当前位置:文档之家› 2014年全国高考江西省数学(理)试卷及答案【精校版】

2014年全国高考江西省数学(理)试卷及答案【精校版】

2014年全国高考江西省数学(理)试卷及答案【精校版】
2014年全国高考江西省数学(理)试卷及答案【精校版】

2014年普通高等学校招生全国统一考试(江西卷)

数学(理科)

一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的。

1. z 是z 的共轭复数. 若2=+z z ,(2)(=-i z z (i 为虚数单位),则=z ( )

A. i +1

B. i --1

C. i +-1

D. i -1 2. 函数)ln()(2

x x x f -=的定义域为( )

A.)1,0(

B. ]1,0[

C. ),1()0,(+∞-∞Y

D. ),1[]0,(+∞-∞Y 3. 已知函数|

|5)(x x f =,)()(2

R a x ax x g ∈-=,若1)]1([=g f ,则=a ( ) A. 1 B. 2 C. 3 D. -1

4.在ABC ?中,内角A,B,C 所对应的边分别为,,,c b a ,若,3

,6)(2

2

π

=+-=C b a c 则ABC

?的面积( ) A.3 B.

239 C.2

3

3 D.33 5.一几何体的直观图如右图,下列给出的四个俯视图中正确的是( )

6.某人研究中学生的性别与成绩、视力、智商、阅读量这4个变量之间的关系,随机抽查52名中学生,得到统计数据如表1至表4,泽宇性别有关联的可能性最大的变量是( )

A.成绩

B.视力

C.智商

D.阅读量

7.阅读如下程序框图,运行相应的程序,则程序运行后输出的结果为( )

A.7

B.9

C.10

D.11 8.若1

2

()2

(),f x x f x dx =+?

则1

()f x dx =?( )

A.1-

B.13-

C.

1

3

D.1 9.在平面直角坐标系中,,A B 分别是x 轴和y 轴上的动点,若以AB 为直径的圆C 与直线

240x y +-=相切,则圆C 面积的最小值为( )

A.45π

B.34π

C.(625)π-

D.54

π

10.如右图,在长方体1111ABCD A B C D -中,AB =11,AD =7,1AA =12,一质点从顶点A 射向点()4312E ,,,遇长方体的面反射(反射服从光的反射原理),将1i -次到第i 次反射点之间的线段记为()2,3,4i L i =,1L AE =,将线段1234,,,L L L L 竖直放置在同一水平线上,则大致的图形是( )

二.选做题:请考生在下列两题中任选一题作答,若两题都做,则按所做的第一题评阅计分,本题共5分.在每小题给出的四个选项中,只有一项是符合题目要求的.

11(1).(不等式选做题)对任意,x y R ∈,111x x y y -++-++的最小值为( ) A.1 B.2 C.3 D.4

11(2).(坐标系与参数方程选做题)若以直角坐标系的原点为极点,x 轴的非负半轴为极轴建立极坐标系,则线段()101y x x =-≤≤的极坐标为( ) A.1,0cos sin 2πρθθθ=

≤≤+ B.1,0cos sin 4

π

ρθθθ=≤≤+

C.cos sin ,02

π

ρθθθ=+≤≤

D.cos sin ,04

π

ρθθθ=+≤≤

三.填空题:本大题共4小题,每小题5分,共20分. 12.10件产品中有7件正品,3件次品,从中任取4件,则恰好取到1件次品的概率是________. 13.若曲线x

y e -=上点P 处的切线平行于直线210x y ++=,则点P 的坐标是________.

14.已知单位向量1e u r 与2e u u r 的夹角为α,且1

cos 3

α=,向量1232a e e =-r u r u u r 与123b e e =-r u r u u r 的夹

角为β,则cos β=

15.过点(1,1)M 作斜率为1

2

-的直线与椭圆C :22221(0)x y a b a b +=>>相交于,A B ,若M

是线段AB 的中点,则椭圆C 的离心率为

四.简答题

16.已知函数()sin()cos(2)f x x a x θθ=+++,其中,(,)22

a R ππ

θ∈∈- (1)当2,4

a π

θ=

=

时,求()f x 在区间[0,]π上的最大值与最小值;

(2)若()0,()12

f f π

π==,求,a θ的值.

17、(本小题满分12分)

已知首项都是1的两个数列(),满足

.

(1) 令,求数列的通项公式; (2) 若

,求数列

的前n 项和.

18、(本小题满分12分) 已知函数.

(1) 当时,求的极值; (2) 若

在区间上单调递增,求b 的取值范围.

19(本小题满分12分)

如图,四棱锥ABCD P -中,ABCD 为矩形,平面⊥PAD 平面ABCD . (1)求证:;PD AB ⊥

(2)若,2,2,90===∠PC PB BPC ο问AB 为何值时,四棱锥ABCD P -的体积

最大?并求此时平面PBC 与平面DPC 夹角的余弦值.

20.(本小题满分13分)

如图,已知双曲线)0(12

22>=-a y a

x C n 的右焦点F ,点B A ,分别在C 的两条渐近线上,

x AF ⊥轴,BF OB AB ,⊥∥OA (O 为坐标原点).

(1)求双曲线C 的方程;

(2)过C 上一点)0)((00,0≠y y x P 的直线1:020=-y y a

x

x l 与直线AF 相交于点M ,与直线23=

x 相交于点N ,证明点P 在C 上移动时,NF

MF 恒为定值,并求此定值

21.(满分14分)随机将()

1,2,,2,2n n N n *???∈≥这2n 个连续正整数分成A,B 两组,每组n 个数,A 组最小数为1a ,最大数为2a ;B 组最小数为1b ,最大数为1b ,记

2112,a a b b ξη=-=-

(1)当3n =时,求ξ的分布列和数学期望;

(2)令C 表示事件ξ与η的取值恰好相等,求事件C 发生的概率()p c ;

(3)对(2)中的事件C,c 表示C 的对立事件,判断()p c 和()p c 的大小关系,并说明理由。

参考答案

一、1.D 2. C 3.A 4.C 5.B 6.D 7.B 8.B 9.A 10.C 二、11(1).C 11(2).A 三、12.1

2

13.(-ln2,2) 14.223 15. 22

四、

16. 解(1)当2,4

a π

θ=

=

时,

22()sin()2cos()sin cos 2sin sin()42224

f x x x x x x x πππ

=+++=+-=-

因为[0,]x π∈,从而3[,]444

x πππ

-∈-

故()f x 在[0,]π上的最大值为2

,2

最小值为-1.

