当前位置:文档之家› 三坐标测量实验

三坐标测量实验

三坐标测量实验
三坐标测量实验

三坐标测量实验报告

实验一快速综合检验

一、实验要求:

1.根据教具给定测量需求确定测量方案

2.对各几何要素尺寸,误差进行检测

3.给出AUTOCAD三维视图(包括尺寸及形位误差标注)

二、实验方案

零件的具体结构确定:

①确定各几何元素所须输出的参数项目

测量课件的大致轮廓为方形,主要几何元素为平面,圆柱,圆柱孔和阶梯孔。因此可选择测量件的三个垂直面建立空间直角坐标系。需要测量的主要位置误差元素为同轴度。

②测头标定

测量元素包括垂直方向的圆柱及水平方向的圆柱,因此需要标定垂直方向与水平面四个方向。

③根据零件确定测量基准

选定模型的1,2,3面(如下页pro/e模型图所标注的面)为坐标系的三个基准面建立直角坐标系,并以1,2,3面作为测量基准。

三、实验步骤

1.开机

首先打开空气压缩机储气罐排水阀排水,然后依次开启空压机、冷干机和测量机气源,检查气压是否在0.4~0.5Mpa范围之内,如果不在此范围内则可通过气源调节阀调节。再依次接通交流稳压电源、UPS电源、控制系统电源和计算机电源,启动 WTUTOR测量程序,屏幕出现SOI页面。依次单击“电源”、“初始化”键,机器完成通讯和坐标初始化。

2.测量预备操作

①测头标定。在工作台上安装固定的基准球,标定测头。

②取下标准球,将测量课件水平摆放在工作台上,根据测量方案选取的三个相

互垂直的面建立空间直角坐标系。

3.测量操作

根据标定的几何元素进行直接测量、构造、元素间关系的计算、位置误差的检测、几何形状扫描等方法测出所需参数。保存好测量的数据,测得数据见下页数据处理与CAD图形构建。

4.几何元素的计算

打开“程序区”,调入参考坐标系及测量数据,选择“关系”,计算构建三维数据模型所需要的几何元素间的位置关系,并计算形位误差。

5.关机

完成以上各步骤后,整个测量过程也就结束了。三坐标测量机的关机顺序与开机顺序相反。即首先“初始化”使测头停止在安全位置,其次关闭WTUTOR 测量程序,再依次关闭计算机电源、控制系统电源、UPS电源、交流稳压电源,最后关闭气源系统。

四、实验结果

1.根据测量数据构建proe三维数据模型如下图所示

2.画工程图

由pro/e模型绘制工程图,标注尺寸,公差以及形位误差。(工程图见附页)

实验二轮廓反求(曲面)

一、实验要求:

1.根据教具通过三坐标机测量数据,并通过三维软件构建空间曲面;

2.与几何模型进行比较,分析拟合误差;

二、实验方案

1.空间坐标系的建立

由叶片一端的伸出轴建立空间坐标系的x轴,以轴上平面的法向为z轴,以伸出轴在叶片侧面的投影(空间圆)与伸出轴的交点为坐标系原点建立空间直角坐标系。

2.测头标定

测量件水平放置,只需进行垂直方向的标定。

3.测量方案

调用自动测量程序,给定步长为10mm,根据曲面高度差,给定适合的补偿参数,然后测量叶片面上选定的一定范围内的一系列纵横点坐标,再通过pro/e 软件拟合成曲面。通过与数据模型进行比较,判断拟合的相似度。

三、实验步骤

1.开机

首先打开空气压缩机储气罐排水阀排水,然后依次开启空压机、冷干机和测量机气源,检查气压是否在0.4~0.5Mpa范围之内,如果不在此范围内则可通过气源调节阀调节。再依次接通交流稳压电源、UPS电源、控制系统电源和计算机电源,启动 WTUTOR测量程序,屏幕出现SOI页面。依次单击“电源”、“初始化”键,机器完成通讯和坐标初始化。

2.测量预备操作

③测头标定。在工作台上安装固定的基准球,在垂直方向标定测头。

④取下标准球,将测量课件水平放置在工作台标准块上,并保证工件有一定的稳定性,根据测量方案选取的三个相互垂直的面建立空间直角坐标系。

3.测量操作

调用自动测量程序,输入所需要的测量步长及其他参数,根据选定的测量路径测出所需参数,保存好测量的数据。

5.关机

完成以上各步骤后,整个测量过程也就结束了。三坐标测量机的关机顺序与开机顺序相反。即首先“初始化”使测头停止在安全位置,其次关闭WTUTOR 测量程序,再依次关闭计算机电源、控制系统电源、UPS电源、交流稳压电源,最后关闭气源系统。

四、实验结果

1.面轮廓测量数据

根据pro/e特征造型方法,拟合下列空间点

曲线1 N0001 X 0024427 Y 0017000 Z 0006764 N0002 X 0024424 Y 0007089 Z 0006695

N0003 X 0024423 Y -0002807 Z 0005952

N0004 X 0024428 Y -0012580 Z 0004534

N0005 X 0024431 Y -0022377 Z 0002636

N0006 X 0024428 Y -0032027 Z 000 278

N0007 X 0024423 Y -0041501 Z -0002673

N0008 X 0024421 Y -0042168 Z -0002901

曲线2 N0001 X 0110662 Y 0027710 Z 0007822 N0002 X 0110662 Y 0017732 Z 0008090

N0003 X 0110662 Y 0007776 Z 0007702

N0004 X 0110662 Y -0002153 Z 0006643

N0005 X 0110662 Y -0011970 Z 0004857

N0006 X 0110662 Y -0021670 Z 0002473

N0007 X 0110662 Y -0031185 Z -000 557

N0008 X 0110662 Y -0040484 Z -0004219

N0009 X 0110662 Y -0049447 Z -0008618

N0010 X 0110662 Y -0050529 Z -0009197

曲线3 N0001 X 0055676 Y -0046614 Z -0004812 N0002 X 0055676 Y -0037257 Z -0001386

N0003 X 0055676 Y -0027688 Z 0001415

N0004 X 0055676 Y -0017960 Z 0003655

N0005 X 0055676 Y -0008128 Z 0005453

N0006 X 0055676 Y 0001795 Z 0006592

N0007 X 0055676 Y 0011765 Z 0007069

N0008 X 0055676 Y 0021755 Z 0007040

N0009 X 0055676 Y 0031757 Z 0006496

N0010 X 0055676 Y 0036680 Z 0006052

2.利用测量结果拟合为曲面

拟合曲面见下图pro/e模型图

五、实验结果分析

根据拟合的结果看,利用三条曲线拟合成一个翼面已经大致接近原实物曲面。

但是由于pro/e软件通过曲线构造曲面只能扫描相互平行的曲线,因此,五组数据中只用到了其中平行的三条曲线,由于测量数据利用的不完全,曲面拟合的结果与实际模型尺寸有一定的误差。因此原测量方案的选定有一定的错误,应当选择测量相互平行的曲线。

所以原方案应改为测量五条平行的曲线来构造曲面,这样可以充分利用数据,也可提高拟合精度。或者采用UG或CATIA进行拟合,可以充分利用原测量方案的数据,也可提高拟合精度。

