当前位置:文档之家› 井筒摩阻计算原理与方法

井筒摩阻计算原理与方法

井筒摩阻计算原理与方法
井筒摩阻计算原理与方法

井筒摩阻计算

第一节 水头损失及其分类

实际流体具有粘性,在通道内流动时,流体内部流层之间存在相对运动和流动阻力。流动阻力和水头损失的规律,因流体的流动状态和流动的边界条件而异.

一、水头损失分类

流体在流动的过程中,在流动的方向、壁面的粗糙程度、过流断面的形状和尺寸均不变的均匀流段上产生的流动阻力称之为沿程阻力,或称为摩擦阻力。沿程阻力的影响造成流体流动过程中能量的损失或水头损失(习惯上用单位重量流体的损失表示)。沿程阻力均匀地分布在整个均匀流段上,与管段的长度成正比,一般用f h 表示。

另一类阻力是发生在流动边界有急变的流场中,能量的损失主要集中在该流场及附近流场,这种集中发生的能量损失或阻力称为局部阻力或局部损失,由局部阻力造成的水头损失称为局部水头损失。

二、水头损失分类 1.沿程阻力损失

2g v 4R l λ

h 2

f =

对于圆管: g

v d l h f 22

λ

=

式中:l —管长;R —水力半径;d —管径;v —断面平均流速;g —重力加速度;λ—

沿程阻力系数,也称达西系数。一般由实验确定。

式中的无量纲系数λ不是一个常数,它与流体的性质、管道的粗糙程度以及流速和流态有关,在大多数工程问题中,f h 确实与2v 成正比。此外,这样做可以把阻力损失和流速水头合并在一起,便于计算。

2.局部阻力损失

g

v h j 22

ζ

=

式中:ζ——局部阻力系数,一般由实验确定。整个管道的阻力损失,应该等于各管段的

沿程损失和所有局部损失的总和。

第二节 粘性流体流动流态

一、粘性流体流动流态

当流速较小时,沿程损失与流速一次方成正比,当流速较大时,沿程损失几乎与流速的平方成正比,如图所示,并且在这两个区域之间有一个不稳定区域。

当阀门B 慢慢打开,并打开颜色水阀门D ,此时管中的水流流速较小,可以看到玻璃管中一条线状的颜色水。它与水流不相混合,如图6—3(b )所示。从这一现象可以看出,在管中流速较小时,管中水流沿管轴方向呈层状流动,各层质点互不掺混,这种流动状态称为层流。

当阀门B 逐渐开大,管中的水流流速也相应增大。此时会发现,在流速增加到某一数值时,颜色水原直线的运动轨迹开始波动,线条逐渐变粗,如图6—3(c )所示。继续增加流速,则颜色水迅速与周围的清水混合,6—3(d )所示。这表明液体质点的 运动轨迹不规则,各层液体相互剧烈混合,产生随机的脉动,这种流动称为紊流。水流流速从小变大。沿程阻力曲线的走线为A →B →C →D 。如图6—2所示。

若实验时流速由大变小。则上述观察到的流动现象以相反的程序重演,但有紊流转变为层流的流速c v (下临界流速)要小于由层流转变为紊流的流速'

c v (上临界流速)。如图6—2所示。沿径阻力曲线的走线为D -C -A 。如图6—2所示。

实验进—步表明,同一实验装置的临界流速是不固定的,随着流动的起始条件和实验条件不同,外界干扰程度不同,其上临界流速差异很大,但是,其下临流流速却基本不变。在实际工程中,扰动是普遍存在的,上临界流速没有实际意义,一般指的临界流速即指下临界流速。

二、流态的判别准则

流态不仅与断面平均流速v 有关系,而且与管径d 、液体粘性μ、密度ρ有关。即流态既反映管道中流体的特性,同时又反映管道的特性。

将上述四个参数合成一无量纲数(无具体单位),称为雷诺数,用e R 表示。

ν

μνμ==

ρvd

vd R e

式中:e R ——雷诺数,v ——流速,m/s ,ρ——流体密度,kg/m 3,μ——流体粘度,Pa.s ;

ν——运动粘度,m 2/s

注,粘度单位1Pa.s=1N*s/m2=10P =103cp=1Kcps=1kg/(m*s) 1N=1kg*m/s 2 对应于临界流速的雷诺数,称为临界雷诺数,通常用表示。大量实验表明,在不同的管道、不同的液体以及不同的外界条件下临界雷诺数不同。通常情况下,临界雷诺数总在2300附近,Re c =2300

【例6—1】 有一直径mm d

25=的室内上水管,如管中流速s m v 0.1=水温10=t ℃。

(1).试判别管中水的流态;

(2).试求管内保持层流状态的最大流速为多少? 解:(1)l0℃时,水的运动粘性系数s m v

261031.1-?=,此时,管内雷诺数

=

=

ν

vd

R e 2300191001031.1025

.0016>≈???-,故管中水流为紊流。

(2)保持层流的最大流速就是临界流速,2300Re ==ν

d

v c

所以12.0025

.01031.123006

=??=

-c v s m 第三节 沿程水头损失与切应力的关系

一、均匀流动方程式

沿程阻力(均匀流内部流层间的切应力)是造成沿程水头损失的直接原因。建立沿程水头损失与切应力的关系式,再找出切应力的变化规律,就能解决沿程水头损失的计算问题。 在圆管恒定流均匀流段上设1—l 和2—2断面,如图所示。作用于流段上的外力:压力、壁面切应力重力相平衡。即:

cos 21=-+-l Al A p A p w χταγ

式中w τ——壁面切应力,χ——湿周,α——圆管倾斜角,A ——圆管断面截面积,l ——管段长度。 由几何关系得:

21cos z z l -=α,除以A γ整理得:

A l p z p z w γχτγγ=???

? ??+-???? ??+2211 并由断面1和断面2的能量方程得:f h p z p z =????

??+-???? ?

