当前位置:文档之家› 食品发酵工程及其在食品上的应用

食品发酵工程及其在食品上的应用

食品发酵工程及其在食品上的应用
食品发酵工程及其在食品上的应用

贵州大学酿酒与食品工程学院

作业(论文)题目:发酵工程在食品工业中的应用

课程名称:食品高新技术

任课教师姓名:朱秋劲

研究生姓名:宋小娟

学号:2013021205

年级:2013级

专业:食品科学

任课教师评分:

年月日

发酵工程及其在食品工业上的应用

摘要:随着生物技术的不断发展,发酵工程作为食品生物技术中的一个分支,在食品加工过程中起着至关重要的作用,现代发酵工程结合基因工程、细胞工程等生产出许多种天然的食品,如:单细胞蛋白,黄原胶,细胞色素等,这一技术为食品加工业提供了一条健康发展道路。

关键词:现代发酵工程;发酵类型;食品加工

Fermentation engineering and its application in food industry

Abstract:with the continuous development of biotechnology, fermentation engineering as a branch of food biotechnology, food processing, plays an important role in the process of modern fermentation engineering combined with genetic engineering, cell engineering and so on to produce many kinds of natural food, such as: single cell protein, xanthan gum, cytochrome, etc., the technology for food processing provides a healthy development road.

Key words: modern fermentation engineering ;The fermentation type; Food processing

发酵工程也叫微生物工程,是利用微生物的生长和代谢活动,通过现代化工技术来生产各种有用物质的一种技术。发酵工程的内容随着生物技术的发展不断扩大和充实。现代的发酵工程结合了基因工程、细胞工程、分子修饰和改造等新技术,不仅包括菌体生产和代谢产物的发酵生产,还包括微生物机能的利用[1]。

发酵工程是一个由实践科学组成的一种生产手段,早已广泛的应用于我们的生活中。就现阶段发酵工程的发展而言,它已经历了“农产手加工”、“近代发酵工程”、“现代发酵工程”这 3 个阶段。

1 微生物发酵工程的原理

发酵工程分为菌种、发酵和提炼等三个阶段。发酵工程原理均必须建立在发酵工程的生物学原理的基础上,生物学原理是发现发酵工程最基本的原理。发酵原理的核心内容是微生物复杂系统运行的自然规律(即微生物生命活动的三个基本假说)[2]。细胞经济假说(生命活动的法则,控制)揭示细胞经济的运行原理,它们体现了细胞代谢活动的自主性。以面包制作过程中的发酵过程为例谈谈发酵原理。面包在制作的过程中首先需要面团的发酵,促进面团体积的膨胀。面团发酵的过程是一系列物理、化学变化的过程,发酵所产生的气体均匀分布在面团中;在各种生物酶的作用下,面团中的双糖和多糖转化成糖,在适宜的温度、水分、pH值以及必要的矿物元素环境下,酵母直接利用单糖进行新陈代谢,酵母发酵的过程伴随产生的各种复杂化学芳香物质。

2 发酵工程特点

微生物发酵技术具有以下特点[3]:(1)发酵过程以生命体的自动调节方式进行,数十个反应过程能够在发酵设备中一次完成,也可在同一发酵设备生产多种发酵产品;(2)反应通常在常温常压下进行,条件温和,能耗少,设备简单;(3)原料通常以农副产品(糖蜜、淀粉)、工业废水或可再生资源(如植物秸秆、木屑等)等为主,利于综合利用;(4)能高度选择地在复杂化合物的特定部位进行氧化、还原、官能团引入或去除等反应,容易产生复杂的高分子化合物;(5)产物专一,副反应少,污染小,是较为环保的工业生产方式。

3 微生物发酵过程分类

3.1 根据微生物种类不同,微生物发酵过程可以分为好氧性发酵和厌氧性发酵两大类[4]。

(1)好氧性发酵

在发酵过程中需要不断地通入一定量的无菌空气,如利用黑曲霉进行的柠檬酸发酵,利用棒状杆菌进行的谷氨酸发酵等。

(2)厌氧性发酵

在发酵时不需要供给空气,如乳酸杆菌引起的乳酸发酵,梭状芽孢杆菌引起的丙酮、丁醇发酵等。

此外,酵母菌是兼性厌氧微生物,它在缺氧条件下进行厌氧性发酵积累酒精,而在有氧即通气条件下则进行好氧性发酵,大量繁殖菌体细胞,因此称为兼性发酵。

3.2 根据培养基状态的不同,微生物发酵又可分为固体发酵和液体发酵;按照发酵设备来分,可分为敞口发酵、密闭发酵、浅盘发酵和深层发酵[5]。

3.2.1 固体发酵

某些微生物生长需水很少,可利用疏松而含有必须营养物的固体培养基进行发酵生产,称为固体发酵。许多调味品的生产,如我国传统的酿酒、制酱及大豆发酵食品等的生产均为固体发酵。另外,固体发酵还利用与蘑菇的生产,奶酪和泡菜的制作等。

固体发酵一般是开发式的,因而不是纯培养,无菌要求不高,它的一般过程为:将原料预加工后再经蒸煮灭菌,然后制成含一定水分的固体物料,接入预先培养好的菌种进行发酵。发酵成熟后要适时出料,并进行适当处理,或进行产物的提取。

固体发酵所需设备简单,操作容易,所用原料多为来源丰富的工农业副产品,如麸皮、薯粉、大豆饼粉、高梁、玉米粉等,因此,至今仍在某些产品的生产上不同程度地沿用,但这种方式有许多缺点,如劳动强度大,不便于机械化操作,微生物品种少,生长慢,产品有限等。

3.2.2 液体发酵

液体深层发酵法是指在液体培养基内部进行的微生物培养过程。液体深层发酵是在青霉素等抗生素的生产中发展起来的技术。根据操作方式的不同,液体深层发酵主要有分批发酵、连续发酵和补料分批发酵三种类型。

(1)分批发酵

培养基和菌种一次加入进行培养,与外部没有物料交换。其全过程包括空罐灭菌、加入灭过菌的培养基、接种、发酵过程、放罐和洗罐,所需时间的总和为一个发酵周期。分批发酵是最常用的发酵方法,广泛用于多种发酵过程,传统的生物产品发酵多用此过程。它除了控制温度和pH值及通气以外,不进行任何其他控制,操作简单。但从细胞所处的环境来看,则有明显改变,发酵初期营养过多,可能抑制微生物的生长,而发酵的中后期又可能因为营养物减少而降低培养

效率。从细胞的增值来说,初期细胞浓度低,增长慢,后期细胞浓度虽高,但营养物浓度过低也生长不快,总的生产能力不是很高。

(2)连续发酵

所谓连续发酵,是指以一定的速度向发酵罐内添加新鲜培养基,同时以相同的速度流出培养液,从而使发酵罐内的液量维持恒定,微生物在稳定状态下生长。稳定状态可以有效地延长分批培养中的对数期。在稳定的状态下,微生物所处的环境条件,如培养基浓度、产物浓度、pH值等都能保持相对恒定,微生物细胞的浓度及其生长速率也可维持不变,甚至还可以根据需要来调节生长速度。

与分批发酵相比,连续发酵具有以下优点:a.可以维持稳定的操作条件,有利于微生物的生长代谢,从而使产率和产品质量也相应保持稳定;b.能够更有效实现机械化和自动化,降低劳动强度,减少操作人员与病原微生物和毒性产物接触的机会;c.减少设备清洗、准备和灭菌等非生产占用时间,提高设备利用率,节省劳动力和工时;d.由于灭菌次数减少,使测量仪器探头的寿命延长;e.容易对过程进行优化,有效提高发酵产率。

(3)补料分批发酵

补料分批发酵又称半连续发酵,是介于分批发酵和连续发酵之间的一种发酵技术,是指在微生物分批发酵中,以某种方式向培养系统补加一定物料的培养技术。通过向培养系统中补充物料,可以使培养液中的营养物浓度较长时间地保持在一定范围内,既保证微生物的生长需要,又不会造成不利影响,从而达到提高产率的目的。

补料在发酵过程中的应用,是发酵技术上一个划时代的进步。补料技术本身也由少次多量、少量多次,逐步改为流加,近年又实现了流加补料的微机控制。

同传统的分批发酵相比,补料分批发酵可以解除营养物质的抑制、产物反馈抑制和葡萄糖分解阻遏效应(葡萄糖效应—葡萄糖被快速分解,代谢所积累的产物在抑制所需产物合成的同时也抑制其他一些碳源、氮源的分解利用);对于好氧发酵,它可以避免在分批发酵中因一次性投入糖过多造成细胞大量生长,耗氧过多,以致通风搅拌设备不能匹配的状况;它还可以在某些情况下减少菌体生成量,提高有用产物的转化率。在真菌培养中,菌丝的减少可以降低发酵液的黏度,便于物料输送及后处理。与连续发酵相比,它不会产生菌种老化和变异问题,其

适用范围也比连续发酵广。

4 发酵设备

生物反应器是利用生物催化剂为微生物发酵或酶反应提供良好的反应环境的设备,通常称为发酵罐[6]。分别是:机械搅拌式发酵罐、通风搅拌式发酵罐和厌氧发酵设备。

5 发酵工程在食品工业中的应用

发酵工程除了应用于传统的酿酒和调味品德生产外,抗生素的发现和大规模深层培养技术的问世,赋予了微生物发酵技术新的生命力。发酵工程产品的品种不断增加,如单细胞蛋白、食品胶、天然色素、功能性不饱和脂肪酸等多种食品添加剂和保健食品功能性基料。