因为拟合曲面是通过por/e完成的,而给定叶片模型是CATIA数据文件,因此拟合结果无法相互比较,也就无法进行误差分析,只能通过观察曲面形状判断拟合的相似程度。

实验评价及建议

通过三坐标测量机知识的学习和实际操作,我已经能够初步了解三坐标测量技术基本知识和在工业中的应用以及对三坐标测量机的一些基本操作和使用。

做实验时,为了在规定的时间内快速高效率地完成实验,达到良好的实验效果,需要课前认真地预习,首先是根据实验题目复习所学习的相关理论知识,并根据实验教材的相关内容,弄清楚所要进行的实验的总体过程,弄懂实验的目的,基本原理,了解实验所采用的方法的关键与成功之处;正确操作步骤,特别是要注意那些

可能对仪器造成损坏的事项.最好还要写预习报告,预习报告能够帮助我们顺利完成实验中的各项操作.在谢谢老师们一学期的悉心指导,这的确是一门让人受益良多的课程,希望这门课的教学质量能不断提高。但是由于实验课程时间较短,三坐标的一些编程知识没能够学习,当然这门实验也只是三坐标技术的入门,为将来在实际工作中打下基础。在操作过程中也有部分同学没有能够实际操作,建议老师能够适当安排,能够让每一位同学都能够自行操作,提高大家动手能力。

有关三坐标方面的论文资料

刊名:工具技术

快速探测三坐标测量机特性参数优化研究

杨洪涛1 费业泰2

1.安徽理工大学,淮南,232001 2.合肥工业大学,合肥,230009

摘要:研究了影响快速探测坐标测量机动态测量精度的特性参数与测量精度之间的关系。通过实验分析了移动速度和测量位置对测量机定位误差的影响,以及测头DDC参数对测头等效作用直径的影响。研究结果表明:测量机的动态测量误差重复性好并可以修正;由于不同移动速度下,气浮导轨刚度和不同驱动电机加速度曲线引起的桥架附加振动不同,因此不同结构测量机存在不同最佳临界移动速度;测量机沿不同方向触测时,存在与移动速度有关的不同最佳测量空间;逼近距离对测头等效作用直径d的影响远远大于触测速度和移动速度对d的影响。

4关键词:三坐标测量机;快速探测;动态测量精度;特性参数

Research on Characteristic Parameter Optimization of Fast Probing CMM Yang Hongta01 Fei Yetai2

1.Anhui University of Science and Technology,HUainan,Anhui,232001

2.Hefei University of Technology,Hefei,230009

Abstract:The complex relationship between the natural parameters of the fast probing CMM andthe dynamic precision was investigated.The influences among the CMM positioning error and them easuring velocity and position and the influences between the probe DDC parameters and the equivalent action radius were analyzed through the experiments.From the experimental analysis it can be concluded that the dynamic measuring error of the fast probing CMM has good repeatability and can be corrected.There exists the optimum critical measuring velocity due to the different additive vibration of the CMM bridge which is caused by the air bearing stiffness change and the different driving acceleration while the CMM measuring velocity is different.The velocity of the CMM having different structures is different.There exists the optimum measuring space related to the measuring velocity while the CMM probes on the different directions.The approaching distance has made much more

contribution to the equivalent action radius change than that from the probing and moving velocity of the probe.

Key words:CMM(coordinate measurement machine);fast probing;dynamic measurement accuracy;characteristic parameter

刊名:机械设计

多关节柔性三坐标测量系统标定技术研究

王学影,刘书桂,张国雄,王斌

(天津大学精密测试技术及仪器国家重点实验室,天津300072)

摘要:为了克服传统的笛卡尔坐标测量系统的缺点,基于Denavit—Hartenberg 方法建立多关节柔性三坐标测量系统的数学模型,提出了一种基于改进遗传算法标定技术,并通过采用改进多点交叉算子、自适应变异算子及两次最优保存策略,保证算法标定精度.在Faro Platinum 4ft平台上,通过反转法验证标定算法精确性,为进一步提高系统精度奠定了理论基础.

关键词:三坐标测量系统;多关节;遗传算法;标定

Calibration technology of articulated arm flexible CMM

WANG Xue—ying,LIU Shu—gui,ZHANG Guo-xiong,WANG Bin

(State Key Laboratory of Precision Measuring Technology and Instnnnents,

Tianjin University,Tianjin 300072,China,)

Abstract:To overcome the defects of the traditional measuring machine using Cartesian coodinate system,the ideal mathematical models of the articulated and CMM were established by using Denavit Hartenberg analysis arithmetic.An improved genetic algorithm was presented for the parallel recombination simulated annealing.The algorithm employed a modified multi—pointed crossover operator,an adaptive mutation operator and a modified elitist strategy to ensure the accuracy of calibration.Experiments were carried out for a Faro platinum 4fiarticulated arm CMM,and the experimental results convincingly show the performance of the

proposed method based on reversal process,which establishes an academic foundation for increasing the accuracy.

Key words:coordinate measuring machine(CMM);multi-joints;genetic algorithm;calibration

三坐标测量实验报告

三坐标测量实验报告 姓名:XXX 学号:XXXXXXX 指导老师:XXX 专业:XXXX 2012年11月

一、快速综合检测 利用直接测量法测量给定的被测件 一、实验目的: 1、了解三坐标测量机系统组成和功能; 2、熟悉WTUTOR测量软件; 3、掌握三坐标测量机测量几何参数的基本技能; 4、学会测量数据的处理和零件设计方法。 二、实验要求: 1、根据被测件的特点以及所需测量的几何元素确定测量方案:包括所需的测头数及其标定、零件坐标系的建立等。 2、测量各几何要素,以文件方式输出测量结果。 3、根据测量数据,用AUTOCAD绘制零件图。 4、整理实验过程,编写实验技术报告。 三、实验方案设计: 1、分析被测件的特点和需要测量的几何特征,确定零件装夹方案:被测件的外观形状是长方体, 需要测量的几何特征是位于该长方体上的通孔、阶梯圆柱孔、小孔、阶梯平面和一槽,由于该零件质量较大,故无需装夹,只需平放于测量工作台面上即可。 2、确定工件坐标系:选择零件上通孔所在的直线为Y轴,相对较平整的平面作为XZ 平面,该平面与Y轴交点作为坐标原点,选择与Y轴平行的一个面的法线方向作为X轴。 3、根据被测几何元素,确定测头(1)A:0°,B:0°;(2)A:90°,B:90°; (3)A:90°,B:180°;(4)A:90°,B:-90°;(5)A:90°,B:0°; 4、根据被测参数确定被测元素、关系计算、形位测量等。选择测头在适当的工件坐标系下进行测量,并将测量数据存储到指定文件中。 四、实验步骤: 1、启动机器: 由于三坐标测量系统是一个多机器的复杂系统,所以要注意各机器的开启顺序。首

三坐标测量实验大纲

三坐标测量实验大纲(结合高等教育公差教学) 2009年6月

目录 实验一坐标测量机认知实验 (3) 实验二孔、轴件的测量实验 (6) 实验三平面度测量实验 (10) 实验四圆锥各尺寸的测量实验 (14) 实验五轴键槽对称度测量实验 (18) 实验六螺纹孔测量实验 (21)

