当前位置:文档之家› ansys非线性分析实例(GUI操作方法)

ansys非线性分析实例(GUI操作方法)

ansys非线性分析实例(GUI操作方法)
ansys非线性分析实例(GUI操作方法)

8.13.非线性分析实例(GUI操作方法)

这个实例运行的是在静载和循环点载荷的情况下,对弹塑性圆板的非线性分析。你可以自定义一条塑性随动曲线和载荷步的相关选项,包括载荷步数的最大值和最小值,以及施加的外部载荷值。在这个过程中,你可以学习到如何去解读,程序再写入非线性分析过程中产生的监控文件。

该程序使用增量求解过程来得到非线性分析的解,在这个例子中,外部总载荷的施加,是通过载荷步中的载荷子步数依次增加来实现的。该过程采用牛顿---拉普斯迭代过程来求解每一个子步。过程中,你必须为每个载荷步指定载荷子步数,因为载荷子步数,是用来控制应用于每个载荷步中第一个子步初始载荷增量大小的。此外,该程序可以在一个载荷步中,为每一个子步自动决定载荷增量的大小。当然,你可以指定载荷步的最大值和最小值,来控制这些子步中载荷增量的大小。如果你定义了载荷子步数,这些子步数的最大号和最小号都是一样的。而且在载荷步中,程序会用一个恒定的值来作为每个子步的载荷增量。

1 问题描述

用平面4节点182单元来建立圆板的轴对称模型,并且设置它的轴对称选项来为模型划分网格。选择几何分线性分析。并且制定如下的运动约束:固定住圆盘中心节点,使它的径向位移为0。使位移圆盘外边缘的节点具有零径向位移和零轴向位移。在第一个载荷步中施加静载,在随后的6个载荷步中施加循环点载荷。请看问题的描述。

为第一个载荷步指定十个载荷子步,以保证施加在第一个子步的静载增量为总载荷0.125 N/m2的十分之一。同样,还要指定载荷子步数的最大值为50,最小值为5,以确保,如果圆板在求解过程中出现严重的非线性行为,那么载荷的增量就会减小到总载荷的1/50。如果圆板的非线性行为一般,那么载荷的增量就可以提高到总载荷的1/5。

对于接下来的6个载荷步,都施加循环载荷,都运用4个载荷子步,设置子步数的最大值为25,最小值为2。

显示在整个求解过程中,施加循环载荷位置的节点,在垂直方向上位移,以及位于底部,固定边缘节点的反作用力。

2.问题说明

圆板的半径为1m厚度为0.1m。下面是一些应用于此问题的材料参数:

EX = 16911.23 Pa

PRXY = 0.3

材料的塑性随动硬化曲线为:

施加在圆板的静载为单位面积压力0.125N/m2。施加在点上循环载荷历史如下面所示:

图8.17 点的循环载荷历史

3.问题的描述

3.1设置分析标题和工作名字

1选择菜单路径设置标题

2 写入标题"Cyclic loading of a fixed circular plate-20114541."

3 点击OK

4 选着路径设置工作名称。出现改变工作名称对话框。

5 对话框中输入“axplate-20114541”然后点击OK。

3.2 定义单元类型

1 选择主菜单路径Main Menu> Preprocessor> Element Type>Add/Edit/Delete.

2 点击Add,弹出单元类型库。

3 在左边的列表中,点击“Structure Solid”

4 在右边的列表中,点击“Quad 4node 182”

5 点击Ok 。关闭单元类型库对话框。

6 点击Option。弹出Plane82单元类型选项对话框。

7 在单元属性的滚动框中,滚动到"Axisymmetric",然后选择。

8 点击OK。

9 点击Close 关闭单元类型对话框。

3.3 定义材料属性

1 选着主菜单路径Main Menu> Preprocessor> Material Props>Material Models.弹

出定义材料模型属性的对话框。

2 在材料模型的可用窗口中,依次双击如下选项图表:Structural, Linear, Elastic, Isotropic. 这时弹出一个对话框。

3 输入16911.23 作为杨氏模量EX

4 输入0.3作为泊松比PRXY

5 点击Ok。编号为1的材料模型出现在材料模型定义框的左边。

3.4 指定随动硬化材料模型(KINH)

1 在材料模型的可选窗口中,依次双击如下选项:Nonlinear, Inelastic,

Rate Independent, Kinematic Hardening Plasticity, von Mises Plasticity,

Multilinear (General).随后弹出一个对话框。

2 在表中输入如下的应变应力值:0.001123514,19.00

3 点击 Add Point按钮,然后输入下一对应变应力值:0.001865643, 22.80

4 重复前一步依次输入如下的应力应变值:0.002562402, 25.08; 0.004471788,

29.07; 0.006422389, 31.73.

5 点击Ok

6 选择主菜单路径Material> Exit来退出材料模型属性对话框

3.5 设置绘图轴的标签和绘制数据表

1 选择主菜单路径Utility Menu> PlotCtrls> Style> Graphs> Modify Axes. 弹

出绘图坐标轴修改的对话框。

2 键入Total Strain 作为x轴的标签。

3 键入True Stress 作为y轴的标签然后点击Ok。

4 选择主菜单路径Main Menu> Preprocessor> Material Props>Material Models.弹出定义材料行为的对话框。

5 在材料模型的对话框中,双击编号为1的材料模型,然后选择多线性随动硬化(General),然后弹出一个对话框,包括前面输入的应力应变数据。

6 点击Graph按钮,在图形窗口中会出现一条由表中数据所描绘的图形。

7 选择主菜单路径Material> Exit来退出材料模型属性对话框

8 点击工具条上的SAVE_DB on the Toolbar

3.6 创建矩形

1 选择主菜单路径Utility Menu> Parameters> Scalar Parameters.

2 在可选区域输入"radius=0.1"然后点击Accept.这个值为圆板的半径,点击Close。

3在可选区域输入"thick=0.1"然后点击Accept.这个值为圆板的厚度,点击Close。

4 选择主菜单路径Main Menu> Preprocessor> Modeling> Create>Areas> Rectangle> By Dimensions.弹出通过尺寸创建矩形的对话框。

5 在x坐标输入"0, radius"

6 在y坐标输入"0, thick",然后点击Ok。就会在图形窗口中创建个矩形

7选择主菜单路径Utility Menu> Plot> Lines.