(2)由()02()1f f π

π?=???=?得2

cos (12sin )02sin sin 1a a a θθθθ-=??--=?,又(,)22ππθ∈-知cos 0,θ≠解得1.6a πθ=-??

?=-??

17. (1)因为,

所以

1112,2n n

n n n n

a a c c

b b +++-=-= 所以数列{}n

c 是以首项11c =,公差2

d =的等差数列,故2 1.n c n =- (2)由13n n b -=知1(21)3n n n n a c b n -==- 于是数列

前n 项和0111333(21)3n n S n -=?+?++-?L

1231333(21)3n n S n =?+?++-?L

相减得121212(333)(21)32(22)3n n n n S n n --=+?++--?=--?L 所以(1)3 1.n n S n =-?+ 18. (1)当

时,()12f x x

'-由()0f x '=得2x =-或0.x =

当(,2)x ∈-∞-时,()0,()f x f x '<单调递减,当(2,0)x ∈-时,()0,()f x f x '>单调递增,当

1

(0,)2x ∈时,()0,()f x f x '<单调递减,故()f x 在2x =-取极小值(-2)=f 0,在0.x =取极

大值(0)=f 4.

(2)(),12f x x '

=

-因为当1

(0,)3

x ∈时,

012x

<-

依题意当1(0,)3x ∈时,有5320x b +-≤,从而5

3203b +-≤

所以b 的取值范围为1

(,].9-∞

19. (1)证明:ABCD 为矩形,故AB ⊥AD , 又平面PAD ⊥平面ABCD 平面PAD I 平面ABCD=AD

所以AB ⊥平面PAD ,因为PD ?平面PAD ,故AB ⊥PD

(2)解:过P 作AD 的垂线,垂足为O ,过O 作BC 的垂线,垂足为G ,连接PG. 故PO ⊥平面ABCD ,BC ⊥平面POG ,BC ⊥PG

在直角三角形BPC 中,23266

,,,PG GC BG =

== 设,AB m =,则2224

,3

DP PG OG m =-=-,故四棱锥P-ABCD 的体积为 2214686.333m V m m m =???-=-

因为22228866()33

m m m -=--+

故当6m =

时,即6

AB =时,四棱锥的体积P-ABCD 最大.

建立如图所示的空间直角坐标系,

66626266

(0,0,0),(

()O B C D P 故62666

(6,0),(PC BC CD ===u u u r u u u r u u u v

设平面BPC 的法向量1(,,1),x y =n ,则由1PC ⊥n u u u r ,1BC ⊥n u u u r 得6266

60y y ?+-=???=?

解得1,0,x y ==1(1,0,1),=n

同理可求出平面DPC的法向量

2

1 (0,,1),

2

=

n,从而平面BPC与平面DPC夹角θ的余弦值为

12

12

cos

||||

θ

?

===

?

n n

n n

20.(1)设(,0)

F c,因为1

b=

,所以c=

直线OB方程为

1

y x

a

=-,直线BF的方程为

1

()

y x c

a

=-,解得(,)

22

c c

B

a

-

又直线OA的方程为

1

y x

a

=,则

3

(,),.

AB

c

A c k

a a

=

又因为AB⊥OB,所以

31

()1

a a

-=-,解得23

a=,故双曲线C的方程为

2

2 1.

3

x

y

-=

(2)由(1

)知a=l的方程为0

00

1(0)

3

x x

y y y

-=≠,即0

3

3

x x

y

y

-

=

因为直线AF的方程为2

x=,所以直线l与AF的交点0

23

(2,)

3

x

M

y

-

直线l与直线

3

2

x=的交点为0

3

3

32

(,)

23

x

N

y

-

2

2

222

00

4(23)

9[(2)]

x

MF

NF y x

-

=

+-

因为是C上一点,则

2

2

1.

3

x

y

-=,代入上式得

22

2

00

2

222

2

00

4(23)4(23)4

9[(2)]3

9[1(2)]

3

x x

MF

x

NF y x

x

--

===

+-

-+-

,所求定值为

MF

NF

=

21. (1)当3

n=时,ξ所有可能值为2,3,4,5.将6个正整数平均分成A,B两组,不同的分组

方法共有3

6

20

C=种,所以ξ的分布列为

13317

2345.

5101052

Eξ=?+?+?+?=

(2)ξ和η恰好相等的所有可能值为1,,1,,2 2.

n n n n

-+-

L

又ξ和η恰好相等且等于1

n-时,不同的分组方法有2种;

ξ和η恰好相等且等于n时,不同的分组方法有2种;

ξ和η恰好相等且等于(1,2,,2),(3)n k k n n +=-≥L 时,不同的分组方法有22k k C 种;

所以当2n =时,42()63

P C =

= 当3n ≥时221

22(2)

()n k

k k n n

C P C C

-=+=

(3)由(2)当2n =时,1

(),3P C =因此()(),P C P C >

而当3n ≥时,()(),P C P C <理由如下: ()(),P C P C <等价于2

2214(2)n k

n

k n k C C -=+<∑①

用数学归纳法来证明:

1o 当3n =时,①式左边124(2)16,C =+=①式右边3

620,C ==所以①式成立

2o

假设(3)n m m =≥时①式成立,即2

2214(2)m k

m

k m k C C -=+<∑成立

那么,当1n m =+时,①式左边12

2

11

22222221

1

4(2)4(2)44m m k k m m m k

k m m m k k C

C C C C +--++++===+

=++<+∑∑

2(2)!4(22)!(1)(2)(22)!(41)

!!(1)!(1)!(1)!(1)!