实验一坐标测量机认知实验 一、实验目的 了解三坐标测量机结构 了解三坐标测量机原理 了解三坐标测量机维护保养方法 二、设备与器材 1)三坐标测量机 2)测头系统:MH20i或PH10T 3)测针:20×?3mm 三、实验步骤 1)三坐标测量机结构 按机械结构分: a)龙门式——用于轿车车身等大型机械零部件或产品测量; b)桥式——用于复杂零部件的质量检测、产品开发,精度高;

c) 悬臂式——主要用于车间划线、简单零件的测量,精度比较低。 按驱动方式结构分: a) 手动型——手工使其三轴运动来实现采点,价格低廉,但测量精度差; b) 机动型——通过电机驱动来实现采点,但不能实现编程自动测量; c) 自动型——由计算机控制测量机自动采点,通过编程实现零件自动测量,且 精度高。 2)三坐标测量机原理 将被测物体置于三坐标测量机的测量空间,可获得被测物体上各测量点的坐标值,根据这些点的空间坐标值经过数学运算求出被测物体的几何尺寸,形状和位置公差。 3)三坐标测量机维护保养方法 三坐标测量机作为一种精密的测量机器,如果维护及保养做得及时,就能延长机器的使用寿命,并使精度得到保障、故障率降低。为使客户更好地掌握和用好测量机,测量机维护及保养规程如下: (1)开机前的准备 a.三坐标测量机对环境要求比较严格,应按要求严格控制温度及湿度; b.三坐标测量机使用气浮轴承,理论上是永不磨损结构,但是如果气源不干净,有油.水或杂质,就会造成气浮轴承阻塞,严重时会造成气浮轴承和气浮导轨划伤,后果严重。所以每天要检查机床气源,放水放油。定期清洗过滤器及油水分离器。定期检查机床气源上一级空气来源,(空气压缩机或集中供气的储气罐);花岗岩导轨更要定期检查导轨面状况,所以每次开机前应清洁机器的导轨,用航空汽油擦拭(120或180号汽油)或无水乙醇擦拭。 c.切记在保养过程中不能给任何导轨上任何性质的油脂; 输出: X = 2.0 I = 0 D = 4 Y = 2.0 J = 0 R = 2 Z = 2.5 K = 1

如何正确选择三坐标测量机测头

如何正确选择三坐标测量机测头 测头是测量机触测被测零件的发讯开关,它是坐标测量机的关键部件,需要的测量精度的高低决定了测量机测头精度的高低,另外,不同的零件要求选择不同功能的测头进行测量。测头可分为接触式测头和非接触式测头(激光等类型)。 目前主要用接触式测头,接触式测头又可分为开关式(触发式或动态发讯式)与扫描式(比例式或静态发讯式)两大类 开关测头的实质是零位发讯开关,以TP6(RENISHAW)为例,它相当于三对触点串联在电路中,当测头产生任一方向的位移时,均使任一触点离开,电路断开即可发讯计数。开关式结构简单,寿命长(106~107)、具有较好的测量重复性(0.35~0.28μm),而且成本低廉,测量迅速,因而得到较为广泛的应用。 扫描式测头实质上相当于X、Y、Z个方向皆为差动电感测微仪,X、Y、Z三个方向的运动是靠三个方向的平行片簧支撑,是无间隙转动,测头的偏移量由线性电感器测出。扫描式测头主要用来对复杂的曲线曲面实现测量。非接触测头主要分为激光扫描测头和视频测头两种。 激光扫描测头主要用于实现较软材料或一些特征表面进行非接触测量。测头在距离检测工件一定距离(比如50mm),在其聚焦点!5mm范围内进行测量,采点速率在200点/秒以上。通过对大量采集数据的平均处理功能而获得较高的精度。 视频测头进一步提高了测量机的应用,使得许多过去采用非接触测量无法完成的任务得以完成。一些诸如印刷线路板、触发器、垫片或直径小于0.1mm的孔可采用视频测头进行测量。操作者可将检测工件表面放大50

倍以上,采用标准的或可变换的镜头实现对细小工件的测量。 以下就如何进行触发和扫描测头提出建议:什么时侯用触发式测头? 1. 零件所被关注的是尺寸(如小的螺纹底孔)、间距或位置,而并不强调其形状误差(如定位销孔); 2. 或你确信你所用的加工设备有能加工出形状足够好的零件,而注意力主要放在尺寸和位置精度时,接触式触发测量是合适的,特别是由于对离散点的测量; 3. 触发式测头比扫描测头快,触发测头体积较小当测量空间狭窄时测头易于接近零件; 4. 一般来讲触发式测头使用及维修成本较低; 在机械工业中有大量的几何量测量,所关注的仅是零件的尺寸及位置,所以目前市场上的大部分测量机,特别是中等精度测量机,仍然使用接触式触发测头。 什么时侯用扫描测头? 应用于有形状要求的零件和轮廓的测量:扫描方式测量的主要优点在于能高速的采集数据,这些数据不仅可以用来确定零件的尺寸及位置,更重要的是能用众多的点来精确的描述形状、轮廓,这特别适用于对形状、轮廓有严格要求的零件,该零件形状直接影响零件的性能(如叶片、椭圆活塞等); 也适用于你不能确信你所用的加工设备能加工出形状足够好的零件 。目前三坐标测量机所使用的测头系统基本上是英国雷尼绍(RENISHAW)的,产品性能及品种多样化排在世界前列,可以优选选购此品牌之测头系统。 测头选择基本原则:

工程测量实验报告

实验报告 课程名称:工程测量实验报告 专业班级:D测绘131 姓名学号:戴峻2013132911 测绘工程学院 实验报告一、精密角度测量 一、实验名称:精密角度测量 二、实验性质:综合性实验 三、实验地点:淮海工学院苍梧校区 时间:2016.6.02 四、实验目的: 1. 掌握精密经纬仪(DJ1或DJ2)的操作方法。 2. 掌握方向法观测水平角水平角的观测顺序,记录和计算方法。 五、仪器和工具: 全站仪一台,三脚架一个,记录板一块,自备铅笔,记录手薄和观测目标物。

六、实验内容及设计: 在实验之前,需要做的工作是:了解实验内容,以及读数的多种限差,并选择好实验地点,大略知道实验数据的处理。 1.实验步骤: (1)架设全站仪,完成对中、整平; (2)调清楚十字丝,选择好起始方向,消除视差; (3)一个测站上四个目标一测回的观测程序 2. 度盘配置: 设共测4个测回,则第i个测回的度盘位置略大于(i-1)180/4. 3. 一测回观测: (1) 盘左。选定一距离较远、目标明显的点(如A点)作为起始方向,将平读盘读数配置在稍大于0 o处,读取此时的读数;松开水平制动螺旋,顺时针方向依次照准B、C、D三目标读数;最后再次瞄准起始点A并读数,称为归零。

以上称为上半侧回。两次瞄准A点的读数之差称为“归零差”,检核是否超限,超限及时放弃本测回,重新开始本测回。 (2)盘右。先瞄准起始目标A,进行读数;然后按逆时针放线依次照准D、C、B、A各目标,并读数。 以上称之为下半测回,其归零差仍要满足规范要求。 上、下半测回构成了一个测回,检核本测回是否满足各项限差,如超限,重新开始本测回,合限,进行下一测回工作。 4.记录、计算 (1)记录。参考本指南所附的本次实验记录表格。盘左各目标的读数按从上往下的顺序记录,盘右各目标读数按从下往上的顺序记录。 (2)两倍照准误差2C的计算。按照下式计算2C 对于同一台仪器,在同一测回内,各方向的2C值应为一个定值。若有变化,其变化值不超过表1.1中规定的范围 表1.1 水平角方向观测法的技术要求

