当前位置:文档之家› 第2讲 用等量代换求面积(精英)

第2讲 用等量代换求面积(精英)

第2讲 用等量代换求面积(精英)
第2讲 用等量代换求面积(精英)

第二讲用等量代换求面积(精英)

【知识概述】

一个量可以用它的等量来代替:被减数和减数都增加(或减少)同一个数,它们的差不变,前者是等量公理,后者是减法的差不变性质.这两个性质在解几何题时有很重要的作用,它能将求一个图形的面积转化为求另一个图形的面积,或将两个图形的面积差转化为另两个图形的面积差,从而使隐蔽的关系明朗化,找到解题思路.

例1如图,两个相同的直角三角形如下图所示重叠在一起,求阴影部分的面积.

例2如图,平行四边形ABCD的边BC长10厘米,直角三角形ECB的直角边EC长8厘米.已知阴影部分的总面积比三角形EFG的面积大10厘米2,求平行四边形ABCD的面积.

例3如图,AB=8厘米,CD=4厘米,BC=6厘米,三角形AFB比三角形EFD的面积大18厘米2.求ED的长.

例4如图,四边形ABCD是7×4的长方形,四边形DEFG是10×2的长方形,求三角形BCO与三角形EFO的面积之差.

例5 如图是由大、小两个正方形组成的.小正方形的边长是4厘米,求三角形ABC的面积.

【课堂训练】

1.如图,两个相同的直角梯形重叠在一起,求阴影部分的面积.(单位:厘米)

2.如图,长方形ABCD的边AB为4厘米,BC为6厘米,三角形ABF比三角形EDF的面积大9 厘米2,求ED的长.

3.如图,等腰直角三角形ABC的腰为10厘米,以C为圆心,CF为半径画弧线EF,组成扇形CEF.如果图中甲乙两部分的面积相等,那么扇形所在的圆的面积是多少?

4.求下图(单位:厘米)中四边形ABCD的面积.

5.如图,CA=AB=4厘米,三角形ABE比三角形CDE的面积大2厘米2,求CD的长.

6.如图,在三角形中,D,E分别是所在边的中点,求四边开ADEF的面积.

7.如图,甲、乙两个正方形,甲的边长比乙的边长长3厘米,甲的面积比乙的面积大45平方厘米.求甲乙的面积之和.

等量代换法习题

等量代换法习题 练习一: 1、如果1个梨的重量等于2个苹果的重量,1个苹果的重量等于3个桃的重量。问一个梨的重量等于几个桃的重量? 2、如果1个菠萝的重量等于6个苹果的重量,同时又等2根香蕉的重量。问一根香蕉的重量等于几个苹果的重量? 3、如果1个足球相当于2个排球的重量,一个排球相当于20个乒乓球的重量,假设一个乒乓球重8克,那么一个足球重多少克? 4、1只猴子等于2只兔子的重量,1只兔子的重量等于3只小鸡的重量。已知每只小鸡重200克。1只猴子重多少克? 练习二: 1、1只兔子的重量+1只猴子的重量=8只鸡的重量 3只兔子的重量=9只鸡的重量 1只猴子的重量=()只鸡的重量 2、1只松鼠的重量+1只兔子的重量=5只鸭的重量

2只松鼠的重量=6只鸭的重量 1只兔子的重量=()只鸭的重量 3、用3个鹅蛋可换9个鸡蛋,2个鸡蛋可换4个鸽子蛋,用5个鹅蛋能换多少个鸽子蛋? 4、20只桃子可换2只香瓜,9只香瓜可换3只西瓜,8只西瓜可换多少只桃子? 5、2头小猪可换4只羊,3只羊可换6只兔子,3头猪可换几只兔子? 练习三: 1、1个苹果的重量+1个桃子的重量+1个菠萝的重量=630克 1个桃子的重量+1个菠萝的重量+1个梨的重量=730克 1个苹果的重量+1个桃子的重量+1个梨的重量=330克 1个苹果的重量+1个菠萝的重量+1个梨的重量=800克 求这四种水果各多少克? 2、1只鸡的重量+1只猴的重量=15千克 1只鸭的重量+1只猴的重量=18千克 1只鸡的重量+1只鸭的重量=13千克 求这三种动物各多少千克? 3、1筐苹果的重量+1筐橘子的重量=90千克 1筐香蕉的重量+1筐橘子的重量=140千克 1筐苹果的重量+1筐香蕉的重量=150千克 求这三种水果各多少千克/ 4、红气球的个数+蓝气球的个数+绿气球的个数=35只 白气球的个数+蓝气球的个数+绿气球的个数=43只 红气球的个数+白气球的个数+绿气球的个数=33只 红气球的个数+蓝气球的个数+白气球的个数=48只 求这四种气球各有多少只? 1、3包巧克力的价钱等于两袋糖的价钱,12袋牛肉干的价钱等于3包巧克力的价钱,一袋糖的价钱等于几 袋牛肉干的价钱? 2、一只小猪的重量等于8只鸡的重量,4只鸡的重量等于6只鸭的重量。2只鸭的重量等于6条鱼的重量。 问两只小猪的重量等于几条鱼的重量? 3、一只菠萝的重量等于4根香蕉的重量,两只梨子的重量等于一只菠萝的重量,一只梨子的重量等于几根 香蕉的重量?

【知识点整理】第二讲:巧求面积word版本

第二讲:巧求面积 巧求面积这一讲主要是在学习了几种基本图形面积公式的基础上,利用一些特殊的技巧计算图形的面积。面积公式并不是本章的重点和难点,本章的重点和难点是一个巧字。 基本图形面积复习 1、长方形 b (1)长方形周长公式: C =(a+b)×2 (2)长方形面积公式: S = a×b 2、正方形

a D C A B (1)正方形周长公式: C = a ×4 (2)长方形面积公式: S = a ×a = (3)强调正方形的四条边相等是一个隐含的条件,需要时刻保持注意 (4)正方形是特殊的长方形,但是长方形不是正方形 3、 平行四边形 b h D C B (1)平行线:同一平面内不相交的两条直线叫做平行线。(在讲解的时候要注意无限延伸不相交) (2)垂线:两条直线相交,如果夹角为90度,我们就说这两条直线相互垂直。(注意夹角为90度,也是直角) (3)平行四边形的周长:

C =(a+b)×2 (4)平行四边形的面积:(要明白平行四边形的面积是通过剪切成为一个长方形得来的)S =a×h 4、三角形 A B (1)三角形的周长: C = a+b+c (2)三角形的面积:(要明白三角形的面积公式是怎么推导来的) S = a×h÷2 一、相减(例1、例3) 相减:把一个不规则的图形转化成两个已经知道的图形,利用两个图形相减得到所求的不规则图形面积。(也可以是分成多个图形,由大的图形减去几个小的图形。)

二、分割(例2、例3) 1、直接分割: 把一块不规则的图形分割成几块已经知道的面积,然后将分割的几块面积分别计算 2、“井”字分割: 如果一个图形是由两个长方形相套组成的图形,可以将两个长方形围成的部分像“井”字一样的分割,将图形分割成八块图形。 3、“风车”(弦图)分割: 如果一个图形是由两个正方形相套组成的图形,可以讲两个正方形围城的部分像“风车”一样的分割,将图形分割成相等的四块图形。

(完整版)活用割补法求面积1

在组合图形中,除了多边形外,还有由圆、扇形、弓形与三角形、矩形、平行四边形、梯形等图形组合而成的不规则图形,为了计算它们的面积,常常需要变动图形的位置或对图形进行分割、旋转、拼补,使它变成可以计算出面积的规则图形。就是在多边形的组合图形中,为了计算面积,有时也要用到割补的方法。 例1求下列各图中阴影部分的面积: 分析与解:(1)如左下图所示,将左下角的阴影部分分为两部分,然后按照右下图所示,将这两部分分别拼补在阴影位置。可以看出,原题图的阴影部分等于右下图中AB 弧所形成的弓形,其面积等于扇形OAB与三角形OAB的面积之差。 π×4×4÷4-4×4÷2=4.56。 (2)在题图虚线分割的两个正方形中,右边正方形的阴影部分是半径为5的四分之一个圆,在左边正方形中空白部分是半径为5的四分之一个圆。 如下图所示,将右边的阴影部分平移到左边正方形中。可以看出,原题图的阴影部分正好等于一个正方形的面积,为5×5=25。

例2在一个等腰三角形中,两条与底边平行的线段将三角形的两条边等分成三段(见右图),求图中阴影部分的面积占整个图形面积的几分之几。 分析与解:阴影部分是一个梯形。我们用三种方法解答。 (1)割补法 从顶点作底边上的高,得到两个相同的直角三角形。将这两个直角三角 (2)拼补法 将两个这样的三角形拼成一个平行四边形(下页左上图)。 积和平行四边行面积同时除以2,商不变。所以原题阴影部分占整个图形面

(3)等分法 将原图等分成9个小三角形(见右上图),阴影部分占3个小三角形, 注意,后两种方法对任意三角形都适用。也就是说,将例题中的等腰三角形换成任意三角形,其它条件不变,结论仍然成立。 例3如左下图所示,在一个等腰直角三角形中,削去一个三角形后,剩下一个上底长5厘米、下底长9厘米的等腰梯形(阴影部分)。求这个梯形的面积。 分析与解:因为不知道梯形的高,所以不能直接求出梯形的面积。可以从等腰直角三角形与正方形之间的联系上考虑。将四个同样的等腰直角三角形拼成一个正方形(上页右下图),图中阴影部分是边长9厘米与边长5厘米的两个正方形面积之差,也是所求梯形面积的4倍。所以所求梯形面积是(9×9-5×5)÷4=14(厘米2)。 例4在左下图的直角三角形中有一个矩形,求矩形的面积。

_用等量代换求面积的方法

用等量代换求面积的方法 一个量可以用它的等量来代替;被减数和减数都增加(或减少)同一个数,它们的差不变。前者是等量公理,后者是减法的差不变性质。这两个性质在解几何题时有很重要的作用,它能将求一个图形的面积转化为求另一个图形的面积,或将两个图形的面积差转化为另两个图形的面积差,从而使隐蔽的关系明朗化,找到解题思路。 例1两个相同的直角三角形如下图所示(单位:厘米)重叠在一起,求阴影部分的面积。 分析与解:阴影部分是一个高为3厘米的直角梯形,然而它的上底与下底都不知道,因而不能直接求出它的面积。因为三角形ABC与三角形DEF完全相同,都减去三角形DOC后,根据差不变性质,差应相等,即阴影部分与直角梯形OEFC面积相等,所以求阴影部分的面积就转化为求直角梯形OEFC的面积。直角梯形OEFC的上底为10-3=7(厘米),面积为(7+10)×2÷2=17(厘米2)。 所以,阴影部分的面积是17厘米2。 例2在右图中,平行四边形ABCD的边BC长10厘米,直角三角形ECB的直角边EC 长8厘米。已知阴影部分的总面积比三角形EFG的面积大10厘米2,求平行四边形ABCD 的面积。 分析与解:因为阴影部分比三角形EFG的面积大10厘米2,都加上梯形FGCB后,根据差不变性质,所得的两个新图形的面积差不变,即平行四边行ABCD比直角三角形ECB的面积大10厘米2,所以平行四边形ABCD的面积等于 10×8÷2+10=50(厘米2)。 例3在右图中,AB=8厘米,CD=4厘米,BC=6厘米,三角形AFB比三角形EFD的面积大18厘米2。求ED的长。

分析与解:求ED的长,需求出EC的长;求EC的长,需求出直角三角形ECB的面积。因为三角形AFB比三角形EFD的面积大18厘米2,这两个三角形都加上四边形FDCB后,其差不变,所以梯形ABCD比三角形ECB的面积大18厘米2。也就是说,只要求出梯形ABCD 的面积,就能依次求出三角形ECB的面积和EC的长,从而求出ED的长。 梯形ABCD面积=(8+4)×6÷2=36(厘米2), 三角形ECB面积=36-18=18(厘米2), EC=18÷6×2=6(厘米), ED=6-4=2(厘米)。 例4 下页上图中,ABCD是7×4的长方形,DEFG是10×2的长方形,求三角形BCO 与三角形EFO的面积之差。 分析:直接求出三角形BCO与三角形EFO的面积之差,不太容易做到。如果利用差不变性质,将所求面积之差转化为另外两个图形的面积之差,而这两个图形的面积之差容易求出,那么问题就解决了。 解法一:连结B,E(见左下图)。三角形BCO与三角形EFO都加上三角形BEO,则原来的问题转化为求三角形BEC与三角形BEF的面积之差。所求为4×(10-7)÷2-2×(10-7)÷2=3。 解法二:连结C,F(见右上图)。三角形BCO与三角形EFO都加上三角形CFO,则原来的问题转化为求三角形BCF与三角形ECF的面积之差。所求为4×(10-7)÷2-2×(10-7)÷2=3。