5.1 单细胞蛋白的发酵生产

单细胞蛋白(SCP)有的可直接供人们食用,有的可作家畜、家禽的饲料。因其富含蛋白质、风味温和、容易储存等特点,可代替传统的蛋白质添加剂,如鱼粉、豆粉等。从酵母或细菌等微生物体获取的单细胞蛋白含有丰富的蛋白质、碳水化合物、脂类、微生素以及矿物质,营养价值高。除了作饲料外,还可以作为营养强化剂添加到食品中。

赵彩艳[7]采用豆腐渣为主要原料,接种酵母菌量为14%,发酵温度30℃,发酵周期72h,该条件下发酵终产物粗蛋白含量为40.43%。毕荣宇等[8]利用毕赤酵母作为出发菌株,利用玉米粉和豆粕作为碳源和氮源生产单细胞蛋白。张琴[9]利用棉秆,青霉接种量为10%,发酵53h,得到单细胞蛋白含量的评均值为25.38%。朱将伟等[10]利用枯草芽孢杆菌与产朊假丝酵母作为发酵菌种,以稻草秸秆为原料,采用混合发酵方式生产单细胞蛋白,并对混合发酵的条件进行了优化,最终产物中的蛋白含量可达约24.5%。

5.2 食品胶的发酵生产

近年来,利用发酵法生产微生物多糖如黄原胶、结冷胶、茁霉多糖等不断发展,这些新型的食品胶以其安全、无毒、功能独特等优良特性广泛应用于食品工业中作为增稠剂、稳定剂、乳化剂和品质改良剂。

5.2.1 黄原胶

黄原胶是黄单孢杆菌发酵产生的细胞外杂多糖。黄原胶在食品工业中作为:胶凝剂、稳定剂、保鲜剂和持水剂等。

王桂兰[11]采用廉价易得的培养基,首次在黄原胶发酵中添加表面活性剂和植物油,显著提高了黄原胶的产量,首次将黄原胶进行精制,并使各项参数达到注射用原料药的标准。何海燕等[12]在发酵温度28℃,接种量10%,pH7.5,发酵96h,产生的黄原胶产量达35.28g/L。

5.2.2 结冷胶

结冷胶是美国Kelco公司开发的一种新型微生物多糖,其胶凝性能比黄原胶更为优越,如凝胶形成能力强、透明度高、最佳的风味释放、稳定性强、不需加热或稍微加热即可形成凝胶等,而且形成凝胶的温度和速度可根据需要在一定范围内变动。

5.2.3 热凝胶

热凝胶是由Tokuya Harada教授于1966年发现的一种微生物多糖。随着对其结构、流变性质、物化性质、功能、应用等方面的研究不断深入,其独特的理化性质引起人们的广泛兴趣。热凝胶可以用作添加剂以提高各种食品的质量,由于不含生理热量,因此可以作为低能量食品的组份而得到广泛应用。近年来,用热凝胶制取得支链型β-D-(1,3)-葡聚糖具有较高的抗肿瘤特性。而且,近年来研究发现热凝胶的硫酸酯及其支链衍生物具有很强的抗艾滋病毒(HIV)活性。

5.3 发酵法生产食用色素

食用色素是一类重要的食品添加剂。微生物发酵法生产天然色素既避免了化学合成色素造成的潜在危险,又克服了从植物中提取色素受气候和土地等影响的弊端,具有产量高、成本低、使用安全等特点。

5.3.1 发酵法生产黄曲黄色素

Thiyam General等[13]利用日本的一种海带(Saccharina japonica)作为固体发酵的底物,在不加盐和氮源的条件下用黄丝曲霉属的真菌GT11进行固体发酵,pH7.0,相对湿度80%,接种量1.8*106ml/g,28℃下发酵192h,能产生510nm 条件下吸光度值410,这种方法生成的色素可以被用在食品、化妆品和制药工业中。

Busaba Yongsmith等[14]采用黄曲霉的诱变菌株TISTR 3179作为黄曲色素发

酵微生物,发现泰国的五种米中Hom-mali米是最好的固体培养基,比玉米粉、大豆粉、甜土豆粉的效果还要好。其中相对湿度和温度也是主要影响因素。在温度为28~32℃,相对湿度42%,接种量2%时,黄曲色素的最大产量是2224.63 U/gdw。

A

370

5.3.2发酵法生产红曲色素

红曲(Ang-kak)是以大米为主要原料,经红曲霉发酵而成的一种色泽红色的米曲,在亚洲国家被广泛用于给各种发酵食品增加风味和着色,也可用于红米酒和高梁酒的酿造。

Pongrawee Nimnoi等[15]发现温度和低物对红曲霉形成红色素有影响,研究发现将红曲霉CMU001放在马铃薯葡萄糖,30℃下培养2周能产生大量红色素,而放在胰蛋白胨葡萄糖酵母提取物上能大量增加菌体的干重。而用玉米粉作底物,再加入8%的葡萄糖时的产色素能力最好(129.63U/gds)。而色素在高温和紫外光条件下容易衰退。

Jun Tan 等[16]研究通过一个简单的高通量系统测定红曲霉发酵样品产色

素的量。将这个高通量系统与响应面分析方法相结合,从29种影响因素中选择出来4种主要的影响因素:葡萄糖(51.42g/l)、蛋白胨(4.91g/l)、NaNO3(1.00G /l)、KH2PO4(1.00g/l)。这个系统可以将色素色价从206.5U/ml提高到265.8U/ml。

5.4 GABA(γ-氨基丁酸)的发酵生产

γ-氨基丁酸是一种降血压的药剂,可以由红曲霉产生。Donghua Jiang等[17]从发酵腐乳中筛选出一株红曲霉菌M6,其产GABA的能力为3.657g/L。经紫外诱变后的M6-13菌株产GABA量是M6的1.5倍(5.527g/L)。当把M6-13放人3.7L 的发酵罐中培养,GABA的产量达到13.470g/L。

5.5 功能性多不饱和脂肪酸的发酵生产

多不饱和脂肪酸(PUFAs)是指含有两个或两个以上双链,且碳链长为16~22个碳原子的直链脂肪酸,在生物制药和营养保健品中广泛关注和应用。常见的有:γ-亚麻酸(GLA)、α-亚麻酸(ALA)、二十碳五烯酸(EPA)和二十二碳六烯酸(DHA)等。

(1)α-亚麻酸和γ-亚麻酸是两种重要的不饱和脂肪酸,是细胞膜的基本

成分和人体多种活性物质如前列腺素、EPA、DHA等的前体,对人心脑血管疾病有特殊疗效。目前主要α-亚麻酸的主要来源是陆地植物。发酵法生产γ-亚麻酸主要有微藻和真菌。

姜翠红[18]研究了以粗甘油为碳源培养深黄被孢霉生产γ-亚麻酸,发酵时间12d,发酵温度27.5℃、尿素1.0g/L,深黄被孢霉DLA含量可达1.94g/L。高温高氮(1.25g/l,26.5℃)深黄被孢霉生物量提高,低温迪氮(1.0g/l,25℃)有利于γ-亚麻酸积累,所以深黄被孢霉可采用两步发酵生产γ-亚麻酸。

Milan ?ertík等[19]研究发现,微藻类产γ-亚油酸的效果最好,进行深层发酵,碳源为可溶性淀粉,氮源为尿素,GLA的产量为1638.7mg/L。孙继民等[20]

,γ-以拉曼被孢霉为出发菌体M5,通过亚硝基和激光诱变,最后筛得一株M

F10

亚麻酸的产率达12.5g/L。

微生物发酵生产γ-亚麻酸的缺点是对高产菌株的选育困难,利用基因工程技术可以定向选育出优良性状的基因工程菌,并通过发酵大量生产。

(2) EPA和DHA均属于高烯不饱和脂肪酸,广泛存在于深海鱼油之中(三文鱼、金枪鱼等),有益于人类健康。其生理功能主要有:预防和治疗动脉粥样硬化、血栓和高血压。然而油脂不很稳定,容易氧化变质。微生物发酵法生产EPA 和DHA具有生产周期短、培养简单、不受气候和季节限制,可大规模生产。

Eduardo L等[21]研究发现,被孢霉是生产EPA的潜在来源,生长在12℃低温下可积累EPA 15%以上。Doornbos B等[22]发现海藻Chlorella minutissia产DHA。Lopez Huertas E等[23]报道淡水藻Monodus suberraneus产DHA。Jin Liu 等[24]人采用营绿等金鞭藻在恒化器中进行大规模培养生产EPA和DHA,培养条件是20℃、pH8.0、,当稀释率为0.0024~0.0377h,生长速率接近最大时,产EPA为15.26mg/L。

5.6 L—苹果酸的发酵生产

L-苹果酸广泛应用于食品行业,在葡萄酒酿制过程中加入少量L-苹果酸可以使酒陈化,在医学上,有抗疲劳、护肝、改善心胀机能的作用。L-苹果酸可以采用一步发酵法或二步发酵法生产[25]。

郝夕祥[26]研究了黄曲霉SFW-7在Mn2+为14mg/L,Fe2+为20mg/L,Mg2+为10mg/L,L-苹果酸的产量为38.73g/L。并证实CO

固定途径是积累L-苹果酸的主要途径。

2

吴亚斌[27]研究基于产琥珀酸重组大肠杆菌 Escherichia coli B0013-1050 的琥

珀酸合成途径,利用Red同源重组系统和Xer/dif重组酶系统对其进行改造,构建L-苹果酸的合成途径。对重组菌 E. coli 2040进行 15 升罐发酵试验,厌氧发酵 30 h,产 L-苹果酸 14 g/L,转化率 60.3%,生产强度0.47 g/(L·h)。O.Pines等[28]研究酿酒酵母产L-苹果酸的过程中延胡索酸酶可以将产L-苹果酸的产量提高17倍。

6 结语

随着现代发酵工程技术在食品领域的广泛应用,食品工业将不再是传统农业食品的概念,工业食品将在人们日常生活中占据重要的地位。现代食品工业的蓬勃发展,已显示出发酵工程技术的巨大生命力,要充分利用世界生物技术迅猛发展的契机,中式发酵工程技术的研究,促进我国食品工业的改革,实现我国食品工业健康有序的发展。

参考文献

[1] 张叶叶.发酵工程在食品工业中的应用[J].中国市场,2013(34):62~63.