m m m m m m m m m m m m ?-+--=+=--++ 2112222(1)(2)(22)!(4)2(1)(1)!(1)!(21)(21)

m m m m m m m m m m C C m m m m +++++-+<=?<+++-=①式右边

即当1n m =+时①式也成立

综合1o 2o 得,对于3n ≥的所有正整数,都有()()P C P C <成立

2018年高考理科数学试题及答案-全国卷2

2018年普通高等学校招生全国统一考试(全国卷2) 理科数学 一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。1. 12i 12i + = - A. 43 i 55 --B. 43 i 55 -+C. 34 i 55 --D. 34 i 55 -+ 2.已知集合() {} 223 A x y x y x y =+∈∈ Z Z ,≤,,,则A中元素的个数为 A.9 B.8 C.5 D.4 3.函数()2 e e x x f x x - - =的图像大致为 4.已知向量a,b满足||1 = a,1 ?=- a b,则(2) ?-= a a b A.4 B.3 C.2 D.0 5.双曲线 22 22 1(0,0) x y a b a b -=>>3 A.2 y x =B.3 y x =C. 2 y=D. 3 y= 6.在ABC △中, 5 cos 2 C 1 BC=,5 AC=,则AB= A.2B30C29 D.25 7.为计算 11111 1 23499100 S=-+-++- …,设计了右侧的程序框图,则在空白 框中应填入 A.1 i i=+ B.2 i i=+ C.3 i i=+ D.4 i i=+ 8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723 =+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是 开始 0,0 N T == S N T =- S 输出 1 i= 100 i< 1 N N i =+ 1 1 T T i =+ + 结束 是否

2013年高考理科数学全国新课标卷2试题与答案word解析版

2013年普通高等学校夏季招生全国统一考试数学理工农医类 (全国新课标卷II) 第Ⅰ卷 一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(2013课标全国Ⅱ,理1)已知集合M ={x |(x -1)2<4,x ∈R },N ={-1,0,1,2,3},则M ∩N =( ). A .{0,1,2} B .{-1,0,1,2} C .{-1,0,2,3} D .{0,1,2,3} 2.(2013课标全国Ⅱ,理2)设复数z 满足(1-i)z =2i ,则z =( ). A .-1+i B .-1-I C .1+i D .1-i 3.(2013课标全国Ⅱ,理3)等比数列{a n }的前n 项和为S n .已知S 3=a 2+10a 1,a 5=9,则a 1=( ). A .13 B .13- C .19 D .1 9- 4.(2013课标全国Ⅱ,理4)已知m ,n 为异面直线,m ⊥平面α,n ⊥平面β.直线l 满足l ⊥m ,l ⊥n ,l α,l β,则( ). A .α∥β且l ∥α B .α⊥β且l ⊥β C .α与β相交,且交线垂直于l D .α与β相交,且交线平行于l 5.(2013课标全国Ⅱ,理5)已知(1+ax )(1+x )5的展开式中x 2的系数为5,则a =( ). A .-4 B .-3 C .-2 D .-1 6.(2013课标全国Ⅱ,理6)执行下面的程序框图,如果输入的N =10,那么输出的S =( ). A .1111+23 10+++ B .1111+2!3! 10!+++ C .1111+23 11+++ D .1111+2!3!11!+++ 7.(2013课标全国Ⅱ,理7)一个四面体的顶点在空间直角坐标系O -xyz 中的坐标分别是 (1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为投影面,则得到的正视图可以为( ). 8.(2013课标全国Ⅱ,理8)设a =log 36,b =log 510,c =log 714,则( ). A .c >b >a B .b >c >a C .a >c >b D .a >b >c

2014年高考全国2卷文科数学试题(含解析)

绝密★启用前 2014年高考全国2卷文科数学试题 注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上 第I 卷(选择题) 请点击修改第I 卷的文字说明 评卷人 得分 一、选择题(题型注释) 1.设集合2 {2,0,2},{|20}A B x x x =-=--=,则A B =I ( ) A .? B .{}2 C .{0} D .{2}- 2. 131i i +=-( ) A .12i + B .12i -+ C .12i - D .12i -- 3.函数()f x 在0x x =处导数存在,若0:()0p f x =;0:q x x =是()f x 的极值点,则( ) A .p 是q 的充分必要条件 B .p 是q 的充分条件,但不是q 的必要条件 C .p 是q 的必要条件,但不是q 的充分条件 D .p 既不是q 的充分条件,也不是q 的必要条件 4.设向量b a ρρ,满足10||=+b a ρρ,6||=-b a ρ ρ,则=?b a ρρ( ) A .1 B .2 C .3 D .5 5.等差数列{}n a 的公差是2,若248,,a a a 成等比数列,则{}n a 的前n 项和n S =( ) A .(1)n n + B .(1)n n - C . (1)2n n + D .(1) 2 n n - 6.如图,网格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某零件的三视图,该零件 由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,则切削的部分的体积和原来毛坯体积的比值为( ) A . 2717 B .95 C .2710 D .3 1 7.正三棱柱111ABC A B C -的底面边长为23,D 为BC 中点,则三棱锥11A B DC -的体积为 (A )3 (B ) 3 2 (C )1 (D 3 D 1 1 A B 1 8.执行右面的程序框图,如果输入的x ,t 均为2,则输出的S =( )

2014年江西省高考数学试卷(理科)最新修正版

2014年江西省高考数学试卷(理科) 一、选择题:本大题共10小题,每小题5分,共50分,每小题给出的四个选项中,只有一项是符合题目要求的 1.(5分)是z的共轭复数,若z +=2,(z ﹣)i=2(i为虚数单位),则z=()A.1+i B.﹣1﹣i C.﹣1+i D.1﹣i 2.(5分)函数f(x)=ln(x2﹣x)的定义域为() A.(0,1) B.[0,1]C.(﹣∞,0)∪(1,+∞)D.(﹣∞,0]∪[1,+∞) 3.(5分)已知函数f(x)=5|x|,g(x)=ax2﹣x(a∈R),若f[g(1)]=1,则a=() A.1 B.2 C.3 D.﹣1 4.(5分)在△ABC中,内角A,B,C的对边分别为a,b,c,若c2=(a﹣b)2+6,C=,则△ABC的面积为() A.3 B .C .D.3 5.(5分)一几何体的直观图如图所示,下列给出的四个俯视图中正确的是() A . B . C . D . 6.(5分)某人研究中学生的性别与成绩、视力、智商、阅读量这4个变量的关系,随机抽查了52名中学生,得到统计数据如表1至表4,则与性别有关联的可能性最大的变量是() 表1