小学奥数割补法、差不变原理求面积

分割法 在组合图形中,除了多边形外,还有由圆、扇形、弓形与三角形、矩形、平行四边形、梯形等图形组合而成的不规则图形,为了计算它们的面积,常常需要变动图形的位置或对图形进行分割、旋转、拼补,使它变成可以计算出面积的规则图形。就是在多边形的组合图形中,为了计算面积,有时也要用到分割、拼补的方法。 例题2、五边形的三条边的长和四个角的度数,如下图所示,那么它的面积是多少? 例题3、下图中,甲、乙两个正方形的边长的和是20厘米,甲正方形比乙正方形的 面积大40厘米2。求乙正方形的面积。

例题4、如左下图所示,在一个等腰直角三角形中,削去一个三角形后,剩下一个上底长 5厘米、下底长9厘米的等腰梯形(阴影部分)。求这个梯形的面积。 例题 5、在一个等腰三角形中,两条与底边平行的线段将三角形的两条边等分成三段 (见右图),求图中阴影部分的面积占整个图形面积的几分之几?

练习2.求下图(单位:厘米)中四边形ABCD的面积。 练习3.下图是甲、乙两个正方形,甲的边长比乙的边长长3厘米,甲的面积比乙的面积大45厘米2。求甲、乙的面积之和。 练习4.在左下图所示的等腰直角三角形中,剪去一个三角形后,剩下的部分是一个直角梯形(阴影部分)。已知梯形的面积为36厘米2,上底为3厘米,求下底和高。 练习5、如图,三个正方形的边长分别为5厘米、6厘米、4厘米拼在一起,求阴影部分的面积?

练习6、下左图是一块长方形草地,长方形的长是16,宽是10.中间有两条道路,一条是长方形,一条是平行四边形,那么有草部分的面积(阴影部分)有多大?

等差法 解题关键:找出组合图形的公共部分 解题技巧:利用差不变原理进行等量代换: 例题1、如图ABCG是的长方形,AB=7,AG=4,DEFG是的长方形,GF=2,FE=10。那么,三角形BCM的面积与三角形DCM面积之差是多少? 练习1如图ABCG是的长方形,AB=5,AG=3,DEFG是的长方形,GF=1,FE=9。那么,三角形BCM的面积与三角形DCM面积之差是多少?

小学奥数求面积专题

小学奥数求面积专题 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

专题三组合图形的面积计算 1.等量代换法 一个量可以用它的等量来代替;被减数和减数都增加(或减少)同一个数,它们的差不变。前者是等量公理,后者是减法的差不变性质。这两个性质在解几何题时有很重要的作用,它能将求一个图形的面积转化为求另一个图形的面积,或将两个图形的面积差转化为另两个图形的面积差,从而使隐蔽的关系明朗化,找到解题思路。 例1小两个正方形组成下图所示的组合图形。已知组合图形的周长是52厘米,DG=4厘米,求阴影部分的面积。 例2两个相同的直角三角形如下图所示(单位:厘米)重叠在一起,求阴影部分的面积。例3 下页上图中,ABCD是7×4的长方形,DEFG是10×2的长方形,求三角形BCO与三角形EFO的面积之差。 例4在右图中,AB=8厘米,CD=4厘米,BC=6厘米,三角形AFB比三角形EFD的面积大18厘米2。求ED的长。 例5左下图是由大、小两个正方形组成的,小正方形的边长是4厘米,求三角形ABC的面积。 2.割补法 在组合图形中,除了多边形外,还有由圆、扇形、弓形与三角形、矩形、平行四边形、梯形等图形组合而成的不规则图形,为了计算它们的面积,常常需要变动图形的位置或对图形进行分割、旋转、拼补,使它变成可以计算出面积的规则图形。就是在多边形的组合图形中,为了计算面积,有时也要用到割补的方法。、 例6求下列各图中阴影部分的面积: 例7如左下图所示,在一个等腰直角三角形中,削去一个三角形后,剩下一个上底长5厘米、下底长9厘米的等腰梯形(阴影部分)。求这个梯 形的面积。 例8下图中,甲、乙两个正方形的边长的和是20厘米, 甲正方形比乙正方形的面积大40厘米2。求乙正方形的 面积。 作业: 1.左下图中,等腰直角三角形ABC的腰为10厘米,以C为圆心、CF为半径画弧线EF,组成扇形CEF。如果图中甲、乙两部分的面积相等,那么扇形所在的圆的面积是多少 2.右上图(单位:厘米)是两个相同的直角梯形重叠在一起,求阴影部分的面积。 3.左下图中,扇形ABD的半径是4厘米,甲比乙的面积大3.44厘米2。求直角梯形ABCD的面积。(π=) 4.在右上图的三角形中,D,E分别是所在边的中点,求四边形ADFE的面积。

第四讲 巧求面积(上) 学而思

正方形面积=边长×边长 正方形面积=对角线×对角线÷2 长方形面积=长×宽 三角形面积=底×高÷2 平行四边形面积=底×高 梯形面积=(上底+下底) ×高÷2 (★★) 如图,边长分别为8,4,10的三个正方形放在一起,则其中四边形ABCD 的面积是______。

(★★★) 一块长方形地长是80米,宽是45米,如果把宽增加5米,要使原来的面积不变,长应减少多少米? (★★★) 有一个长方形,如果宽减少2米,或长减少3米,则面积均减少24平方米,求这个长方形的面积? (★★★) 如图,一张长方形纸片,长7厘米,宽5厘米。把它的右上角往下折叠,再把左下角往上折叠,未盖住的阴影部分的面积是多少平方厘米? (★★★★) 如图所示,7个完全相同的长方形拼成了图中的阴影部分,图中空白部分的面积是多少平方厘米。 (★★★★) 一个长方形,如果长减少5厘米,宽减少2厘米,那么面积就减少66平方厘米,这时剩下的部分恰好成为一个正方形,求原来长方形的面积?

