当前位置:文档之家› 2021年新高考数学总复习讲义:解三角形

2021年新高考数学总复习讲义:解三角形

2021年新高考数学总复习讲义:解三角形
2021年新高考数学总复习讲义:解三角形

2021年新高考数学总复习讲义:解三角形

知识讲解

一、正弦定理

1.正弦定理:

sin sin sin 2a b c A

B

C

R =

=

=;

(R 为三角形外接圆半径) 2.正弦定理变形式:

1)sin 2a

A R ;sin 2b

B R :sin 2c

C R

2)::sin :sin :sin a b c

A B C

3.正弦定理的应用

1)已知两角和任意一边,求另一角和其它的两条边 2)已知两边和其中一边的对角,求另一边和其中的对角

二、余弦定理

1.余弦定理:

2222cos a b c bc A =+-;

2222cos b c a ac B ; 2

2

2

2cos c a b ab C ;

2.余弦定理变形式:

2

2

2

2cos b c a

bc

A +-=

222

cos 2a c b B ac ;

2

22

cos 2a b c C

ab

3.余弦定理的应用

1)已知三边,求各角

2)已知两边和它们的夹角,求第三个边和其它的两个角 3)已知两边和其中一边的对角,求其它的角和边.

三、面积公式

1.

12a S ah ?=1

2b bh =12c ch = (a h

、b h 、c h 分别表示a 、b 、c 上的高); 2.1sin 2S ab C ?=1sin 2bc A =1

sin 2ac B =;

3.1

24sin abc R

S ab C ?==

4.

12

()

S r a b c ?=++(r 为三角形内切圆半径).

注:ABC ?中易得:①A B C π++=,② sin sin()A B C =+,cos cos()A B C =-+,

tan tan()A B C =-+.③sin sin a b A B A B >?>?>④锐角ABC ?中,2

A B π

+>

sin cos ,cos sin A B A B ><,222a b c +>,类比得钝角ABC ?的结论.

经典例题

一.选择题(共13小题)

1.(2018?江西模拟)已知在锐角△ABC中,角A,B,C的对边分别为a,b,c,

且cosB

b +

cosC

c

=

√3sinC

,则b的值为()

A.√3B.2√3

C.√3

2

D.√6

2.(2018?重庆二模)在△ABC中,角A,B,C所对应的边分别是a,b,c,若(a?b)(sinA+sinB)=c(sinC+√3sinB),则角A等于()

A.π

6

B.

π

3

C.2π

3

D.

6

3.(2018?珠海二模)设锐角△ABC的三内角A、B、C所对边的边长分别为a、b、c,且a=1,B=2A,则b的取值范围为()

A.(√2,√3)B.(1,√3)

C.(√2,2)D.(0,2)

4.(2018?迎泽区校级一模)在△ABC中,设a,b,c分别是角A,B,C所对边的边长,且直线bx+ycosA+cosB=0与ax+ycosB+cosA=0平行,则△ABC一定是()

A.锐角三角形B.等腰三角形

C.直角三角形D.等腰或直角三角形

5.(2018?广元模拟)在△ABC中,角A,B,C的对边分别是a,b,c,已知b= 2,c=2√2,且C=π4,则△ABC的面积为()

A.√3+1B.√3?1

C.4D.2

6.(2018?大同二模)已知△ABC中,A:B:C=1:1:4,则a:b:c等于()A.1:1:√3B.2:2:√3

C.1:1:2D.1:1:4

7.(2018?南平一模)在锐角△ABC中,角A,B所对的边长分别为a,b,2asinB=b,则角A等于()

A.π

3

B.

π

4

C.π

6

D.

π

12

8.(2018?顺德区一模)△ABC中,tanA=√3,AC=2√3,BC=4,则AB=()A.2√3﹣√7B.√7﹣√3

C.√7+√3D.2√3+√7

9.(2018?辽宁模拟)若△ABC的角A,B,C对边分别为a、b、c,且a=1,∠B=45°,S△ABC=2,则b=()

A.5B.25

C.√41D.5√2

10.(2018?西城区模拟)在△ABC中,a2=b2+c2+bc,则角A为()A.30°B.45°

C.120°D.150°

11.(2018春?松山区校级月考)在△ABC中,已知a=14,b=16,A=45°,则此三角形()

A.无解B.只有一解

C.有两解D.解的个数不确定

12.(2018?河西区三模)在△ABC中,三个内角A,B,C所对的边分别为a,b,c,若sin2B﹣sin2C﹣sin2A=√3sinAsinC,则角B的大小为()A.30°B.60°

C.120°D.150°

13.(2018?凯里市校级四模)已知△ABC的内角A,B,C的对边分别是a,b,c,且(a2+b2﹣c2)?(acosB+bcosA)=abc,则角C=()

A.30°B.45°

C.60°D.90°

二.填空题(共6小题)

14.(2018?虹口区一模)在△ABC中,∠A,∠B,∠C所对的边分别是a,b,c,如果a:b:c=2:3:4,那么cosC=.

15.(2018春?昆山市期中)一个三角形的两个内角分别是30°和60°,若30°角所对的边长为2,则60°角所对的边长为.

16.(2018春?建邺区校级期中)在△ABC中,角A,B,C所对的边分别为a,b,

c,若A=π

3

,b=2acosB,c=2,则△ABC的面积等于.