?+γγ2211,故:

R

l

A l h w w f γτγχτ=

=

Rl l

h R

f w γγτ==

式中:R ——水力半径,χ

A

R =

J ——水力坡度,l

h J f =

二、圆管过流段面上切应力分布

w

r r ττ0=

即圆管均匀过流断面上切应力呈直线分布,管轴处0=τ,管壁处切应力达最大值w ττ=

三、壁剪切速度

下面在均匀流动方程式的基础上,推导沿程摩阻系数λ和壁面切应力的关系。

将g

v d l J 22λ=代入均匀流动方程式,整理得:

8

λ

ρ

τv w

=,定义ρ

τw

v =

*具有速度的量纲,称为壁剪切速度(摩

擦速度)。则:

8

λ

v

v =*

上式是沿程摩阻系数和壁面切应力的关系式,该式在紊流的研究中广为引用。

第四节、圆管中的层流运动

层流常见于很细的管道流动,或者低速、高粘流体的管道流动,如阻尼管、润滑油管、原油输油管道内的流动。

一、 圆管中层流运动的流动特征

v

如前述,层流各流层质点互不掺混,对于圆管来说,各层质点沿平行管轴线方向运动。

与管壁接触的一层速度为零,管轴线上速度最大,整个管流如同无数薄壁圆筒一个套着一个滑动。各流层间切应力服从牛顿内摩擦定律,即满足式

dy du μτ= r r y -=0 dr

du μτ-= 二、 圆管层流的断面流动分布

因讨论圆管层流运动,所以可用牛顿内摩擦定律来表达液层间的切应力:

dr du

dy du μ

μτ-==

式中μ为动力粘性,u 为离管轴距离r 处的切应力(即离管壁距离y 处)的流速。 对于均匀管流而言,在半径等于r 处的切应力应为:

J r 2

γτ=

于均匀管流而言,根据式(6—21),在半径等于r 处的切应力应为:

J r

2

γτ=

rdr J

du μ

γ2-

= 积分得:

C r J u +-=2

γ

利用管壁上的边界条件,确定上式中的积分常数C 。

当0r r =时0=u ,得:2

04r J C μ

γ=

)(422

0r r J u -=μ

γ

上式表明,圆管中均匀层流的流速分布是一个旋转抛物面,如图6—6所示。过流断面上流速呈抛物面分布,这是圆管层流的重要特征之一。 将0=r 代入上式,得到管轴处最大流速为

2

0max 4r J u μ

γ=

平均流速为:

2

22020

2

00

824)(1

2r J rdr r r J r r rdr

A

udA A

Q v r

r

A

μ

γπμγπππ=-==

=

=?

??

三 、圆管层流的沿程阻力损失

将直径d 代替式(6—34)中的02r ,可得:

2232)2(8d J

d J v μ

γμγ==

进而可得水力坡度

v d

J 232γμ=

以f h J =/l 代入上式,可得沿程阻力损失为:

v d

l h f 232γμ=

这就从理论上证明了圆管的均匀层流中.沿程阻力损失f h 与平均流速v 的一次方成正比,这与雷诺实验的结果相符。

上式还可以进一步改写成达西公式的形式

g v d l g v d l g v d l vd v d

d h f 22R

e 64264322

222

λμ

ργμ====

由上式可得:

Re

64

该式为达西和魏斯巴哈提出的著名公式,此公式表明圆管层流中的沿程阻力系数λ只是雷诺数的函数,与管壁粗糙情况无关。

[例题6—2] 设有一恒定有压均匀管流.已知管径mm d

20=,管长mm l 20=,管中水流流速,

s m v 12.0=,水温10=t ℃时水的运动粘度s m v 26

10

306.1-?=。求沿程阻力损失。

解:2300183810306.102

.012.0Re

6

<=??=

=

vd

为层流

035.01838

64Re 64===

λ O mH g v d l h f 22

2026.08

.92)12.0(02.020035.02=???==λ

第五节 紊流运动分析

一、粘性底层

在紊流运动中,并不是整个流场都是紊流。由于流体具有粘滞性,紧贴管壁或槽壁的流体质点将贴附在固体边界上,无相对滑移,流速为零,继而它们又影响到邻近的流体速度也随之变小,从而在紧靠近面体边界的流层里有显著的流速梯度,粘滞切应力很大,但紊动则趋于零。各层质点不产生混掺,也就是说,在取近面体边界表面有厚度极薄的层流层存在,称它为粘性底层或层流底层,如图6— 8所示。在层流底层之外,还有一层很簿的过渡层。在此之外才是紊层,称为紊流核心区。

在粘性底层中,速度按线性分布,在壁面上速度为零。粘性底层虽然很薄,但它对紊流的流速分布和流速阻力却有重大的影响。

紊流过流断面上流速成对数曲线分布,同层流过流断面上流速成抛物线分布相比,紊流的流速分布均匀很多。

第六节 沿程水头损失系数的变化规律

λ是计算沿程损失的关键。但由于紊流的复杂性,直到目前还不能像层流那样严格地从理论上推导出适合紊流的λ值来,所以λ值的确定,现有的方法仍然只有经验和半经验方

法。

一、阻力系数λ的影响因素

在紊流中,λ除与反映流动状态的雷诺数有关之外,还因为突入紊流核心的粗突起会直接影响流动的紊动程度,因而壁面粗糙度是影响阻力系数λ的另一个重要因素。

可以采用一个指标即检验突起高度s k 来表示壁面的粗糙程度,s k 称为绝对粗糙度。绝对粗糙度具有长度量纲,所以仍感到有所不便,因而引入了量纲的相对粗糙度,即s k 与直径(或半径)之比d k s (或0r k s ),它是一个能够在不同直径的管流中用来反映管壁粗糙度的量,由以上分析可知,影响紊流沿程阻力系数λ的因素是雷诺数和相对粗糙度d k s ,写成函数关系式为)(Re,d k f s =λ

二、尼古拉兹实验

尼古拉兹在1933在人工粗糙管中系统地进行了沿程阻力系数λ和断面流速v 的测定。他的实验涉及的参数范围比较大,相对粗糙度范围为10141~301=d k s ;雷诺数范围为

610~500Re =纵坐标为)100lg(λ,横坐标为Re lg ,再算出λ和Re ,取对数点绘在坐标

纸上,就得到)(Re,d k f s =λ曲线,即尼古拉兹曲线图。 管道的流动可分为五个区域。

第—个区域是层流区,对应的雷诺数)36.3Re (lg 2300Re <<,试验点均落在直线ab 上。

表明λ与相对粗糙d k s 无关,只是Re 的函数,并符合Re 64=λ。还可知,沿程阻力损失f h 与断面平均流速v 成正比,这也与雷诺试验的结果一致。

第二个区域为层流与紊流之间的过渡区,)6.3~36.3Re (lg 4000~2300Re ==试验点落在bc 附近,表明λ与相对粗糙d k s 无关,只是Re 的函数。此区是层流向紊流过渡,这个区的范围很窄,实用意义不大,不予讨论。

第三个区域为紊流光滑区,)6.3Re (lg 4000Re >>不同的相对粗糙管的试验点都先后落 在同一条cd 线上。表明λ与相对粗糙d k s 无关,是Re 的函数。随着Re 的增大,d k s 大 的管道,实验点在Re 较低时便离开此线,而d k s 较小的管道,在Re 较大时才离开。 第四个区域是紊流过渡区,不同的相对粗糙管实验点分别落在不同的曲线上。表明λ既与