(★★★) 有一大一小两块正方形试验田,他们的周长相差40米,面积相差220平方米,那么小正方形试验田的面积是多少平方米? (★★★★) 如图,大正方形的面积为9,中间小正方形的面积为1,甲、乙、丙、丁是四个梯形,那么乙与丁的面积之和是______。 【本讲总结】 两个突破口: 一、寻找不变量 二、寻找等量 两个思想: 一、等量代换 二、任我意 重点例题:例4,例5,例7

在线测试题 温馨提示:请在线作答,以便及时反馈孩子的薄弱环节。 1.(★★★) 如下图,边长分别为8,6,10的三个正方形放在一起,那么其中四边形ABCD 的面积是( ) A .24 B .48 C .88 D .112 D C B A 2.(★★★) 一块长方形地长是60米,宽是45米,如果把宽增加5米,要使原来的面积不变,长应减少( )米 A .3 B .4 C .5 D .6 3.(★★★) 有一个长方形,如果宽减少3米,或长减少4米,则面积均减少24平方米。这个长方形的面积是( )平方米 A .24 B .48 C .96 D . 144 4.(★★★) 如图,一张长方形纸片,长9厘米,宽7厘米。把它的右上角往下折叠,再把左下角往上折叠,未盖住的阴影部分的面积是( )平方厘米 A .10 B .8 C .6 D . 4 7

五年级奥数基础教程-用等量代换求面积小学

用等量代换求面积 一个量可以用它的等量来代替;被减数和减数都增加(或减少)同一个数,它们的差不变。前者是等量公理,后者是减法的差不变性质。这两个性质在解几何题时有很重要的作用,它能将求一个图形的面积转化为求另一个图形的面积,或将两个图形的面积差转化为另两个图形的面积差,从而使隐蔽的关系明朗化,找到解题思路。 例1两个相同的直角三角形如下图所示(单位:厘米)重叠在一起,求阴影部分的面积。 分析与解:阴影部分是一个高为3厘米的直角梯形,然而它的上底与下底都不知道,因而不能直接求出它的面积。因为三角形ABC与三角形DEF完全相同,都减去三角形DOC后,根据差不变性质,差应相等,即阴影部分与直角梯形OEFC面积相等,所以求阴影部分的面积就转化为求直角梯形OEFC的面积。直角梯形OEFC的上底为10-3=7(厘米),面积为(7+10)×2÷2=17(厘米2)。 所以,阴影部分的面积是17厘米2。 例2在右图中,平行四边形ABCD的边BC长10厘米,直角三角形ECB的直角边EC长8厘米。已知阴影部分的总面积比三角形EFG的面积大10厘米2,求平行四边形ABCD的面积。 分析与解:因为阴影部分比三角形EFG的面积大10厘米2,都加上梯形FGCB后,根据差不变性质,所得的两个新图形的面积差不变,即平行四边行ABCD比直角三角形ECB的面积大10厘米2,所以平行四边形ABCD的面积等于 10×8÷2+10=50(厘米2)。 例3在右图中,AB=8厘米,CD=4厘米,BC=6厘米,三角形AFB比三角形EFD的面积大18厘米2。求ED的长。 分析与解:求ED的长,需求出EC的长;求EC的长,需求出直角三角形ECB的面积。因为三角形AFB 比三角形EFD的面积大18厘米2,这两个三角形都加上四边形FDCB后,其差不变,所以梯形ABCD比三角形ECB的面积大18厘米2。也就是说,只要求出梯形ABCD的面积,就能依次求出三角形ECB的面积和EC 的长,从而求出ED的长。 梯形ABCD面积=(8+4)×6÷2=36(厘米2), 三角形ECB面积=36-18=18(厘米2), EC=18÷6×2=6(厘米), ED=6-4=2(厘米)。

五年级奥数第21讲 用等量代换求面积

第21讲用等量代换求面积 一个量可以用它的等量来代替;被减数和减数都增加(或减少)同一个数,它们的差不变。前者是等量公理,后者是减法的差不变性质。这两个性质在解几何题时有很重要的作用,它能将求一个图形的面积转化为求另一个图形的面积,或将两个图形的面积差转化为另两个图形的面积差,从而使隐蔽的关系明朗化,找到解题思路。 例1两个相同的直角三角形如下图所示(单位:厘米)重叠在一起,求阴影部分的面积。 分析与解:阴影部分是一个高为3厘米的直角梯形,然而它的上底与下底都不知道,因而不能直接求出它的面积。因为三角形ABC与三角形DEF完全相同,都减去三角形DOC后,根据差不变性质,差应相等,即阴影部分与直角梯形OEFC面积相等,所以求阴影部分的面积就转化为求直角梯形OEFC的面积。直角梯形OEFC的上底为10-3=7(厘米),面积为(7+10)×2÷2=17(厘米2)。 所以,阴影部分的面积是17厘米2。 例2在右图中,平行四边形ABCD的边BC长10厘米,直角三角形ECB的直角边EC 长8厘米。已知阴影部分的总面积比三角形EFG的面积大10厘米2,求平行四边形ABCD 的面积。 分析与解:因为阴影部分比三角形EFG的面积大10厘米2,都加上梯形FGCB后,根据差不变性质,所得的两个新图形的面积差不变,即平行四边行ABCD比直角三角形ECB的面积大10厘米2,所以平行四边形ABCD的面积等于 10×8÷2+10=50(厘米2)。 例3在右图中,AB=8厘米,CD=4厘米,BC=6厘米,三角形AFB比三角形EFD的面积大18厘米2。求ED的长。

分析与解:求ED的长,需求出EC的长;求EC的长,需求出直角三角形ECB的面积。因为三角形AFB比三角形EFD的面积大18厘米2,这两个三角形都加上四边形FDCB后,其差不变,所以梯形ABCD比三角形ECB的面积大18厘米2。也就是说,只要求出梯形ABCD 的面积,就能依次求出三角形ECB的面积和EC的长,从而求出ED的长。 梯形ABCD面积=(8+4)×6÷2=36(厘米2), 三角形ECB面积=36-18=18(厘米2), EC=18÷6×2=6(厘米), ED=6-4=2(厘米)。 例4 下页上图中,ABCD是7×4的长方形,DEFG是10×2的长方形,求三角形BCO 与三角形EFO的面积之差。 分析:直接求出三角形BCO与三角形EFO的面积之差,不太容易做到。如果利用差不变性质,将所求面积之差转化为另外两个图形的面积之差,而这两个图形的面积之差容易求出,那么问题就解决了。 解法一:连结B,E(见左下图)。三角形BCO与三角形EFO都加上三角形BEO,则原来的问题转化为求三角形BEC与三角形BEF的面积之差。所求为4×(10-7)÷2-2×(10-7)÷2=3。 解法二:连结C,F(见右上图)。三角形BCO与三角形EFO都加上三角形CFO,则原来的问题转化为求三角形BCF与三角形ECF的面积之差。所求为4×(10-7)÷2-2×(10-7)÷2=3。