17.(2018春?南京期中)在△ABC中,a,b分别是∠A,∠B所对的边,A=π6,

B=π

4

,b=8,则a的值为.

18.(2018?唐山模拟)△ABC的两边长分别为2,3,其夹角的余弦值为1

3

,则其

外接圆的半径为.

19.(2018?海淀区二模)在△ABC中,a:b:c=4:5:6,则tanA=.

三.解答题(共5小题)

20.(2016?海淀区模拟)在△ABC中,a,b,c分别是角A,B,C的对边,且a+c=2b.(I)求角B的取值范围;

(Ⅱ)若A﹣C=π

3

,求sinB.

21.(2018?衡阳三模)已知函数f(x)=√3sin2x+sinxcosx+m的最大值为1.

(Ⅱ)求m;

(Ⅱ)在△ABC中,角A,B,C的对边分别为a,b,c,若A为锐角且f(A)=√32,b+c=8,求a的最小值.

22.(2018?莆田二模)△ABC的内角A,B,C的对边分别为a,b,c,已知asinB+

√3bcosA=0.

(1)求A;

(2)若a=√3,求△ABC面积S的最大值.

23.(2018?江苏模拟)在△ABC中,角A,B,C的对边分别为a,b,c,且(2a

﹣b)?cosC=c?cosB.

(1)求角C的大小;

(2)若c=2,△ABC的面积为√3,求该三角形的周长.

24.(2018?成都模拟)已知函数f(x)=√3sin x

2cos

x

2?cos

2

x

2+

1

2

(1)求函数f(x)的单调递减区间;

(2)若△ABC的内角A,B,C所对的边分别为a,b,c,f(A)=12,a=√3,sinB=2sinC,求c.

高一数学解三角形练习题

必修五 第一章 解三角形 一、选择题 1.已知A ,B 两地的距离为10 km ,B ,C 两地的距离为20 km ,现测得∠ABC =120°,则A ,C 两地的距离为( ). A .10 km B .103km C .105km D .107km 2.在△ABC 中,若2 cos A a = 2 cos B b =2 cos C c ,则△ABC 是( ). A .等腰三角形 B .等边三角形 C .直角三角形 D .等腰直角三角形 3.三角形三边长为a ,b ,c ,且满足关系式(a +b +c )(a +b -c )=3ab ,则c 边的对角等于( ). A .15° B .45° C .60° D .120° 4.在△ABC 中,三个内角∠A ,∠B ,∠C 所对的边分别为a ,b ,c ,且a ∶b ∶c =1∶3∶2,则sin A ∶sin B ∶sin C =( ). A .3∶2∶1 B .2∶3∶1 C .1∶2∶3 D .1∶3∶2 5.如果△A 1B 1C 1的三个内角的余弦值分别等于△A 2B 2C 2的三个内角的正弦值,则( ). A .△A 1 B 1 C 1和△A 2B 2C 2都是锐角三角形 B .△A 1B 1C 1和△A 2B 2C 2都是钝角三角形 C .△A 1B 1C 1是钝角三角形,△A 2B 2C 2是锐角三角形 D .△A 1B 1C 1是锐角三角形,△A 2B 2C 2是钝角三角形 6.在△ABC 中,a =23,b =22,∠B =45°,则∠A 为( ). A .30°或150° B .60° C .60°或120° D .30°

高中解三角形题型大汇总

解三角形题型总结 题型一:正选定理的应用 1. ABC ?的三内角A 、B 、C 的对边边长分别为a b c 、、,若,2a A B ==, 则cos _____B = B. C. D. 2. 如果111A B C ?的三个内角的余弦值分别等于222A B C ?的三个内角的正弦值,则( ) A .111A B C ?和222A B C ?都是锐角三角形 B .111A B C ?和222A B C ?都是钝角三角形 C .111A B C ?是钝角三角形,222A B C ?是锐角三角形 D .111A B C ?是锐角三角形,222A B C ?是钝角三角形 3. 在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若 ( ) C a A c b cos cos 3=-,则 =A cos _________________。 4.△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,a sin A sin B +b cos 2A =a 2,则=a b A . B . C D 5.ABC ?中,3 π = A ,BC =3,则ABC ?的周长为( ) A . 33sin 34+??? ? ?+πB B . 36sin 34+??? ??+πB C .33sin 6+??? ??+πB D .36sin 6+??? ? ? +πB 6. 在ABC ?中,已知3,1,60===?ABC S b A o ,则=++++C B A c b a sin sin sin 7.设ABC ?的内角,,A B C 的对边分别为,,a b c ,且35 cos ,cos ,3,513 A B b = ==则c =______