[2] 张星元.发酵原理[M].北京:科学出版社,2005.

[3] 张冰,董磊.现代发酵工程技术在食品领域的应用研究进展[J].科技论坛,2010:4.

[4] 郝利民,陈强,鲁吉珂等,生物技术在军雍食品中的应用与展望[J].食品科学,2011,(01)32:278~282.

[5] 吴琼,于寒松.益生菌发酵豆乳中营养成分变化研究[J].中国粮油,2013,(28)10:92~95.

[6] 李西腾.教学法在“发酵食品生产技术”实验中的应用[J].农产品加工,2013(9):78~79.

[7] 赵彩艳.以豆腐渣为主要原料生产饲料单细胞蛋白的研究[J].饲料研究,2013(01):82~84.

[8] 毕荣宇,牟德华.利用毕赤酵母生产单细胞蛋白的玉米粉—豆粕培养基优化[J].中国饲料,2013(15):6~9.

[9] 张琴,李艳宾.棉秆稀酸水解及微生物共发酵生产单细胞蛋白工艺优化研究[J].食品科学,2011,32(05):192~197.

[10] 朱将伟,邱江平.秸秆发酵生产单细胞蛋白及发酵剂的研制[J].饲料工业,2011,32(22):33~38.

[11] 王桂兰.黄原胶的发酵和精制研究[D].山东大学,2012,5(9):73~74.

[12] 何海燕,覃拥灵.甘蔗糖蜜发酵产黄原胶发酵条件的优化研究[J].中国食品添加剂,2012,11(01):65~68.

[13] Thiyam General,Hye-Jin Kim,Biond Prasad ,et al. Fungal utilization of a known and safe macroalga for pigment production using solid-state fermentation[J].Business Media Dordrecht,2013,10(12).

[14] Busaba Yongsmith,Panida Thongpradis,Worawan Klinsupa ,et al.Fermentation and quality of yellow pigments from golden brown rice solid culture by a selected Monascus mutant[J].Appl Microbiol Biotechnol,2013(97):8895~8902.

[15] Pongrawee Nimnoi ,Saisamorn Lumyong. Improving Solid-State Fermentation of Monascus purpureus on Agricultural Products for Pigment Production[J].Food Bioprocess Techol,

2011,4:1384~1390.

[16] Jun Tan,Ju Chu,Wenjuan Shi ,et al.H igh-throughput Screening Steategy Used for Enhanced Production of Pigment by Monasus purpureus D39-4[J].Food

Sci .Biotechnol,2012,21(6):1603-1610.

[17] Donghua Jiang ,Hao ji,Yan Ye ,et al .Studies on screening of higher γγ-aminobutyric

acid-producing Monascus and optimization of fermentative parameters[J].Eur Food Res Technol,(2011)232:541~547.

[18] 姜翠红.深黄被孢霉利用粗甘油生产γ-亚油酸的研究[D].大连理工大学,2011,6(27):57~58.

[19] Milan ?ertík,Zuzana Adamechová,and Kobkul Laoteng.Microbial Production of

γ-Linolenic Acid:Submerged versus Solid-state Fermentations[J].Food Sci.Biotechnol,2012,21(4):921`926.

[20] 孙继民,王卫卫,马庆辉等.复合诱变被孢霉原生质体获高产γ-亚麻酸的研究[J].2011,

(20)6:824~829.

[21] Eduardo L.Health effects of oleic acid and long chain omega一3 fatty acid (EPA and DHA) enriched milks. A review of intervention studies[J].Pharmacological Research,2010,61(3):200一207.

[22] Doornbos B,Van Goor S A,Dijck Brouwer D A J,et al.SuPplementation of a low dose of DHA or DHA+AA doesNot prevent peripartum depressive symptoms in a small pop-Ulation based sample[J].Progress in Neuro一Psychophar—

Macoloy&Biological Psychiatry,2009,33(l):49一52.

[23] Lopez Huertas E.Health effects of oleic acid and long chain omega-3 fatty acids (EPA and DHA) enriched milks.Arevivew of intervention studies [J].Pharmacological Research,2010,61(3):200~207.

[24] Jin Liu,Milton Sommerfeld,Qiang Hu. Screening and characterization of Isochrysis strains and optimization of culture conditions for docosahexaenoic acid production[J].Appl Microbiol Biotechnol,2013(97):4785~4798.

[25] 郝夕祥,张家祥,田延军等.L-苹果酸生产、提取及一步发酵法发酵机理研究[J].山东食品发酵,2010(3):3~6.

[26] 郝夕祥.黄曲霉SFW-7产L-苹果酸的研究[D].山东农业大学,2011,(15)68

[27] 吴亚斌.产L-苹果酸重组大肠杆菌的构建和发酵性能研究[D].江南大学,2012(6)

[28] O.Pines,S.Even-Ram,N.Elnathan,et al.The cytosolic pathway of L-malic acid synthesis in Saccharomyces cerevisiae:the role of fumaease[J].Appl Microbiol Biotechnol ,(2010)46:393~399.

食品生物技术论文

姓名: ** 班级: *** 学号: *** 指导老师: *** 完成日期:2012****

生物技术在食品中的应用 ******(***) [摘要] 目前,生物技术在食品工业中的作用表现在4个方面:一是食品原料和微生物的改良,提高食品营养价值及加工性能;二是生产各种功能食品有效成分、新型食品和食品添加剂;三是可直接应用于食品生产过程中物质的转化;四是工业化生产预定的食品或食品的功能成分。此外,在食品生产相关领域,如食品包装、食品检测等方面,生物技术也得到越来越广泛的应用。随着现代生物技术的迅猛发展,生物技术在食品工业中的应用也日益广泛和深入。它的发展对于解决现存的食物资源短缺问题、丰富食品种类、满足不同消费需求,开发新型功能性食品等均有突出贡献。现以基因工程和酶工程为主要内容,分析生物技术在食品工业中的应用。 [关键词] 生物技术基因工程酶工程食品工业应用 [正文] 现代生物技术在食品中及食品加工制造上的应用,涉及基因工程、细胞工程、发酵工程、酶工程以及现代分子检测技术。其中基因工程技术为核心技术,它能带动其他技术的发展。 基因工程技术是指将外源的核酸分子(目的基因)导入到原来没有这类基因的宿主生物体内,并能持续稳定的繁殖,从而使宿主生物产生新的性状。基因工程的基本程序:①获取所需的目的基因;②把目的基因与选好的载体(如小型环状DNA分子)连接在一起,即重组;③把重组载体转入宿主细胞;④对重组分子进行选择;⑤表达成蛋白,采用合适条件,获得高表达的产品。 自1973年美国斯坦福大学和旧金山大学Coken和Boyer两位科学家成功地实现了DNA分子重组实验,揭开了基因工程发展的序幕,人类有能力按照自己的意愿去操作不同的基因,再接着1982年抗卡那霉素向日葵、1997年克隆羊多莉的诞生...基因工程的兴起和发展,使得转基因生物技术为食品行业的发展注入了新的动力,直接加快了对粮食产量的提高和食品营养的改善,解决了了发展中国家人民的温饱问题。 目前,基因工程在食品工业中的应用主要包括改良食品加工的原料、改良食品微生物菌种性能、应用于食品酶制剂的生产、改良食品加工工艺以及保健食品等。其中,改良食品加工的原料可分为改良动物性食品源和改良植物性食品源。例如为了提高奶牛的产奶量但又不影响奶的质量,可采用基因工程技术生产的牛生长激素BST注射到母牛上,便可达到提高母牛产奶的目的。为了提高猪的瘦肉含量或降低猪脂肪含量,则采用基因重组的猪生长激素,注射至猪上,便可使猪

《发酵工程原理与技术》课程复习提纲及习题集

《发酵工程原理与技术》课程复习提纲及部分知识点 [复习提纲] 什么是发酵?发酵工程的发展历程? 发酵的定义在合适的条件下利用生物细胞内特定的代谢途径转变外界底物生成人类所需目标产物或菌体的过程 自然发酵时期 1.发酵工程的诞生 2.通气搅拌液体深层发酵的建立 3.大规模连续发酵以及代谢调控发酵技术的建立 4.现代发酵工程时期 发酵工业常用的微生物及其特点。 ①细菌:枯草芽孢杆菌、醋酸杆菌、棒状杆菌、短杆菌等②放线菌:链霉菌属、小单胞菌属和诺卡均属③酵母菌:啤酒酵母、假丝酵母、类酵母 4.霉菌 菌种的分离及保藏 一稀释涂布和划线分离法二利用平皿中的生化反应进行分离三组织分离法四通过控制营养和培养条件进行分离 一斜面保藏方法二液体石蜡油保藏法三冷冻干燥保藏法四真空干燥法五液氮超低温保藏法六工程菌的保藏 菌种的退化及复壮 菌种退化是指生产菌种或选育过程中筛选出来的较优良菌株,由于进行转移传代或包藏之后,群体中某些生理特征和形态特征逐渐减退或完全丧失的现象退化的原因主要有基因突变连续传代以及不当的培养和保藏条件 菌种的复壮通过人工选择法从中分离筛选出那些具有优良性状的个体使菌种获得纯化服装的方法一纯种分离二淘汰法三宿主体内复壮法 微生物育种的方法有哪些? 自然育种、诱变育种 培养基的主要成分。 水、碳源、氮源、无机盐、生长因子、 碳源及氮源的种类。 碳源种类:1、糖类2、醇类3、有机酸类4、脂肪类5、烃类6、气体 氮源种类:1、无机氮源 2、有机氮源 培养基的设计的基本原则? 一根据生产菌株的营养特性配制培养基二营养成分的配比恰当三渗透压 4ph 值 发酵工业原料的选择原则 一因地制宜就地取材原料产地离工厂要近,便于运输节省费用 二营养物质的组成比较丰富浓度恰当能满足菌种发育和生长繁殖成大量有生理功能菌丝体的需要更重要的是能显示出产物合成的潜力 三原料资源要丰富容易收集