用割补法求面积

用割补法求面积 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

在组合图形中,除了多边形外,还有由圆、扇形、弓形与三角形、矩形、平行四边形、梯形等图形组合而成的不规则图形,为了计算它们的面积,常常需要变动图形的位置或对图形进行分割、旋转、拼补,使它变成可以计算出面积的规则图形。就是在多边形的组合图形中,为了计算面积,有时也要用到割补的方法。 例1求下列各图中阴影部分的面积: 分析与解:(1)如左下图所示,将左下角的阴影部分分为两部分,然后按照右下图所示,将这两部分分别拼补在阴影位置。可以看出,原题图的阴影部分等于右下图中AB弧所形成的弓形,其面积等于扇形OAB与三角形OAB的面积之差。 π×4×4÷4-4×4÷2=。 (2)在题图虚线分割的两个正方形中,右边正方形的阴影部分是半径为5的四分之一个圆,在左边正方形中空白部分是半径为5的四分之一个圆。 如下图所示,将右边的阴影部分平移到左边正方形中。可以看出,原题图的阴影部分正好等于一个正方形的面积,为5×5=25。

例2在一个等腰三角形中,两条与底边平行的线段将三角形的两条边等分成三段(见右图),求图中阴影部分的面积占整个图形面积的几分之几。 分析与解:阴影部分是一个梯形。我们用三种方法解答。 (1)割补法 从顶点作底边上的高,得到两个相同的直角三角形。将这两个直角三角 (2)拼补法 将两个这样的三角形拼成一个平行四边形(下页左上图)。

积和平行四边行面积同时除以2,商不变。所以原题阴影部分占整个图形面 (3)等分法 将原图等分成9个小三角形(见右上图),阴影部分占3个小三角形, 注意,后两种方法对任意三角形都适用。也就是说,将例题中的等腰三角形换成任意三角形,其它条件不变,结论仍然成立。 例3如左下图所示,在一个等腰直角三角形中,削去一个三角形后,剩下一个上底长5厘米、下底长9厘米的等腰梯形(阴影部分)。求这个梯形的面积。 分析与解:因为不知道梯形的高,所以不能直接求出梯形的面积。可以从等腰直角三角形与正方形之间的联系上考虑。将四个同样的等腰直角三角形拼成一个正方形(上页右下图),图中阴影部分是边长9厘米与边长5厘米的两个正方形面积之差,也是所求梯形面积的4倍。所以所求梯形面积是(9×9-5×5)÷4=14(厘米2)。

数学教案几何面积(割补法与等量代换法

教学内容概要 学生: 初中数学备课组教师:王老师年级:小五 日期上课时间 学生上课情况: 主课题:《组合图形求面积--割补法与等量代换法》 教学目标: 1、通过平行四边形,三角形,梯形面积计算公式,能正确求几何图形的面积。 2、让学生经历常见的几何面积公式的推导过程,通过操作、观察、比较,发展学生的空间观念,渗透转化的思想方法。 3、培养学生使用割补法,等量代换的思想解决实际面积问题的能力。 4、使学生感受数学与生活的联系,培养学生的数学应用意识,体验数学的价值。 教学重点: 1、针对不规则图形能够找到其所包含的规则图形 2、熟练使用三个常见图形的面积的公式。 3、使用割补法求不规则图形以及阴影部分面积。 4、学会等量代换的思想。 教学难点: 1、能够求解复杂的面积。 2、学会和掌握面积求解的主要技巧--割补法与等量代换法 家庭作业 1、回家练习部分(所有题目) 考点及考试要求: 1、理解和掌握求几何面积的主要思路与步骤

教学内容 【知识精要--等量代换法】 一个量可以用它的等量来代替;被减数和减数都增加(或减少)同一个数,它们的差不变。前者是等量公理,后者是减法的差不变性质。这两个性质在解几何题时有很重要的作用,它能将求一个图形的面积转化为求另一个图形的面积,或将两个图形的面积差转化为另两个图形的面积差,从而使隐蔽的关系明朗化,找到解题思路。 【经典例题】 例1两个相同的直角三角形如下图所示(单位:厘米)重叠在一起,求阴影部分的面积。 例2在右图中,平行四边形ABCD的边BC长10厘米,直角三角形ECB的直角边EC 长8厘米。已知阴影部分的总面积比三角形EFG的面积大10厘米2,求平行四边形ABCD 的面积。 例3在右图中,AB=8厘米,CD=4厘米,BC=6厘米,三角形AFB比三角形EFD的面积大18厘米2。求ED的长。

几种不规则图形面积的解题方法

对于不规则图形面积的计算问题,一般将它转化为若干基本规则图形的组合,分析整体与部分的和、差关系,问题便得到解决。常用的基本方法有: 1. 直接求面积:这种方法是根据已知条件,从整体出发直接求出组合图形面积。 例1:求下图阴影部分的面积(单位:厘米)。 解答: 通过分析发现它就是一个底是2、高是4的三角形,其面积直接可求为: (平方厘米) 2.相加、相减求面积:这种方法是将组合图形分解转化成几个基本规则图形,分别计算它们的面积,然后相加或相减求出该图形的面积。 例2:正方形甲的边长是5厘米,正方形乙的边长是4厘米,阴影部分的面积是多少? 解答: 两个正方形的面积:5×5+4×4=41(平方厘米) 三个空白三角形的面积和:(5+4)×5÷2+4×4÷2+5×(5-4) ÷2=33(平方厘米) 阴影部分的面积:41-33=8(平方厘米) 除了以上这两种方法,还有其他的几种方法,同学们不妨了解了