表2 表3

A.成绩B.视力C.智商D.阅读量 7.(5分)阅读如图程序框图,运行相应的程序,则程序运行后输出的结果为() A.7 B.9 C.10 D.11 8.(5分)若f(x)=x2+2f(x)dx,则f(x)dx=() A.﹣1 B.﹣ C.D.1 9.(5分)在平面直角坐标系中,A,B分别是x轴和y轴上的动点,若以AB为直径的圆C与直线2x+y﹣4=0相切,则圆C面积的最小值为() A.πB.πC.(6﹣2)π D.π 10.(5分)如图,在长方体ABCD﹣A1B1C1D1中,AB=11,AD=7,AA1=12.一质点从顶点A射向点E(4,3,12),遇长方体的面反射(反射服从光的反射原理),将第i﹣1次到第i次反射点之间的线段记为l i(i=2,3,4),l1=AE,将线段l1,l2,l3,l4竖直放置在同一水平线上,则大致的图形是()

2018年高考理科数学全国三卷试题及答案解析

2018年高考理科全国三卷 一.选择题 1、已知集合,则( ) A. B. C. D. 2、( ) A. B. C. D. 3、中国古建筑借助榫卯将木构件连接起来,构建的突出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头,若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( ) A. B. C. D. 4、若,则( ) A. B. C. D. 5、的展开方式中的系数为( ) A.10 B.20 C.40 D.80 6、直线分别与轴,轴交于两点,点在圆上,则 面积的取值范围是( ) A. B. C. D. 7、函数的图像大致为( )

A. B. C. D. 8、某群体中的每位成员使用移动支付的概率为,各成员的支付方式相互独立,设为该群体的为成员中使用移动支付的人数,,则( ) A.0.7 B.0.6 C.0.4 D.0.3 9、的内角的对边分别为,若的面积为则=( ) A. B. C. D. 10、设是同一个半径为的球的球面上四点,为等边三角形且其面积为,则三棱锥体积的最大值为( ) A. B. C. D. 11、设是双曲线的左,右焦点,是坐标原点,过作的一条逐渐近线的垂线,垂足为,若,则的离心率为( ) A. B.2 C. D. 12、设则( ) A. B. C. D. 13、已知向量,若,则 14、曲线在点处的切线的斜率为,则 15、函数在的零点个数为 16、已知点和抛物线,过的焦点且斜率为的直线与交于两点。若 ,则 三.解答题

17、等比数列中, 1.求的通项公式; 2.记为的前项和,若,求 18、某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式,为比较两种生产方式的效率,选取名工人,将他们随机分成两组,每组人,第一组工人用第一种生产方式,第二组工人用第二种生产方式,根据工人完成生产任务的工作时间(单位:)绘制了如下茎叶图: 1.根据茎叶图判断哪种生产方式的效率更高?并说明理由; 2.求名工人完成生产任务所需时间的中位数,并将完成生产任务所需时间超过和不超过的工人数填入下面的列联表: 超过不超过 第一种生产方 式 第二种生产方 式 3.根据中的列联表,能否有的把握认为两种生产方式的效率有差异? 附: 19、如图,边长为的正方形所在的平面与半圆弧所在的平面垂直,是上异于的点

2014年普通高等学校招生全国统一考试理科数学试题(江西)

2014年普通高等学校招生全国统一考试(江西卷) 数学(理科) 一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的。 1. z 是z 的共轭复数. 若2=+z z ,(2)(=-i z z (i 为虚数单位),则=z ( ) A. i +1 B. i --1 C. i +-1 D. i -1 2. 函数)ln()(2x x x f -=的定义域为( ) A.)1,0( B. ]1,0[ C. ),1()0,(+∞-∞ D. ),1[]0,(+∞-∞ 3. 已知函数||5)(x x f =,)()(2R a x ax x g ∈-=,若1)]1([=g f ,则=a ( ) A. 1 B. 2 C. 3 D. -1 4.在ABC ?中,内角A,B,C 所对应的边分别为,,,c b a ,若,3 ,6)(2 2 π =+-=C b a c 则ABC ?的面积( ) A.3 B. 239 C.2 3 3 D.33 5.一几何体的直观图如右图,下列给出的四个俯视图中正确的是( ) 6.某人研究中学生的性别与成绩、视力、智商、阅读量这4个变量之间的关系,随机抽查52名中学生,得到统计数据如表1至表4,泽宇性别有关联的可能性最大的变量是( ) A.成绩 B.视力 C.智商 D.阅读量 7.阅读如下程序框图,运行相应的程序,则程序运行后输出的结果为( )

A.7 B.9 C.10 D.11 8.若1 2 ()2(),f x x f x dx =+? 则1 ()f x dx =?( ) A.1- B.13- C.1 3 D.1 9.在平面直角坐标系中,,A B 分别是x 轴和y 轴上的动点,若以AB 为直径的圆C 与直线 240x y +-=相切,则圆C 面积的最小值为( ) A.4 5π B.34π C.(6π- D.54 π 10.如右图,在长方体1111ABCD A B C D -中, AB =11,AD =7,1AA =12,一质点从顶点A 射向点()4312E ,,,遇长方体的面反射(反射服从光的反射原理),将1i -次到第i 次反射点之间的线段记为()2,3,4i L i =,1L AE =,将线段1234,,,L L L L 竖直放置在同一水平线上,则大致的图形是( ) 二.选做题:请考生在下列两题中任选一题作答,若两题都做,则按所做的第一题评阅计分,本题共5分.在每小题给出的四个选项中,只有一项是符合题目要求的. 11(1).(不等式选做题)对任意,x y R ∈,111x x y y -++-++的最小值为( ) A.1 B.2 C.3 D.4 11(2).(坐标系与参数方程选做题)若以直角坐标系的原点为极点,x 轴的非负半轴为极轴建立极坐标系,则线段()101y x x =-≤≤的极坐标为( ) A.1,0cos sin 2πρθθθ= ≤≤+ B.1,0cos sin 4 π ρθθθ=≤≤+ C.cos sin ,02 π ρθθθ=+≤≤ D.cos sin ,04 π ρθθθ=+≤≤