食品生物技术期末考试试题及答案

食品生物技术试题 甘肃农业大学12级食品质量与安全-李红科 一、单项选择题 1 通过()和酶工程处理废弃物,提高资源的利用率并减少环境污染( A )A发酵工程 B基因工程 C蛋白质工程 D酶工程 2 ()是生物技术在食品原料生产、加工和制造中的应用的一个学科(B) A微生物学 B食品生物技术 C生物技术 D绿色食品 3 在引起食品劣变的因素中(C)起主导作用 A虫害 B物理因素 C微生物 D化学因素 4下列哪些食品保藏方法不属于物理保藏法(B) A脱水干燥保藏法 B熏制保藏法 C冷藏保藏法 D罐藏法 5 细胞工程包括动植物题的体外培养技术、()、细胞反应技术。 A细胞改造 B细胞修饰 C细胞杂交 D细胞衰老 6 自然选育过程中采取土样时主要选择()之间的土壤(B) A 3-10cm B 5-15cm C10-15cm D 10-20cm 7 下列不属于真空冷冻干燥法中冷冻干燥的步骤是(B) A制冷 B高压 C供热 D抽真空 8 食品生产中的危害分析与关键控制点是(D) A GMP B ISO C CCP D HACCP 9 下列不属于纯种分离的常用方法的是(B) A 组织分离法 B 单孢分离法 C 划线分离法 D 稀释分离法 10 下列分离方法具有简单、快速的特点的是(B) A稀释分离法 B划线分离法 C组织分离法 D 单孢分离法11()是采样与生产相近的培养基和培养条件,通过三角瓶的容量进行小型发酵试验,以求得适合于工业生产用菌种(C) A 培养 B 分离 C 筛选 D 鉴定 12 诱变育种是以(C)为基础的育种 A自然突变 B 基因突变 C 诱发突变 D 基因重组 13 在整个诱变育种工作中,工作量最大的是(A) A 筛选 B 分离 C 鉴定 D 培养 14 分子育种是应用()来进行的育种方式(B) A 酶工程 B 基因工程 C 蛋白质工程 D 细胞工程 15 通过基因工程改造后的菌株被称为(B) A“蛋白菌” B“工程菌” C “酶菌” D“细胞菌” 16冷冻保藏的温度一般要求在( C )摄氏度 A 1 B-10 C -20 D-5 17 发酵工业中培养基所使用的碳源中最易利用的糖是(A) A葡萄糖 B蔗糖 C淀粉 D乳糖 18(A)是人工配制的提供微生物或动植物生长、繁殖、代谢和合成人们所需要产物的营养物质和原料。 A培养基 B人工培养基 C合成培养基 D天然培养基 19 在引起肉腐败的细菌中,温度较高时(B)容易发育

发酵工程在环境保护中的应用探讨

发酵工程在环境保护中的应用探讨 环境工程专业李双 自然界存在着丰富的微生物种群,在生物圈物质循环中着重充当分解者的角色。微生物通过发酵作用,可以对物质进行降解与转化。因此,利用微生物发酵工程的原理与技术,净化和处理环境污染物,可以实现废物资源化,提高整体工艺的效益,降低运行成本,同时达到减轻环境污染,保护环境的目的。 发酵工程是生物技术的瓶颈,固态发酵作为发酵工程一个重要的部分,在资源环境应用研究方面取得了重要进展。 1、发酵的概念 发酵是微生物分解有机物,产生乳酸或乙醇和二氧化碳的过程,发酵必须依靠微生物酶的参与,并为微生物提供细胞生命活动所需的能量和各种细胞结构物质。工业上的发酵是泛指一切依靠微生物的生命活动而实现的工业生产过程。 2、发酵的特点 2.1发酵条件温和 发酵过程一般来说都是微生物及其酶作用下的生物化学反应,通常在常温常压下进行,其反应条件也比较简单温和,因此发酵的过程要素条件一般比较容易控制。 2.2发酵原料广泛 发酵所用的原料通常以淀粉、糖蜜或其他农副产品为主,还可以用许多环境中的废弃物,因此发酵原料来源广泛。可以充分利用废水和废物中的有机物作为发酵的原料进行污染物的降解利用和资源化,达到废物资源化和环境保护的目的。 2.3发酵专一性强 发酵过程是通过生物体的自动调节方式来完成的,更确切地讲,是通过微生物的酶来调节的,由于微生物的遗传特性及其酶的专一性,因此,发酵反应的专一性强,因而可以得到较为单—的发酵代谢产物。 2.4发酵的高效性

微生物优良菌种是进行发酵的根本因素,是发酵取得良好效益的关键。通过微生物诱变和菌种筛选,可以获得高产的优良菌株并使生产设备得到充分利用,也可以因此获得按常规方法难以生产的产品,因此发酵具有高效性。 2.5发酵的创新性 随着科学技术的发展和人们对生物技术研究的深入,现代发酵工程除了使用微生物外,还可以用动植物细胞和酶,也可以用人工构建的“工程菌”来进行反应;反应设备也不只是常规的发酵罐,而是以各种各样的生物反应器取而代之,自动化、连续化程度高,使发酵水平在原有基础上有所提高和和创新。 3、发酵工程的原理 发酵的基本原理是单一菌种在培养基中的纯培养,因此优良菌种的选育和发酵过程中对杂菌污染的防治至关重要。优良菌种的选育是发酵取得良好效益的关键,因此必须采取合理的菌种选育方法,获得性能优良稳定的菌种。此外,发酵过程杂菌防治是生产成败的关键,除了必须对设备进行严格消毒处理和空气过滤外,反应必须在无菌条件下进行。无菌操作和无菌概念要贯穿整个发酵过程的始终。 4、发酵工程的应用 微生物发酵技术已经广泛运用于环境保护的多方面,以下重点介绍几项经多年开发,已接近产业化的微生物发酵技术。 4.1亚硫酸盐纸浆废液乙醇发酵 亚硫酸盐纸浆废液中含有较多的木质素和相当数量的糖类,亚硫酸盐纸浆废液经过预处理后,添加N、P,在发酵罐中加入絮状酵母,通入空气搅拌,进行乙醇发酵,可生产乙醇。 4.2酵母循环系统 酵母循环系统是一种利用酵母的新式食品废水处理系统,能有效地处理废水并能回收大量的酵母菌体,从而解决了活性污泥法剩余的污泥问题。与细菌活性污泥系统相比,酵母废水系统的性能大大提高。酵母废水处理系统日处理能力达到10-15BODkg/m3,是细菌法的5-7倍,酵母污泥可在常压下脱水,无需添加药剂。 4.3废纤维素的资源化

现代食品生物技术重点

◆ 生物技术的确切定义: 人们运用现代生物科学,工程学和其他基础学科的知识,按照预先的设计,对生物进行控制和改造或模拟生物及其功能,用来发展商业性加工,产品生产和社会服务的新技术领域。 ◆ 生物技术的构成 ◆ 生物技术各构成成分之间的关系 现代生物技术的核心是基因工程,而现代生物技术的基础和归宿则是发酵工程和酶工程,否则就不能获得产品和经济效益,也就体现不了基因工程和细胞工程的优越性。 基因工程的定义: ▼ 是指按照人们的意愿和设计方案, ▼ 以分子生物学,分子遗传学,生物化学和微生物学为理论基础, ▼ 通过将一种生物细胞的基因分离出来或人工合成新的基因, 在体外进行酶切和连接并插入载体分子构成遗传物质的新组合, ▼ 导入到自身细胞或另一种细胞中进行复制和表达等实验手段, ▼ 有目的的实现动物,植物和微生物等物种之间的DNA 重组和转移, 使现有物种在短时间内趋于完善或创造出新的生物特性。 发酵工程的定义 : 基因工程 细胞工程 发酵工程 酶工程 蛋白质工程

利用微生物的某种特性,通过现代化工程技术手段进行工业规模生产的技术. 包括: ①传统发酵(有时称酿造), ②近代的发酵工业如酒精,如乳酸,丙酮-丁醇等 ③目前新兴的如抗生素,有机酸,氨基酸,酶制剂, 核苷酸,生理活性物质,单细胞蛋白等的发酵生产 酶工程的定义 : 酶工程是利用酶所特有的生物催化性能,将酶学理论与化工技术结合而成的一门生物技术。也就是利用离体酶或者直接利用微生物细胞,动植物细胞,细胞器的特定功能,借助于工程学手段来生产酶制剂并应用于相关行业的一门科学。 细胞工程的定义 : 是利用细胞生物学和分子生物学技术,通过类似于工程学的步骤,在细胞整体水平或细胞器水平上,按照人们的意愿改变细胞内的遗传物质已获得新型生物或特定细胞产品的一门综合性科学技术。 蛋白质工程的定义 : 蛋白质结构和功能的研究为基础,运用遗传工程的方法,借助计算机信息处理技术的支持,从改变或合成基因入手,定向地改造天然蛋白质或设计全新的人工蛋白质使之具有特定的结构、性质和功能,能更好地为人类服务的一种生物技术。 生物技术:农业生物技术、医药生物技术、食品生物技术、海洋生物

