还发展了一大批有效的网格生成技术及相应的软件,具体实现了工程计算所需要的复杂外形的计算网格;且随着计算机的发展,无论从计算时间还是从计算费用考虑,Euler方程都已能适用于各种实践所需。在此基础上,80年代还进行了求解可压缩雷诺平均方程及其三维定态粘流流动的模拟。90年代又开始一个非定常粘流流场模拟的新局面,这里所说的粘流流场具有高雷诺数、非定常、不稳定、剧烈分离流动的特点,显然需要继续探求更高精度的计算方法和更实用可靠的网格生成技术。但更为重要的关键性的决策将是,研究湍流机理,建立相应的模式,并进行适当的模拟仍是解决湍流问题的重要途径。 要反映湍流流场的真实情况,目前数值模拟主要有三种方法:1.平均N-S方程的求解,2.大涡模拟(LES),3.直接数值模拟(DNS)。但是由于叶轮机械内部结构的复杂性以及目前计算机运算速度较慢,大涡模拟和直接数值模拟还很少用于叶轮机械内部湍流场的计算,更多的是通过求解平均N-S方程来进行数值模拟。因为平均N-S方程的不封闭性,人们引入了湍流模型来封闭方程组,所以模拟结果的好坏很大程度上取决于湍流模型的准确度。自70年代以来,湍流模型的研究发展迅速,建立了一系列的零方程、一方程、两方程模型和二阶矩模型,已经能够十分成功的模拟边界层和剪切层流动。但是,对于复杂的工业流动,比如航空发动机中的压气机动静叶相互干扰问题,大曲率绕流,激波与边界层相互干扰,流动分离,高速旋转以及其他一些原因,常常会改变湍流的结构,使那些能够预测简单流动的湍流模型失效,所以完善现有湍流模型和寻找新的湍流模型在实际工作中显得尤为重要。 §3.2 湍流模型概述 §3.2.1 湍流模型的引入

相关主题
文本预览
相关文档 最新文档