Re 有关,又与d k s 有关。

第五个区域是紊流粗糙区,不同的相对粗糙管实验点分别落在不同水平直线上,表明λ与

d k s 有关,与R

e 无关。在这个阻力区里,对于一定的管道(d k s 一定),λ是常数。沿

程水头损失与流速的平方成正比,故有称为阻力平方区。

三 、速度分布 1.紊流光滑区

5.5lg 75.5+=**ν

yv v u

2.紊流粗糙区

半经验公式:

48.8lg 75.5+=*s

k y

v u 指数公式:

n

r y u u

)(0

max

=

四、λ的半经验公式 1.光滑区沿程摩阻系数

尼古拉兹光滑管公式:

51.2Re lg

21

λλ

=

2.粗糙区沿程摩阻系数

尼古拉兹粗糙管公式:

s k d 7.3lg

21

五、工业管道实验曲线

在尼古拉兹试验中,紊流有明显的光滑区。因为人工粗糙砂粒的直径是一致的。只要粘性底层的厚度大于砂粒直径,流动就处于光滑区。而工业管道、出于工业加工的缘故,不可能制造出粗糙度完全一致的管道。壁面的粗糙部分,从微观上讲,高低不一。因此没有明显的光滑区,或者光滑区的跨越范围很窄,无法进行对比。人工粗糙区,无沦是人工管道,还是工业管道,由于粗糙面完全暴露在紊流中,其水头损失的变化规律也是一致的。因此,在

λ相同的情况下。可用人工管道的相对粗糙度来表示工业管道的相对粗糙度,即当量粗糙

度。

当量粗糙度是用直径相同,在紊流粗糙区λ相同的人工管道的粗糙度s k ,来定义该工业管道的粗糙度,表列出了常用工业管道的当量粗糙度。由表中数据可知,工业管道的计算方法与人工管道的计算方法一样。但尼古拉兹阻力系数公式在紊流过渡区是不适用的。

1939

年,柯列勃洛克和怀特给出了工业管道紊流区中λ的计算公式:

???

?

??+-=λλRe 51

.27.3lg 211

d k s s k ——工业管道的当量粗糙度。

常用工业管道的当量粗糙

为了将式(6—61)图形化,1944年,美国工程师穆迪以该公式为基础,以当量粗糙度为参数,用对数坐标绘制出工业管道摩阻损失系数曲线图,即穆迪图,见图6—11。

六、沿程摩阻系数的经验公式

布拉修斯(Blasius )公式

1931年德国水力学家布拉修斯在总结前人实验的基础上总结并提出了紊流光滑区经验公式

25

.0Re 3164

.0=

λ (6—62)

该式形式简单,计算方便。在5

10Re <范围内,有极高的精度,得到广泛的应用。 希弗林松公式

25

.0)(

11.0d

k s =λ (6—63) 希弗林松粗糙区公式,该式形式简单,计算方便,工程界经常采用。 谢才公式和谢才系数

将达西公式(6—2)变换形式l

h d

g

v f λ

22

=

,以R d 4=,

J l

h f =,代入上式,整理得:

RJ C RJ g

v ==

λ

8 (6—64)

式中:v ——断面平均流速;

R ——水力半径;

J ——水力坡度; C ——谢才系数。

上式最初是1769年法国工程师谢才直接根据渠道和塞纳河的实测资料提出的,是水力学最古老的公式之一,称为谢才公式。

λ

g

C 8=

(6—65)

式(6—65)给出了谢才系数C 和沿程摩阻系数λ的关系,谢才系数含有阻力的因素。流动阻力越大,谢才系数越小,反之亦然。

1895年,爱尔兰工程师曼宁提出了计算谢才系数的经验公式: 6

11R n

C =

(6—66) 式中:n ——反映壁面粗糙性质并与流动性质无关的系数,称为粗糙系数。

Weymouth 方程:

3

009407

.0D

=

λ

λ为Darcy-Weisban 摩阻系数,无量纲;D 为管道内径,m

Weymouth 方程取管壁粗糙度k=0.0508mm (美国取k=0.02mm ,苏联取k=0.03mm ),该方程适用于管径小、输量不大、净化程度较差的矿区集气管网。适用于管径范围254-508mm ,阻力平方区

Zegarola 方程:

λ

λ

*

499

.1log *884.11

10

e R -=

该方程适用于 3.2*10^4

Colebrook-White 方程:

在计算摩阻系数的方程中,CW 方程最常用,是一个经验方程

)*

51

.271

.3/(

log *21

10λ

λ

e R D

k +

-=

适用于各个雷诺数,相对粗糙度0.00001-0.03之间,水力光滑区,混合摩擦区,阻力平方区。

Gerg 方程:

])*

*499

.1(

)71

.3/[(

log *2

1

**942.010f n e n R f D

k n

λ

λ

+-

=

λ为Darcy-Weisban 摩阻系数,

无量纲;D 为管道内径,m ;f 为阻力因子(等同于输送效率),无量纲;n 为幂指数,描述从光滑管到粗糙管转变的变化剧烈程度;Re 为雷诺数,无量纲。 方程的特点:(1)对于完全粗糙流态(例如非常大的雷诺数),与Colebrook-White 公式是一致的;(2)f 也成为气流因子,描述完全管流中产生的额外损失;(3)对于水力光滑区(粗糙度k=0)f=1,公式退化为Zagarola 方程,低雷诺数粗糙管流同样可以。

显式:

实例:

其他公式:

七、当量粗糙度

当量粗糙度是将工业管道绝对粗糙度(e或者ks表示)折算成人工粗糙管的绝对粗糙度。具体做法:是在流态处于完全粗糙管范围内,选用与实际管道摩阻系数(用符号f表示)值相等和管径相同的人工粗糙管的绝对粗糙度当做实际管道的当量粗糙度。

八、VFPi井筒压力计算

利用Eclipse-VFPi可以进行井筒压力分布计算。

例1.井筒参数:1000m直井,注入井,绝对粗糙度为0.1mm,注气速度为20000m3/Day,井底压力为150Bar.计算不同油管规格下井筒压力分布

例2.井筒参数:1000m直井,注入井,井筒内径为50.3mm,注气速度为50000m3/Day,井底压力为150Bar.计算不同绝对粗糙度下井筒压力分布

例3.井筒参数:1000m直井,注入井,井筒内径为50.3mm,绝对粗糙度为0.1mm,井底压力为150Bar.计算不同注气速度下井筒压力分布

压裂施工管柱摩阻计算-(3)