机械制造基础实验3三坐标测量机

实验三三坐标测量机测量几何误差 一、目的与要求 1、了解并熟悉手动复合型三坐标测量机的主要结构; 2、掌握手动复合型三坐标测量机基本操作方法; 3、熟练掌握三种或三种以上形状误差或位置误差的测量方法; 4、初步了解手动复合型三坐标测量机影像系统的测量原理。 二、实验仪器设备 本实验用仪器及设备包括:手动复合型三坐标测量机、工件 三、实验方法及步骤 (一)测量的基本原理: 1 坐标测量部分 仪器的花岗岩工作台用以支撑被测工件,利用工作台上的螺孔及装夹工具,可将工件位置固定。三轴光栅尺作为侧量基准,在Z轴下端装有触发式探头。由于X、Y、Z三轴都采用气浮导向,因此可以手持Z轴下端的测头连接座,轻便地移动测头,对工件进行接触测量。 测头触发后,被测工件各测量点的坐标位置被读取,根据这些点的空间坐标值,由坐标测量软件进行处理,可求出被测工件的几何尺寸、形状及位置公差。本仪器有丰富的测量程序,不需要对工件做精确找准便可进行测量。由于用户界面直观、友好,因此,没有计算机操作经验的人员,也可迅速掌握仪器的操作。 2影像测量部分 被测工件置于工作台上,手持Z轴下端的测头连接座带动影像系统实现快速移动,然后通过旋转X、Y轴微动手轮实现微调,即可对被测工件进行瞄准,此时彩色CCD摄像机通过LED表面光照明后,就可摄取被测工件的影像,最后由M2D专业软件自动进行数据处理,。 注:LED表面光的开关及强弱可根据测量的需要由微动开关控制板右侧的调光旋钮来调节;根据被测工件的尺寸,旋转Z轴微动手轮进行调焦,可以得到清晰的图像,从而实现对被测工件的测量。

(二)手动复合型三坐标测量机的结构 现有的三坐标测量机分自动和手动两种。本实验采用的CMS-685MV是一种手动复合型测量机。该测量机集光、机、电、算于一体,广泛地用于机械制造、电子、汽车和航空航天等工业中,它能实现空间坐标点位的测量,可以对箱体、导轨、缸体、机架等零件的尺寸、形状及相互位置进行检测,如图1所示。 图1 仪器整体结构图 1. 空气过滤组件 2.电磁阀电源开关 3.Y轴微动手轮 4. 标准球 5. 触发式测头 6.Y向滑架组 7. Z轴导轨 8. 微动开关控制板 9. X轴导轨10.影像系统11.X向滑架组12.X轴微动手轮13. Z轴微动手轮14.锁紧螺杆15.平台(含Y轴导轨)16.底支架17.计算机主机18. 显示器19. 打印机20.计算机桌图中15所示花岗岩工作台被安装在底支架上,除了在平台左侧有Y轴导轨外,其上表面还有标准球以及用于工件装夹固定的螺孔。底支架左侧有空气过滤组件,用于测量机气源的清洁干燥;以及用来控制仪器运行的电磁阀电源开关。X向滑架组及Y向滑架组分别用于X轴及Y轴的测量,Z轴上除了有用于读取数据的触发式探头外,还有一影像系统,可以对工件进行影像测量。在X、Y、Z向都有一个微动手轮(3、12、13),当结构图上8所示的微动开关控制板选择

工程测量学课间实验报告数据版

实习四 全站仪三维坐标放样 一、实习目的及要求 1.熟悉全站仪的基本操作。 2.掌握极坐标法测设点平面位置的方法。 3.要求每组用极坐标法放样至少4个点。 二、仪器设备与工具 每组全站仪1台、棱镜2个、对中杆1个、钢卷尺1把、记录板1个。 三、实习方法与步骤 1.测设元素计算: 如图4-1所示,A 、B 为地面控制点,现欲测设房角点P ,则首先根据下面的公式计算测设数据: (1) 计算AB 、 AP 边的坐标方位角: (2) 计算AP 与AB 之间的夹角: (3) 计算A 、P 两点间的水平距离: 注:以上计算可由全站仪内置程序自动进行。 2.实地测设: (1)仪器安置:在A (2)定向:在B 点安置棱镜,用全站仪照准B 点棱镜,拧紧水平制动和竖直制动。 (3)数据输入:把控制点A 、B 和待测点P 的坐标分别输入全站仪。全站仪便可根据 内置程序计算出测设数据D 及β,并显示在屏幕上。 (4)测设:把仪器的水平度盘读数拨转至已知方向β上,拿棱镜的同学在已知方向 线上在待定点P 的大概位置立好棱镜,观测仪器的同学立刻便可测出目前点位与正确点位的偏差值△D 及 △β(仪器自动显示),然后根据其大小指挥拿棱镜的同学调整其位置,直至观测的结果恰好等于计算得到 的D 和β,或者当△D 及△β为一微小量(在规定的误差范围内)时方可。 四、注意事项 1.不同厂家生产的全站仪在数据输入、测设过程中的某些操作可能会稍不一样,实际工作中应仔细 AB AB AB x y ??=arctan αAP AP AP x y ??=arctan αAB αβ=22)()(A P A P AP y y x x D =-+-=

三坐标实验报告

研究生实验报告项目名称:三坐标测量实验报告 姓名: 学号: 指导老师: 专业: 2013年11月15日

一、实验要求 1.根据实验室的三坐标测量仪和待测模型确定测量方案; 2. 与几何模型进行比较,分析误差; 3.对模型的几何要素尺寸和误差进行检测; 4.最终绘出模型的三维视图并出图; 二、实验设备 MISTRAL070705三坐标测量机,带有PC-DMIS软件的PC,电源,空压机,冷干机,空气过滤器。 三、实验方案 1.确定零件的具体结构: ①确定各几何元素所需测出的参数 测量零件的大致轮廓为方形,主要几何元素为平面、圆柱、圆柱孔和阶梯孔。因此可以选择测量件的三个垂直面建立空间直角坐标系。需要测量的主要位置误差元素为同轴度。 ②测头标定 测量元素包括垂直方向的圆柱及水平方向的圆柱,因此需要标定垂直方向与水平面四个方向。 ③根据零件确定测量基准 选定模型的1,2,3面为坐标系的三个基准面建立直角坐标系,并以1,2,3面作为测量基准, 2.空间坐标系的建立 面1的法线方向为X轴方向,面2的法线为Y轴方向,选定方形轮廓上平面一角为原点,并根据X轴、Y轴确定Z轴方向。如下图 图1 坐标系的确定

3.测量方案 调用自动测量程序,给定步长,根据平面的高度差,给定适合的补偿参数,然后测量面上选定的一定范围内的一系列坐标,通过与数据模型进行比较,判断相似度。 四、实验方法和步骤 1.开机 首先打开空气压缩机储气罐排水阀排水,然后依次开启空压机、冷干机和测量机气源,检查气压是否在0.4~0.5Mpa范围之内,如果不在此范围内则可通过气源调节阀调节。再依次接通交流稳压电源、UPS电源、控制系统电源和计算机电源,启动PC-DMIS测量程序,屏幕出现如图2初始页面 图2 PC-DMIS初始界面 图3 打开测量零件程序窗口