3.7设置单元尺寸

1选择主菜单路径Main Menu> Preprocessor> Meshing>

MeshTool.弹出网格控制对话框

2点击Size Controls> Lines> Set.弹出线上单元尺寸的选择菜单。点击两条相互垂直的线(2和4),在选择菜单中点击Ok,然后弹出对线的单元尺寸设置的对

话框。

3 输入8作为单元划分的分数,然后点击Ok

4重复1-3步,但是选择的是水平直线1和3,以及指定单元划分的分数为40。

3.8 矩形的网格划分

1在网格划分工具中,选择Quad 和 Map点击MESH.,弹出面的选择菜单。

2 点击Pick all

3 点击工具条中的on SAVE_DB

4 点击Close关闭网格划分工具条

3.9 设置分析和载荷步选项

1 选择主菜单路径Main Menu> Solution> Unabridged Menu>

Analysis Type> Analysis Options弹出一个静态或者稳态分析对话框

2 切换到large-deformation effects ON然后点击Ok

3选择主菜单路径Main Menu> Solution> Load Step Opts>

Output Ctrls> DB/Results File.弹出控制数据和结果文件写入的对话框。

4确认每一个项目都被选中,然后选每一个子步来作为文件的写入。点击Ok

3.10 显示位移

在这个步骤中,需要显示位于对称轴上节点的位移,以及固定圆板末端的反作用力。

1 选择主菜单路径Utility Menu> Parameters> Scalar Parameters.弹出标量参数对话框

2 在可选区域输入"ntop = node(0,thick,0.0)",然后点击Accept

3在可选区域输入"nright = node(radius,0.0,0.0)"然后点击Accept

点击Close。

4 选择主菜单路径Main Menu> Solution> Load Step Opts>Nonlinear> Monitor,弹出选择显示菜单

5 在选择框中输入"ntop"然后点击RETURN。点击选择菜单中的Ok。弹出显示对话框。

6在滚动框中选择需要显示的对象,滚动到UY然后选择。点击Ok

7选择主菜单路径Main Menu> Solution> Load Step Opts>

Nonlinear> Monitor.弹出选择显示的对话框

8 在选择框中输入"nright"然后点击RETURN。点击选择菜单中的Ok。弹出显示对话框。

9 在滚动框中重定义变量,滚动到"Variable 2"然后选择,在滚动框中选择需要显示的对象,滚动到FY然后选择。点击Ok

3.11 设置约束

1 选择主菜单路径Utility Menu> Select> Entities弹出实体选择对话框

2 在前两个选择框中选择Node和By Location,确认x坐标被选择,然后在Min, Max 区域中输入"radius"点击Ok

3选择主菜单路径Main Menu> Solution> Define Loads> Apply>Structural> Displacement> On Nodes在弹出的节点的选择菜单中选择U,ROT

4 点击All。在节点对话框中应用U,ROT

5 点击"All DOF"来约束自由度。点击Ok

6选择主菜单路径Utility Menu> Select> Entities.弹出实体选择对话框。确认Nodes, By Location, and X coordinates 被选择。然后在Min, Max 区域中输入0,然后点击Ok。这个过程用来选择X=0位置的节点。

7选择主菜单路径Main Menu> Solution> Define Loads> Apply>Structural> Displacement> On Nodes。在弹出节点的选择菜单中选择U,ROT

8 选择All。在节点对话框中应用U,ROT

9 点击"UX"来约束自由度。点击All DOF度来取消选择它。

10 输入0 作为位移值。点击Ok

11选择主菜单路径Utility Menu> Select> Entities.弹出实体选择对话框确认Nodes 和By Location被选择

12 点击Y坐标,在Min, Max区域中输入“thick”点击OK

13选择主菜单路径Main Menu> Solution> Define Loads> Apply>Structural> Pressure> On Nodes在节点选择菜单中选择PRES

14点击All。弹出Apply PRES on nodes对话框

15在Load PRES区域中输入0.125,然后点击OK

16选择主菜单路径Utility Menu> Select> Everything.

17 点击工具条上的SAVE_DB

3.12 求解第一个载荷步

1 选择主菜单路径Main Menu> Solution> Load Step Opts>

Time/Frequenc> Time and Substps弹出时间载荷步对话框

2输入10 作为载荷步数,输入50作为最大载荷子步数,以及输入5作为最小子步数。点击Ok

3选择主菜单路径Main Menu> Solution> Solve> Current LS.

预览状态窗口的信息然后点击Close

4 在求解当前载荷步对话框中点击Ok

5 当求解完成后,在弹出的信息对话框中点击Close。

6 选择Utility Menu> Plot> Elements.

3.13 求解接下来的六个载荷步

1选择Utility Menu> Parameters> Scalar Parameters.弹出标量参数对话框

2在可选区域输入"f = 0.010"点击Accept.点击Close

3 选择主菜单路径Main Menu> Solution> Load Step Opts>

Time/Frequenc> Time and Substps.弹出时间载荷步对话框

4 设置载荷数为4,设置25作为最大载荷子步数,设置2作为最小子步数。点击Ok 5选择主菜单路径Main Menu> Solution> Define Loads> Apply>Structural> Force/Moment> On Nodes在节点选择菜单中应用F/M

6在选择区域内输入"ntop"然后点击RETURN,在节点选择菜单中的应用F/M,弹出Apply F/M节点对话框。

7在force/mom方向选择框中选择“FY”在Force/moment 区域中输入“-f”,点击Ok

8选择主菜单Main Menu> Solution> Solve> Current LS.预览状态窗口中信息,然后点击Close

9 在求解当前载荷步对话框点击Ok

10 当求解完成的时候,点击信息框中的Close

11 重复5-10步,在第7步中Force/moment中输入“f”

12重复5-11步,超过两次,总共三个周期(6个载荷子步)

13 点击工具条上的SAVE_DB

3.14 预览显示文件

1 选择主菜单路径Utility Menu> List> Files> Other。弹出文件列表框。选择axplate-20114541.mntr文件,然后点击OK

2 预览时间步的大小,确认位移,以及反作用力在整个求解过程中进程。

3 点击Close

3.15 利用通用后处理器来显示结果

1选择主菜单路径Main Menu> General Postproc> Read Results>Last Set

2 选择主菜单路径Main Menu> General Postproc> Plot Results>Deformed Shape.弹出变形显示对话框

3点击Def + undef edge作为显示的内容,点击Ok。图形窗口中出现变形的网格。4选择主菜单路径Main Menu> General Postproc> Plot Results>Contour Plot> Element Solu弹出描绘单元求解数据对话框。

5在选择框的左边,选择Strain-plastic.。在选择框的右边选择Eqv plastic EPEQ,点击Ok。在图形窗口中显示出云图。

6选择Utility Menu> Plot> Elements.

3.16 定义时间后处理器变量

1 选择主菜单路径Utility Menu> Select> Entities弹出实体选择对话框

2确认在前两个框里选中Nodes 和By Num/Pick,点击Ok。弹出节点选择菜单

3 在选择框中输入"ntop"点击RETURN。点击Ok

4选择主菜单路径Utility Menu> Select> Entities弹出实体选择对话框在第一个下拉框中输入Element,在第二个下拉框中选择Attach。确认Node被选择。点击Ok

5 选择Utility Menu> Select> Everything.

6 选择Main Menu> TimeHist Postpro> Define Variables.