解三角形讲义

一、正弦定理 1、在ABC ?中: 2R sinC c sinB b sinA a ===(R 为△ABC 的外接圆半径) 。它的变式有:①a=2RsinA ,b=2RsinB ,c=2RsinC ;②; ,R c C R B R a A 2sin 2b sin 2sin ===③a :b :c=sinA :sinB :sinC 。 推论1:△ABC 的面积为:S △ABC =21absinC=21bcsinA=2 1 casinB (证明:由正弦函数定义,BC 边上的高为bsinC ,所以S △ABC = C ab sin 2 1 ) 。 推论2:在△ABC 中,有bcosC+ccosB=a 。(证明:因为B+C=π-A ,所以sin(B+C)=sinA ,即sinBcosC+cosBsinC=sinA ,两边同乘以2R 得bcosC+ccosB=a);还有两个式子为:acosC+ccosA=b ,bcosA+acosB=c 。 2、利用正弦定理,可以解决以下两类有关三角形的问题 ①已知两角和任意一边,求其他两边和一角; ②已知两边和其中一边对角,求另一边的对角,进而求出其他的边和角。 例1 △ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,已知a=2,?=45B ,分别求出下 式中角A 的值。①b= 2 1 ;②b=1;③b=332;④b=2;⑤b=2。【答①无解;②A=?90;③A=??12060或; ④A=?45;⑤A=?30。】 例2 在△ABC 中,已知AB=1,?=50C ,当B= 时,BC 的长取最大值。【答:?40】 3、推导并记住:42675cos 15sin -= = ,4 2 615cos 75sin +== 。 例3 在锐角△ABC 中,若C=2B ,则 b c 的范围是( ) A 、(0,2) B 、)2,2( C 、)3,2( D 、)3,1( 【答:C 】 例4 在△ABC 中,c=3,C=?60,求a+b 的最大值。 【答:23】 例5 在等腰△ABC 中,已知 2 1 sinB sinA =,BC=3,则△ABC 的周长为 。 【答:15】 4、角平分线定理:在△ABC 中,AD 平分∠BAC ,则AC AB DC BD = 。 例6 已知△ABC 的三条边分别是3、4、6,则它较大的锐角的平分线分三角形所成的两个三角形的面积比为( ) A 、1:1 B 、1:2 C 、1:4 D 、3:4 【答:B 】 练习1 △ABC 中,角A 、B 、C 所对的边分别为a 、b 、c 。若x a =,2=b ,?=45B ,且此三角形有两解,则x 的取值范围为 ( ) A 、)22,2( B 、22 C 、),2(+∞ D 、]22,2( 【答:A 】

高中数学竞赛讲义_三角函数

三角函数 一、基础知识 定义1 角,一条射线绕着它的端点旋转得到的图形叫做角。若旋转方向为逆时针方向,则角为正角,若旋转方向为顺时针方向,则角为负角,若不旋转则为零角。角的大小是任意的。 定义2 角度制,把一周角360等分,每一等价为一度,弧度制:把等于半径长的圆弧所对的圆心角叫做一弧度。360度=2π弧度。若圆心角的弧长为L ,则其弧度数的绝对值|α|=r L ,其中r 是圆的半径。 定义3 三角函数,在直角坐标平面内,把角α的顶点放在原点,始边与x 轴的正半轴重合,在角的终边上任意取一个不同于原点的点P ,设它的坐标为(x ,y ),到原点的距离为r,则正 弦函数s in α= r y ,余弦函数co s α=r x ,正切函数tan α=x y ,余切函数cot α=y x ,正割函数se c α=x r ,余割函数c s c α=.y r 定理1 同角三角函数的基本关系式,倒数关系:tan α=αcot 1,s in α=αcsc 1,co s α=α sec 1;商数关系:tan α=αααααsin cos cot ,cos sin =;乘积关系:tan α×co s α=s in α,cot α×s in α=co s α;平方关系:s in 2α+co s 2α=1, tan 2α+1=se c 2α, cot 2α+1=c s c 2α. 定理2 诱导公式(Ⅰ)s in (α+π)=-s in α, co s(π+α)=-co s α, tan (π+α)=tan α, cot (π+α)=cot α;(Ⅱ)s in (-α)=-s in α, co s(-α)=co s α, tan (-α)=-tan α, cot (-α)=cot α; (Ⅲ)s in (π-α)=s in α, co s(π-α)=-co s α, tan =(π-α)=-tan α, cot (π-α)=-cot α; (Ⅳ)s in ??? ??-απ2=co s α, co s ??? ??-απ2=s in α, tan ?? ? ??-απ2=cot α(奇变偶不变,符号看象限)。 定理3 正弦函数的性质,根据图象可得y =s inx (x ∈R )的性质如下。单调区间:在区间 ?? ????+-22,22ππππk k 上为增函数,在区间??????++ππππ232,22k k 上为减函数,最小正周期为2π. 奇偶数. 有界性:当且仅当x =2kx +2π时,y 取最大值1,当且仅当x =3k π-2 π时, y 取最小值-1。对称性:直线x =k π+2 π均为其对称轴,点(k π, 0)均为其对称中心,值域为[-1,1]。这里k ∈Z . 定理4 余弦函数的性质,根据图象可得y =co s x (x ∈R )的性质。单调区间:在区间[2k π, 2k π+π]上单调递减,在区间[2k π-π, 2k π]上单调递增。最小正周期为2π。奇偶性:偶函数。对称性:直线x =k π均为其对称轴,点?? ? ?? +0,2ππk 均为其对称中心。有界性:当且仅当x =2k π时,y 取最大值1;当且仅当x =2k π-π时,y 取最小值-1。值域为[-1,1]。这里k ∈Z . 定理5 正切函数的性质:由图象知奇函数y =tanx (x ≠k π+ 2π)在开区间(k π-2π, k π+2π)上为增函数, 最小正周期为π,值域为(-∞,+∞),点(k π,0),(k π+2π ,0)均为其对称中心。 定理6 两角和与差的基本关系式:co s(α±β)=co s αco s β s in αs in β,s in (α±β)=s in αco s β±co s αs in β; tan (α±β)= .) tan tan 1()tan (tan βαβα ±