浅谈对发酵工程专业的认识

浅谈对发酵工程专业的认识 当今世界是一个快速发展的时代,众所周知,科学技术的进步是经济发展的重要指标。而生物科技是其中的一个重要组成部分。通过微生物的发酵工程构成了生物科技的核心。所谓发酵工程,是以微生物通过上游(分子改造,代谢工程等)、中游(发酵优化,智能控制等)、下游(分离纯化,清洁生产等)各种生物学操作,以得到人们所需要的一系列产品(细胞,代谢产物)的综合性科学。从生物发酵工程角度来说,这一专业的发展与经济全球化存在着相辅相成的关系。即经济的快速发展,推动了发酵工程专业的交流和创新,提供了发酵工程进一步前进的良好平台。发酵工程的应用领域非常广泛,包括农业、工业、医学、药物学、能源、环保、冶金、化工原料、动植物、净化等。它必将对人类社会的政治、经济、军事和生活等方面产生巨大的影响,为世界面临的资源、环境和人类健康等问题的解决提供美好的前景。 1. 发酵工程简介 发酵工程,是指采用现代工程技术手段,利用微生物的某些特定功能,为人类生产有用的产品,或直接把微生物应用于工业生产过程的一种新技术。发酵工程的内容包括菌种的选育、培养基的配制、灭菌、扩大培养和接种、发酵过程和产品的分离提纯等方面。发酵不仅仅体现在食品领域,还存在于医药品、化妆品、能源、环境等领域。因此,发酵对于我们生活的方方面面都有着重要的影响,有光明的应用前景。 对于发酵工程而言,是指利用微生物的生长繁殖和代谢活动来大量生产人们所需要的产品过程的理论和工程技术体系,是生物工程与生物技术科学的重要组成部分。发酵工程也称微生物工程,该技术体系主要包括菌种选育和保藏、菌种的扩大生产、微生物代谢产物的发酵生产和分离纯化制备。进一步可以分为上游、中游和下游。 现代发酵工程的发展,是生物科学与数学、物理学、化学等科学之间相互交叉、渗透和相互促进的结果。发酵工程与有关科学的高度的双向渗透和综合,也已经成为当代生物科学的一个显著特点和发展趋势。 2. 上游领域(分子改造,代谢工程等) 发酵工程的上游领域是整个发酵过程的基础,随着近年来分子生物学的蓬勃发展,系统代谢工程定向改造目的产品生产菌株已经成为发酵领域的发展趋势。因此,上游领域主要集中在分子改造和代谢工程等相关方面。

发酵工程发展现状及趋势

发酵工程发展现状及趋势 引言 发酵工程是生物技术的重要组成部分,是生物技术产业化的重要环节。发酵技术有着悠久的历史,早在几千年前,人们就开始从事酿酒、制酱、制奶酪等生产。作为现代科学概念的微生物发酵工业,是在20世纪40年代随着抗生素工业的兴起而得到迅速发展的,而现代发酵技术又是在传统发酵技术的基础上,结合了现代的基因工程、细胞工程、分子修饰和改造等新技术。由于微生物发酵工业具有投资少、见效快、污染小、外源目的基因易在微生物菌体中高效表达等特点,日益成为全球经济的重要组成部分。 摘要 当前,发酵工程的应用是十分广泛的,在不同的工业领域中都有重要应用,例如医药工业、食品工业、能源工业、化学工业、农业、环境保护等,且随着生物技术的发展,发酵工程的应用领域也在不断扩大。 一、发酵工程在各领域的发展现状 1、医药行业 微生物发酵是生物转化法之一,在中药中早有应用。真菌是发酵中药的主要功能菌。发酵时大都采用单一菌种纯种发酵法。现代中药发酵技术分为液体发酵和固体发酵。中药发酵技术按应用方式可分为无渣式和去渣式,前者可直接用药,后者要提取和制剂用药。发展发酵中药可进一步推进中药现代化和国际化进程,提高中药行业的竞争力,为中药走向世界、造福人类作出新的贡献。 2、食品工业 现代化生物技术的突飞猛进,改写了食品发酵工艺的历史。据报道,由发酵工程贡献的产品可占食品工业总销售额的15%以上。目前利用微生物发酵法可以生产近20种氨基酸。该法较蛋白质水解和化学合成法生产成本低,工艺简单,且全部具有光学活性。 3、能源工业 乙醇作为一种生产工艺成熟,生产原料来源广泛的替代能源越来越受到人们的关注。燃料酒精不仅可以缓解能源短缺的问题,从长远的利益和能源的可再生性来看,燃料酒精又是一种潜力巨大的物能源。酒精发酵的方式有间歇式发酵、半连续式发酵和连续发酵。

发酵工程原理期末复习

发酵工程原理期末复习 一 1、微生物的无氧呼吸称发酵 2、现代发酵工程:是将现代DNA重组及细胞融合技术、酶工程技术、组学及代谢网络调控技术、过程工程优化技术等新技术与传统发酵工程融合,大大提高传统发酵技术水平,拓展传统发酵应用领域和产品范围的一种现代工业生物技术体系。强调现代生物技术、控制技术和装备技术在发酵工业领域的集成应用。 3、发酵工程在生物技术中的地位:发酵工程是生物技术的基础,是生物技术产业的核心。 4、广义发酵工程对生物学和工程学的要求: 上游技术:优良种株的选育和保藏(包括菌种筛选、改造,菌种代谢路径改造等), 中游技术:发酵过程控制,主要包括发酵条件的调控,无菌环境的控制,过程分 析和控制等 下游技术: 分离和纯化产品。包括固液分离技术、细胞破壁技术、产物纯化 技术,以及产品检验和包装技术等 5、日常发酵产品:酒、酒精、醋、啤酒、干酪、酸乳等 6、以高产量、高转化率和高效率及低成本为目标的发酵过程优化技术: 高产量:微生物生理、遗传、营养及环境因素 高转化率:微生物代谢途径和过程条件 高效率:微生物反应动力学和系统优化 低成本:技术综合及产业化技术集成 7.发酵工程技术:分子层次,生物催化→催化剂发现/改造 细胞层次,细胞工厂→代谢工程 过程层次,过程优化→单元放大/耦合/集成/优化 8.发酵工业的范围:①微生物菌体 ②酶制剂 ③代谢产物 ④生物转化 ⑤微生物特殊机能的利用 利用微生物消除环境污染 利用微生物发酵保持生态平衡 微生物湿法冶金 利用基因工程菌株开拓发酵工程新领域 9、新的菌体发酵产品: 茯苓菌→茯苓 担子真菌→灵芝、香菇类 虫草头孢菌 密环菌 二、1.发酵工业对菌种的要求:1)能在价廉原料制备的培养基上迅速生长并生成所需代谢产物,且产量高2).培养条件易于控制, 3)生长迅速,发酵周期短, 4)满足代谢控制的要求 5)抗噬菌体和杂菌的能力强 6)遗传性状稳定,菌种不易变异退化 7)在发酵过程中产生的泡沫少,这对装料系数,提高单罐产量,降低成本有重要意义

(建筑工程管理)第五章第三节发酵工程简介

(建筑工程管理)第五章第三节发酵工程简介

第五章第三节发酵工程简介 教学目标 1.知识方面 (1)发酵工程的概念(知道)。 (2)发酵工程中培养基的配制、菌种选育、灭菌、扩大培养和接种、发酵过程和产品的分离、提纯等相关内容(知道)。 (3)有关发酵工程在医药工业和食品工业中应用的内容(知道)。 2.态度观念方面 (1)通过学习发酵工程的有关内容,培养学生理论联系实际的科学态度。 (2)通过学习有关发酵工程在医药工业和食品工业中应用的知识激发学生学习生物学的兴趣,提高学生把所学知识转化为技术,且服务于社会的STS意识。 3.能力方面 通过对发酵过程中菌种选育、发酵条件控制等相关内容的讨论,培养学生综合运用知识去解决实际问题的能力。 重点、难点分析 1.教学重点: (1)通过对谷氨酸发酵实例的分析、讨论,使学生了解发酵工程的概念,了解菌种选育、培养基的配制、灭菌、扩大培养和接种、发酵过程和产品的分离、提纯等内容是本节的重点。(2)让学生收集有关发酵工程应用的资料,且相互交流、讨论,使学生了解发酵工程在医药工业、食品工业中的应用知识也是本节的教学重点之壹。 2.教学难点: 有关发酵工程的内容是本节教学的难点,因为这些内容中涉及了细胞工程、基因工程、杂菌污染对发酵工业造成的危害以及发酵条件对菌种代谢途径的影响等多点知识,比较繁杂,学生较难理解。 教学模式 启发讲解和学生讨论相结合。 教学手段 谷氨酸棒状杆菌合成谷氨酸的代谢途径及发酵的的示意图的投影片,影响谷氨酸代谢途径的因素表格及谷氨酸发酵所用培养基的成分的表格。 课时安排二课时。 设计思路 1.前期知识准备: (1)复习有关谷氨酸棒状杆菌合成谷氨酸的途径及其人工控制的内容。 (2)复习有关微生物群体生长的规律及影响微生物生长的环境因素的内容。 (3)复习有关微生物的营养、培养基、代谢产物等内容。 2.通过讨论谷氨酸发酵过程,使学生了解从菌种选育、培养基配制到产品生成等简要的发酵生产过程,了解发酵生产的主体设备发酵罐及其控制部分,且了解发酵工程的概念。3.通过分析、讨论有关发酵过程的内容,使学生了解培养基的配制、菌种选育、灭菌、扩大培养接种、发酵过程和产品的分离、提纯等相关知识。 4.通过学生讨论、交流等活动,总结出发酵工程在医药工业和食品工业上的应用的知识。第壹课时 壹、设疑引出新课题 前面我们学习了有关微生物的代谢的内容,我们知道了微生物的代谢是指微生物细胞内所发生的全部的化学反应。在微生物的代谢过程中,会产生多种多样的代谢产物,如氨基酸、维