弹出定义时间历程变量的对话框,点击ok ,弹出时间历程变量对话框

7点击Element results.,点击Ok。弹出定义单元数据对话框

8选择图形框中左上方的单元。在选择菜单中点击Ok。弹出定义节点数据的对话框

9选择左上方单元的左上方节点。在选择菜单中点击Ok。弹出定义单元结果变量的对话框

10确认量的参考序号为2

11在左边的列表中选择Stress,在右边列表中选择Y-direction SY

点击Ok。弹出时间历程变量对话框,选择变量列表中的(ESOL).对话框显示的单元号为281,节点号为50,item S, componentY, and name SY.

12点击Add。重复7-10步,设定变量的参考序号为3.

13 在定义单元结果变量的对话框中,选择左边列表中的Strain-elastic。在右边列表中选择Y-dir'n EPEL Y。点击Ok

14击Add。重复7-10步,设定变量的参考序号为4

15在定义单元结果变量的对话框中,选择左边列表中的Strain-plastic。在右边列表中选择Y-dir'n EPPL Y。点击Ok

16点击Ok弹出时间历程变量对话框

17选择主菜单路径Main Menu> TimeHist Postpro> Math

Operations> Add.弹出时间历程变量对话框

18 输入5作为结果的参考序列号,按3作为第一个变量,按4作为第二个变量。点击Ok,这样就吧你存储在变量3和4中的弹性应变和塑性应变加起来了。他们的和是总应变,被储存在变量5中。

3.17 绘出时间历程结果

1选择主菜单路径Main Menu> TimeHist Postpro> Settings>Graph弹出图形设置对话框

2点击单变量作为x轴的变量,输入5作为单变量序号。点击Ok

3选择主菜单路径Utility Menu> PlotCtrls> Style> Graphs> Modify Axes.弹出关于图形显示的坐标轴修改对话框。

4 输入Total Y-Strain作为x轴标签

5输入Y-Stress作为y轴标签,点击Ok

6选择主菜单路径Main Menu> TimeHist Postpro> Graph Variables弹出显示时间历程变量对话框

7输入2作为图表的第一个变量。点击OK

3.18 退出

1 选择工具条中的QUIT

ansys非线性分析指南

ANSYS 非线性分析指南(1) 基本过程 第一章结构静力分析 1. 1 结构分析概述 结构分析的定义: 结构分析是有限元分析方法最常用的一个应用领域。结构这个术语是一个广义的概念,它包括土木工程结构,如桥梁和建筑物;汽车结构,如车身、骨架;海洋结构,如船舶结构;航空结构,如飞机机身、机翼等,同时还包括机械零部件,如活塞传动轴等等。 在ANSYS 产品家族中有七种结构分析的类型,结构分析中计算得出的基 本未知量- 节点自由度,是位移;其他的一些未知量,如应变、应力和反力, 可通过节点位移导出。 七种结构分析的类型分别是: a. 静力分析- 用于求解静力载荷作用下结构的位移和应力等。静力分析 包括线性和非线性分析。而非线性分析涉及塑性、应力刚化、大变形、大应变、超弹性、接触面和蠕变,等。 b. 模态分析- 用于计算结构的固有频率和模态。 c. 谐波分析- 用于确定结构在随时间正弦变化的载荷作用下的响应。 d. 瞬态动力分析- 用于计算结构在随时间任意变化的载荷作用下的响应,并且可计及上述提到的静力分析中所有的非线性性质。 e. 谱分析- 是模态分析的应用拓广,用于计算由于响应谱或PSD 输入 随机振动引起的应力和应变。 f. 屈曲分析- 用于计算屈曲载荷和确定屈曲模态,ANSYS 可进行线性特征值和非线性屈曲分析。 g. 显式动力分析- ANSYS/LS-DYNA可用于计算高度非线性动力学和复 杂的接触问题。 除了前面提到的七种分析类型,还有如下特殊的分析应用: ? 断裂力学 ? 复合材料 ? 疲劳分析

? p-Method 结构分析所用的单元:绝大多数的ANSYS 单元类型可用于结构分析。单元类型从简单的杆单元和梁单元一直到较为复杂的层合壳单元和大应变实体单元 1.2 结构线性静力分析 静力分析的定义: 静力分析计算在固定不变的载荷作用下结构的响应。它不考虑惯性和阻尼的影响,如结构受随时间变化载荷的情况。可是静力分析可以计算那些固定不变的惯性载荷对结构的影响,如重力和离心力;以及那些可以近似为等价静力作用的随时间变化载荷,如通常在许多建筑规范中所定义的等价静力风载和地震载荷。 静力分析中的载荷: 静力分析用于计算由那些不包括惯性和阻尼效应的载荷作用于结构或部件上引起的位移、应力、应变和力。固定不变的载荷和响应是一种假定,即假定载荷和结构的响应随时间的变化非常缓慢,静力分析所施加的载荷包括: ? - 外部施加的作用力和压力 ? - 稳态的惯性力如中力和离心力 ? - 位移载荷 ? - 温度载荷 线性静力分析和非线性静力分析 静力分析既可以是线性的也可以是非线性的。非线性静力分析包括所有的非线性类型:大变形、塑性、蠕变、应力刚化、接触、间隙单元、超弹性单元等,本节主要讨论线性静力分析,非线性静力分析在下一节中介绍。 线性静力分析的求解步骤 1 建模 2 施加载荷和边界条件求解 3 结果评价和分析

ansys学习-非线性静态分析实例

ansys学习-非线性静态分析实例 问题描述 一个子弹以给定的速度射向壁面。壁面假定是刚性的和无摩擦的。将研究子弹和壁面接触后达80微秒长的现象。目的是确定子弹的整个变形,速度历程,以及最大等效Von Mises应变。求解使用SI单位。 用轴对称单元模拟棒。求解最好能通过单一载荷步实现。在这个载荷步中,将同时施加初始速度和约束。将圆柱体末端的节点Y方向约束住以模拟一固壁面。打开自动时间分步来允许ANSYS 确定时间步长。定义分析结束的时间为8E-5秒,以确保有足够长的时间来扑捉整个变形过程。 问题详细说明 下列材料性质应用于这个问题: EX=117.0E09 (杨氏模量) DENS=8930.0 (密度) NUXY=0.35(泊松比) Yield Strength=400.0OE06(屈服强度) Tangent Modulus (剪切模量) 下列尺寸应用于这个问题: 长=32.4E-3m 直径=6.4E-3m 对于这个问题的初始速度是227.0。 图1铜圆柱体图解 求解步骤: 步骤一:设置分析标题 1、选择菜单路径:Utility Menn>File>ChangeTitle。