压裂施工管柱摩阻计算 苏权生 摘要:压裂施工管柱摩阻计算对压裂施工过程中压力波动判断和压后净压力拟合具有重要意义。目前对压裂液在层流状态下的摩阻计算比较成熟,计算结果可信度高,但对压裂液在紊流状态下性质还未找出一定的规律,摩阻计算结果误差较大。本文以降阻比法为基础进行压裂管柱摩阻计算,通过理论计算与现场实测数据进行对比分析,提高计算精度。 关键词: 管柱摩阻 紊流 降阻比 计算精度 压裂管柱摩阻计算是压裂施工过程中压力变化判断的基础,是进行井底压力和裂缝净压力计算的关键。在实际压裂设计中经常采用经验估计法对管柱摩阻进行粗略计算,往往不能准确地预测实际管柱摩阻。本文以降阻比法为基础,分别对HPG 压裂液的前置液、携砂液沿程管柱摩阻进行理论计算,并结合胜利油田现场施工井的实际数据进行对比分析,对影响管柱摩阻计算的影响因素进行修正,提高理论计算和现场施工数据的一致性,形成适合胜利油田压裂施工管柱摩阻计算的相关计算程序。 1、降阻比管柱摩阻计算 Lord 和MC Gowen 等人在前人研究的基础上提出了HPG 压裂液前置液,携砂液摩阻计算的新方法,称为降阻比法,其基本原理是在相同条件(如排量、管径、管长相同)下,压裂液摩阻与清水摩阻之比称为降阻比,用公式表示为: w f p f P P )()(??= δ (1) 式中:p f P )(?:压裂液摩阻,Mpa ;w f P )(?:清水摩阻,Mpa ;δ:降阻比系数,无单位。 1.1 清水摩阻计算 从公式(1)可以看出,降阻比法要首先计算清水摩阻,且其值的准确性对压裂液摩阻计算有较大的影响,水力学中伯拉休斯清水摩阻计算式: L Q D P ***10*779.775.175.461--=? (2) 式中: 1P ?:清水摩阻,Mpa ; D :管柱内径,m ; Q :施工排量m 3 /s ; L: 管柱长度,m ;

压裂施工中摩阻计算

压裂施工中摩阻计算-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

*川西地区压裂施工过程中管柱摩阻计算摘要:以降阻比法为基础,分别对有机硼交联(HPG) 压裂液的前置液、携砂液的沿程管柱摩阻计算方法进行分析,结合川西地区部分井压裂施工现场的施工数据,对管柱摩阻计算公式进行修正改进后,提高了压裂施工设计和数值模拟中摩阻参数计算的准确性;同时用计算机程序实现了施工过程管柱沿程摩阻的计算,可用于模拟压裂施工全过程的摩阻计算。对四川川西地区以油管方式注入井的水力压裂施工设计及现场施工过程中井底压力的分析具有重要意义。 关键词:压裂施工;降阻比;管柱摩阻;公式;计算前言 压裂施工管柱沿程摩阻值的准确性直接影响到压裂工艺的设计过程,是确定井底压力的必要数据,也是压裂施工成功与否的主要因素。在实际压裂设计中,大多数采用经验估计法对管柱的摩阻损失进行计算,往往不能准确地预测实际摩阻,尤其不能模拟压裂施工整个过程的实际摩阻值。管柱的摩阻计算单纯的从流变学和水力学的角度去计算,目前还不能被实际应用。文章以降阻比法为基础,分别就HPG压裂液、相应的携砂液沿程管柱摩阻计算方法进行分析对比,并结合川西地区大部分压裂井的现场施工数据,对压裂液的沿程摩阻有关计算公式进行改进,实现压裂施工全过程摩阻计算的计算机程序化。实例计算表明,改进后的摩阻计算公式以及压裂施工过程摩阻计算结果与现场实际数据有较高的符合率,可以用于川西地区压裂施工过程摩阻的模拟计算。 1 压裂液摩阻的计算 Lord和MC Gowen等人[1,2]利用其他人的实验资料提出了计算溶胶及混砂液摩阻的方法。采用延迟交联技术,使交联HPG与HPG溶胶在井筒中的摩阻相差不大,因此,Lord等人仍用溶胶的数据提出了一个降阻比(δ)的概念:(1) 式中:(△Pf)0为清水的摩阻损失,MPa;(△Pf)P为压裂液的摩阻损失,MPa。清水的摩阻损失可以用经典水力学雷诺数与摩阻系数关系进行计算,或者同样采用Lord等人提出的回归公式: (2) 式中:D为压裂油管柱的内径,mm;Q为施工过程泵注排量,m3/min;H为油管长度,m。 在实验数据处理中认为,降阻比δ是压裂液平均流速υ、稠化剂浓度CHPG、支撑剂浓度CP的函数,通常表示为δ=f(υ、CHPG、CP)。通过对1 049个实验数据的线性回归,结合实际矿场条件,提出了实用于HPG压裂液降阻比的计算经验关系式: (3) 式中:CP为支撑剂的浓度,kg/m3;CHPG为稠化剂HPG的浓度,kg/m3。 从本质上讲,降阻比就是牛顿流体与非牛顿流体的不同流变特性在摩阻方面的表现,其值大小主要受物料来源及交联特性的影响[3]。因此,由上述公式计算所得到的压裂液摩阻与现场实测数据还有很大的误差,必须利用获得的实际压裂液的摩阻损失值进行现场校正,以便更为真实地反映压裂液的摩阻值。 前置液摩阻计算

一种压裂液管柱摩阻求取方法

一种压裂液管柱摩阻求取方法 张 军 【摘 要】摘 要 在油管压裂工程设计与分析过程中,由于考虑压裂液管柱摩阻,施工压力和施工排量的设计除考虑地层因素外,不得不考虑井筒管材和施工管柱所承受的最大压力,对依据储层条件科学合理地进行储层改造造成了很大的障碍。同时在压裂施工过程中,为确保压裂施工的成功率和减少井筒复杂,在计算施工压力和提升作业排量时,压裂液管柱摩阻必须纳入计算或估算范围内。但在实际情况中,由于成本、施工时间的影响,并不能将每种压裂液摩阻进行现场实测,同时运用摩阻经验计算公式对特定的压裂液计算的管柱摩阻误差较大,因此需要在实验室对每种压裂液进行实验,测试其在实验室条件下的管柱摩阻,然后将其得到的结果转化成现场条件下的摩阻。利用小管径实验将得到的管柱摩阻结果按现场比例放大能很好的指导现场压裂施工,对施工人员实时判断施工真实压力大小提供了参考。同时利用该方法能减小摩阻经验公式计算的误差,对提高压裂工程设计质量和压后分析起到很好的帮助作用。 【期刊名称】矿山工程 【年(卷),期】2018(006)003 【总页数】8 【关键词】关键词 压裂液摩阻,降阻比,小管径实验,放大方法 文章引用: 张军. 一种压裂液管柱摩阻求取方法[J]. 矿山工程, 2018, 6(3): 175-182. Received: Jul. 4th, 2018; accepted: Jul. 19th, 2018; published: Jul. 26th, 2018 Copyright ? 2018 by authors and Hans Publishers Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). https://www.doczj.com/doc/b69497520.html,/licenses/by/4.0/ 1.引言 近年来,随着油气勘探开发技术的进步,油气勘探开发不断向深井和超深井领域发展,而深井和超深井改造过程中最令工程设计者困惑的是压裂液管柱摩阻。压裂液管柱摩阻是压裂施工过程中的一项重要参数[1] [2] [3] [4]。压裂液摩阻对施工水马力、压裂过程井底和井口压力、施工管材承压能力等的影响是设计者不得不考虑的因素[5]。通常压裂液管柱摩阻计算采用理论公式计算,但该方法对压裂液性质尤其是胶体黏度把握不够准确,导致摩阻计算数据与实测数值差距较大,影响后续数据分析[6]。而实测每种压裂液管柱摩阻耗时长,成本高。