发酵工程在食品领域中的应用

发酵工程在食品领域的应用 摘要:传统的发酵工程是以非纯种微生物进行的自然发酵,或以纯种微生物进行的工业化发酵。现代发酵工程作为现代生物技术的重要组成部分,具有广阔应用前景。本文以下将介绍微生物发酵在新食品的配料、食品添加剂、功能性食品的开发等相关的食品领域中的应用以及对发酵工程在食品领域的应用做了展望。 关键词:发酵工程;食品领域;应用 发酵工程在食品领域的应用广泛。如啤酒是用大麦芽和酒花经啤酒酵母发酵而成。酒类饮料生产中常以谷物或水果味原料经不同的微生物(酵母菌、曲霉等)发酵,加工制成不同的酒。酸奶是在鲜奶里加入了乳酸菌经发酵而成。醋是利用米、麦、高粱等淀粉原料或直接用酒精接入醋酸杆菌发酵加工而成。酱是利用麦、麸皮、大豆等原料经多种微生物(曲霉、酵母菌和细菌)的协同作用制成。现代发酵工程包括微生物资源开发利用;微生物菌种的选育、培养;固定化细胞技术;生物反应器设计;发酵条件的利用及自动化控制;产品的分离提纯等技术。 1、生产传统的发酵产品 传统的发酵产品是指传统食品发展中一直存在的应用发酵技术的食品,如料酒、酱油、酒精等。在传统食品的生产中,发酵技术是生产过程中的核心部分。发酵技术的是否成熟,时刻关系到产品的好坏[1]。 1.1酒类酿造 酒类主要是酿造酒和蒸馏酒。原料经发酵后,不需再蒸馏而可直接饮用的酒称为酿造酒,如啤酒、葡萄酒、黄酒、日本清酒、果酒等。将发酵液或酒酿经过蒸馏得到蒸馏酒,如白酒、白兰地、威士忌、朗姆、伏特加等。传统的发酵方法在时间上较长,无法有效地满足啤酒厂家在现阶段啤酒生产的实际需求。但利用固定化酵母的连续发酵工艺,可有效地减少啤酒所需要发酵的实际时间。 1.2调味品生产 运用发酵工艺可以生产酱油、酱品、豆腐乳、豆豉、醋等调味品[2]。现阶段,发酵工艺也有很大提高,发酵工程在我国的酱油、酱类、豆腐乳等传统的制造行业中得到广泛应用。发酵工程最大的一个优点是可有效地缩短发酵的周期,大大地提升原料的利用率,并在一定程度上提高相关产品的品质[3]。 2、食品添加剂的生产 发酵工程在食品的发酵过程中能生产出天然色素和天然香味型剂,这些天然色素和天然香味型剂可以取代人工合成色素与味精,是未来食品添加剂发展的方向。现在市面上常见的各种食用色素以及香料等都是通过发酵工程技术而生产的食品添加剂[4]。江苏化工学院全易等[5]自制得选择性优良且价廉的糖化酶和异淀粉酶,生产出低甜度、低热量、高粘度、不被微生物发酵的甜味麦芽糖醇。食品防腐剂枯草芽孢杆菌是一种非致病型细菌,在生产代谢过程中产生的抗菌肽,可抑制食品中真菌、细菌、酵母菌的生长,且无毒、无残留、抑菌效果显著、无耐药性[6]。 3、功能性食品的开发 我们不仅需要将药用的天然真菌直接作用至功能性食品的开发上,而且还需要批量的生

食品生物技术(复习专用)

一、名词解释 1、基因:是具有遗传效应的DNA片段。 2、质粒:质粒存在于许多细菌以及酵母菌等生物中,是细胞染色体外能够自主复制的很小的环状DNA分子。 3、限制酶:是可以识别特定的核苷酸序列,并在每条链中特定部位的两个核苷酸之间的磷酸二酯键进行切割的一类酶 4、基因工程:又称基因拼接技术和DNA重组技术,是以分子遗传学为理论基础,以分子生物学和微生物学的现代方法为手段,将不同来源的基因按预先设计的蓝图,在体外构建杂种DNA分子,然后导入活细胞,以改变生物原有的遗传特性、获得新品种、生产新产品。 5、酶工程:是指工业上有目的的设置一定的反应器和反应条件,利用酶的催化功能,在一定条件下催化化学反应,生产人类需要的产品或服务于其它目的的一门应用技术。 6、末端转移酶:是一种无需模板的DNA聚合酶,催化脱氧核苷酸结合到DNA 分子的3'羟基端。 7、葡萄糖淀粉酶:又称糖化酶。它能把淀粉从非还原性未端水解a-1.4葡萄糖苷键产生葡萄糖,也能缓慢水解a-1.6葡萄糖苷键,转化为葡萄糖。同时也能水解糊精,糖原的非还原末端释放β-D-葡萄糖。 8、相对酶活力:具有相同酶蛋白量的固定化酶与游离酶活力的比值称为相对酶活力。 9、α-淀粉酶:可以水解淀粉内部的α-1,4-糖苷键,水解产物为糊精、低聚糖和单糖,酶作用后可使糊化淀粉的黏度迅速降低,变成液化淀粉,故又称为液化淀粉酶、液化酶、α-1,4-糊精酶。 10、甲基化酶:作为限制与修饰系统中的一员,用于保护宿主DNA 不被相应的限制酶所切割。 11、葡萄糖异构酶:也称木糖异构酶,能将D-葡萄糖、D-木糖、D-核糖等醛糖可逆地转化为相应的酮糖。 12、发酵工程:是指采用现代工程技术手段,利用微生物的某些特定功能,为人类生产有用的产品,或直接把微生物应用于工业生产过程的一种新技术。13、补料分批发酵:又称“流加发酵”,是指在微生物分批发酵过程中,以某种方式向发酵系统中补加一定物料,但并不连续地向外放出发酵液的发酵技术,是介

发酵工程原理知识点总结

1、发酵:通过微生物的生长繁殖和代谢活动,产生和积累人们所需产品的生物反应过程。 2、发酵工程:利用微生物的生长繁殖和代谢活动来大量生产人们所需产品过程的理论和工程技术体系,它是生物工程和生物技术学科的重要组成部分,又叫微生物工程 3、发酵工程技术的发展史: ①1900年以前——自然发酵阶段 ②1900—1940——纯培养技术的建立(第一个转折点) ③1940—1950——通气搅拌纯培养发酵技术的建立(第二个转折点) ④1950—1960——代谢控制发酵技术的建立(第三个转折点) ⑤1960—1970——开发发酵原料时期(石油发酵时期) ⑥1970年以后——进入基因工程菌发酵时期以及细胞大规模培养技术的全面发展 4、工业发酵的类型: ①按微生物对氧的不同需求:厌氧发酵、需氧发酵、兼性厌氧发酵 ②按培养基的物理性状:固体发酵、液体发酵 ③按发酵工艺流程:分批发酵、补料发酵、连续发酵5、发酵生产的流程:(重要) ①用作种子扩大培养及发酵生产的各 种培养基的制备 ②培养基、发酵罐及其附属设备的灭菌 ③扩大培养有活性的适量纯种,以一 定比例将菌种接入发酵罐中 ④控制最适的发酵条件使微生物生长并 形成大料的代谢产物 ⑤将产物提取并精制,以得到合格的产 品 ⑥回收或处理发酵过程中所产生的三废 物质 6、常用的工业微生物: ①细菌:枯草芽孢杆菌、醋酸杆菌、 棒状杆菌、短杆菌等 ②放线菌:链霉菌属、小单胞菌属和 诺卡均属 ③酵母菌:啤酒酵母、假丝酵母、类 酵母 7、未培养微生物:指迄今所采用的微生 物纯培养分离及培养方法还未获得纯培 养的微生物 8、rRNA序列分析:通过比较各类原核生 物的16S和真核生物的18S的基因序列, 从序列差异计算它们之间的进化距离,从 而绘制进化树。 选用16S和18S的原因是:它们为原 核和真核所特有,其功能同源且较为古 老,既含有保守序列又含有可变序列,分 子大小适合操作,它的序列变化与进化距 离相适应。 9、菌种选育改良的具体目标: ①提高目标产物的产量 ②提高目标产物的纯度 ③改良菌种性状,改善发酵过程 ④改变生物合成途径,以获得高产的 新产品 10、发酵工业菌种改良方法: ①常规育种:诱变和筛选,最常用。 关键是用物理、化学或生物的方法修改目 的微生物的基因组,产生突变。 ②细胞工程育种:杂交育种和原生质 体融合育种 ③代谢工程育种:组成型突变株的选 育、抗分解调节突变株的选育、营养缺陷 型在代谢调节育种中的应用、抗反馈调节 突变株的选育、细胞膜透性突变株的选育 ④基因工程育种:原核表达系统、真 核表达系统 ⑤蛋白质工程育种:定点突变技术、 定向进化技术 ⑥代谢工程育种:改变代谢途径、扩 展代谢途径 ⑦组成生物合成育种:通过合成化合 物库进行高效率的筛选 ⑧反向生物工程育种:希望表型的确