2、键入文字“Coppery Cylinder Impacting a Rigid Wall” 3、单击OK。 步骤二:定义单元类型 1、选择菜单路径Mail Menu>Preprocessor>Element Type>All/Edit/Delete。 2、单击Add。Library of Element Types(单元类型库)对话框出现。 3、在靠近左边的列表中,单击“Visio Solid”仅一次。 4、选靠近右边的列表中,单击“4node Plas 106”仅一次。 5、单击OK。Library of Element Types 对话框关闭。 6、单击Options (选项)。VISCO106 element type Options(visco106单元类型选项)对话框出现。 7、在关于element behavior(单元特性)的卷动柜中,卷动到“Axisymmetric” 且选中它。 8、单击OK。 9、单击Element Types (单元类型)对话框中的Close。 步骤三:定义材料性质 1、选择菜单路径Main Menu>Preprocessor>Material Props>-Constant-Isotropic. Isotropic Matersal Properties (各向同性材料性质)对话框出现。 2、单击OK来指定材料号为1。另一个I sotropic Material Properties对话框出现。 3、对杨氏模量(EX)键入117.0E09 4、对密度(DENS)键入8930。 5、对泊松比(NUXY)键入0.35。 6、单击OK。 步骤四:定义双线性各向同性强化数据表(BISO) 1、选择菜单路径Main Menu>Preprocessor>Matersal Props>Data Tables> Define/Activate . Define/Activate Data Table(定义数据表)对话柜出现。 2、在关于type of data table(数据表类型)的卷动框中,卷动到“Bilin isotr BISO”且选中它。 3、对material reference number(材料参考号)健入1。 4、对number of temperatures(温度数)键入1和单击OK。 5、选择菜单路径Main Menu>Preprocessor>Material Props>Data Tables>Edit Active. Data Table BISO对话框出现。 6、对YLD Strs(屈服应力)键入400.0e06。 7、对 Tang Mod(剪切模量)键入100.0e06。 8、选择File>Apply & Quit。 9、选择菜单路径Main Menu>Preprosessor>Material Porps>Data Tables>Graph. Graph Data Tables(图形表示数据表)对话框出现。 10、单击OK接受绘制BISO表的缺省。一个BISO表的标绘图出现在ANSYS图形窗口中。 11、在ANSYS TooLbar上单击SAVE_DB。 步骤五、产生矩形 在这一步中,你产生一个代表柱体半横截面积的矩形。

ANSYS结构非线性分析指南_第三章

第三章几何非线性与屈曲分析 3.1 几何非线性 3.1.1 大应变效应 一个结构的总刚度依赖于它的组成部件(单元)的方向和单刚。当一个单元的结点经历位移后,那个单元对总体结构刚度的贡献可以以两种方式改变。首先,如果这个单元的形状改变,它的单元刚度将改变(图3-1(a))。其次,如果这个单元的取向改变,它的局部刚度转化到全局部件的变换也将改变(图3-1(b))。小的变形和小的应变分析假定位移小到足够使所得到的刚度改变无足轻重。这种刚度不变假定意味着使用基于最初几何形状的结构刚度的一次迭代足以计算出小变形分析中的位移(什么时候使用“小”变形和应变依赖于特定分析中要求的精度等级)。 相反,大应变分析考虑由单元的形状和取向改变导致的刚度改变。因为刚度受位移影响,且反之亦然,所以在大应变分析中需要迭代求解来得到正确的位移。通过发出NLGEOM,ON(GUI路径Main Menu>Solution>Analysis Options),来激活大应变效应。这种效应改变单元的形状和取向,且还随单元转动表面载荷。(集中载荷和惯性载荷保持它们最初的方向。)在大多数实体单元(包括所有的大应变和超弹性单元),以及部分的壳单元中大应变特性是可用的。在ANSYS/Linear Plus程序中大应变效应是不可用的。 图3-1 大应变和大转动 大应变过程对单元所承受的总旋度或应变没有理论限制。(某些ANSYS单元类型将受到总应变的实际限制──参看下面。)然而,应限制应变增量以保持精度。因此,总载荷应当被分成几个较小的步,这可用〔NSUBST,DELTIM,AUTOTS〕命令自动实现(通过GUI路径Main Menu>Solution>Time/Frequent)。无论何时如果系统是非保守系统,如在模型中有塑性或摩擦,或者有多个大位移解存在,如具有突然转换现象,使用小的载荷增量具有双重重要性。 3.1.2 应力-应变 在大应变求解中,所有应力─应变输入和结果将依据真实应力和真实(或对数)应变(一维时,

ANSYS命令流学习笔记10-利用APDL在WorkBench中进行非线性屈曲分析

!ANSYS命令流学习笔记10-利用APDL在WorkBench中进行非线性屈曲分析 !学习重点: !1、强化非线性屈曲知识 首先了解屈曲问题。在理想化情况下,当F < Fcr时, 结构处于稳定平衡状态,若引入一个小的侧向扰动力,然后卸载, 结构将返回到它的初始位置。当F > Fcr时, 结构处于不稳定平衡状态, 任何扰动力将引起坍塌。当F = Fcr时,结构处于中性平衡状态,把这个力定义为临界载荷。在实际结构中, 几何缺陷的存在或力的扰动将决定载荷路径的方向。在实际结构中, 很难达到临界载荷,因为扰动和非线性行为, 低于临界载荷时结构通常变得不稳定。 要理解非线性屈曲分析,首先要了解特征值屈曲。特征值屈曲分析预测一个理想线弹性结构的理论屈曲强度,缺陷和非线性行为阻止大多数实际结构达到理想的弹性屈曲强度,特征值屈曲一般产生非保守解, 使用时应谨慎。 !理论解,根据Euler公式。其中μ取决于固定方式。 !有限元方法, 已知在特征值屈曲问题: 求解,即可得到临界载荷 而非线性屈曲问题: 其中为结构初始刚度,为有缺陷的结构刚度,为位移矩阵,为载荷矩阵。 非线性屈曲分析时考虑结构平衡受扰动(初始缺陷、载荷扰动)的非线性静力分析,该分析时一直加载到结构极限承载状态的全过程分析,分析中可以综合考虑材料塑性、几何非线性、接触、大变形。非线性屈曲比特征值屈曲更精确,因此推荐用于设计或结构的评价。 !2、熟悉WB中非线性屈曲分析流程 (1) 前处理,施加单元载荷,进行预应力静力分析。 (2) 基于预应力静力分析,指定分析类型为特征值屈曲分析,完成特征值屈曲分析。 (3) 在APDL模块将一阶特征屈曲模态位移乘以适当系数,将此变形后的形状当做非线性分析的初始模型。