高一数学-解三角形综合练习题

必修五 解三角形 一、选择题 1. 在ABC ?中,若::1:2:3A B C ∠∠∠=,则::a b c 等于 ( ) A.1:2:3 B.3:2:1 C. D.2 2.在△ABC 中,222a b c bc =++ ,则A 等于 ( ) A .60° B .45° C .120° D .30° 3.有一长为1公里的斜坡,它的倾斜角为20°,现要将倾斜角改为10°,则坡底要伸长 A. 1公里 B. sin10°公里 C. cos10°公里 D. cos20°公里 4.等腰三角形一腰上的高是3,这条高与底边的夹角为 60,则底边长= ( ) A .2 B .2 3 C .3 D .32 5.已知锐角三角形的边长分别为2、3、x ,则x 的取值范围是 ( ) A .135<

高中数学-解三角形知识点汇总及典型例题1

解三角形的必备知识和典型例题及详解 一、知识必备: 1.直角三角形中各元素间的关系: 在△ABC 中,C =90°,AB =c ,AC =b ,BC =a 。 (1)三边之间的关系:a 2 +b 2 =c 2 。(勾股定理) (2)锐角之间的关系:A +B =90°; (3)边角之间的关系:(锐角三角函数定义) sin A =cos B = c a ,cos A =sin B =c b ,tan A =b a 。 2.斜三角形中各元素间的关系: 在△ABC 中,A 、B 、C 为其内角,a 、b 、c 分别表示A 、B 、C 的对边。 (1)三角形内角和:A +B +C =π。 (2)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等 R C c B b A a 2sin sin sin ===(R 为外接圆半径) (3)余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍 a 2= b 2+ c 2-2bc cos A ; b 2=c 2+a 2-2ca cos B ; c 2=a 2+b 2-2ab cos C 。 3.三角形的面积公式: (1)?S = 21ah a =21bh b =21 ch c (h a 、h b 、h c 分别表示a 、b 、c 上的高); (2)?S =21ab sin C =21bc sin A =2 1 ac sin B ; 4.解三角形:由三角形的六个元素(即三条边和三个内角)中的三个元素(其中至少有一个是边)求其他未知元素的问题叫做解三角形.广义地,这里所说的元素还可以包括三角形的高、中线、角平分线以及内切圆半径、外接圆半径、面积等等.主要类型: (1)两类正弦定理解三角形的问题: 第1、已知两角和任意一边,求其他的两边及一角. 第2、已知两角和其中一边的对角,求其他边角. (2)两类余弦定理解三角形的问题: 第1、已知三边求三角.

最全面的解三角形讲义

解三角形 【高考会这样考】 1.考查正、余弦定理的推导过程. 2.考查利用正、余弦定理判断三角形的形状. 3.考查利用正、余弦定理解任意三角形的方法. 4.考查利用正弦定理、余弦定理解决实际问题中的角度、方向、距离及测量问题. 基础梳理 1.正弦定理:a sin A =b sin B =c sin C =2R ,其中R 是三角形外接圆的半径.由正弦定理可以变 形为: (1)a ∶b ∶c =sin A ∶sin B ∶sin C ; (2)a =2R sin_A ,b =2R sin_B ,c =2R sin_C ; (3)sin A =a 2R ,sin B =b 2R ,sin C =c 2R 等形式,以解决不同的三角形问题. 2.余弦定理:a 2 =b 2 +c 2 -2bc cos_A ,b 2 =a 2 +c 2 -2ac cos_B ,c 2 =a 2 +b 2 -2ab cos_C .余弦定 理可以变形为:cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 2 2ab . 3.面积公式:S △ABC =12ab sin C =12bc sin A =12ac sin B =abc 4R =1 2(a +b +c )·r (R 是三角形外接 圆半径,r 是三角形内切圆的半径),并可由此计算R ,r . 4.已知两边和其中一边的对角,解三角形时,注意解的情况.如已知a ,b ,A ,则 A 为锐角 A 为钝角或直角 图形 关系 式 a <b sin A a =b sin A b sin A <a <b a ≥b a >b a ≤b 解的 个数 无解 一解 两解 一解 一解 无解 5.用正弦定理和余弦定理解三角形的常见题型 测量距离问题、高度问题、角度问题、计算面积问题、航海问题、物理问题等.