解。 3.等量代换求面积:一个图形可以用与它相等的另一个图形替换,如果甲乙大小相等,那么求出乙的大小,就知道甲的大小;两个图形同时增加或减少相同的面积,它们的差不变。 例3:平行四边形ABCD的边BC长8厘米,直角三角形ECB的直角边EC长为6厘米。已知阴影部分的总面积比三角形EFG的面积大8平方厘米,平行四边形ABCD的面积是多少? 解答: 阴影部分的总面积比三角形EFG的面积大8平方厘米,分别加上梯形FBCG,得出的平行四边形ABCD比三角形EBC的面积大8平方厘米。 平行四边形ABCD的面积:8×6÷2+8=32(平方厘米) 4.借助辅助线求面积:这种方法是根据具体情况在图形中添一条或若干条辅助线,使不规则图形转化成若干个基本规则图形,然后再采用相加、相减法求面积。 例4:下图中,CA=AB=4厘米,三角形ABE比三角形CDE的面积大2平方厘米,CD的长是多少? 解答: 结合已知条件看图,很难有思路,连接DA,就可以发现:三角形ABE 比三角形CDE的面积大2平方厘米,分别加上三角形DAE得到的三角形ABD 比三角形CDA的面积大2平方厘米。 (4×4÷2-2)×2÷4=3(厘米)

六年级上奥数第二讲 等量代换求面积

第二讲用等量代换求面积 一个量可以用它的等量来代替;被减数和减数都增加(或减少)同一个数,它们的差不变。前者是等量公理,后者是减法的差不变性质。这两个性质在解几何题时有很重要的作用,它能将求一个图形的面积转化为求另一个图形的面积,或将两个图形的面积差转化为另两个图形的面积差,从而使隐蔽的关系明朗化,找到解题思路。 例1两个相同的直角三角形如下图所示(单位:厘米)重叠在一起,求阴影部分的面积。 例2在右图中,平行四边形ABCD的边BC长10厘米,直角三角形ECB的直角边EC长8厘米。已知阴影部分的总面积比三角形EFG的面积大10厘米2,求平行四边形ABCD的面积。 例3在右图中,AB=8厘米,CD=4厘米,BC=6厘米,三角形AFB比三角形EFD的面积大18厘米2。求ED的长。

例4 下页上图中,ABCD是7×4的长方形,DEFG是10×2的长方形,求三角形BCO与三角形EFO的面积之差。 例5左下图是由大、小两个正方形组成的,小正方形的边长是4厘米,求三角形ABC的面积。 巩固练习: 1.左下图中,等腰直角三角形ABC的腰为10厘米,以C为圆心、CF为半径画弧线EF,组成扇形CEF。如果图中甲、乙两部分的面积相等,那么扇形所在的圆的面积是多少?

2.右上图(单位:厘米)是两个相同的直角梯形重叠在一起,求阴影部分的面积。 3.左下图中,扇形ABD的半径是4厘米,甲比乙的面积大3.44厘米2。求直角梯形ABCD的面积。(π=3.14) 4.在右上图的三角形中,D,E分别是所在边的中点,求四边形ADFE的面积。

5.下页左上图中,矩形ABCD的边AB为4厘米,BC为6厘米,三角形ABF比三角形EDF的面积大9厘米2,求ED的长。 6.右上图中,CA=AB=4厘米,三角形ABE比三角形CDE的面积大2厘米2,求CD的长。 影部分的面积和。

数学教案几何面积(割补法与等量代换法

教学内容概要 教学内容

【知识精要--等量代换法】 一个量可以用它的等量来代替;被减数和减数都增加(或减少)同一个数,它们的差不变。前者是等量公理,后者是减法的差不变性质。这两个性质在解几何题时有很重要的作用,它能将求一个图形的面积转化为求另一个图形的面积,或将两个图形的面积差转化为另两个图形的面积差,从而使隐蔽的关系明朗化,找到解题思路。 【经典例题】 例1两个相同的直角三角形如下图所示(单位:厘米)重叠在一起,求阴影部分的面积。 例2在右图中,平行四边形ABCD的边BC长10厘米,直角三角形ECB的直角边EC 长8厘米。已知阴影部分的总面积比三角形EFG的面积大10厘米2,求平行四边形ABCD 的面积。 例3在右图中,AB=8厘米,CD=4厘米,BC=6厘米,三角形AFB比三角形EFD的面积大18厘米2。求ED的长。 例4 下页上图中,ABCD是7×4的长方形,DEFG是10×2的长方形,求三角形BCO 与三角形EFO的面积之差。(有几种做法?)

例5左下图是由大、小两个正方形组成的,小正方形的边长是4厘米,求三角形ABC的面积。 【巩固练习】 1、下图是两个相同的直角梯形重叠在一起,求阴影部分的面积。 2、左下图中,矩形ABCD的边AB为4厘米,BC为6厘米,三角形ABF比三角形EDF 的面积大9厘米2,求ED的长。

3、右上图中,CA=AB=4厘米,三角形ABE比三角形CDE的面积大2厘米2,求CD 的长。 【知识精要--割补法】 在组合图形中,除了多边形外,还有由圆、扇形、弓形(这一部分我们将在初中阶段学习)与三角形、矩形、平行四边形、梯形等图形组合而成的不规则图形,为了计算它们的面积,常常需要变动图形的位置或对图形进行分割、旋转、拼补,使它变成可以计算出面积的规则图形。就是在多边形的组合图形中,为了计算面积,有时也要用到割补的方法。 【经典例题】 例1在一个等腰三角形中,两条与底边平行的线段将三角形的两条边等分成三段(见右图),求图中阴影部分的面积占整个图形面积的几分之几。 例2如左下图所示,在一个等腰直角三角形中,削去一个三角形后,剩下一个上底长5厘米、下底长9厘米的等腰梯形(阴影部分)。求这个梯形的面积。

六年级下奥数 巧求面积

教育讲义:巧求面积 一、课题名称:巧求面积(二) 二、学习目标 1、掌握常见图形面积的公式,能够解决一些简单的实际问题。 2、利用等量代换、割补法、重新组合法、添辅助线等方法来求面积。 三、教学过程 知识回顾 【典型例题】 例1.如图,在边长为6厘米的等边三角形中挖去三个同样的扇形,求阴影部分的面积。例2.正方形边长为2厘米,求阴影部分的面积。