ANSYS结构非线性分析指南连载四

ANSYS结构非线性分析指南连载四--第四章材料非线性分析 (二) (2014-04-27 10:47:15) 转载▼ 标签: it 4.3 超弹性分析 4.3.1 超弹理论 4.3.1.1 超弹的定义 一般工程材料(例如金属)的应力状态由一条弹塑性响应曲线来描述,而超弹性材料存在一个弹性势能函数,该函数是一个应变或变形张量的标量函数,而该标量函数对应变分量的导数就是相应的应力分量。 上式中:[S]=第二皮奥拉-克希霍夫应力张量 W=单位体积的应变能函数 [E]=拉格朗日应变张量 拉格朗日应变可以由下式表达:[E]=1/2([C]-I) 其中:[I]是单位矩阵,[C]是有柯西-格林应变张量 其中[F]是变形梯度张量,其表达式为: x:变形后的节点位置矢量 X:初始的节点位置矢量 如果使用主拉伸方向作为变形梯度张量和柯西-格林变形张量的方向,则有: 其中: J=初始位置与最后位置的体积比 材料在第i个方向的拉伸率 在ANSYS程序中,我们假定超弹材料是各向同性的,在每个方向都有完全相同的材料特性,在这种情况下,我们既可以根据应变不变量写出应变能密度函数,也可以根据主拉伸率写出应变能密度函数。 应变不变量是一种与坐标系无关的应变表示法。使用它们就意味着材料被假定是各向同性的。Mooney -Rivlin和Blatz-Ko应变能密度函数都可以用应变不变量表示,应变不变量可以柯西-格林应变张量和主拉伸率表示出来:

一个根据应量不变量写出来的应变能密度函数如下: 为材料常数,上式是两个常数的Mooney-Rivlin应变能密度函数。 超弹材料可以承受十分大的弹性变形,百分之几百的应变是很普遍的,既然是纯弹性应变,因此超弹性材料的变形是保守行为,与加载路径无关。 4.3.1.2 不可压缩缩性 大多数超弹材料,特别是橡胶和橡胶类材料,都是几乎不可压缩的,泊松比接近于0.5,不可压缩材料在静水压力下不产生变形,几乎不可压缩材料的泊松比一般在0.48至0.5之间(不包含0.5),对这些材料,在单元公式中必须考虑不可压缩条件。在ANSYS程序中,不可压缩超弹单元修改了应变能密度函数,在单元中明确地包含了压力自由度。压力自由度使不可压缩条件得到满足,而不降低求解速度。压力自由度是一种内部自由度,被凝聚在单元内部。 4.3.1.3 超弹单元 有三种单元适合于模拟超弹性材料: 不可压缩单元有HYPE56,58,74和158,这些单元适用于模拟橡胶材料。 可压缩单元有HYPER84和86,HYPER84既可以是4节点矩形也可以是8节点矩形单元,这种单元主要用来模拟泡沫材料。 18X族单元(除LIMK和BEAM单元外,包括SHELL181, PLANE182,PLANE183,SOLID185,SOLID186,和SOLID187)。18X族单元消除了体积锁定,既适用于不可压材料,又适用于可压材料。参见《ANSYS Elements Reference》的“Mixed U-P Formulations”。 4.3.2 超弹材料选项 超弹性可用于分析橡胶类材料(elastomers),这种材料可承受大应变和大位移,但体积改变极微(不可压缩)。这种分析需用到大应变理论[ NLGEOM ,ON]。图4-13是一个例子。 图4-13 超弹性结构 在ANSYS超弹性模型中,材料响应总是假设各向同性和等温性。由于这一假设,应变能势函数按应变不变量来表示。除非明确指出,超弹性材料还假设为几乎或完全不可压缩材料。材料热膨胀也假定为各向同性的。 ANSYS在模拟不可压缩或几乎不可压缩超弹性材料时,应变能势函数有几种选项。这些选项均适用于SHELL181,PLANE182, PLANE183, SOLID185, SOLID186, SOLID187 单元。可以通过TB ,HYPER 命令的 TBOPT参数进入这些选项。

ANSYS 非线性_结构分析

目录 非线性结构分析的定义 (1) 非线性行为的原因 (1) 非线性分析的重要信息 (3) 非线性分析中使用的命令 (8) 非线性分析步骤综述 (8) 第一步:建模 (9) 第二步:加载且得到解 (9) 第三步:考察结果 (16) 非线性分析例题(GUI方法) (20) 第一步:设置分析标题 (21) 第二步:定义单元类型 (21) 第三步:定义材料性质 (22) 第四步:定义双线性各向同性强化数据表 (22) 第五步:产生矩形 (22) 1

第六步:设置单元尺寸 (23) 第七步:划分网格 (23) 第八步:定义分析类型和选项 (23) 第九步:定义初始速度 (24) 第十步:施加约束 (24) 第十一步:设置载荷步选项 (24) 第十二步:求解 (25) 第十三步:确定柱体的应变 (25) 第十四步:画等值线 (26) 第十五步:用Post26定义变量 (26) 第十六步:计算随时间变化的速度 (26) 非线性分析例题(命令流方法) (27) 非线性结构分析 非线性结构的定义 在日常生活中,会经常遇到结构非线性。例如,无论何时用钉书针钉书,金 2

属钉书钉将永久地弯曲成一个不同的形状。(看图1─1(a))如果你在一个木架上放置重物,随着时间的迁移它将越来越下垂。(看图1─1(b))。当在 汽车或卡车上装货时,它的轮胎和下面路面间接触将随货物重量的啬而变化。(看图1─1(c))如果将上面例子所载荷变形曲线画出来,你将发现它们都显示了非线性结构的基本特征--变化的结构刚性. 图1─1 非线性结构行为的普通例子 3

非线性行为的原因 引起结构非线性的原因很多,它可以被分成三种主要类型: 状态变化(包括接触) 许多普通结构的表现出一种与状态相关的非线性行为,例如,一根只能拉伸的电缆可能是松散的,也可能是绷紧的。轴承套可能是接触的,也可能是不接触的, 冻土可能是冻结的,也可能是融化的。这些系统的刚度由于系统状态的改变在不同的值之间突然变化。状态改变也许和载荷直接有关(如在电缆情况中),也可能由某种外部原因引起(如在冻土中的紊乱热力学条件)。ANSYS程序中单元的激活与杀死选项用来给这种状态的变化建模。 接触是一种很普遍的非线性行为,接触是状态变化非线性类型形中一个特殊而重要的子集。 几何非线性 如果结构经受大变形,它变化的几何形状可能会引起结构的非线性地响应。一个例的垂向刚性)。随着垂向载荷的增加,杆不断弯曲以致于动力臂明显地减少,导致杆端显示出在较高载荷下不断增长的刚性。 4