高中数学解三角形和平面向量

高中数学解三角形和平面向量试题 一、选择题: 1.在△ABC 中,若a = 2 ,23b =,0 30A = , 则B 等于( B ) A .60o B .60o 或 120o C .30o D .30o 或150o 2.△ABC 的内角A,B,C 的对边分别为a,b,c ,若c =2,b =6,B =120o ,则a 等于( D ) A .6 B .2 C .3 D .2 3.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c, 且2=a ,A=45°,2=b 则sinB=( A ) A . 1 2 B .22 C . 3 2 D .1 4.ABC ?的三内角,,A B C 的对边边长分别为,,a b c ,若5 ,22 a b A B ==,则cos B =( B ) A . 53 B .54 C .55 D .5 6 5.在△ABC 中,若)())((c b b c a c a +=-+,则A ∠=( C ) A .0 90 B .0 60 C .0 120 D .0 150 6.在△ABC 中,角A,B,C 的对边分别为a,b,c ,若(a 2+c 2-b 2)tan B =3ac ,则角B 的值为(D ) A. 6 π B. 3π C.6π或56 π D. 3π或23 π 7. 在△ABC 中, b a B A =--cos 1cos 1,则△AB C 一定是( A ) A. 等腰三角形 B. 直角三角形 C. 锐角三角形 D. 钝角三角形 8.在ABC ?中,角A 、B 、C 所对应的边分别为a 、b 、c ,若角A 、B 、C 依次成等差数列,且a=1, ABC S b ?=则,3等于( C ) A. 2 B. 3 C. 2 3 D. 2 9.已知锐角△ABC 的面积为33,BC=4,CA=3则角C 大小为( B ) A 、75° B 、60° C 、45° D 、30° 10.在200米高的山顶上,测得山下一塔顶与塔底的俯角分别为30°、60°,则塔高为( A ) A. 3 400 米 B. 33400米 C. 2003米 D. 200米 11.已知A 、B 两地的距离为10km ,B 、C 两地的距离为20km ,现测得0 120ABC ∠=,则A,C 两地 的距离为( D )。 A. 10km B. 103km C. 105km D. 107km 12.已知M 是△ABC 的BC 边上的中点,若向量AB =a ,AC = b ,则向量AM 等于( C ) A . 21(a -b ) B .21(b -a ) C .21( a +b ) D .1 2 -(a +b ) 13.若 ,3) 1( )1, 1(B A -- ,5) (x C 共线,且 BC AB λ=则λ等于( B ) A 、1 B 、2 C 、3 D 、4 14.已知平面向量),2(),2,1(m -==,且∥,则32+=( C ) A .(-2,-4) B. (-3,-6) C. (-4,-8) D. (-5,-10) 15. 已知b a b a k b a 3),2,3(),2,1(-+-==与垂直时k 值为 ( C ) A 、17 B 、18 C 、19 D 、20 16.(2,1),(3,),(2),a b x a b b x ==-⊥r r r r r 若向量若则的值为 ( B ) A .31-或 B.13-或 C .3 D . -1 17. 若|2|= ,2||= 且(-)⊥ ,则与的夹角是 ( B ) (A ) 6π (B )4π (C )3π (D )π12 5 183 =b , a 在 b 方向上的投影是2 3 ,则 b a ?是( B ) A 、3 B 、 29 C 、2 D 、2 1 19.若||1,||2,a b c a b ===+r r r r r ,且c a ⊥r r ,则向量a r 与b r 的夹角为( C ) (A )30° (B )60° (C )120° (D )150°

高中数学必修五第一章解三角形知识点总结及练习题

第一章 解三角形 1、正弦定理: 在C ?AB 中,a 、b 、c 分别为角A 、B 、C 的对边,R 为C ?AB 的外接圆的半径,则有: 2sin sin sin a b c R C ===A B . 2、正弦定理的变形公式: ①2sin a R =A ,2sin b R =B ,2sin c R C =; ②sin 2a R A = ,sin 2b R B =,sin 2c C R =; ③::sin :sin :sin a b c C =A B ; ④ sin sin sin sin sin sin a b c a b c C C ++=== A + B +A B . 注意:正弦定理主要用来解决两类问题:1、已知两边和其中一边所对的角,求其余的量。 2、已知两角和一边,求其余的量。 ⑤对于已知两边和其中一边所对的角的题型要注意解的情况。(一解、两解、无解三中情况)如:在三角形ABC 中,已知a 、b 、A (A 为锐角)求B 。具体的做法是:数形结合思想 画出图:法一:把a 扰着C 当无交点则B 无解、 当有一个交点则B 有一解、 当有两个交点则B 有两个解。 法二:是算出CD=bsinA,看a 的情况: 当ab 时,B 有一解

注:当A 为钝角或是直角时以此类推既可。 3、三角形面积公式: 111 sin sin sin 222 C S bc ab C ac ?AB =A ==B . 4、余弦定理: 在C ?AB 中,有2222cos a b c bc =+-A , 2222cos b a c ac =+-B , 2222cos c a b ab C =+-. 5、余弦定理的推论: 222 cos 2b c a bc +-A =, 222 cos 2a c b ac +-B =, 222 cos 2a b c C ab +-=. (余弦定理主要解决的问题:1、已知两边和夹角,求其余的量。2、已知三边求角) 6、如何判断三角形的形状: 设a 、b 、c 是C ?AB 的角A 、B 、C 的对边,则: ①若222a b c +=,则90C =; ②若222a b c +>,则90C <; ③若222a b c +<,则90C >. 7、正余弦定理的综合应用: 如图所示:隔河看两目标A 、B, C 并测得∠ACB=75O , ∠BCD=45O , ∠ADC=30O ,