例3.图中四个圆的半径都是1厘米,求阴影部分的面积。 例4.如图,四个扇形的半径相等,求阴影部分的面积。(单位:厘米) 例5.如图,正方形ABCD的对角线AC=2厘米,扇形ACB是以AC为直径的半圆,扇形DAC是以D为圆心,AD为半径的圆的一部分,求阴影部分的面积。 例6.求阴影部分的面积。(单位:厘米) 例7.如图,三角形ABC是直角三角形,阴影部分甲比阴影部分乙面积大28平方厘米,AB=40厘米。求BC的长度。 例8.正方形面积是7平方厘米,求阴影部分的面积。(单位:厘米)

归纳总结 组合图形阴影部分面积计算的解题思路 组合图形阴影部分面积计算是小学平面几何知识的综合运用,在小学数学中是一个重点,由于小学生只学习过三角形、正方形、长方形、平行四边形、梯形、圆、扇形面积的计算,但没有具体地学习线、面、图形相互关系方面的知识联系,因此,这些几何知识对于小学生来是零碎的;再说,小学生的空间思维发展滞后,于是组合图形阴影部分面积的计算在小学教育教学中成为了难点。 我总结了一点经验,概括了几种求组合图形阴影部分面积的解题思路,从思维上帮助学生清晰了解题思路,引导小学生走上正确地解决组合图形阴影部分面积的解题思路。 方法一:移拼、割补的思路 移拼、割补的思路是把不规则的阴影面积通过学习割补,使之变为一个面积大小不变且能实施计算成面积相同的规则图形。 方法二:重叠、分层的思路 重叠、分层思路是图形中不规则的阴影部分看作几个规则图形用不同的方法重叠的结果,利用分层把重叠部分分出来,组成重叠图形各项个规则图形的面积总和减去分掉的那面积,就是剩下所求那部分面积。方法三:加法、分割的思路 加法分割思路是把所求阴影部分面积分割成几块能用公式计算的规则图形(三角形、正方形、长方形、平行四边形、梯形、圆、扇形),分别计算出面积,并相加得出阴影部分的面积。 方法四:减法、拓展的思路 减法拓展思路是把不规则图形阴影部分面积拓展到包含阴影部分的规则图形中进行分析,通过计算这个规则图形的面积和规则图形中除阴影部分面积之外多余的面积,运用“总的”减去“部分的”方法解得答案。 课后作业 1、求阴影部分的周长和面积。(单位:厘米)

(完整word版)小学奥数求面积专题

专题三组合图形的面积计算 1.等量代换法 一个量可以用它的等量来代替;被减数和减数都增加(或减少)同一个数,它们的差不变。前者是等量公理,后者是减法的差不变性质。这两个性质在解几何题时有很重要的作用,它能将求一个图形的面积转化为求另一个图形的面积,或将两个图形的面积差转化为另两个图形的面积差,从而使隐蔽的关系明朗化,找到解题思路。 例1小两个正方形组成下图所示的组合图形。已知组合图形的周长是52厘米,DG=4厘米,求阴影部分的面积。 例2两个相同的直角三角形如下图所示(单位:厘米)重叠在一起,求阴影部分的面积。 例3 下页上图中,ABCD是7×4的长方形,DEFG是10×2的长方形,求三角形BCO与三角形EFO的面积之差。 例4在右图中,AB=8厘米,CD=4厘米,BC=6厘米,三角形AFB比三角形EFD的面积大18厘米2。求ED的长。 例5左下图是由大、小两个正方形组成的,小正方形的边长是4厘米,求三角形ABC的面积。 2.割补法 在组合图形中,除了多边形外,还有由圆、扇形、弓形与三角形、矩形、平行四边形、梯形等图形组合而成的不规则图形,为了计算它们的面积,常常需要变动图形的位置或对图形进行分割、旋转、拼补,使它变成可以计算出面积的规则图形。就是在多边形的组合图形中,为了计算面积,有时也要用到割补的方法。、

例6求下列各图中阴影部分的面积: 例7如左下图所示,在一个等腰直角三角形中,削去一个三角形后,剩下一个上底长5厘米、下底长9厘米的等腰梯形(阴影部分)。求这个梯形的面 积。 例8下图中,甲、乙两个正方形的边长的和是20厘米,甲正方形比乙正方形的面积大40 厘米2。求乙正方形的面积。 作业: 1.左下图中,等腰直角三角形ABC的腰为10厘米,以C为圆心、CF为半径画弧线EF,组成扇形CEF。如果图中甲、乙两部分的面积相等,那么扇形所在的圆的面积是多少? 2.右上图(单位:厘米)是两个相同的直角梯形重叠在一起,求阴影部分的面积。 3.左下图中,扇形ABD的半径是4厘米,甲比乙的面积大3.44厘米2。求直角梯形ABCD的面积。(π=3.14) 4.在右上图的三角形中,D,E分别是所在边的中点,求四边形ADFE的面积。 5.左下图中,矩形ABCD的边AB为4厘米,BC为6厘米,三角形ABF比三角形EDF的面积大9厘米2,求ED的长。 6.右上图中,CA=AB=4厘米,三角形ABE比三角形CDE的面积大2厘米2,求CD的长。

六年级奥数巧求面积(一)

专题三 巧求面积(一) 指点迷津 解几何图形的面积,要仔细看图,正确地运用各种简单图形的面积计算公式,同时还要把涉及到的其他知识加以综合运用。 常用方法有:等量代换、添加辅助线、图形割补等。 范例点拨 例1 如右图,正方形ABCD 的边长是4cm ,CG 是3cm ,长方形DEFG 的长DG 是5cm ,那么它的宽DE 是多少厘米? 思路提示:可通过添加辅助线即连AG 可达到解题的目的。 尝试解答: 例2 如右图△ABC 的各条边都延长1倍至A '、B '、C ',连接 这些点得到△C B A '''。若△ABC 的面积为1,求△C B A '''的面积。 思路提示:连接A B '、C A '、B C ',通过制造等底等高的三角形达到解 题的目的。 尝试解答: 例3 如图所示,ABCD 是直角梯形,AB=4cm ,AD=5cm , DE=3cm,那么阴影部分(△BOC )的面积是多少? 思路提示:可通过S △ABC 与S △ABD 面积相等来解答。 尝试解答: 例4 用同样大小的长方形瓷砖摆成了右下图所示的图形, 已知瓷砖的宽是12cm ,求阴影部分的总面积。 思路提示:观察右图,可发现2块瓷砖的长与3块瓷砖的宽相等, 以此为解题的突破口,可达到解题的目的。 尝试解答:

触类旁通 1.如下图:周长为68cm的大矩形被分成7个相同的小矩形,大矩形的面积是多少? 2.下图的长方形是由6个小正方形组成,如果中间阴影部分是最小的正方形,面积为1cm2,那么长方形的面积为多少平方厘米? 3.将△ABC的BA边延长1倍到D,CB边延长2倍到E,AC边延长3倍到F。如果△ABC的面积是1 cm2,那么△DEF的面积是多少平方厘米? 4.求下列各图中的阴影部分的面积。(单位:cm) (1)(2) (3)(4)AB=2cm,CE=6cm,CD=5cm,AF=4cm

三年级面积计算、等量代换、重叠问题知识点

三年级面积计算 专题简析: 我们已经学会了计算长方形、正方形的面积,知道长方形的面积=长×宽,正方形的面积=边长×边长。利用这些知识我们能解决许多有关面积的问题。 在解答比较复杂的关于长方形、正方形的面积计算的问题时,生搬硬套公式往往不能奏效,可以添加辅助线或运用割补、转化等解题技巧。因此,敏锐的观察力和灵活的思维在解题中十分重要。 例题1 把一张长为4米,宽为3米的长方形木板,剪成一个面积最大的正方形。这个正方形木板的面积是多少平方米? 思路导航:要使剪成的正方形面积最大,就要使它的边长最长(如图),那么只能选原来的长方形宽为边长,即正方形的边长是3米。 4米 3米 正方形的面积:3×3=9米。 练习一 1,把一张长6厘米,宽4厘米的长方形纸剪成一个面积最大的正方形,这张正方形纸的面积是多少平方厘米? 2,把一块长2米、宽6分米的长方形铁板切割成一个面积最大的正方形,这个正方形铁板的面积是多少? 3,将一张长10厘米、宽8厘米的长方形纸片剪成一个面积最大的正方形,那么剪下的另一个小长方形的面积是多少? 例题2 学校里有一个正方形花坛,四周种了一圈绿篱,绿篱总长20米。花坛的面积是多少平方米? 思路导航:要求正方形花坛的面积,必须知道花坛的边长是多少。根据绿篱总长是20米,可求出花坛的边长为20÷4=5米,所以花坛的面积是:5×5=25平方米。

练习二 1,一个正方形的周长为36厘米,那么这个正方形的面积是多少平方厘米? 2,运动场有一个正方形的游泳池,在游泳池四周粘上瓷砖,瓷砖总长400米,求游泳池的面积是多少平方米。 3,在公园里有两个花圃,它们的周长相等。其中长方形花圃长40米,宽20米,求另一个正方形花圃的面积。 例题3 求下面图形的面积。(单位:厘米) 1 4 3 2 思路导航:这个图形无法直接求出它的面积,我们可以画一条辅助线,将这个图形分割成两个长方形。如下图: 1 4 3 2 从图上可以看出,左边长方形的长为4厘米,宽为2厘米,面积为4×2=8平方厘米;右边长方形的长为3厘米,宽为1厘米,面积为3×1=3平方厘米。 所以,这个图形的面积为:8+3=11平方厘米。 想一想:这道题还可以怎样画辅助线,分割后求面积呢? 练习三 计算下面图形的面积。(单位:厘米)

用割补法求面积

例1求下列各图中阴影部分的面积: 分析与解:(1)如左下图所示,将左下角的阴影部分分为两部分,然后按照右下图所示,将这两部分分别拼补在阴影位置。可以看出,原题图的阴影部分等于右下图中AB 弧所形成的弓形,其面积等于扇形OAB与三角形OAB的面积之差。 π×4×4÷4-4×4÷2=。 (2)在题图虚线分割的两个正方形中,右边正方形的阴影部分是半径为5的四分之一个圆,在左边正方形中空白部分是半径为5的四分之一个圆。 如下图所示,将右边的阴影部分平移到左边正方形中。可以看出,原题图的阴影部分正好等于一个正方形的面积,为5×5=25。 例2在一个等腰三角形中,两条与底边平行的线段将三角形的两条边等分成三段(见右图),求图中阴影部分的面积占整个图形面积的几分之几。 分析与解:阴影部分是一个梯形。我们用三种方法解答。 (1)割补法

从顶点作底边上的高,得到两个相同的直角三角形。将这两个直角三角 (2)拼补法 将两个这样的三角形拼成一个平行四边形(下页左上图)。 积和平行四边行面积同时除以2,商不变。所以原题阴影部分占整个图形面 (3)等分法 将原图等分成9个小三角形(见右上图),阴影部分占3个小三角形, 注意,后两种方法对任意三角形都适用。也就是说,将例题中的等腰三角形换成任意三角形,其它条件不变,结论仍然成立。 例3如左下图所示,在一个等腰直角三角形中,削去一个三角形后,剩下一个上底长5厘米、下底长9厘米的等腰梯形(阴影部分)。求这个梯形的面积。

分析与解:因为不知道梯形的高,所以不能直接求出梯形的面积。可以从等腰直角三角形与正方形之间的联系上考虑。将四个同样的等腰直角三角形拼成一个正方形(上页右下图),图中阴影部分是边长9厘米与边长5厘米的两个正方形面积之差,也是所求梯形面积的4倍。所以所求梯形面积是(9×9-5×5)÷4=14(厘米2)。 例4在左下图的直角三角形中有一个矩形,求矩形的面积。 分析与解:题中给出了两个似乎毫无关联的数据,无法沟通与矩形的联系。我们给这个直角三角形再拼补上一个相同的直角三角形(见右上图)。因为A与A′,B与B′面积分别相等,所以甲、乙两个矩形的面积相等。乙的面积是4×6=24,所以甲的面积,即所求矩形的面积也是24。 例5下图中,甲、乙两个正方形的边长的和是20厘米,甲正方形比乙正方形的面积大40厘米2。求乙正方形的面积。 分析与解:如果从甲正方形中“挖掉”和乙正方形同样大的正方形丙,所剩的A,B,C三部分之和就是40厘米2(见左下图)。

相关主题
文本预览
相关文档 最新文档