关于ansys非线性分析的几点忠告

关于非线性分析的几点忠告 了解程序的运作方式和结构的表现行为 如果你以前没有使用过某一种特别的非线性特性,在将它用于大的,复杂的模型前,构造一个非常简单的 模型(也就是,仅包含少量单元),以及确保你理解了如何处理这种特性。 通过首先分析一个简化模型,以便使你对结构的特性有一个初步了解。对于非线性静态模型,一个初步的 线性静态分析可以使你知道模型的哪一个区域将首先经历非线性响应,以及在什么载荷范围这些非线性将 开始起作用。对于非线性瞬态分析,一个对梁,质量块及弹簧的初步模拟可以使你用最小的代价对结构的 动态有一个深入了解。在你着手最终的非线性瞬时动态分析前,初步非线性静态,线性瞬时动态,和/或模 态分析同样地可以有助于你理解你结构的非线性动态响应的不同的方面。 阅读和理解程序的输出信息和警告。至少,在你尝试后处理你的结果前,确保你的问题收敛。对于与路程 相关的问题,打印输出的平衡迭代记录在帮助你确定你的结果是有效还是无效方面是特别重的。 简化 尽可能简化最终模型。如果可以将3─D结构表示为2─D平面应力,平面应变或轴对称模型,那么这样做, 如果可以通过对称或反对称表面的使用缩减你的模型尺寸,那么这样做。(然而,如果你的模型非对称加 载,通常你不可以利用反对称来缩减非线性模型的大小。由于大位移,反对称变成不可用的。)如果你可 以忽略某个非线性细节而不影响你模型的关键区域的结果,那么这样做。 只要有可能就依照静态等效载荷模拟瞬时动态加载。 考虑对模型的线性部分建立子结构以降低中间载荷或时间增量及平衡迭代所需要的计算时间。 采用足够的网格密度 考虑到经受塑性变形的区域要求一个合理的积分点密度。每个低阶单元将提供和高阶单元所能提供的一样

ANSYS分析指南精华:子结构

第四章子结构 什么是子结构? 子结构就是将一组单元用矩阵凝聚为一个单元的过程。这个单一的矩阵单元称为超单元。在ANSYS分析中,超单元可以象其他单元类型一样使用。唯一的区别就是必须先进行结构生成分析以生成超单元。子结构可以在ANSYS/Mutiphysics,ANSYS/Mechanical和ANSYS/Structural中使用。 使用子结构主要是为了节省机时,并且允许在比较有限的计算机设备资源的基础上求解超大规模的问题。原因之一如a)非线性分析和带有大量重复几何结构的分析。在非线性分析中,可以将模型线性部分作成子结构,这样这部分的单元矩阵就不用在非线性迭代过程中重复计算。在有重复几何结构的模型中(如有四条腿的桌子),可以对于重复的部分生成超单元,然后将它拷贝到不同的位置,这样做可以节省大量的机时。 子结构还用于模型有大转动的情况下。对于这些模型,ANSYS假定每个结构都是围绕其质心转动的。在三维情况下,子结构有三个转动自由度和三个平动自由度。在大转动模型中,用户在使用部分之前无须对子结构施加约束,因为每个子结构都是作为一个单元进行处理,是允许刚体位移的。 另外一个原因b)一个问题就波前大小和需用磁盘空间来说相对于一个计算 1

机系统太庞大了。这样,用户可以通过子结构将问题分块进行分析,每一块对于计算机系统来说都是可以计算的。 如何使用子结构 子结构分析有以下三个步骤: ●生成部分 ●使用部分 ●扩展部分 生成部分就是将普通的有限元单元凝聚为一个超单元。凝聚是通过定义一组主自由度来实现的。主自由度用于定义超单元与模型中其他单元的边界,提取模型的动力学特性。图4-1是一个板状构件用接触单元分析的示意。由于接触单元需要迭代计算,将板状构件形成子结构将显著地节省机时。本例中,主自由度是板与接触单元相连的自由度。 图4-1 子结构使用示例 2

ANSYS-结构稳态(静力)分析之经典实例-命令流格式

ANSYS 结构稳态(静力)分析之经典实例-命令流格式.txt两人之间的感情就像织毛衣,建立 的时候一针一线,小心而漫长,拆除的时候只要轻轻一拉。。。。/FILNAME,Allen-wrench,1 ! Jobname to use for all subsequent files /TITLE,Static analysis of an Allen wrench /UNITS,SI ! Reminder that the SI system of units is used /SHOW ! Specify graphics driver for interactive run; for batch ! run plots are written to pm02.grph ! Define parameters for future use EXX=2.07E11 ! Young's modulus (2.07E11 Pa = 30E6 psi) W_HEX=.01 ! Width of hex across flats (.01m=.39in) *AFUN,DEG ! Units for angular parametric functions定义弧度单位 W_FLAT=W_HEX*TAN(30) ! Width of flat L_SHANK=.075 ! Length of shank (short end) (.075m=3.0in) L_HANDLE=.2 ! Length of handle (long end) (.2m=7.9 in) BENDRAD=.01 ! Bend radius of Allen wrench (.01m=.39 in) L_ELEM=.0075 ! Element length (.0075 m = .30 in) NO_D_HEX=2 ! Number of divisions on hex flat TOL=25E-6 ! Tolerance for selecting nodes (25e-6 m = .001 in) /PREP7 ET,1,SOLID45 ! 3维实体结构单元;Eight-node brick element ET,2,PLANE42 ! 2维平面结构;Four-node quadrilateral (for area mesh) MP,EX,1,EXX ! Young's modulus for material 1;杨氏模量 MP,PRXY,1,0.3 ! Poisson's ratio for material 1;泊松比 RPOLY,6,W_FLAT ! Hexagonal area创建规则的多边形 K,7 ! Keypoint at (0,0,0) K,8,,,-L_SHANK ! Keypoint at shank-handle intersection K,9,,L_HANDLE,-L_SHANK ! Keypoint at end of handle L,4,1 ! Line through middle of hex shape L,7,8 ! Line along middle of shank L,8,9 ! Line along handle LFILLT,8,9,BENDRAD ! Line along bend radius between shank and handle! 产生 一个倒角圆,并生成三个点 /VIEW,,1,1,1 ! Isometric view in window 1 /ANGLE,,90,XM ! Rotates model 90 degrees about X! 不用累积的旋转 /TRIAD,ltop /PNUM,LINE,1 ! Line numbers turned on LPLOT

Ansys第25例非线性分析综合应用实例

第25例非线性分析综合应用实例----钢板卷制成圆筒 本例介绍了综合利用ANSYS非线性分析功能模拟将钢板卷制成圆筒的方法和步骤。25.1问题描述 将钢板卷制成圆筒一般要使用卷板机。图25-1所示为对称式三辊卷板机, 该机器将钢板卷制成圆筒时分为三个步骤:首先,上辊下降使钢板发生挠曲,钢板挠曲线的最低点首先发生屈服;然后,下辊转动驱动钢板向前移动,使钢板各点发生同样的屈服形成圆筒;最后,圆筒卷制完成,上辊上升卸下筒体。 图25-1对称式三辊卷板机 用ANSYS模拟将钢板卷制成圆筒,相应地也分为三个步骤。由于第二个步骤需要模拟上、下辊转动,而ANSYS的SOLIDn单元不支持大转动,位移边界条件不能施加大的转动角度,所以上、下辊需要用壳单元建立有限元模型。上、下辊与钢板的作用需要用接触模拟,钢板卷制成圆筒材料发生屈服,产生大变形, 所以钢板卷制成圆筒包括状态非线性、材料非线性和结构非线性三种非线性。 用ANSYS模拟将钢板卷制成圆筒,计算结果可以得到圆筒直径与上辊下压量的关系,上、下辊受力大小,上、下辊的变形,下辊驱动力矩及卸载回弹等重