水平井裸眼完井砾石充填步骤

The Baker Hughes CSAP gravel pack system has all of the same field proven features of CS-300 system. The definition of CSAP is Cake-Saver-Acid-Placement, before running in hole with the gravel pack assembly, displace the open hole section in casing to brine. It’s critical to the successive hole cleaning to maximize the fluid velocity at 300 ft/min near the well bore wall. 贝克休斯CSAP砾石充填系统具有CS-300已经验证的所有相同的属性。在向井下下砾石充填的组合工具时,向套管下的裸眼部分打入盐水,这对裸眼井壁附近液流速度达到300英尺每分,连续地洗井起着非常关键的作用。 For this reason, it’s important to fully maintain turbulent fluid possible. Low-viscosity fluids are desired to help to retain turbulence. However, while low-viscosity fluids help maximize velocity near the wall. It’s commonly assumed that their use also makes it somewhat more difficult to remove solids from the wellbore. To carry solids completely out of the wellbore,elevated flow velocities are required. 由于这个原因,完全保持湍流的液体很重要。低剪切速度的液体有助于保持湍流。然而,尽管低剪切速度的流体能保证井壁附近的流体高流速。但是通常它们也存在一个缺点那就是更难将井眼的固体携带出来。为了将固体百分之百地携带出井眼,就要求液体具有很高的流速。 The steps to compete the procedure are: 步骤如下: 1、Pick up gravel pack assembly and run in hole to setting depth. 将砾石充填组合工具下放到井下预定的深度。 2、Circulate brine down the work string and out the GPV shoe around the screen annulus at a rate below 25ft/sec pass the SC packing element. 将盐水循环到工作管住从GPV引鞋流出,到筛管环空周围,速度为25英尺没秒以内,通过防砂充填工具。 3、Drop a stainless steel ball to set the SC packer, this section will shift the ball seat isolation sleeve downward, opening the return bypass ports in the crossover tool, and locking the primary ball on the ball seat. 将一个不锈钢球丢手,坐在防砂封隔器上,会使球座封隔套筒向下移动,打开crossover tool 的回路旁通通道,将初始的那个不锈钢球锁在球座上。 4、Set the packer, pull the packer tech-unit, perform an anchor test on the SC packer. 坐封隔器,拉动封隔器部分,在防砂封隔器上做一个锚定测试。 5、Pull 30000 pounds over the last recorded up-weight, followed by slacking off 30,000 pounds below the last recorded down-weight. This is your running in hole position. Followed by picking up the work string to confirm the crossover tool is free from the gravel pack packer assembly. 最后一个记录的上提载荷重加到30000磅,然后将最后一个记录的释放重量加到30000磅。这是下工具的位置。接下来上提工作管住以确保crossover tool脱离了防砂封隔器组合,可以自由上提下放。 6、Pick up the work string to position the SMART Collet above the first indicating coupling, slack off 30,000 pounds, this is your test packer position. Apply the required test pressure to the annulus, to confirm the SC packing element is packed off on the casing inside diameter. 上提工作管住到SMART Collet 的第一个位置指示接箍,释放30000磅的重量,这个是测试封隔器的位置。对环空进行要求的压力测试,来保证防砂封隔工具坐封在了套管避上。7、Pick up the work string to position the SMART Collet above the second indicating coupling.

砾石充填防砂井砾石尺寸设计实例

1 砾石充填防砂井砾石尺寸设计实例 砾石充填类防砂是目前主流的防砂工艺,砾石尺寸设计是砾石充填类防砂设计的关键步骤之一,砾石尺寸的大小会影响防砂效果和油气井生产动态。较大的砾石尺寸有利于获得较高的产能,但会导致地层砂侵入砾石层;相反,较小的砾石尺寸挡砂效果好,但对油井产能的影响较大。油气井防砂领域使用的标准砾石尺寸如表1所示。 目前国内外的主要砾石尺寸设计方法为三类: (1) 第一类:设计依据简单,仅依据地层砂某一特征尺寸的设计方法,包括Karpoff、Smith、Tausch&Corley、Saucier等四种设计模型; (2) 第二类:信息依据丰富,基于地层砂筛析曲线的设计方法,主要包括DePriester和Schwartz两种设计模型; (3) 第三类:基于砾石层孔喉结构模拟的砾石尺寸设计方法。 上述砾石尺寸设计方法均已在中国石油大学(华东)研制开发的Sand control Office软件中实现。 我国西部某出砂气田S-14井地层砂为粉细砂,图3中的曲线D为其筛析曲线,经粒度分析,d10= 0.151 mm,d40= 0.082mm,d50=0.065mm,d70=0.032 mm,d90=0.008mm,分选系数2.043,均匀系数10.036,标准偏差系数0.231。 表1 油气井防砂领域使用的标准砾石尺寸 第一类设计方法的设计结果如表2所示。 使用DePriester方法进行砾石尺寸设计结果如图2所示。设计中的取值为:A=5.5,Cmin=1.5,Cmax=3.0,计算得到系数B的取值范围为[25.4,35.9]。图中曲线A、B分别为B取最小值和最大值时的砾石尺寸分布曲线;曲线C为B取平均值时得到砾石尺寸范围曲线,对应的设计结果为砾石尺寸范围0.227~0.560mm,匹配的砾石标准为0.25~0.42mm。 使用Schwartz方法设计该井的砾石尺寸,设计中的取值为:Cmin=1.2,Cmax=1.5;选择设计点为d70,设计结果如图3所示。曲线A、B分别为Cg= Cmin和为Cg= Cmin和时得到砾石尺寸分布曲线;曲线C为Cg取平均值1.35时得到砾石尺寸范围曲线,对应的设计结果为砾石尺寸范围0.160~0.300mm,匹配表1中的标准砾石尺寸为0.21~0.25mm。