发酵工程在农产品加工上的应用

杨淑芳 (天津市农业信息中心,天津 300201) 摘 要: 发酵工程技术在农产品加工方面的应用越来越广泛,该文阐述了发酵工程的概念;论述了发酵工程在农产品加工方面的应用,提出了与生产实践相结合的实例;展望了发酵工程技术在农产品加工领域中的美好发展前景。 关键词:发酵工程;农产品加工 收稿日期:2008-04-03 作者简介:杨淑芳(1956-),女,高级工程师,研究方向为农业信息。 发酵工程是现代生物技术的组成部分,是采用现代发酵设备,使经优选的细胞或经现代技术改造的菌株进行放大培养和控制性发酵,获得工业化生产预定的产品。基因工程和细胞工程是生物技术的主要领域,是发酵工程、酶工程的基础;发酵工程和酶工程又是基因工程、细胞工程研究成果的实际应用,其中发酵工程占有重要位置。从生物工程的过程看,只有通过发酵工程,才能使由基因工程或细胞工程获得的某种目的菌种实现工业化生产,获得经济效益。可见,发酵工程是生物技术产业化的基础。生物技术中的基因工程、酶工程、单克隆抗体、生物量的转化等研究成果为发酵工程注入新的内容,使传统的发酵工艺焕发“青春”,赋予微生物发酵技术新的生命力,使微生物发酵制品不断增加,也使发酵工 程在制药业、食品工业和农产品加工业显示出强大的生命力。该文主要介绍发酵工程在农产品加工方面的应用。 1 发酵工程在甜高粱茎秆加工上的应用 随着经济和社会的高速发展,能源的需求量越来越大。在国际国内石油价格不断上涨的情况下,世界各国都在积极探索利用可再生能源发展可再生的石油替代燃料。甜高粱茎秆发酵制取燃料乙醇是目前生物质能领域的研究热点之一。试验研究表明,甜高梁每年的乙醇产量为6106L/hm2,而号称太阳能最有效转化器的甘蔗只有4680L/hm2,玉米为2390L/hm2。甜高梁光合效率为大豆、甜菜和小麦等作物的2 ̄3倍。在生物能源系统中,甜高粱是第一位竞争者,是世界公认的高能作物。甜高粱同普通高粱一样,每亩地也能产出200 ̄500kg的粮食籽粒,但甜高粱的精华在于它亩产4000 ̄5000kg、富含18% ̄24%糖分的茎秆。巴西政府自1975年开始用甜高粱发酵生产酒精,并提出一项以甘蔗、木薯、红薯、甜高粱为原料发酵生产酒精替代汽油的计划。美国从1978年开始进行甜高粱发酵生产酒精的研究,美国能源部还将甜高梁列为制取酒精的主要作物,他们计划用甜高粱逐渐取代玉米生产酒精。从1982年开始,欧洲开展了甜高梁的研究,首先估价了甜高粱作为一种有潜力的工业和能源作物的可能性,并于1991年在欧共体内成立了甜高粱网,在不同国家分工开展甜高梁研究。Wyman [1]就中国北方的 发酵工程在农产品加工上的应用

发酵工程原理课程标准

发酵工程原理课程标准 濮阳职业技术学院刘殿锋 一、课程的基本要素 1、课程性质 本课程是应用生物技术专业的必修专业课之一;是一门综合性学科,涉及的知识面广,同时又是一门基础理论与生产实际相结合的课程;本课程是在《微生物学》、《生物化学》、、《分子生物学与基因工程》等课程基础上开设的;对于同时开设的《生物技术概论》、《生物工程设备》等课程与本课程有着密切的联系,同时又有适当的分工,本课程以讲授发酵工艺的基本原理为主;在本课程基础上使学生更好地理解和掌握《发酵分析》、《发酵工厂设计概论》、《发酵工艺》、《生物分离与纯化技术》等后续课程。 2、课程的基本理念 该课程面向应用生物技术专业,使学生掌握各种发酵工艺的基本原理,重点突出生产工艺操作及过程控制等方面的实际问题,并了解发酵工程技术前沿动态。 3、课程的设计思路 本课程在设计过程中,注重工学结合教学模式的改革,校企专家共同参与教学过程与评价过程,以“四个结合”作保障,即教学内容――校企结合、教师队伍――专兼结合、教学环境――工学结合、教学方法――理实结合,从根本上改变本课程教学从“理论到理论、从课堂到课堂、从知识到知识”的陈旧的教学模式。 二、课程的目标 1、知识目标 通过本课程的学习,使学生掌握发酵工程的典型过程及其基本原理、基本技术以及基本实验操作技能,了解该学科的发展方向。 2、能力目标 通过本课程的学习,使学生能够理论联系实际去分析和解决有关发酵工程中的具体问题。 3、素质目标

通过本课程的学习,培养出的学生能够理论联系实际地在发酵企业分析实际技术问题,并能因地制宜处理这些问题的能力,可以胜任生物技术产业中新产品和新工艺的开发,生产工艺过程技术管理和高技术生产岗位的实际技术工作。 三、课程内容的组织 课程内容的组织以就业为导向,以能力为本位,以发酵工艺项目为驱动,结合发酵企业生产实际,以发酵工程中的典型单元操作为中心构建课程内容,其理论知识的选取紧紧围绕发酵企业生产实际的需要来进行。 四、课程实施意见 1、学时安排 第一章绪论(2学时): 了解生物技术的知识和生物产品生产的基本过程;了解发酵的一般概念;了解发酵工程的应用范围、特点、发展简史及发展趋势;发酵工艺的一般培养方法及过程。 第二章生产菌种的选育(10学时): 了解生物活性物质产生菌的筛选方法与过程,掌握自然育种、诱变育种、杂交育种、原生质体融合技术育种及基因重组技术育种的原理与方法。 第三章培养基(8学时): 了解发酵生产培养基的组成成份及其在发酵中的作用;掌握影响培养基质量的因素及控制措施。 第四章灭菌(6学时): 了解灭菌的概念及方法;掌握微生物热死动力学;掌握影响灭菌效果的因素及控制方法;重点掌握分批灭菌和连续灭菌的工艺过程及操作要点。 了解无菌空气质量标准、制备方法;掌握空气介质过滤除菌的工艺过程及影响无菌空气质量的因素。 第五章生产菌种的扩大培养与保藏(6学时): 了解生产菌种制备的一般流程;掌握各生产菌种制备的工艺流程及操作要点;掌握影响种子质量的因素及其控制方法;掌握菌种保藏的原理及方法。 第六章发酵动力学(8学时): 掌握分批培养、补料分批培养和连续培养的基础理论、操作特点、动力学模

[高三理化生]发酵工程学案

23讲发酵工程简介 一、应用发酵工程的生产实例 1.谷氨酸的产生菌有_________________、__________________ 。 2.所使用的培养基从物理性质上看属于_________ 培养基,从组成成分上看属于_____________培养基。 3、发酵罐搅拌器的作用: 二、发酵工程的概念和内容 (一)发酵工程的概念:采用现代工程技术手段,利用微生物的某些特定功能,为人类生产有用产品或直接把微生物应用于工业生产过程的新技术。 (二)发酵工程的内容 1.菌种的选育:生产用菌种的获得方法有____________________________ 2.培养基的配制: 3.灭菌:防止杂菌污染的方法是在发酵前用高温、高压的方式对__________和_______ 进行严格的灭菌处理,从而杀死所有杂菌的_____ 、________和________。 若青霉素生产过程中出现杂菌污染,结果是什么 4.扩大培养和接种: 注:扩大培养是将培养到对数期的菌种分开,在分别培养,以促进菌体数量快速增加,在短时间内获得大量菌种;发酵生产过程的培养是为了获得代谢产物;它们培养目的不同,条件也就可能不同:如酒精发酵过程中,在有氧条件下快速增殖,就是说酵母菌扩大培养必须有充足的氧气;酵母菌在无氧的条件下才能产生酒精,所以酒精发酵的条件必须缺氧。 5.发酵过程——发酵的中心阶段,此阶段的主要工作有: (1)随时取样检测培养液中的________________——了解发酵进程; (2)及时添加必需的___________________——延长菌种生长稳定期的时间; (3)严格控制_________ 、______________、____________以及通气量和转速等发酵条件。在谷氨酸发酵过程中ph值的变化对产物的影响是什么 6.分离提纯: 两类产物: 提取方法是什么: 三、发酵工程的应用 1.在医药工业上的应用: (1)发酵工程能生产人们所需要的药品。如:通过青霉发酵能生产。(2)通过发酵工程能生产基因药品。如:将人工合成的人的胰岛素基因转移到大肠杆菌细胞内构建成“工程菌”,即先通过______工程再通过________ 工程培养工程菌就可获得人的胰岛素。 2.在食品工业上的应用:(1)生产丰富优质的传统发酵产品;(2)生产各式各样的食品添加剂;(3)发酵工程能为解决人类粮食缺问题开辟新途径。如通过发酵工程可获得大量的微生物菌体 四、课后练习 1.对谷氨酸发酵叙述正确的是 A.菌体是异氧厌氧型微生物B.培养基属于液态的合成培养基 C.谷氨酸的形成与搅拌速度无关D.产物可用离子交换法提取 2.关于菌种的选育不正确的是 A.自然选育的菌种不经过人工处理B.诱变育种原理的基础是基因突变 C.通过有性杂交可形成工程细胞D.采用基因工程的方法可构建工程菌 3.用于谷氨酸发酵的培养基需添加的生长因子是 A.氨基酸B.碱基C.核苷酸D.生物素 4.谷氨酸棒状杆菌扩大培养时,培养基应该是 A.C∶N为4∶1 B.C∶N为3∶1 C.隔绝空气D.加大氮源、碳源的比例 5.大量生产酵母菌时,不正确的措施是 A.隔绝空气B.在对数有获得菌种 C.过滤沉淀进行分离D.使菌体生长长期处于稳定期 6.连续培养酵母菌的措施中不正确的是 A.及时补充营养物质B.以青霉素杀灭细菌 C.以缓冲液控制pH在5.0-6.0之间D.以酒精浓度测定生长状况 7.用发酵工程生产的产品,如果是菌体,则进行分离提纯可采用的方法是 A.蒸馏过滤B.过滤沉淀C.萃取离子D.沉淀萃取 8.下列物质中,不能为异养生物作碳源的是 A.蛋白胨B.含碳有机物C.含碳无机物D.石油、花生饼 9.培养生产青霉素的高产青霉素菌株的方法是 A.细胞工程B.基因工程 C.人工诱变D.人工诱变和基因工程 10.以下发酵产品中不属于微生物代谢产物的是 A.味精B.啤酒C.“人造肉”D.人生长激素 11.利用酵母菌发酵生产酒精时,投放的最适原料和产生酒精阶段要控制的必要条件是A.玉米粉和有氧B.大豆粉和有氧C.玉米粉和无氧D.大豆粉和无氧 12.关于单细胞蛋白叙述正确的是 A.是微生物细胞中提取的蛋白质B.通过发酵生产的微生物菌体 C.是微生物细胞分泌的抗生素D.单细胞蛋白不能作为食品 13.基因工程培育的工程菌通过发酵工程生产的产品有①石油、②人生长激素、③紫草素、④