三坐标测量技术课程

三坐标测量技术课程 \ ¥ 浙江大学现代制造工程研究所杭州博洋科技有限公司

目录 一、《三坐标测量技术》课程设置 (2) 课程性质、教学目标 (2) 教学指导思想 (3) — 教学重点 (3) 理论教学内容和基本要求 (3) 实训内容和基本要求 (5) 教学进度安排 (9) 二、三坐标测量基础知识 (9) 测量机的基本组成 (9) 测头简介 (10) 测头校正 (11) 、 矢量和余弦误差 (11) 坐标系 (12) 工作平面 (13) 基本几何元素 (13) 元素构造 (14) 元素的尺寸及公差 (15) 三、三坐标测量操作指导 (16) 三坐标测量流程 (16) ^ 测量实例 (18) 四、测量技巧与案例分析 (22) 基于CAD的编程测量 (22) CAD迭代对齐 (26) 三坐标测量键槽对称度 (28) 测量齿轮的齿距 (29) —

~ 一、《三坐标测量技术》课程设置 课程名称:三坐标测量技术 总学时:80 理论教学学时:40 实践教学学时:40 先修课程:机械设计,机械制造基础,机械制图、互换性与测量技术等课程 教学对象:机械、数控、模具、汽车专业学生 课程类型:必修 @ 考核方式:理论采用笔试、操作采用实际测量项目测试,总分100分,各占50%。课程性质、教学目标: 1.课程性质:专业技术 2.教学目标: (1)熟悉三坐标硬件基础知识 (2)了解现代三坐标测量的发展趋势 (3)掌握利用三坐标测量机进行测量的过程和步骤 (4)掌握利用三坐标测量机进行实际工件的测量和输出报告 (5)! (6)掌握相关软件及设备的使用 教学指导思想 1.介绍先进的现代制造技术,使学生对先进的现代检测技术有基本认识; 2.理论和实践相互结合,在提供丰富的实际测量案例的基础上,培养学生 分析问题和解决问题的能力; 3.在实际公差测量案例的基础上,使学生掌握国家规定公差的测量方法;

三坐标测量机测量原理

三坐标测量机测量原理 三坐标测量机测量原理三坐标测量机是测量和获得尺寸数据的最有效的方法之一,因为它可以代替多种表面测量工具及昂贵的组合量规,并把复杂的测量任务所需时间从小时减到分钟。三坐标测量机的功能是快速准确地评价尺寸数据,为操作者提供关于生产过程状况的有用信息,这与所有的手动测量设备有很大的区别。将被测物体置于三坐标测量空间,可获得被测物体上各测点的坐标位置,根据这些点的空间坐标值,经计算求出被测物体的几何尺寸,形状和位置。 三坐标测量机的组成: 1,主机机械系统(X、Y、Z三轴或其它); 2,测头系统; 3,电气控制硬件系统; 4,数据处理软件系统(测量软件); 三坐标测量机在现代设计制造流程中的应用逆向工程定义:将实物转变为C AD模型相关的数字化技术,几何模型重建技术和产品制造技术的总称。广义逆向工程:包括几何逆向,工艺逆向,材料逆向,管理逆向等诸多方面的系统工程。 正向工程:产品设计-->制造-->检验(三坐标测量机) 逆向工程:早期:美工设计-->手工模型(1:1)-->3 轴靠模铣床当今:工件(模型)-->3维测量(三坐标测量机)-->设计à制造逆向工程设备: 1,测量机:获得产品三维数字化数据(点云/特征); 2,曲面/实体反求软件:对测量数据进行处理,实现曲面重构,甚至实体重构; 3, CAD/CAE/CAM软件; 4,数控机床;逆向工程中的技术难点: 1,获得产品的数字化点云(测量扫描系统);

2,将点云数据构建成曲面及边界,甚至是实体(逆向工程软件); 3,与CAD/CAE/CAM系统的集成;(通用CAD/CAM/CAE软件) 4,为快速准确地完成以上工作,需要经验丰富的专业工程师(人员); 三坐标测量机测量原理三坐标测量机是测量和获得尺寸数据的最有效的方法之一,因为它可以代替多种表面测量工具及昂贵的组合量规,并把复杂的测量任务所需时间从小时减到分钟。 三坐标测量机的功能是快速准确地评价尺寸数据,为操作者提供关于生产过程状况的有用信息,这与所有的手动测量设备有很大的区别。将被测物体置于三坐标测量空间,可获得被测物体上各测点的坐标位置,根据这些点的空间坐标值,经计算求出被测物体的几何尺寸,形状和位置。 三坐标测量机的组成:1,主机机械系统(X、Y、Z三轴或其它); 2,测头系统; 3,电气控制硬件系统; 4,数据处理软件系统(测量软件);三坐标测量机在现代设计制造流程中的应 用逆向工程定义:将实物转变为CAD模型相关的数字化技术,几何模型重建技术和产品制造技术的总称。 广义逆向工程:包括几何逆向,工艺逆向,材料逆向,管理逆向等诸多方面的系统工程。 正向工程:产品设计-->制造-->检验(三坐标测量机) 逆向工程:早期:美工设计-->手工模型(1:1)-->3 轴靠模铣床当今:工件(模型)-->3维测量(三坐标测量机)--> 设计à制造逆向工程设备: 1,测量机:获得产品三维数字化数据(点云/特征); 2,曲面/实体反求软件:对测量数据进行处理,实现曲面重构,甚至实体重构; 3, CAD/CAE/CAM软件; 4,数控机床;

工程测量学课间实验报告数据版(DOC)

实习四全站仪三维坐标放样 一、 实习目的及要求 1.熟悉全站仪的基本操作。 2 ?掌握极坐标法测设点平面位置的方法。 3?要求每组用极坐标法放样至少 4个点。 二、 仪器设备与工具 每组全站仪1台、棱镜2个、对中杆1个、钢卷尺1把、记录板1个。 三、 实习方法与步骤 1?测设元素计算: 如图4-1所示,A 、B 为地面控制点,现欲测设房角点 :AB =arcta ' :X AB nA* 图4-1极坐标测设原理