桩基负摩阻力产生的原因及其计算

浅析桩基负摩阻力产生的原因及其计算 【摘要】桩周土体由于某种原因发生下沉时对桩身产生相对向下的位移,这就使桩身承受向下作用的摩擦力,这种摩擦力就是桩基的负摩擦阻力。本文针对桩基负摩擦阻力产生的机理及原因,并通过实例计算分析桩基负摩擦阻力。 【关键词】桩基;负摩擦阻力;机理及原因;实例计算 rough discuss the reason and count of pile foundation force of negative friction wang zhigang1 liang guankao2 (1.fifth geological mineral exploration and development institute of inner mongolia, baotou 014010, p.r.china;2.inner mongolia geology engineering co.,ltd, hohhot.010010,p.r.china) 【abstract】owing to some reasons ,the soil around pile foundation occur subside will produce displacement downward to pile foundation,so pile foundation will bear downward friction force,this friction force is negative friction force。this paper point at the reason of pile foundation negative friction force and analysis pile foundation negative friction force by living example。 【key words】pile foundation; negative friction force;the mechanisation and reason;living example account

压裂施工中摩阻计算

*川西地区压裂施工过程中管柱摩阻计算摘要:以降阻比法为基础,分别对有机硼交联(HPG) 压裂液的前置液、携砂液的沿程管柱摩阻计算方法进行分析,结合川西地区部分井压裂施工现场的施工数据,对管柱摩阻计算公式进行修正改进后,提高了压裂施工设计和数值模拟中摩阻参数计算的准确性;同时用计算机程序实现了施工过程管柱沿程摩阻的计算,可用于模拟压裂施工全过程的摩阻计算。对四川川西地区以油管方式注入井的水力压裂施工设计及现场施工过程中井底压力的分析具有重要意义。 关键词:压裂施工;降阻比;管柱摩阻;公式;计算前言 压裂施工管柱沿程摩阻值的准确性直接影响到压裂工艺的设计过程,是确定井底压力的必要数据,也是压裂施工成功与否的主要因素。在实际压裂设计中,大多数采用经验估计法对管柱的摩阻损失进行计算,往往不能准确地预测实际摩阻,尤其不能模拟压裂施工整个过程的实际摩阻值。管柱的摩阻计算单纯的从流变学和水力学的角度去计算,目前还不能被实际应用。文章以降阻比法为基础,分别就HPG压裂液、相应的携砂液沿程管柱摩阻计算方法进行分析对比,并结合川西地区大部分压裂井的现场施工数据,对压裂液的沿程摩阻有关计算公式进行改进,实现压裂施工全过程摩阻计算的计算机程序化。实例计算表明,改进后的摩阻计算公式以及压裂施工过程摩阻计算结果与现场实际数据有较高的符合率,可以用于川西地区压裂施工过程摩阻的模拟计算。 1 压裂液摩阻的计算 Lord和MC Gowen等人[1,2]利用其他人的实验资料提出了计算溶胶及混砂液摩阻的方法。采用延迟交联技术,使交联HPG与HPG溶胶在井筒中的摩阻相差不大,因此,Lord等人仍用溶胶的数据提出了一个降阻比(δ)的概念: (1) 式中:(△Pf)0为清水的摩阻损失,MPa;(△Pf)P为压裂液的摩阻损失,MPa。 清水的摩阻损失可以用经典水力学雷诺数与摩阻系数关系进行计算,或者同样采用Lord等人提出的回归公式: (2) 式中:D为压裂油管柱的内径,mm;Q为施工过程泵注排量,m3/min;H为油管长度,m。在实验数据处理中认为,降阻比δ是压裂液平均流速υ、稠化剂浓度CHPG、支撑剂浓度CP的函数,通常表示为δ=f(υ、CHPG、CP)。通过对1 049个实验数据的线性回归,结合实际矿场条件,提出了实用于HPG压裂液降阻比的计算经验关系式: (3) 式中:CP为支撑剂的浓度,kg/m3;CHPG为稠化剂HPG的浓度,kg/m3。 从本质上讲,降阻比就是牛顿流体与非牛顿流体的不同流变特性在摩阻方面的表现,其值大小主要受物料来源及交联特性的影响[3]。因此,由上述公式计算所得到的压裂液摩阻与现场实测数据还有很大的误差,必须利用获得的实际压裂液的摩阻损失值进行现场校正,以便更为真实地反映压裂液的摩阻值。 1.1 前置液摩阻计算 令式(3)中的CP = 0(即未加支撑剂的情况),可以求出前置液阶段的降阻比δ,结合(1)、(2)式可以计算出前置液的摩阻值。为了获得与实际更接近的结果,在不改变降阻比影响因素的前提下,以川西地区部分压裂井前置液阶段施工过程的实际摩阻值为基础,结合降阻比公式,对式(3)的系数进行反复修正计算,最终得到适合于川西地区压裂液体系的降阻比计算式:

桩测摩阻计算

利用ABAQUS进行桩侧摩阻力仿真计算 [摘要] 桩侧摩阻力的大小直接确定了桩的实际承载力。因而如何确定桩的侧摩阻力对于桩基设计计算的意义重要。此处借用ABAQUS有限元软件对桩的侧摩阻力进行仿真计算。[关键词] 有限元软件桩侧摩阻力仿真计算 一、引言 桩基设计的核心问题,不外是沉降和承载力两个方面。在现行的规范中,桩侧摩阻力主要通过原位测试、当地经验值、规范给定值三种方式经过修订而得的。事实上,桩侧摩阻力的值是随着桩顶载荷、地层情况,以及深度等各种因素而变的,而且深度效应较为明显。 对于摩擦型单桩,其承载力主要由桩侧摩阻力承担。因此如何正确分析和计算桩侧摩阻力的分布及影响因素至关重要。传统的方法是通过原位贯入试验测得桩的侧摩阻力。通过现场原位试验虽然可以有效的得到设计需要的数据。但是现场原位试验既费工又费钱,而且试验技术有一定的困难。现代计算机技术的飞速发展,因此如何根据室内试验得到的有关资料,利用仿真分析的方法来确定桩侧摩阻力作用情况,进而确定桩侧摩阻力,是值得广泛关注和讨论的问题。 二、桩土计算模型 在考虑土的非线性、桩周土分层、桩土间非线性相互影响、桩端有存渣、桩端及桩侧注浆加固、桩长及桩直径变化等因素时,有限元法是现阶段最适用的方法,它能解决由于试桩困难及实测费用大的问题。为了方便阐述和演示,本次仿真计算采用了很大的简化。本次计算只考虑桩打入土层之后的摩阻力的变化,土层只取一层。桩取直径0.5米,长度为10米,并简化为弹性本构模型,土水平边界设置为10米,深度方向设置为30米,并简化为弹塑形本构模型。