25.2 命令流 /CLEAR /FILNAM, EXAMPLE25 /CONFIG, NRES, 2000 /PREP7 /PNUM, VOLU, ON ET, 1, SHELL181 ET, 2, SOLID186 MP, EX, 1, 2E11 MP, DENS, 1, 7800 MP, NUXY, 1, 0.3 MP, EX, 2, 2E11 MP, DENS, 2, 7800 MP, NUXY, 2, 0.3 TB, BKIN, 2, 1 TBTEMP, 0 TBDATA,, 240E6, 0 SECTYPE, 1, SHELL SECDATA, 0.02 CYLIND, 0.38/2, 0, 0.2, 1.7, 0, 360 要数据。因为分析过程复杂,步骤较多,所以本例只采用命令流法执行命令。 !清除数据库,新建文件 ! 指定任务名为?EXAMPLE25 “ !设置最大子步数 !前处理 !进入前处理器 !打开体号 !选择单元类型,壳单元用于划分上、下辊 !实体单元用于划分钢板 !定义材料模型 1 的弹性模量 ! 定义材料模型 1 的密度 !定义材料模型 1 的泊松比 !定义材料模型 2 的弹性模量 ! 定义材料模型 2 的密度 !定义材料模型 2 的泊松比 ! 定义材料模型 2 的屈服极限、切向模量 !定义截面 !壳厚度

Ansys使用技巧-非线性收敛准则

ansys计算非线性时会绘出收敛图,其中横坐标是cumulative iteration number 纵坐标是absolute convergence norm。他们分别是累积迭代次数和绝对收敛范数,用来判断非线性分析是否收敛。 ansys在每荷载步的迭代中计算非线性的收敛判别准则和计算残差。其中计算残差是所有单元内力的范数,只有当残差小于准则时,非线性叠代才算收敛。ansys的位移收敛是基于力的收敛的,以力为基础的收敛提供了收敛量的绝对值,而以位移为基础的收敛仅提供表现收敛的相对量度。一般不单独使用位移收敛准则,否则会产生一定偏差,有些情况会造成假收敛.(ansys非线性分析指南--基本过程Page.6) 。因此ansys官方建议用户尽量以力为基础(或力矩)的收敛误差,如果需要也可以增加以位移为基础的收敛检查。ANSYS缺省是用L2范数控制收敛。其它还有L1范数和L0范数,可用CNVTOL命令设置。在计算中L2值不断变化,若L2

ansys学习非线性静态分析实例

a n s y s学习非线性静态分 析实例 Newly compiled on November 23, 2020

ansys学习-非线性静态分析实例 问题描述 一个子弹以给定的速度射向壁面。壁面假定是刚性的和无摩擦的。将研究子弹和壁面接触后达80微秒长的现象。目的是确定子弹的整个变形,速度历程,以及最大等效Von Mises应变。求解使用SI单位。 用轴对称单元模拟棒。求解最好能通过单一载荷步实现。在这个载荷步中,将同时施加初始速度和约束。将圆柱体末端的节点Y方向约束住以模拟一固壁面。打开自动时间分步来允许ANSYS确定时间步长。定义分析结束的时间为8E-5秒,以确保有足够长的时间来扑捉整个变形过程。 问题详细说明 下列材料性质应用于这个问题: EX= (杨氏模量) DENS= (密度) NUXY=(泊松比) Yield Strength=(屈服强度) Tangent Modulus (剪切模量) 下列尺寸应用于这个问题: 长=-3m 直径=-3m 对于这个问题的初始速度是。 图1铜圆柱体图解 求解步骤: 步骤一:设置分析标题 1、选择菜单路径:Utility Menn>File>ChangeTitle。 2、键入文字“Coppery Cylinder Impacting a Rigid Wall” 3、单击OK。 步骤二:定义单元类型

1、选择菜单路径Mail Menu>Preprocessor>Element Type>All/Edit/Delete。 2、单击Add。Library of Element Types(单元类型库)对话框出现。 3、在靠近左边的列表中,单击“Visio Solid”仅一次。 4、选靠近右边的列表中,单击“4node Plas 106”仅一次。 5、单击OK。Library of Element Types 对话框关闭。 6、单击Options (选项)。VISCO106 element type Options(visco106单元类型选项)对话框出现。 7、在关于element behavior(单元特性)的卷动柜中,卷动到“Axisymmetric” 且选中它。 8、单击OK。 9、单击Element Types (单元类型)对话框中的Close。 步骤三:定义材料性质 1、选择菜单路径Main Menu>Preprocessor>Material Props>-Constant-Isotropic. Isotropic Matersal Properties (各向同性材料性质)对话框出现。 2、单击OK来指定材料号为1。另一个I sotropic Material Properties对话框出现。 3、对杨氏模量(EX)键入 4、对密度(DENS)键入8930。 5、对泊松比(NUXY)键入。 6、单击OK。 步骤四:定义双线性各向同性强化数据表(BISO) 1、选择菜单路径Main Menu>Preprocessor>Matersal Props>Data Tables> Define/Activate . Define/Activate Data Table(定义数据表)对话柜出现。 2、在关于type of data table(数据表类型)的卷动框中,卷动到“Bilin isotr BISO”且选中它。 3、对material reference number(材料参考号)健入1。 4、对number of temperatures(温度数)键入1和单击OK。 5、选择菜单路径Main Menu>Preprocessor>Material Props>Data Tables>Edit Active. Data Table BISO对话框出现。 6、对YLD Strs(屈服应力)键入。 7、对 Tang Mod(剪切模量)键入。

ansys子结构分析实例解析

ANSYS中的超单元 从8.0版开始,ANSYS中增加了超单元功能,本文通过一些实际例子,探讨了ANSYS 中超单元的具体使用。 1 使用超单元进行静力分析 根据ANSYS帮助文件,使用超单元的过程可以划分为三个阶段(称为Pass): (1) 生成超单元模型(Generation Pass) (2) 使用超单元数据(Use Pass) (3) 扩展模型(Expansion Pass) 以下摘自htbbzzg邹老师博客,请勿乱传! 下面以一个例子加以说明: 一块板,尺寸为20×40×2,材料为钢,一端固支,另一端承受法向载荷。 首先生成原始模型se_all.db,即按照整个结构进行分析,以便后面与超单元结果进行比较: 首先生成两个矩形,尺寸各为20×2。然后定义单元类型shell63; 定义实常数1为: 2 (板厚度)。 材料性能:弹性模量E=201000;波松比μ=0.3;密度ρ=7.8e-9; 单位为mm-s-N-MPa。 采用边长1划分单元;一端设置位移约束all,另一端所有(21个)节点各承受Z向力5。计算模型如下图:

静力分析的计算结果如下:

为了后面比较的方便,分别给出两个area上的结果:

超单元部分,按照上述步骤操作如下: (1) 生成超单元 选择后半段作为超单元,前半段作为非超单元(主单元)。 按照ANSYS使用超单元的要求,超单元与非超单元部分的界面节点必须一致(重合),且最好分别的节点编号也相同,否则需要分别对各节点对建立耦合方程,操作比较麻烦。 实际上,利用ANSYS中提供的mesh200单元,对超单元和非超单元的界面实体,按照同一顺序,先于所有其它实体划分单元,很容易满足界面节点编号相同的要求。对于多级超单元的情况,则还要结合其它操作(如偏移节点号等)以满足这一要求。 对于本例,采用另一办法,即先建立整个模型,然后再划分超单元和非超单元。即:将上述模型分别存为se_1.db (超单元部分)和se_main.db (非超单元部分)两个文件,然后分别处理。 对于se_1.db模型,按照超单元方式进行处理。由于模型及边界条件已建立,只需删除前半段上的划分,结果就是超单元所需的模型。 然后直接进入创建超单元矩阵的操作,首先说明一下创建超单元矩阵的一般步骤: A进入求解模块: 命令:/Solu GUI:Main menu -> Solution B设置分析类型为“子结构或部件模态综合“

ansys学习非线性静态分析实例

a n s y s学习非线性静态 分析实例 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

ansys学习-非线性静态分析实例 问题描述 ??? 一个子弹以给定的速度射向壁面。壁面假定是刚性的和无摩擦的。将研究子弹和壁面接触后达80微秒长的现象。目的是确定子弹的整个变形,速度历程,以及最大等效Von Mises应变。求解使用SI单位。 用轴对称单元模拟棒。求解最好能通过单一载荷步实现。在这个载荷步中,将同时施加初始速度和约束。将圆柱体末端的节点Y方向约束住以模拟一固壁面。打开自动时间分步来允许ANSYS确定时间步长。定义分析结束的时间为8E-5秒,以确保有足够长的时间来扑捉整个变形过程。 问题详细说明 下列材料性质应用于这个问题: EX=? (杨氏模量) DENS=?? (密度) NUXY=(泊松比) Yield Strength=(屈服强度) Tangent Modulus??? (剪切模量) 下列尺寸应用于这个问题: 长=-3m 直径=-3m 对于这个问题的初始速度是。 ? ?????????????????????????????????????????????????????????? 图1铜圆柱体图解 求解步骤: 步骤一:设置分析标题 1、选择菜单路径:Utility Menn>File>ChangeTitle。 2、键入文字“Coppery Cylinder Impacting a Rigid Wall”

3、单击OK。 步骤二:定义单元类型 1、选择菜单路径Mail Menu>Preprocessor>Element Type>All/Edit/Delete。 2、单击Add。Library of Element Types(单元类型库)对话框出现。 3、在靠近左边的列表中,单击“Visio Solid”仅一次。 4、选靠近右边的列表中,单击“4node Plas 106”仅一次。 5、单击OK。Library of Element Types 对话框关闭。 6、单击Options (选项)。VISCO106 element type Options(visco106单元类型选项)对话框出现。 7、在关于element behavior(单元特性)的卷动柜中,卷动到“Axisymmetric” 且选中它。 8、单击OK。 9、单击Element Types (单元类型)对话框中的Close。 步骤三:定义材料性质 1、选择菜单路径Main Menu>Preprocessor>Material Props>-Constant-Isotropic. Isotropic Matersal Properties (各向同性材料性质)对话框出现。 2、单击OK来指定材料号为1。另一个I sotropic Material Properties对话框出现。 3、对杨氏模量(EX)键入 4、对密度(DENS)键入8930。 5、对泊松比(NUXY)键入。 6、单击OK。 步骤四:定义双线性各向同性强化数据表(BISO) 1、选择菜单路径Main Menu>Preprocessor>Matersal Props>Data Tables>????? Define/Activate . Define/Activate Data Table(定义数据表)对话柜出现。 2、在关于type of data table(数据表类型)的卷动框中,卷动到“Bilin isotr BISO”且选中它。 3、对material reference number(材料参考号)健入1。 4、对number of temperatures(温度数)键入1和单击OK。

ANSYS非线性分析:1-非线性分析概述

第一章钢筋混凝土结构非线性分析概述 1.1 钢筋混凝土结构的特性 1.钢筋混凝土结构由两种材料组成,两者的抗拉强度差异较大,在正常使用阶段,结构或构件就 处在非线性工作阶段,用弹性分析方法分析的结构内力和变形无法反映结构的真实受力状况; 2.混凝土的拉、压应力-应变关系具有较强的非线性特征; 3.钢筋与混凝土间的黏结关系非常复杂,特别是在反复荷载作用下,钢筋与混凝土间会产生相对 滑移,用弹性理论分析的结果不能反映实际情况; 4.混凝土的变形与时间有关:徐变、收缩; 5.应力-应变关系莸软化段:混凝土达到强度峰值后有应力下降段; 6.产生裂缝以后成为各向异形体。 混凝土结构在荷载作用下的受力-变形过程十分复杂,是一个变化的非线性过程。 1

1.2 混凝土结构分析的目的和主要内容 《混凝土结构设计规范》(GB50010-2002)中新增的主要内容:(1)混凝土的本构关系和多轴强度:给出了单轴受压、受拉非线性应力-应变(本构)关系,混凝土二轴强度包络图、三轴抗压强度图和三轴应力状态破坏准则;(2)结构分析:规范概括了用于混凝土结构分析的5类方法,列入了结构非线性分析方法。 一、结构分析的基本目的:计算在各类荷载作用下的结构效应——内力、位移、应力、应变 根据设计的结构方案确定合理的计算简图,选择不利荷载组合,计算结构内力,以便进行截面配筋计算和采取构造措施。 二、结构分析的主要内容:(1)确定结构计算简图:考虑以下因素:(a)能代表实际结构的体形和 尺寸;(b)边界条件和连接方式能反映结构的实际受力状态,并有可靠的构造措施;(c)材料性能符合结构的实际情况;(d)荷载的大小、位置及组合应与结构的实际受力吻合;(e)应考虑施工偏差、初始应力及变形位移状况对计算简图进行适当修正;(f)根据结构受力特点,可对计算简图作适当简化,但应有理论或试验依据,或有可靠的工程经验;(g)结构分析结果应满足工程设计的精度要求。(2)结构作用效应分析:根据结构施工和使用阶段的多种工况,分别进行结构分析,确定最不利荷载效应组合。根据荷载工况,对结构进行整体或局部特殊部位分析,以保证结构安全。 三、混凝土结构分析的方法和手段: 2

相关主题
文本预览
相关文档 最新文档