P,则首先根据下面的公式计算测设数据: (1)计算AB、AP边的坐标方位角: :A p =arcta ~X AP (2)计算AP与AB之间的夹角:[八AB—〉AP (3)计算A、P两点间的水平距离: ------------------------------------------------------------------------------------------------------------------------------------------- I D AP= £(Xp 一X A)2(yp 一yA)2二:X AP2?F AP2 注:以上计算可由全站仪内置程序自动进行。 2 .实地测设: (1)仪器安置:在A点安置全站仪,对中、整平。 (2)定向:在B点安置棱镜,用全站仪照准B点棱镜,拧紧水平制动和竖直制动。 (3)数据输入:把控制点A、B和待测点P的坐标分别输入全站仪。全站仪便可根据内置程序计算出测设数据D及B,并显示在屏幕上。 (4)测设:把仪器的水平度盘读数拨转至已知方向B上,拿棱镜的同学在已知方向 线上在待定点P的大概位置立好棱镜,观测仪器的同学立刻便可测出目前点位与正确点位的偏差值△D及△B (仪器自动显示),然后根据其大小指挥拿棱镜的同学调整其位置,直至观测的结果恰好等于计算得到的D和B,或者当△D及为一微小量(在规定的误差范围内)时方可。 四、注意事项 1?不同厂家生产的全站仪在数据输入、测设过程中的某些操作可能会稍不一样,实际工作中应仔细 阅读说明书。 2 ?在实习过程中,测设点的位置是有粗到细的过程,要求同学在实习过程中应有耐心,相互配合。 3 ?测设出待定点后,应用坐标测量法测出该点坐标与设计坐标进行检核。 4 ?实习过程中应注意保护仪器和棱镜的安全,观测的同学不应擅自离开仪器。 全站仪三维坐标放样记录表 日期:____ 年—月—日天气:____________ 仪器型号:_______________ 组号:_________ 观测者: _______________ 记录者:________________ 立棱镜者: _______________________ 已知:测站点A的三维坐标X= 100 m,Y 100 m,H= __________________________ m。 定向点 B 的三维坐标X= 50 m,Y= 135 m,H= __________________________ m。 量得:测站仪器高= _________ m,前视点_______ 的棱镜高= ___________ m。

(完整word版)三坐标测量机检测实验报告

专业及班级:姓名:学号: 实验二:三坐标测量机检测 一、实验目的:通过观察三坐标测量机的检测过程,分析检测的基本原理,掌握三坐标测量机的日常操作过程。 二、实验设备:西安爱德华MQ686三坐标测量仪及其辅助设备。 设备简介:机械整体结构采用刚性结构好、质量轻的全封闭框架移动桥式结构。其结构简单、紧凑、承载能力大、运动性能好。 固定优质花岗岩工作台:具有承载能力强、装卸空间宽阔、便捷的功能。 Y向导轨:采用燕尾式,定位精度高,稳定性能好。 三轴采用优质花岗岩,热膨胀系数小,三轴具有相同的温度特性,因而具有良好的温度稳定性、抗实效变形能力,刚性好、动态几何误差变形小。 三轴均采用自洁式预载荷高精度空气轴承组成的静压气浮式导轨,轴承跨距大,抗角摆能力强,阻力小、无磨损、运动更平稳。 横梁采用精密斜梁设计技术(已获专利),重量轻、重心低、刚性强,动态误差小,确保了机器的稳定。 Z轴采用气缸平衡装置,极大的提高了Z轴的定位精度及稳定性。控制系统采用德国知名的SB专用三坐标数控系统,具有国际先进的上下位机式的双计算机系统,从而极大地提高系统的可靠性和抗干扰能力,降低了维护成本。 三、实验原理: 三坐标测量机:由三个运动导轨,按笛卡尔坐标系组成的具有测量功能的测量仪器,称为三坐标测量机,并且由计算机来分析处理数据(也可由计算机控制,实现全自动测量),是一种复杂程度很高的计量设备。三坐标测量机是一种高效、新颖的精密测量仪器。它广泛应用于机械制造、仪器制造、电子工业、航空工业 等各领域。 分类: 按其精度分为两大类: 计量型:(UMM)1.5 μm+2L/1000 一般放在有恒温条件的计量室内, 用于精密测量分辨率为0.5μm,1或2μm,也有达0.2μm的; 生产型:(CMM)一般放在生产车间,用于生产过程的检测,并可进行末道工序的精加工,分辨率为5μm或10μm,小型生产测量机也有1μm或2μm的。 按结构分为:悬臂式、龙门式、桥式、铣床式 按控制方式分为:手动式、自控式

工程测量学课间实验报告数据版

实习四全站仪三维坐标放样 、实习目的及要求 1 .熟悉全站仪的基本操作。 2 ?掌握极坐标法测设点平面位置的方法。 3 ?要求每组用极坐标法放样至少 4个点。 D AP = .(X p -X A )2 (y p - y A )2 二.X AP 2 J AP 2 注:以上计算可由全站仪内置程序自动进行。 2 .实地测设: (1) 仪器安置:在 A 点安置全站仪,对中、整平。 (2) 定向:在B 点安置棱镜,用全站仪照准 B 点棱镜,拧紧水平制动和竖直制动。 (3) 数据输入:把控制点 A 、B 和待测点P 的坐标分别输入全站仪。全站仪便可根据 内置程序计算出测设数据 D 及B,并显示在屏幕上。 (4) 测设:把仪器的水平度盘读数拨转至已知方向 B 上,拿棱镜的同学在已知方向 线上在待定点P 的大概位置立好棱镜,观测仪器的同学立刻便可测出目前点位与正确点位的偏差值 △)及△ 、仪器设备与工具 每组全站仪1台、棱镜2个、对中杆1个、钢卷尺1把、记录板 1个。 三、实习方法与步骤 1 ?测设元素计算: 如图4-1所示,A 、B 为地面控制点,现欲测设房角 点P ,则首先根据下面的公式计算测设数据: 计算AB 、 AP 边的坐标方位角: (1) (2) 计算AP y AB =arcta n — -:X AB y AP 二 arcta n — 「 X AP (3) 计算A 、 P 两点间的水平距离: 图4-1极坐标测设原理

B (仪器自动显示),然后根据其大小指挥拿棱镜的同学调整其位置,直至观测的结果恰好等于计算得到的 D和B,或者当 e 及为一微小量(在规定的误差范围内)时方可。 四、注意事项 1 ?不同厂家生产的全站仪在数据输入、测设过程中的某些操作可能会稍不一样,实际工作中应仔细阅读说明书。 2 ?在实习过程中,测设点的位置是有粗到细的过程,要求同学在实习过程中应有耐心,相互配合。 3 ?测设出待定点后,应用坐标测量法测出该点坐标与设计坐标进行检核。 4 ?实习过程中应注意保护仪器和棱镜的安全,观测的同学不应擅自离开仪器。 全站仪三维坐标放样记录表 日期:___ 年―月—日天气: _____ 仪器型号: ______________ 号:______ —观测者:_____________ 记录者:_________________ 立棱镜者:_____________________ 已知:测站点A的三维坐标X= 100 m , Y= 100 m , H= ___________________________ m。 定向点 B 的三维坐标X= 50 m, Y= 135 m , H= ____________________________ m。 量得:测站仪器高= ___________ m,前视点 _______ 的棱镜高= ___________ m

机器视觉实验报告

机器视觉实验报告

目录 一实验名称 (2) 二试验设备 (2) 三实验目的 (2) 四实验内容及工作原理 (2) (一)kinect for windows (2) (二)手持式自定位三维激光扫描仪 (3) (三)柔性三坐标测量仪 (9) (四)双面结构光 (10) 总结与展望 (14) 参考文献 (16)