图1:计算模型 三、计算过程 在几何模型上,采用大尺寸来模拟半无限空间体系,土体的边界半径去10米(桩半径的40倍),土体深度方向上去30米(桩长度的3倍)。 在ABAQUS的Part模块中根据工程条件通过轴对称的方式建立图1的计算几何模型,并将模型分别建成2个part,一个桩的part,一个土的part。在桩的part中只保留桩的部分,在土的part中只保留土的部分。在桩和土接触问题上,要求在土和桩相接触的地方分别建立接触面。 在 ABAQUS的Property模块中,分别建立相应的混凝土材料和土体材料,并赋值给相应 的部件。

压裂近井摩阻分析

压裂近井摩阻分析 摘要:压裂施工近井摩阻值的准确性直接影响到压裂工艺的设计,是确定井底压力的必要数据,也是决定压裂施工难易程度的主要因素。该文从压裂近井摩阻的成因、分类、计算方法等方面对国内外压裂近井摩阻进行了整理和归纳,并在此基础上得到了降低近井摩阻的两个工艺:○1支撑剂段塞冲刷工艺作为一种可靠而实用的降摩阻工艺它的作用主要在优化近井筒附近裂缝壁面。在前置液中支撑剂的加入使裂缝的壁面更趋于光滑,可减小裂缝的凹凸面,增大近井裂缝的宽度,减小支撑剂在近井筒砂堵的可能性,也减少了裂缝摩阻。○2定向压裂的实施,沟通了主体裂缝与井筒的连通,这样就大大减少了由于裂缝转向而造成的压裂液流失和压裂液流程,这样就起到了一般压裂不能达到的降低裂缝摩阻的效果。 关键词:近井摩阻;水力压裂;支撑剂段塞;裂缝扭曲;多裂缝 从80年代以来,人们对近井筒摩阻问题的认识随着实践的发展不断得到深化,对近井筒摩阻的产生机理、影响因素、降低措施等都进行了广泛的研究。众多的学者从室内实验、定性认识、定量计算、检测手段及压裂施工工具等方面,着眼于裂缝起裂位置、裂缝转向扭曲、多裂缝、非平面裂缝、孔眼位置、施工排量等方面,对近井筒摩阻的产生原因、计算方法、影响因素等进行了广泛的研究。 1近井摩阻的成因分析 所谓水力压裂的近井筒效应是指由射孔孔眼特性及井筒周围(射孔壁)应力集中作用在近井筒区域所产生的孔眼摩阻、复杂裂缝形态(多裂缝、裂缝面的扭曲、窄高缝、非平面裂缝)以及由此引起的压力损失和早期脱砂现象。水力压裂的近井压力降(损失)主要归因于井筒连通(孔眼)、裂缝面弯曲(裂缝转向和扭曲)、多裂缝等近井筒裂缝的几何形态,这些形态导致有效压力损失和意外脱砂[1],是影响压裂成功的不利因素。因此,它是分析近井带摩阻产生原因的结构基础和现实依据。根据近井筒问题得出压裂近井摩阻产生的主要原因如下: (1)射孔孔眼相位不一致。因为水力裂缝往往不是沿着射孔方向生成的,压裂液从孔眼到裂缝通常要经过一条或几条曲折的通道。主要是因为孔眼的相位、间距差异比较大,导致射孔与预期裂缝方向并不一致; (2)孔眼连通性差。射孔的质量会直接影响到破裂压力及施工功耗,如果射孔不当,射孔孔眼与裂缝主体连通不好会导致携砂压裂液过早脱砂; (3)近井筒裂缝扭曲。因为随着地层岩石应力分布状况而发生扭曲和转向等问题,裂缝延伸过程中会发生不规则延伸现象。在90 年代初,裂缝扭曲问题就已经被许多专家所关注; (4)多重裂缝。大量的细微裂缝会消耗泵注压力,而且多裂缝问题的产生与储层地应力分布和压裂施工情况密切相关。 2裂缝弯曲对近井筒摩阻的影响 国外一些实验室采用大尺寸的真三轴实验设备,模拟现场地应力条件下射孔对压裂的影响。通过实验发现,裂缝从射孔孔眼或是从与最小水平主应力垂直的方向起裂,裂缝起裂取决于射孔方向与最大水平主应力面的夹角。另外,所有裂缝开始转向最大水平主应力方向的位置在距井相当于井筒直径的范围内。而且,尽管裂缝延伸的初始阶段有多条裂缝,却只有一级单缝延伸超过井筒直径的范围。Abass[2]研究得出了射孔方向与最大水平主应力方向成不同角度对缝宽的影响。当射孔方向大于45°时缝宽急剧减小,裂缝弯曲现象明显,而角度在0°~30°时裂缝与孔眼连通良好。所以,射孔方向应在最大水平应力方向或与其夹角小于30°。由于射孔对水力裂缝有影响,定向射孔技术已

单桩承载力验算(计负摩阻力)

单桩承载力验算 一、土层分布情况 二、单桩竖向承载力特征值 桩端持力层为全风化花岗岩,按《建筑桩基技术规范》(JGJ94-2008),中性点深度比l n /l 0=0.75,桩周软弱土层下限深度l 0=28.84m ,则自桩顶算起的中性点深度l n =21.63m 。根据规范可知,该处承载力特征值只计中性点以下侧阻值及端阻值。 kN l q u A q Q i sik p pk 3976)613021.712(1141600uk =?+???+?? =+=∑ππkN Q K R uk a 198838942 11=?== 三、单桩负摩阻力

第一层路堤填土和杂填土自重引起的桩周平均竖向有效应力: 地下水以上部分:Pa k 93.6594.6192111=??= σ; 地下水以下部分:Pa k 06.1396.1)1019(2 194.61912=?-?+?=σ; 则kPa 20512111=+=σσσ; 第二层淤泥自重引起的桩周平均竖向有效应力: kPa 26.182)54.863.21()105.15(2 16.1)1019(94.6192=-?-?+?-+?=σ; ; ,故取kPa q kPa kPa q n s n n s 24245.612053.01111=>=?==σξ ; ,故取kPa q kPa kPa q n s n n s 121245.3626.1822.01222=>=?==σξ 对于单桩基础,不考虑群桩效应则1n =η; 基桩下拉荷载: kN l q u Q n i i n si n n g 1137))54.863.21(1254.824(10.11=-?+????==∑=πη 四、单桩分担面积上的荷载 kN N 720)2520(44k =+??= 五、验算 N R N Q N a n k 1988k 185********g k =<=+=+ 故单桩承载力满足要求。

浅谈负摩阻力(一)