解三角形完整讲义

正余弦定理知识要点: 1、正弦定理:或变形: 2、余弦定理:或 3、解斜三角形的常规思维方法是: (1 )已知两角和一边(如A、B C),由A+B+C = n求C,由正弦定理求a、b; (2)已知两边和夹角(如a、b、c),应用余弦定理求c边;再应用正弦定理先求较短边所对的角,然后利用A+B+C = n求另一角; (3)已知两边和其中一边的对角(如a、b、A),应用正弦定理求B,由A+B+C = n求C, 再由正弦定理或余弦定理求c边,要注意解可能有多种情况; (4)已知三边a、b、c,应余弦定理求A、B,再由A+B+C = n求角C。 4、判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式? 5、解三角形问题可能出现一解、两解或无解的情况,这时应结合三角形中大边对大角定理及几何作图来帮助理解”。 6、已知三角形两边a,b,这两边夹角C,则S = 1/2 * absinC 7、三角学中的射影定理:在△ ABC中,,… &两内角与其正弦值:在△ ABC中,,… 【例题】在锐角三角形ABC中,有(B ) A. cosA>sinB 且cosB>sinA B. cosAsinB 且cosBsinA 9、三角形内切圆的半径:,特别地, 正弦定理 专题:公式的直接应用 1、已知中,,,,那么角等于() A. B. C. D. 2、在厶AB(中, a=, b =, B= 45°贝U A 等于(C ) A. 30 ° B. 60 ° C. 60 或120 ° D 30 或150 3、的内角的对边分别为,若,则等于() A. B. 2 C. D. 4、已知△ AB(中,,,则a等于(B ) A. B. C. D. 5、在△ AB(中, = 10 , B=60° ,C=4则等于(B ) A. B. C. D. 6、已知的内角,,所对的边分别为,,,若,,则等于.() 7、△ AB(中,,,,则最短边的边长等于(A ) A . B. C . D . & △ AB(中,,的平分线把三角形面积分成两部分,则( C ) A . B . C . D . 9、在△ AB(中,证明:。 证明: 由正弦定理得: 专题:两边之和 1、在厶AB(中, A= 60 ° B= 45 则a = (,)

高一数学必修四-三角函数讲义全

专题四 三角函数 一.基本知识点 【1】角的基本概念 (1)正角 负角 零角 (2)角α的顶点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,则称α为第几象限角. 第一象限角的集合为 {}36036090,k k k αα?<,则 sin y r α= ,cos x r α=, ()tan 0y x x α= ≠.

【3】三角函数的基本关系 ()221sin cos 1αα+=()2222sin 1cos ,cos 1sin αααα=-=- ()sin 2tan cos α αα =sin sin tan cos ,cos tan αααααα? ?== ? ? ?. 【4】函数的诱导公式:奇变偶不变,符号看象限 ()sin sin παα+=- ()cos cos παα+=- ()tan tan παα+= ()sin sin αα-=- ()cos cos αα-= ()tan tan αα-=- ()sin sin παα-= ()cos cos παα-=- ()tan tan παα-=- sin cos 2παα??-= ??? cos sin 2παα?? -= ??? sin cos 2παα??+=- ??? cos sin 2παα?? +=- ??? 【5】常用三角函数公式 (1)两角和与差的三角函数关系 sin(α±β)=sin α·cos β±cos α·sin β cos(α±β)=cos α·cos β sin α·sin β β αβ αβαtan tan 1tan tan )tan(?±= ± (2)倍角公式 sin2α=2sin α·cos α α α α2 tan 1tan 22tan -= cos2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2 α (3)半角公式 sin 2 α22cos 1α-= cos 2 α2 2cos 1α+= (4)辅助角公式()()sin cos 0a x b x x a θ+= +> (其 中θ角所在的象限由a , b 的符号确定,θ角的值由tan b a θ=确定) (5)特殊角的三角函数

高中数学必修5第一章解三角形全章教案整理

课题: §1.1.1正弦定理 如图1.1-1,固定?ABC 的边CB 及∠B ,使边AC 绕着顶点C 转动。 思考:∠C 的大小与它的对边AB 的长度之间有怎样的数量关系? 在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中, 角与边的等式关系。 从而在直角三角形ABC 中,sin sin sin a b c A B C == 思考:那么对于任意的三角形,以上关系式是否仍然成立? 可分为锐角三角形和钝角三角形两种情况: 如图1.1-3,当?ABC 是锐角三角形时,设边AB 上的高是CD ,根据任意角三角函数的定义,有CD=sin sin a B b A =,则 sin sin a b A B =, C 同理可得 sin sin c b C B =, b a 从而sin sin a b A B =sin c C = A c B 从上面的研探过程,可得以下定理 正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即 sin sin a b A B =sin c C = [理解定理] (1)正弦定理说明同一三角形中,边与其对角的正弦成正比,且比例系数为同一正数,即存在正数k 使sin a k A =,sin b k B =,sin c k C =; (2)sin sin a b A B =sin c C =等价于sin sin a b A B =,sin sin c b C B =,sin a A =sin c C 从而知正弦定理的基本作用为: ①已知三角形的任意两角及其一边可以求其他边,如sin sin b A a B =; ②已知三角形的任意两边与其中一边的对角可以求其他角的正弦值,如sin sin a A B b =。 一般地,已知三角形的某些边和角,求其他的边和角的过程叫作解三角形。 例1.在?ABC 中,已知045A =,075B =,40a =cm ,解三角形。 例2.在?ABC 中,已知20=a cm ,202b =cm ,045A =,解三角形。