2018年高考数学全国卷III

2018年普通高等学校招生全国统一考试(理科数学全国卷3) 数 学(理科) 一、选择题:本题共12小题。每小题5分. 1.已知集合{}10A x x =-≥,{}2,1,0=B ,则=?B A ( ) .A {}0 .B {}1 .C {}1,2 .D {}0,1,2 2.()()=-+i i 21 ( ) .A i --3 .B i +-3 .C i -3 .D i +3 3.中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头,若如图摆放的木构件与某一卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( ) 4. 若1 sin 3α= ,则cos 2α= ( ) .A 89 .B 79 .C 79- .D 89- 5. 25 2()x x +的展开式中4x 的系数为 ( ) .A 10 .B 20 .C 40 .D 80 6.直线20x y ++=分别与x 轴、y 轴交于A 、B 两点,点P 在圆()2 2 22x y -+=上,则ABP ?面积 的取值范围是 ( ) .A []2,6 .B []4,8 .C .D ?? 7.函数422y x x =-++的图像大致为 ( )

8.某群体中的每位成员使用移动支付的概率都为P ,各成员的支付方式相互独立,设X 为该群体的10位成员中使用移动支付的人数,4.2=DX ,()()64=<=X P X P ,则=P ( ) .A 0.7 .B 0.6 .C 0.4 .D 0.3 9.ABC ?的内角C B A 、、的对边分别c b a 、、,若ABC ?的面积为222 4 a b c +-,则=C ( ) . A 2π . B 3π . C 4π . D 6 π 10.设D C B A 、、、是同一个半径为4的球的球面上四点,△ABC 为等边三角形且其面积为,则三棱锥ABC D -积的最大值为 ( ) .A .B .C .D 11.设21F F 、是双曲线C : 22 221x y a b -=(0,0>>b a )的左、右焦点,O 是坐标原点,过2F 作C 的一 条渐近线的垂线,垂足为P ,若1PF =,则C 的离心率为 ( ) .A .B 2 .C .D 12.设3.0log 2.0=a ,3.0log 2=b ,则 ( ) .A 0a b ab +<< .B 0a b a b <+< .C 0a b a b +<< .D 0ab a b <<+

2013年高考文科数学全国新课标卷1试题与答案word解析版

2013年普通高等学校夏季招生全国统一考试数学文史类 (全国卷I 新课标) 第Ⅰ卷 一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(2013课标全国Ⅰ,文1)已知集合A ={1,2,3,4},B ={x |x =n 2 ,n ∈A },则A ∩B =( ). A .{1,4} B .{2,3} C .{9,16} D .{1,2} 2.(2013课标全国Ⅰ,文2) 2 12i 1i +(-)=( ). A . 11i 2-- B .11+i 2- C .11+i 2 D .11i 2- 3.(2013课标全国Ⅰ,文3)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率 是( ). A .12 B .13 C .14 D .16 4.(2013课标全国Ⅰ,文4)已知双曲线C :2222=1x y a b -(a >0,b >0) 的离心率为2,则C 的渐近线方程 为( ). A .y =14x ± B .y =13x ± C .y =1 2x ± D .y =±x 5.(2013课标全国Ⅰ,文5)已知命题p :?x ∈R,2x <3x ;命题q :?x ∈R ,x 3 =1-x 2 ,则下列命题中为真命题的是( ). A .p ∧q B .?p ∧q C .p ∧?q D .?p ∧?q 6.(2013课标全国Ⅰ,文6)设首项为1,公比为 2 3 的等比数列{a n }的前n 项和为S n ,则( ). A .Sn =2an -1 B .Sn =3an -2 C .Sn =4-3an D .Sn =3-2an 7.(2013课标全国Ⅰ,文7)执行下面的程序框图,如果输入的t ∈[-1,3],则输出的s 属于( ). A .[-3,4] B .[-5,2] C .[-4,3] D .[-2,5] 8.(2013课标全国Ⅰ,文8)O 为坐标原点,F 为抛物线C :y 2 =的焦点,P 为C 上一点,若|PF | =POF 的面积为( ). A .2 B . ..4 9.(2013课标全国Ⅰ,文9)函数f (x )=(1-cos x )sin x 在[-π,π]的图像大致为( ). 10.(2013课标全国Ⅰ,文10)已知锐角△ABC 的内角A ,B ,C 的对边分别为a ,b ,c,23cos 2 A +cos 2A =0,a =7,c =6,则b =( ). A .10 B .9 C .8 D .5

2014年高考数学全国卷1(理科)

绝密★启用前 2014 年普通高等学校招生全国统一考试 (新课标 I 卷 ) 数 学(理科 ) 一.选择题:共 12 小题,每小题 5 分,共 60 分。在每个小题给出的四个选项中,只有一项是符合题目要求的一项。 1.已知集合 A={ x | x 2 2x 3 0 } , - ≤<=,则A B = B={ x | 2 x 2 A .[-2,-1] B .[-1,2 ) C .[-1,1] D .[1,2) (1 i )3 2. (1 i ) 2 = A .1 i B .1 i C . 1 i D . 1 i 3.设函数 f ( x) , g( x) 的定义域都为 R ,且 f ( x) 时奇函数, g (x) 是偶函数,则下列结论正确的 是 A . f (x) g( x) 是偶函数 B .| f ( x) | g ( x) 是奇函数 C .f (x) | g( x) 是奇函数 D .|f ( x) g ( x) 是奇函数 | | 4.已知 F 是双曲线 C : x 2 my 2 3m(m 0) 的一个焦点,则点 F 到 C 的一条渐近线的距离为 A . 3 B .3 C . 3m D . 3m 5.4 位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日 都有同学参加公益活动的概率 A . 1 B . 3 C . 5 D . 7 8 8 8 8 6.如图,圆 O 的半径为 1, A 是圆上的定点, P 是圆上的动点,角 x 的始边 为射线 OA ,终边为射线 OP ,过点 P 作直线 OA 的垂线,垂足为 M ,将点 M 到直线 OP 的距 离表示为 x 的函数 f ( x) ,则 y = f ( x) 在 [0, ]上的图像大致为