食品生物技术选择题(含答案)

食品生物技术选择题 第一章绪论(10) 1.第一次绿色革命,解决了人类社会因人口增加造成的食物短缺,哪种学科的产生和发展 为此做出了巨大贡献?( B ) A.基因学说 B.遗传育种学 C.纯种培养技术 D.乳糖操纵子学说 2. 食品生物技术是现代生物技术在食品领域中的应用,那么食品生物技术的核心和基础是( C )。 A. 细胞工程 B. 酶工程 C. 基因工程 D. 蛋白质工程 3. 下列有关细胞工程、发酵工程、基因工程说法错误的是( D )。 A. 现代细胞工程就是对经过基因工程改造的组织进行细胞培养和细胞融合 B. 现代细胞工程不再是传统意义上组织培养技术 C. 现代发酵工程所采用的菌株是通过基因工程获得的高效表达菌株 D. 通过基因工程获得的高效表达菌株可能是微生物的产物、也可能产生于动植物基因,但 不可能来自人的基因。 4. 下列哪项不属于基因工程技术在食品领域中的应用( D )。 A. 利用基因工程技术可以设计出具有免疫功能性食品 B. 利用基因工程技术可以设计出增加维生素的食品 C. 利用基因工程技术可以设计出调节人体代谢的食品 D. 中国传统酒文化中的食品酒也是利用基因工程技术设计出来的。 5. 随着人们生活水平的提高,对奶酪的需求将越来越大,下列哪种酶与奶酪的生产密切相关( B )。 A. 淀粉酶 B. 木瓜蛋白酶 C 纤维素酶 D. 葡萄糖氧化酶 1. 在生物技术发展中的重大历史事件中,下列哪件开创了现代生物技术产业发展的新纪元( B )。 A 应用动物胚胎移植技术进行牛胚胎移植 B. 应用重组DNA技术进行新药的开发 C. 应用重组人胰岛素技术治疗糖尿病 D. 利用基因工程菌生产凝乳酶 2. 在现代生物技术的研究和应用方面,最具活力、研究得最多、发展最快的领域是( D )。 A. 农业领域 B. 食品工业领域 C. 现代检测技术领域 D. 生物制药和医药领域

《发酵工程课程设计》指导书

《发酵工程课程设计》 实习指导书 主编:邵威平 甘肃农业大学 食品科学与工程学院 二OO七年八月

前言 《发酵工程课程设计》是生物工程专业的一门实用性和技术性很强的专业课程,属于专业实践教学环节。通过这个实习环节的学习和锻炼,使学生在掌握了生物工程专业基础理论、专业理论和专业知识的基础上,初步掌握发酵工程工厂设计的基本原则、发酵工艺参数的设计及检测方法的建立,培养学生具备发酵工厂工艺、工程设计的能力,使学生得到生物工程专业技术人员的综合性基本训练。 本指导书主要叙述了课程设计的目的与要求、课程设计的任务、课程设计的内容、课程设计报告的要求、考核方法与评分办法等内容,其中课程设计的内容为本书重点,阐明了啤酒、酒精、味精和酶制剂工厂设计要求等指导性内容。 编写本指导书的目的,旨在指导学生掌握微生物发酵工厂设计工作的原理、步骤和方法,培养正确的辨证的工程设计观点,提高综合运用专业理论与基础理论知识及技能,分析解决发酵工程实际问题的能力。 尽管作者力图在编写过程中注重系统性、实践性和指导性,但限于作者能力和水平,书中难免存在纰漏和不足,望读者批评指正。

目录 一、课程设计的目的与要求 (3) 二、课程设计的任务 (4) (一)课程设计的基本环节 (4) (二)课程设计具体任务 (4) 三、课程设计的内容 (6) (一)啤酒发酵车间(工厂)设计 (6) (二)酒精发酵车间(工厂)设计 (8) (三)味精发酵车间(工厂)设计 (10) (四)糖化酶发酵车间(工厂)设计 (14) (五)其他参考选题 (15) 四、课程设计报告要求 (16) 五、考核方法与评分办法 (18) 六、参考资料 (19) 附一:课程设计报告撰写指南 (20) 附二:课程设计报告样式与格式规范要求 (23)

食品生物技术汇总

基因工程 1. 基因工程的DNA聚合酶有几类主要有哪些活性 (1)依赖于DNA的DNA聚合酶:大肠杆菌DNA聚合酶Ⅰ(全酶);大肠杆菌DNA聚合酶Ⅰ大片段(Klenow片段)、耐热的DNA聚合酶(Taq DNA聚合酶)等。 大肠杆菌DNA聚合酶Ⅰ(全酶)具有三种活性:①5’→3’DNA聚合酶活性,以单链DNA为模板,以带3’自由羟基的DNA片段为引物;②5’→3’外切核酸酶活性,从5’端既降解双链DNA,也降解RNA-DNA杂交体中的RNA链(RNA酶H活性);③3’→5’外切核酸酶活性,底物为带3’自由羟基的双链DNA或单链DNA。主要用于:①以切刻平移法标记DNA;②对DNA 分子的3’突出尾进行末端标记。 大肠杆菌DNA聚合酶Ⅰ大片段(Klenow片段)5’→3’DNA聚合酶活性,以单链DNA为模板,以带3’自由羟基的DNA片段为引物。3’→5’外切核酸酶活性,底物为带3’自由羟基的双链DNA或单链DNA。 Taq DNA聚合酶具有一种活性:5’→3’DNA聚合酶活性,以单链DNA为模板,以带3’自由羟基的DNA片段为引物。 主要用于:①对DNA进行测序;②通过聚合酶链式反应对DNA分子的特定序列进行体外扩增。 (2)依赖于RNA的DNA聚合酶(即逆转录酶): 优先以RNA为模板,也可以DNA为模板。逆转录酶能以RNA为模板催化合成双链DNA。 : 逆转录酶(依赖于RNA的DNA聚合酶)具有两种活性:①5’→3’DNA聚合酶活性,以RNA 或者DNA为模板,以带3’自由羟基的RNA或DNA片段为引物;②RNA酶H活性,即5’→3’外切核糖核酸酶活性,特异地降解RNA-DNA杂交体中的RNA。 逆转录酶无3’→5’外切核酸酶活性,即无校对功能,其催化的聚合反应容易出错。 (3)末端脱氧核苷酸转移酶(简称末端转移酶):不以DNA或RNA为模板,只是将核苷酸加到已有DNA分子的末端。 末端脱氧核苷酸转移酶(末端转移酶)具有一种活性:即末端转移酶活性,在二价阳离子存在下,其催化dNTP加于DNA分子的3’-羟基端。主要用于:①给载体DNA或cDNA加上互补的同聚尾; ②以32P标记的一种dNTP或一种rNTP来标记DNA片段的3’端。 2. 基因工程的大肠杆菌载体有哪些,各有什么特点 3. 琼脂糖凝胶电泳的原理有什么特点 、 基本原理:在生理条件下,核酸分子之间糖-磷酸骨架中的磷酸基团呈离子化状态。当核酸分子被放置在电场中时,它们会向正电极方向迁移。由于糖-磷酸骨架在结构上的重复性质,相同数量双链DNA几乎具有等量的净电荷,因此,它们能以同样的速度向正电极方向移动,即电泳的迁移率,取决于核酸分子自身的大小和构型。 特点:(1)琼脂糖是一种线性多糖聚合物,当其加热到沸点冷却凝固会形成良好的电泳介质,其密度由琼脂糖的浓度决定;(2)经过化学修饰的低熔点(LMP)的琼脂糖,在结构上比较脆弱,低温下熔化,可用于DNA片段的制备电泳。LMP可不经过电洗脱或破碎凝胶,用来回收DNA分子;(3)无毒,凝胶过程中不需要催化剂、加速剂,不会发生自由基聚合;(4)分辨率: ~50kb。

相关主题
文本预览
相关文档 最新文档