【高中数学】解三角形基本题型

解三角形 解三角形 正弦定理的基本运用 1、 △A BC 中,sin 2A =sin 2B +sin 2C ,则△ABC 为 。 2、 在△ABC 中,b cos A =a cos B ,则三角形为 。 3、 已知△ABC 中,a =10,B =60°,C =45°,则c = 。 4、 在△ABC 中,已知150,350,30==?=c b B ,那么这个三角形是 。 5、 在ABC ?中,?===452232B b a ,,,则A 为 。 6、 在△ABC 中,A =60°,C =45°,b =2,则此三角形的最小边长为 。

余弦定理的基本运用 1、 在△ABC 中,a 2=b 2+c 2+bc ,则A 等于 。 2、 已知△ABC 的面积2,32,3===b a S ,解此三角形。 3、 在△ABC 中,1326+===c b a ,,,求A 、B 、C 。 4、 在△ABC 中,化简b cos C +c cos B = 。 5、 在△ABC 中,化简 ) cos cos cos (222c C b B a A c b a abc ++++。 正余弦定理的综合运用 1、已知在△ABC 中,c =10,A =45°,C =30°,求a 、b 和 B 。 2、在△ABC 中,c =22,tan A =3,tan B =2,试求a 、b 及此三角形的面积。 3、在△ABC 中,a =2,A =30°,C =45°,则△ABC 的面积S △ABC 等于 。

4、已知在△ABC中,sin A:sin B:sin C=3:2:4,那么cos C的值为。 5、△ABC中,A=60°,b=1,这个三角形的面积为3,则△ABC外接圆的直径 为。 6、在△ABC中,BC=3,AB=2,且 )1 6 ( 5 2 sin sin + = B C ,A=。

(经典讲义)高一数学下必修四第一章三角函数

高一数学下必修四第一章三角函数第一讲:三角函数(1) ? ? ? ? ? 正角:按逆时针方向旋转形成的角 1、任意角负角:按顺时针方向旋转形成的角 零角:不作任何旋转形成的角 2、角α的顶点与原点重合,角的始边与x轴的非负半轴重合,终边落在第几象限,则称α为第几象限角. 第一象限角的集合为{} 36036090, k k k αα ?<

【高中数学】解三角形的知识总结和题型归纳

解三角形的知识总结和题型归纳 一、知识必备: 1.直角三角形中各元素间的关系: 在△ABC 中,C =90°,AB =c ,AC =b ,BC =a 。(1)三边之间的关系:a 2+b 2=c 2。(勾股定理)(2)锐角之间的关系:A +B =90°;(3)边角之间的关系:(锐角三角函数定义) sin A =cos B =c a ,cos A =sin B =c b ,tan A =b a 。 2.斜三角形中各元素间的关系: 在△ABC 中,A 、B 、C 为其内角,a 、b 、c 分别表示A 、B 、C 的对边。(1)三角形内角和:A +B +C =π。 (2)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等 R C c B b A a 2sin sin sin ===(R 为外接圆半径)(3)余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍a 2=b 2+c 2-2bc cos A ;b 2=c 2+a 2-2ca cos B ;c 2=a 2+b 2-2ab cos C 。 3.三角形的面积公式: (1)?S = 21ah a =21bh b =21 ch c (h a 、h b 、h c 分别表示a 、b 、c 上的高);(2)?S =21ab sin C =21bc sin A =2 1 ac sin B ; 4.解三角形:由三角形的六个元素(即三条边和三个内角)中的三个元素(其中至少有一个是边)求其他未知元素的问题叫做解三角形.广义地,这里所说的元素还可以包括三角形的高、中线、角平分线以及内切圆半径、外接圆半径、面 【高中数学】

高中数学解三角形题型完整归纳

高中数学解三角形题型目录一.正弦定理 1.角角边 2.边边角 3.与三角公式结合 4.正弦定理与三角形增解的应对措施 5.边化角 6.正弦角化边 二.余弦定理 1.边边边 2.边角边 3.边边角 4.与三角公式结合 5.比例问题 6.余弦角化边 7.边化余弦角 三.三角形的面积公式 1.面积公式的选用 2.面积的计算 3.正、余弦定理与三角形面积的综合应用 四.射影定理 五.正弦定理与余弦定理综合应用 1.边角互化与三角公式结合 2.与平面向量结合 3.利用正弦或余弦定理判断三角形形状 4.三角形中的最值问题 (1)最大(小)角 (2)最长(短)边 (3)边长或周长的最值

(4)面积的最值 (5)有关正弦或余弦或正切角等的最值 (6)基本不等式与余弦定理交汇 (7)与二次函数交汇 六.图形问题 1.三角形内角之和和外角问题 2.三角形角平分线问题 3.三角形中线问题 4.三角形中多次使用正、余弦定理 5.四边形对角互补与余弦定理的多次使用 6.四边形与正、余弦定理 六.解三角形的实际应用 1.利用正弦定理求解实际应用问题 2.利用余弦定理求解实际应用问题 3.利用正弦和余弦定理求解实际应用问题 一.正弦定理 1.角角边 ?=?=?= 例.在中,解三角形 ABC A B a 30,45,2,. ?=?=?== 练习1.在中则 ABC A B a c ,30,45, . 练习2.在中,已知45,,求 ?=?=?= 30. ABC C A a b 2.边边角 例中,解这个三角形?===? ABC a .45,. 练习1中,则 ?==+== . 1,2,sin ABC a b A C B C 练习2.中则 ?===?= ,3,60,_____ ABC c b C A