2018年数学高考全国卷3答案

2018年数学高考全国卷3答案

参考答案: 13. 14. 15. 16.2 17.(12分) 解:(1)设的公比为,由题设得. 由已知得,解得(舍去),或. 故或. (2)若,则.由得,此方 程没有正整数解. 若,则.由得,解得. 综上,. 18.(12分) 解:(1)第二种生产方式的效率更高. 理由如下: (i )由茎叶图可知:用第一种生产方式的工人中,有75%的工人完成生产任务所需时间至少80分钟,用第二种生产方式的工人中,有75%的工人完成生产任务所需时间至多79分钟.因此第二种生产方式的效率更高. 12 3-3{}n a q 1 n n a q -=4 2 4q q =0q =2q =-2q =1 (2)n n a -=-1 2n n a -=1 (2) n n a -=-1(2)3 n n S --= 63 m S =(2) 188 m -=-1 2n n a -=21 n n S =-63 m S =2 64 m =6m =6m =

(ii )由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间的中位数为85.5分钟,用第二种生产方式的工人完成生产任务所需时间的中位数为73.5分钟.因此第二种生产方式的效率更高. (iii )由茎叶图可知:用第一种生产方式的工人完成生产任务平均所需时间高于80分钟;用第二种生产方式的工人完成生产任务平均所需时间低于80分钟,因此第二种生产方式的效率更高. (iv )由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间分布在茎8上的最多,关于茎8大致呈对称分布;用第二种生产方式的工人完成生产任务所需时间分布在茎7上的最多,关于茎7大致呈对称分布,又用两种生产方式的工人完成生产任务所需时间分布的区间相同,故可以认为用第二种生产方式完成生产任务所需的时间比用第一种生产方式完成生产任务所需的时间更少,因此第二种生产方式的效率更高.学科*网 以上给出了4种理由,考生答出其中任意一种或其他合理理由均可得分. (2)由茎叶图知. 列联表如下: 7981 802 m +==

2013年高考理科数学试题及答案-全国卷1

2013年普通高等学校招生全国统一考试(全国课标I) 理科数学 注意事项: 1.本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至3页,第Ⅱ卷3至5页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效. 4.考试结束后,将本试题和答题卡一并交回. 第Ⅰ卷 一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x|x2-2x>0},B={x|-5<x<5},则( ). A.A∩B= B.A∪B=R C.B?A D.A?B 2.若复数z满足(3-4i)z=|4+3i|,则z的虚部为( ). A.-4 B. 4 5 - C.4 D. 4 5 3.为了解某地区的中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是( ). A.简单随机抽样 B.按性别分层抽样 C.按学段分层抽样 D.系统抽样 4.已知双曲线C: 22 22 =1 x y a b -(a>0,b>0)的离心率为 5 2 ,则C的渐近线方程为( ). A.y= 1 4 x ± B.y= 1 3 x ± C.y= 1 2 x ± D.y=±x 5.执行下面的程序框图,如果输入的t∈[-1,3],则输出的s属于( ).

A .[-3,4] B .[-5,2] C .[-4,3] D .[-2,5] 6.如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm ,如果不计容器的厚度,则球的体积为( ). A . 500π3cm 3 B .866π3 cm 3 C . 1372π3cm 3 D .2048π3 cm 3 7.设等差数列{a n }的前n 项和为S n ,若S m -1=-2,S m =0,S m +1=3,则m =( ). A .3 B .4 C .5 D .6 8.某几何体的三视图如图所示,则该几何体的体积为( ).

2014年高考新课标全国2卷数学(文)

2014年普通高等学校招生全国统一考试(新课标Ⅱ卷) 数学试题卷(文史类) 注意事项 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的、号填写在本试卷和答题卡相应位置上. 2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号,写在本试卷上无效. 3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效. 4.考试结束后,将本试卷和答题卡一并交回. 第Ⅰ卷 一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要 求的. (1)已知集合A={2-,0,2},B={x |022 =--x x },则A B= (A )? (B ){}2 (C ){}0 (D ){}2- (2) 131i i +=- (A )12i + (B )12i -+ (C )12i - (D )12i -- (3)函数()f x 在0x x =处导数存在.若p :0'()0f x =;q :0x x =是()f x 的极值点,则 (A )p 是q 的充分必要条件 (B )p 是q 的充分条件,但不是q 的必要条件 (C )p 是q 的必要条件,但不是q 的充分条件 (D )p 既不是q 的充分条件,也不是q 的必要条件 (4)设向量a ,b 满足||a b +=,||a b -= ,则a b = (A )1 (B )2 (C )3 (D )5 (5)等差数列{}n a 的公差为2,若2a ,4a ,8a 成等比数列,则{}n a 的前n 项和n S = (A )()1n n + (B )()1n n - (C ) ()12 n n + (D ) ()12 n n - (6)如图,网格纸上正方形小格的边长为1(表示1cm ), 图中粗线画出的是某零件的三视图,该零件由一个 底面半径为3cm ,高为6c m 的圆柱体毛坯切削得 到,则切削掉部分的体积与原来毛坯体积的比值为 (A ) 1727 (B )59 (C )1027 (D )1 3