《机器视觉》实验报告 一、实验名称 对kinect for windows、三维激光扫描仪、柔性三坐标测量仪和双面结构光等设备结构功能的认识。 二、实验设备 kinect for windows、三维激光扫描仪、柔性三坐标测量仪、双面结构光。 三、实验目的 让同学们对机器视觉平时所使用的仪器设备以及机器视觉在实际运用中的具体实现过程有一定的了解。熟悉各种设备的结构功能和操作方法,以便于进行二次开发。其次,深化同学们对机器视觉系统的认识,拓宽同学们的知识面,以便于同学们后续的学习。 四、实验内容及工作原理 (一)kinect for windows 1.Kinect简介 Kinectfor Xbox 360,简称Kinect,是由微软开发,应用于Xbox 360 主机的周边设备。它让玩家不需要手持或踩踏控制器,而是使用语音指令或手势来操作Xbox360 的系统界面。它也能捕捉玩家全身上下的动作,用身体来进行游戏,带给玩家“免控制器的游戏与娱乐体验”。2012年2月1日,微软正式发布面向Windows系统的Kinect版本“Kinect for Windows”。 2.硬件组成 Kinect有三个镜头[1],如图1-1所示。中间的镜头是RGB 彩色摄影机,用来采集彩色图像。左右两边镜头则分别为红外线发射器和红外线CMOS 摄影机所构成的3D结构光深度感应器,用来采集深度数据(场景中物体到摄像头的距离)。彩色摄像头最大支持1280*960分辨率成像,红外摄像头最大支持640*480成像。Kinect还搭配了追焦技术,底座马达会随着对焦物体移动跟着转动。Kinect也内建阵列式麦克风,由四个麦克风同时收音,比对后消除杂音,并通过其采集声音进行语音识别和声源定位[2][3]。

三坐标测量机的测头

三坐标测量机的测头

触发式测头是对工件表面进行离散点数据的采集,扫描系统能够连续采集大量表面点的 数据,从而给出关于工件表面形状清晰描述。扫描是在需要描述工件形状或者是测量复杂形状工件时的理想选择。常用测头如下: PH10M可分度机动测座 产品综述: PH10M是功能强大的分度机动测座,能够携带长加长杆和各种测头。具备高度可重复性的动态连接,允许快速的测头或加长杆更换而不需要重新校正。 PH10M特点: - 自动关节固定,可重复测头定位 - 与所有M8螺纹的测头兼容 - 能够携带长达300mm的加长杆 - A 轴105度,B 轴360度,7.5度进位,共720个可重复定位 - 杆固定 PH10MQ/PH10MQH可分度机动测座 产品综述: PH10MQ/PH10MQH,具有紧凑的机构,能够固定在测量机Z轴内部,从而提高了Z向的行程,使得测量空间更大。 PH10MQ/PH10MQH可分度测座,功能强大。能够携带长加长杆和各种高性能测头,SP600M 或者是TP7M。 基于其高重复性和可自动连接,使得在运行过程中自动进行测头和探针的更换,而不需要重新校准(使用ACR1)。

产品特点: - 自动关节固定,可重复测头定位 - 与所有M8螺纹的测头兼容 - 能够携带长达300mm的加长杆 - A 轴105度,B 轴180度,7.5度进位,共720个可重复定位 - 杆固定 PH10T可分度机动测座 PH10T,属于通用的分度式测座。能够实现720个位置的重复定位,从而可完成对于任何工件特征的检测。所有M8螺纹的测头,都能够直接安装在PH10T自身的M8螺纹孔上。PH10T 是PH10系列测座的扩展,采用PHC 10-2控制器,并与其他许多RENSHAW产品兼容。PH10T特点: - 与所有M8螺纹的测头兼容 - 能够携带长达300mm的加长杆 - A 轴105度,B 轴180度,7.5度进位,共720个可重复定位 - 杆固定

流量测量实验报告

课程实验报告 学年学期 2012—2013学年第二学期课程名称工程水文学 实验名称河道测深测速实验 实验室北校区灌溉实验站 专业年级热动113 学生姓名白治朋 学生学号 2011012106 任课教师向友珍李志军 水利与建筑工程学院

1 实验目的 (1)了解流速仪的主要构造及其作用、仪器的性能。 (2)掌握流速仪的装配步骤与保养方法。 (3)了解流速仪测流的基本方法。 2 实验内容 LS25-3C型旋浆流速仪是一种新改型仪器,采用磁电转换原理,无触点式测量,信号采集数多,灵敏度高,防水,防沙性能好,仪器结构紧凑,是一种大量程的流速仪。适用于一般河流,水库、湖泊、河口、水电站、溢港道等高、中、低流速测量。配用HR型流速测算仪。 2.1 主要技术指标 (1)测速范围: V=0.04-10 m/s (2)仪器的起转速: Vo≤0.035 m/s (3)临界速度: Vk≤0.12m/s (4)每转四个信号 (5)旋浆水力螺距: K=250mm(理论) (6)检定公式全线均方差:M≤1.5% (7)信号接收处理:HR型流速仪测算仪(适应线性关系) (8)测流历时: 20s、50s、l00s或1~999s任意设置 (9)测量数位:四位有效数 (10)显示查询方式:显示内容有时间、K值、C值、历时T、流速V、信号数等。 (11)参数设置及保存:可调校时间及设置K、C、T值等参数,设置后参数在掉电状态能长期 2.2仪器结构 本仪器按工作原理可分为:感应,传信,测算,尾翼部份。仪器测流时的安装方式有悬杆,转轴和测杆等几种。 (1)感应部份为一个双叶螺旋浆,安装于支承系统上灵敏地感应水流速度的变化。旋浆的转速与水流速度之间的函数关系由流速仪检定水槽实验得出。 (2)传信部份由磁钢,接收电子器件一霍尔传感器构成,浆叶旋转带动磁钢转动。 (3)HR型流速测算仪控制板由89CXX系列单片机及有关电路组成,液晶显示采用的是二线式串行

实验一 三坐标测量仪数据测量实验1

.实验一三坐标机的应用 1.实验目的 (1)了解三坐标测量机的组成及工作原理。 (2)掌握PC-DMIS 系统的基本功能。 (3)掌握测头的校准。 (4)掌握建立零件坐标系的方法。 (5)掌握基本元素的手动与自动测量。 (6)掌握构造元素的方法。 (7)学会及测量数据的导出。 2.实验设备和工具 (1)三坐标测量机。 (2)环氧树脂齿轮。 3.三坐标机的类型与组成 三坐标测量机是一种高精度测量设备,它在现代高端制造业及逆向工程中有着重要的作用。按活动机主机结构包括:活动桥式、固定桥式、单边高架桥式。 活动桥式固定桥式单边高架桥式 4、测量主机 本次实验所使用的为CROMA活动桥式测量机,主要由测量机主机、控制系统、测座测头系统、计算机和测量软件几部分组成。测量主组成如下图。

5、控制系统 控制系统是测量机的控制中枢,主要功能:控制、驱动测 量机的运动,三轴同步、速度、加速度控制;在有触发信号时 采集数据,对光栅读数进行处理;采集温度数据,进行温度补 偿。 6、测座测头系统 测座测头系统是数据采集的传感器系统,测座分为手动和自动两种,主要功能:测座根据命令旋转到指定角度;测头控制器控制测头工作方式转换;测头传感器在探针接触被测点时发出触发信号。 7、测杆 测头加长杆(50,100,200mm) 测针加长杆 附件