必修5 解三角形复习讲义

解三角形复习 【知识梳理】 1、正弦定理:在C ?AB 中,a 、b 、c 分别为角A 、B 、C 的对边,R 为C ?AB 的外接圆的半径,则有 2sin sin sin a b c R C ===A B . 2、正弦定理的变形公式: ①2sin a R =A ,2sin b R =B ,2sin c R C =; ②sin 2a R A =,sin 2b R B =,sin 2c C R =; ③::sin :sin :sin a b c C =A B ; ④ sin sin sin sin sin sin a b c a b c C C ++===A +B +A B . 3.解决以下两类问题: ①已知三角形的任意两角及其一边可以求其他边,如sin sin b A a B =;(唯一解) ②已知三角形的任意两边与其中一边的对角可以求其他角的正弦值,如sin sin a A B b =。 (一解或两解) 4、三角形面积公式:111sin sin sin 222 C S bc ab C ac ?AB = A == B . 5.余弦定理: 形式一:A cos bc 2c b a 222?-+=,B cos ac 2c a b 222?-+=,C cos ab 2b a c 222?-+= 形式二:bc 2a c b A cos 222-+=,ac 2b c a B cos 222-+=,ab 2c b a C cos 222-+=,(角到边的转换) 6.解决以下两类问题: 1)、已知三边,求三个角;(唯一解) 2)、已知两边和它们的夹角,求第三边和其他两个角;(唯一解)

高中数学解三角形方法大全

解三角形的方法 1.解三角形:一般地,把三角形的三个角和它们的对边叫做三角形的元素。已知三角形的几个元素求 其他元素的过程叫作解三角形。 以下若无特殊说明,均设ABC ?的三个内角C B A 、、的对边分别为c b a 、、,则有以下关系成立: (1)边的关系:c b a >+,b c a >+,a c b >+(或满足:两条较短的边长之和大于较长边) (2)角的关系:π=++C B A ,π<A , C B A sin )sin(=+,C B A cos )cos(-=+,2 cos 2sin C B A =+ (3)边角关系:正弦定理、余弦定理以及它们的变形 板块一:正弦定理及其应用 1.正弦定理: R C c B b A a 2sin sin sin ===,其中R 为AB C ?的外接圆半径 2.正弦定理适用于两类解三角形问题: (1)已知三角形的任意两角和一边,先求第三个角,再根据正弦定理求出另外两边; (2)已知三角形的两边与其中一边所对的角,先求另一边所对的角(注意此角有两解、一解、无解

总结:若已知三角形的两边和其中一边所对的角,解这类三角形时,要注意有两解、一解和无解的可能 如图,在ABC ?中,已知a 、b 、A (1)若A 为钝角或直角,则当b a >时,ABC ?有唯一解;否则无解。 (2)若A 为锐角,则当A b a sin <时,三角形无解; 当A b a sin =时,三角形有唯一解; 当b a A b <

相似三角形完整讲义(教师版)

相似三角形基本知识 知识点一:放缩与相似形 1.图形的放大或缩小,称为图形的放缩运动。 2.把形状相同的两个图形说成是相似的图形,或者就说是相似性。 注意:⑴相似图形强调图形形状相同,与它们的位置、颜色、大小无关。 ⑵相似图形不仅仅指平面图形,也包括立体图形相似的情况。 ⑶我们可以这样理解相似形:两个图形相似,其中一个图形可以看作是由另一个图形放大或缩小得到的. ⑷若两个图形形状与大小都相同,这时是相似图形的一种特例——全等形. 3.相似多边形的性质:如果两个多边形是相似形,那么这两个多边形的对应角相等,对应边的长度成比例。 注意:当两个相似的多边形是全等形时,他们的对应边的长度的比值是1. 知识点二:比例线段有关概念及性质 (1)有关概念 1、比:选用同一长度单位量得两条线段。a 、b 的长度分别是m 、n ,那么就说这两条线段 的比是a :b =m :n (或 n m b a =) 2、比的前项,比的后项:两条线段的比a :b 中。a 叫做比的前项,b 叫做比的后项。 说明:求两条线段的比时,对这两条线段要用同一单位长度。 3、比例:两个比相等的式子叫做比例,如 d c b a = 4、比例外项:在比例d c b a = (或a :b =c :d )中a 、d 叫做比例外项。 5、比例内项:在比例d c b a = (或a :b =c :d )中b 、c 叫做比例内项。 6、第四比例项:在比例d c b a = (或a :b =c :d )中,d 叫a 、b 、c 的第四比例项。 7、比例中项:如果比例中两个比例内项相等,即比例为 a b b a =(或a:b =b:c 时,我们把b 叫做a 和d 的比例中项。 8.比例线段:对于四条线段a 、b 、c 、d ,如果其中两条线段的长度的比与另两条线段的长度的比相等,即 d c b a =(或a :b= c : d ) ,那么,这四条线段叫做成比例线段,简称比例线段。(注意:在求线段比时,线段单位要统一,单位不统一应先化成同一单位)

相关主题
文本预览
相关文档 最新文档