2014年高考英语真题-江西卷

2014 年普通高等学校招生全国统一考试(江西卷) 英语 第二部分 英语知识运用(共两节,满分 45 分) 第一节 单项填空(共 15小题;每小题 1 分,满分 15分) 21. --- C ould I use this dictionary ? -- ____ .It 's a spare one . A. Good idea B. Just go ahead C. You 're welcome D. You 'd better not 22. They chose Tom to be ___captain of the team because they knew he was __smart leader. A. a; the B. the; the C. the; a D. a; a 23 Thanks for your directions to the house ; we wouldn 't have found it 24. -- Tony , why are your eyes red ? ---I __ up peppers for the last five minutes . A. cut B. was cutting C. had cut 25. Starting your own business could be a way to achieving financial independence .___, it could just put you in debt. A. In other words B. All in all C. As a result D. On the other hand 26. When it comes to __ in public , no one can match him . A. speak B. speaking C. being spoken D. be spoken 27. Anyway , we 're here now ,so let 's ___some serious work. A. come up with B. get down to C. do away with D. live up to 28. Among the many dangers_-- sailors have to face , probably the greatest of all is fog . A. which B. what C. where D. when 29. I don 't believe what you said , but if you can prove it , you may be able to __-me . A. convince B. inform C. guarantee D. refuse 30. Life is unpredictable ; even the poorest __become the richest . A. shall B. must C. need D. might 31. ___nearly all our money , we couldn 't afford to stay at a hotel . A. Having spent B. To spent C. Spent D. To have spent 32. ---When shall I call , in the morning or afternoon? ---- ___. I 'll be in all day . A. Any B. None C. Neither D. Either 33. It is unbelievable that Mr. Lucas Leads a simple life __his great wealth . A. without B. despite C. in D. to 34. He is thought ___foolishly .Now he has no one but himself to blame for losing the job . A. to act B. to have acted C. acting D. having acted 35. It was the middle of the night __ my father woke me up and told me to watch the football game . A. that B. as C. which D. when 第二节 完形填空(共 20 小题;每小题 1.5分,满分 30 分) 阅读下面短文,掌握其大意。然后从 36-55各题所给的四个选项中(A 、B 、C 和D )中, 选出最佳选项,并在答题卡上将该项涂黑。 A. nowhere B. however C. otherwise D. instead D. have been cutting

2018年高考全国二卷理科数学试卷

2018 年普通高等学校招生全国统一考试( II 卷) 理科数学 一、选择题:本题共 12 小题,每小题 5 分,共 60 分,在每小题给出的四个选项中,只有一项是符合题目要求的。 1. 1 2i 1 2i 4 3 4 3 i 3 4 3 4 A . i B . 5 C . i D . i 5 5 5 5 5 5 5 2.已知集合 A x ,y x 2 y 2≤3 ,x Z ,y Z ,则 A 中元素的个数为 A .9 B . 8 C . 5 D . 4 3.函数 f e x e x 的图像大致为 x x 2 A B C D 4.已知向量 a 、 b 满足 | a | 1 , a b 1 ,则 a (2a b ) A .4 B . 3 C . 2 D . 0 2 2 5.双曲线 x 2 y 2 1( a 0, b 0) 的离心率为 3 ,则其渐近线方程为 a b A . y 2x B . y 3x C . y 2 D . y 3 x x 2 2 6.在 △ABC 中, cos C 5 ,BC 1 , AC 5,则 AB 开始 2 5 N 0,T A .4 2 B . 30 C . 29 D .2 5 i 1 1 1 1 1 1 7.为计算 S 1 3 ? 99 ,设计了右侧的程序框图,则在 是 100 否 2 4 100 i 空白框中应填入 1 A . i i 1 N N S N T i B . i i 2 T T 1 输出 S i 1 C . i i 3 结束 D . i i 4 8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于 2 的偶数可以 表示为两个素数的和”,如 30 7 23 .在不超过 30 的素数中,随机选取两个不同的数,其和等于 30 的概率是 1 B . 1 1 1 A . 14 C . D . 12 15 18 ABCD A B C D AD DB

2013年高考理科数学全国卷1有答案

数学试卷 第1页(共21页) 数学试卷 第2页(共21页) 数学试卷 第3页(共21页) 绝密★启用前 2013年普通高等学校招生全国统一考试(全国新课标卷1) 理科数学 使用地区:河南、山西、河北 注意事项: 1.本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至3页,第Ⅱ卷3至6页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效. 4.考试结束后,将本试题卷和答题卡一并交回. 第Ⅰ卷 一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合 题目要求的. 1.已知集合2 0{}|2A x x x =-> ,{|B x x <<=,则 ( ) A .A B =R B .A B =? C .B A ? D .A B ? 2.若复数z 满足(34i)|43i|z -=+,则z 的虚部为 ( ) A .4- B .45 - C .4 D .45 3.为了解某地区的中小学生视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是 ( ) A .简单随机抽样 B .按性别分层抽样 C .按学段分层抽样 D .系统抽样 4.已知双曲线C :22 221(0,0)x y a b a b -=>> ,则C 的渐近线方程为 ( ) A .1 4y x =± B .1 3y x =± C .1 2 y x =± D .y x =± 5.执行如图的程序框图,如果输入的[1,3]t ∈-,则输出的s 属于 ( ) A .[3,4]- B .[5,2]- C .[4,3]- D .[2,5]- 6.如图,有一个水平放置的透明无盖的正方体容器,容器 高8cm ,将一个球放在容器口,再向容器内注水,当球 面恰好接触水面时测得水深为6cm ,如果不计容器的 厚度,则球的体积为 ( ) A .3866π cm 3 B . 3500π cm 3 C .31372πcm 3 D .32048πcm 3 7.设等差数列{}n a 的前n 项和为n S ,12m S -=-,0m S =,13m S +=,则m = ( ) A .3 B .4 C .5 D .6 8.某几何体的三视图如图所示,则该几何的体积为 ( ) A .168π+ B .88π+ C .1616π+ D .816π+ 9.设m 为正整数,2()m x y +展开式的二项式系数的最大值 为a ,21()m x y ++展开式的二项式系数的最大值为b .若137a b =,则m = ( ) A .5 B .6 C .7 D .8 10.已知椭圆 E :22 221(0)x y a b a b +=>>的右焦点为(3,0)F ,过点F 的直线交E 于A ,B 两点. 若AB 的中点坐标为(1,1)-,则E 的方程为 ( ) A .22 14536 x y += B .2213627x y += C .2212718x y += D .22 1189x y += 11.已知函数22,0, ()ln(1),0.x x x f x x x ?-+=?+>? ≤若|()|f x ax ≥,则a 的取值范围是 ( ) A .(,1]-∞ B .(,0]-∞ C .[2,1]- D .[2,0]- 12.设n n n A B C △的三边长分别为n a ,n b ,n c ,n n n A B C △的面积为n S ,1,2,3, n =.若11b c >,1112b c a +=,1n n a a +=,12n n n c a b ++= ,12 n n n b a c ++=,则 ( ) A .{}n S 为递增数列 B .{}n S 为递减数列 C .21{}n S -为递增数列,2{}n S 为递减数列 D .21{}n S -为递减数列,2{}n S 为递增数列 第Ⅱ卷 本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答.第22题~第24题为选考题,考生根据要求作答. 二、填空题:本大题共4小题,每小题5分. 13.已知两个单位向量a ,b 的夹角为60,(1)t t =+-c a b .若0=b c ,则t =________. 14.若数列{}n a 的前n 项和21 33 n n S a = +,则{}n a 的通项公式是n a =________. 15.设当x θ=时,函数()sin 2cos f x x x =-取得最大值,则cos θ=________. 16.设函数22()(1)()f x x x ax b =-++的图象关于直线2x =-对称,则()f x 的最大值为________. 三、解答题:解答应写出文字说明,证明过程或演算步骤. --------在 --------------------此--------------------卷-------------------- 上-------------------- 答-------------------- 题-------------------- 无-------------------- 效 ---------------- 姓名________________ 准考证号_____________