8、安装顺序 (1)Probe Head:PH10T (2)Extentsion:PEL1/2/3/4 (3)Probe:TP20 Body TP20 Module (4)Extension:20mm (5)Tips:4by20mm 计算机(又称上位机)和测量软件是数据处理中心,主要功能:对控制系统进行参数设置;进行测头定义和测头校正,及测针补偿;建立零件坐标系(零件找正);对测量数据进行计算和统计、处理;编程并将运动位置和触测控制通知控制系统;输出测量报告;传输测量数据到指定网路或计算机。

三坐标测量机在进行测量工作前要进行测头校正

三坐标测量机在进行测量工作前要进行测头校正,这是进行测量前必须要做的一个非常重要的工作步骤,因为测头校正中的误差将加入到以后的零件测量中。而在触发式测头校正后的测针宝石球直径要比其名义值小,这使许多操作员感到奇怪,但是要解释原因,可不是一两句话能说清楚的。让我们从校正测头的原理说起。 1、为什么要校正测头: 校正测头主要有两个原因:为了得到测针的红宝石球的补偿直径和不同测针位置与第一个测针位置之间的关系。 三坐标测量机在进行测量时,是用测针的宝石球接触被测零件的测量部位,此时测头(传感器)发出触测信号,该信号进入计数系统后,将此刻的光栅计数器锁存并送往计算机,工作中的测量软件就收到一个由X、Y、Z坐标表示的点。这个坐标点我们可以理解为是测针宝石球中心的坐标,它与我们真正需要的测针宝石球与工件接触点相差一个宝石球半径。为了准确计算出我们所要的接触点坐标,必须通过测头校正得到测针宝石球的半/直径。 在实际测量工作中,零件是不能随意搬动和翻转的,为了便于测量,需要根据实际情况选择测头位置和长度、形状不同的测针(星形、柱形、针形)。为了使这些不同的测头位置、不同的测针所测量的元素能够直接进行计算,要把它们之间的关系测量出来,在计算时进行换算。所以需要进行测头校正。 2、测头校正的原理: 测头校正主要使用标准球进行。标准球的直径在10mm至50mm之间,其直径和形状误差经过校准(厂家配置的标准球均有校准证书)。 测头校正前需要对测头进行定义,根据测量软件要求,选择(输入)测座、测头、加长杆、测针、标准球直径(是标准球校准后的实际直径值)等(有的软件要输入测针到测座中心距离),同时要分别定义能够区别其不同角度、位置或长度的测头编号。 用手动、操纵杆、自动方式在标准球的最大范围内触测5点以上(一般推荐在7~11点),点的分布要均匀。 计算机软件在收到这些点后(宝石球中心坐标X、Y、Z值),进行球的拟合计算,得出拟合球的球心坐标、直径和形状误差。将拟合球的直径减去标准球的直径,就得出校正后测针宝石球“直径”(确切的讲应该是“校正值”或“校正直径”)。 当其他不同角度、位置或不同长度的测针按照以上方法校正后,由各拟合球中心点坐标差别,就得出各测头之间的位置关系,由软件生成测头关系矩阵。当我们使用不同角度、位置和长度的测针测量同一个零件不同部位的元素时,测量软件都把它们转换到同一个测头号(通常是1号测头)上,就象一个测头测量的一样。凡是在经过在同一标准球上(未更换位置的)校正的测头,都能准确实现这种自动转换。 3、校正值比名义值小的原因: 在了解测头校正的原理后,我们就很容易解释测针校正值比名义值小的原因了。 a、触发式测头在原理上相当于是杠杆结构。触测时,必须使传感器能够触发(相当于开关断开)才能发出信号。由于测针(力臂)有一定的长度,所以在测针的宝石球接触标准球后,还要运行一段距离,才能使传感器触发,测针越长这段距离越大。因此造成触发信号的延迟,使拟合球的直径小于宝石球直径和标准球直

先进制造技术实验报告

题目:先进制造技术实验 学院:工学部_____ 学号:__ 姓名:_____ 班级: 13机工__ 指导教师:李庆梅_____ 日期: 2016年5月28日

实验一 三坐标机测量 一、实验目的 通过三坐标测量机的演示性实验,了解三坐标测量机在先进制造工艺技术中所起的作用。 二、实验要求 (1)了解三坐标测量机的组成; (2)了解三坐标测量机的测量原理; (3)了解反求工程的概念。 三、实验原理及设备 图1为Discovery Ⅱ D-8 型桥式三坐标测量机外形图,三坐标测量机的三组导轨相互垂直,形成了 X,Y,Z 三个运动轴,各方向的行程分别由高分辨率精密光栅尺测量,从而组成了机器的空间直角坐标系统,原点位于测量机左前上方。测量工件时,探头(测头)相对坐标系运动,用它来探测处于坐标系内的任 何待测工件表面,即可确定该测点的空间坐标值, 经计算机采集 得到测点数据,按程序规定的要求探测若干点后, 计算机即可对采样数据进行处理,从中计算出被测几何要素的尺寸、形状误差和 在坐标系中的位置, 在对若干要素探测后, 计算机可根据不同的测量要求计算出这些几何要素间的位置尺寸和位置误差。 Discovery Ⅱ D-8 型三坐标测量机配有MeasureMax+(Version 6.4)测量软件,该软件功能强大,内容丰富,整个测量操作过程可由计算机控制自动完成,也可以由操纵杆(见图2.)配合计算机完成部分手动操作。

图2 操作杆四、实验步骤 图3 测量操作流程

实验二快速原型制造 一、实验目的 目前快速原形制造技术已成为各国制造科学研究的前沿学科和研究焦点。通过快速成型机演示性实验,了解快速原型制造在先进制造工艺技术中所起的作用。 二、实验要求 (1)了解快速成型机的组成; (2)了解快速成型机的实体成型原理; (3)通过参观实验室现有快速成型零件,了解快速原型制造的应用。 三、实验原理及设备 快速成形制造工艺采用离散/堆积成型原理成型,首先利用高性能的CAD软件设计出零件的三维曲面或实体模型;再根据工艺要求,按照一定的厚度在Z 向(或其它方向)对生成的CAD模型进行切面分层,将三维电子模型变成二维平面信息(离散过程),然后对层面信息进行工艺处理,选择加工参数,系统自动生成刀具移动轨迹和数控加工代码;并对加工过程进行仿真,确认数控代码的正确性;再利用数控装置精确控制激光束或其它工具的运动,在当前工作层(三维)上采用轮廓扫描,加工出适当的截面形状;将各分层加工的每个薄层自动粘接,最后直至整个零件加工完毕。可以看出,快速成形技术是个由三维转换成二维(软件离散化),再由二维到三维(材料堆积)的工作过程。 快速原形制造技术的主要工艺方法有光敏液相固化法LSA( Stero Lithography Apparatus),选区片层粘接法LOM(Laminated Object Manufacturing),选区激光烧结法SLS(Selective Laser Sintering)和熔丝沉积成型FDM(Fused Deposition Modeling)。本实验采用熔丝沉积成型FDM工艺方法进行快速原形制造,该方法使用ABA丝为原料,利用电加热方式将ABA丝熔化,由喷嘴喷到指定的位置固化。一层层地加工出零件,该方法设备简单,零件精度较高,污染小。 图1为结构图,它由喷头、喷咀、导杆、Z轴丝杆、Z工作台、成型材料盒、支撑材料盒、废料桶、显示面板(Prodigy Plus型机的控制面板在材料盒

相关主题
文本预览
相关文档 最新文档