2014年高考理科数学全国卷1有答案

数学试卷 第1页(共18页) 数学试卷 第2页(共18页) 数学试卷 第3页(共18页) 绝密★启用前 2014年普通高等学校招生全国统一考试(全国新课标卷1) 理科数学 使用地区:河南、山西、河北 注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、考生号填写在答题卡上. 2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.写在本试卷上无效. 3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效. 4.考试结束后,将本试题和答题卡一并交回. 第Ⅰ卷 一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合2{|230}A x x x =--≥,{|22}B x x =-<≤,则A B = ( ) A .[2,1]-- B .[1,2)- C .[1,1]- D .[1,2) 2. 3 2 (1i)(1i)+=- ( ) A .1i + B .1i - C .1i -+ D .1i -- 3.设函数()f x ,()g x 的定义域都为R ,且()f x 是奇函数,()g x 是偶函数,则下列结论中正确的是 ( ) A .()f x ()g x 是偶函数 B .|()|f x ()g x 是奇函数 C .()f x |()|g x 是奇函数 D .|()()|f x g x 是奇函数 4.已知F 为双曲线C :223(0)x my m m -=>的一个焦点,则点F 到C 的一条渐近线的距离为 ( ) A B .3 C D .3m 5.4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为 ( ) A .18 B .38 C . 58 D . 78 6.如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M .将点M 到直线OP 的距离表示成x 的函数()f x ,则 ()y f x =在[0,π]的图象大致为 ( ) A . B . C . D . 7.执行如图的程序框图,若输入的a ,b ,k 分别为1,2,3.则输出的M = ( ) A . 203 B . 72 C .165 D .158 8.设π(0,)2α∈,π(0,)2 β∈,且1sin tan cos β αβ+=,则 ( ) A .π32αβ-= B .π 32αβ+= C .π22αβ-= D .π 22αβ+= 9.不等式组1, 24x y x y +??-?≥≤的解集记为D ,有下面四个命题: 1p :(,)x y D ?∈,22x y +-≥; 2p :(,)x y D ?∈,22x y +≥; 3p :(,)x y D ?∈,23x y +≤; 4p :(,)x y D ?∈,21x y +-≤. 其中的真命题是 ( ) A .2p ,3p B .1p ,2p C .1p ,4p D .1p ,3p 10.已知抛物线C :28y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个 交点,若4FP FQ =,则||QF = ( ) A .72 B .3 C .52 D .2 11.已知函数32()31f x ax x =-+,若()f x 存在唯一的零点0x ,且00x >,则a 的取值范围是 ( ) A .(2,)+∞ B .(1,)+∞ C .(,2)-∞- D .(,1)-∞- 12.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为 ( ) A .B .6 C .D .4 第Ⅱ卷 本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答.第22题~第24题为选考题,考生根据要求作答. 二、填空题:本大题共4小题,每小题5分. 13.8()()x y x y -+的展开式中27x y 的系数为 (用数字填写答案). 14.甲、乙、丙三位同学被问到是否去过A ,B ,C 三个城市时, 甲说:我去过的城市比乙多,但没去过B 城市; 乙说:我没去过C 城市; 丙说:我们三人去过同一城市. 由此可判断乙去过的城市为 . 15.已知A ,B ,C 为圆O 上的三点,若1()2 AO AB AC =+,则AB 与AC 的夹角为 . 16.已知a ,b ,c 分别为ABC △三个内角A ,B ,C 的对边,2a =,且(2)(sin b A +- sin )()sin B c b C =-,则ABC △面积的最大值为 . 三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分) 已知数列{}n a 的前n 项和为n S ,11a =,0n a ≠,11n n n a a S λ+=-,其中λ为常数. (Ⅰ)证明:2n n a a λ+-=; (Ⅱ)是否存在λ,使得{}n a 为等差数列?并说明理由. 姓名________________ 准考证号_____________ -------------在 --------------------此--------------------卷-------------------- 上-------------------- 答-------------------- 题-------------------- 无-------------------- 效 ----------------

相关主题
文本预览
相关文档 最新文档