浅谈负摩阻力(一) 论文关键词]负摩阻力中性点成因影响因素防治措施计算方法 论文摘要]负摩阻力问题严重影响着建筑物的安全,桩的负摩阻力的大小受多种因素的影响,故其准确数值很难计算。介绍和阐述桩侧负摩阻力产生的条件和机理,桩侧负摩阻力的计算方法,中性点的确定,防治和减少桩侧负摩阻力的方法。 随着人文居住环境的改善以及土地价格的不断攀升,建筑物已从多层不断的转向高层建筑,从而对地基承载力和变形要求也越来越高,越来越严格。因此地基处理变得越来越重要。在地基处理工程中,因负摩阻力问题,造成工程事故屡有发生(建筑物出现沉降、倾斜、开裂),负摩阻力问题在我国工程实践中已变成一个热点问题。下面对负摩阻力的问题进行分析、阐述。 一、负摩阻力的成因 桩周土的沉降大于桩体的沉降!桩土的相对位移(或者相对位移趋势)是形成摩擦力的原因,桩基础中,如果土给桩体提供向上的摩擦力就称为正摩阻力;反之,则为负摩阻力。 地基土沉降过大,桩和土相对位移过大地基土将对桩产生向下的摩擦力拉力,使原来稳定的地基变得不稳定,实际荷载可能超过原来建议的地基承载力。 一般可能由以下原因或组合造成:未固结的新近回填土地基;地面超载;打桩后孔隙水压力消散引起的固结沉降;地下水位降低,有效应力增加引起土层下沉;非饱和填土因浸水而湿陷;可压缩性土经受持续荷载,引起地基土沉降;地震液化。 二、地基设计为什么要考虑负摩阻力 桩周负摩阻力非但不能为承担上部荷载作出贡献,反而要产生作用于桩侧的下拉力。而造成桩端地基的屈服或破坏、桩身破坏、结构物不均匀沉降等影响。因此,考虑桩侧负摩阻力对桩基础的作用是桩基础设计必不可少的问题之一。 三、如何在现场测试和估算负摩阻力 在桩体安装应变计这是目前测单桩负摩阻力问题的最常用的方法。80年代,有工程运用瑞士生产的滑动侧微计(SlidingMicrometer---ISETH)来测定。 普遍的方法都是测定桩体轴力,从而推算桩侧摩阻力。 四、影响负摩阻力大小的主要因素 桩周土的特性当然是首当其冲的,其次桩端土特性也不可忽视(因为其之间影响着中性点的位置问题)、桩体的形状、桩土模量比等都有影响。 五、负摩阻力的防治措施 打桩前,先预压地基土,从根本上消除负摩阻力的产生;在产生负摩阻的桩段安装套筒或者把桩身与周围土体隔离,这种方法会使施工难度加大;在桩身涂滑动薄膜如涂沥青],目前这种方法应用比较普遍,效果也不错;通过降低桩上部荷载,储备一定承载力;在地基和上部结构允许有相对较大沉降的情况下,采用摩擦桩;采用一定的装置消除负摩阻力。 下面介绍一种消除负摩阻力的装置:它由设置在桩体外周的卸荷套及卸荷套与桩体之间的润滑隔离层构成。卸荷套使桩体与周围土层完全隔开并由桩体带动在打桩时与之同步下沉,而当桩周土层沉陷时,卸荷套依靠隔离层内润滑材料的作用,可随土层相对桩体自由下沉而不将下拽力传给桩体,从而有效地消除了负摩阻力的作用。可广泛用于各种软基地层拟用桩基础的工程中。 六、负摩阻力的群桩效应研究大多数是单桩,实践中基本是群桩 这个跟我们的研究方法有关系,目前我们的现场实践方面的研究方法都是针对单一桩体的。另外,群桩方面的研究,运用数值分析方法也有不少研究。群桩的现场研究很值得期待呀。 七、端承桩产生负摩阻的可能性大于摩擦桩 (1)对于摩擦型桩基,当出现负摩阻力对基桩施加下拉荷载时,由于持力层压缩性较大,

管道水力摩阻系数的计算

管道水力摩阻系数的计算 Черникин,A.B. Черникин,A.B.:管道水力摩阻系数的计算,油气储运,1999,18(2)26~28。 摘要介绍了计算水力摩阻系数λ的通用公式,在分析现有计算摩阻系数公式的基础上,借助于专门的过渡函数,求出了新的通用式。推荐可实际应用于管道水力计算的公式λ=0.11[(Z+ε+C1.4)/(115 C+1)]1/4,该公式可完全避免确定液体流动区域的程序,适用于任一雷诺数Re和不同管子相对粗糙度ε,排除了由于自身连续性而导致不同区域边界上λ数值不一致的情况。 主题词管道水力摩阻系数计算方程 一、管道水力摩阻系数计算的改进 完善各种管道(原油管道、天然气管道、水管道等)的水力计算,可以通过提高计算精度或使计算公式通用化等途径来实现。进行水力计算所需重要参数之一,便是水力摩阻系数λ,一般情况下它是以下两个参数的函数:雷诺数Re和管子相对粗糙度ε。依据这些参数的数值,管道内流体流动划分为不同区域(状态),对于每个区域都有计算λ的公式,以及确定区域边界的所谓雷诺数过渡值。 在分析现有计算系数λ的公式和寻求通用计算式的基础上,借助专门的过渡函数,求得以下形式新的通式: (1) 这一公式覆盖所有的流动区域,即在管输液体和气体介质时,用于计算任一Re和ε时的λ。公式中的参量具有如下数值:对于液体,α=0.11,C=1.4,γ=68/Re,A=(28 γ)10,B=115,n=4;对于气体介质,α=0.077,C=1.5,γ=79/Re,A=(25 γ)10,B=76,n=5。 比较式(1)和常用的斯托克斯公式、Aльтшуль公式、俄罗斯天然气科学研究院公式(做为特例,针对不同流动区域,由式(1)很容易求得这些公式)计算λ的结果,它们完全吻合。最大的偏差(不超过1.7%)发生在层流与湍流过渡区边界上。在其它情况下,偏差甚小。

水力压裂摩阻类型及降阻措施

1?压裂摩阻产生机理 水力压裂施工过程中,压裂液从泵出口经地面管线、井筒管柱和射孔孔眼进入裂缝,在每个流动通道内都会因为摩阻而产生压力损失。如果压裂施工过程中产生的摩阻过大将会导致井口压力过高,甚至超过压裂泵车的负荷,从而增大了压裂施工风险。准确计算压裂液在流动过程中产生的各种压力损失并分析其影响因素,对于确定井底施工压力以及指导优化压裂工艺参数以降低压裂施工摩阻具有重要意义。 20世纪80年代以来,水力压裂施工产生的摩阻问题逐渐引起工程师和学者的重视。基于对压裂液施工排量、裂缝起裂及扩展、射孔工艺等多方面的探索,对整套压裂施工中的压力损耗问题进行了深入研究[1]。前期研究表明,由于地面管线比较短,一般忽略由地面管线产生的摩阻。因此,水力压裂施工的摩阻损耗主要由两部分组成:第一部分是液体在压裂管柱(油管、套管或油套环空)中的沿程摩阻,即存在于管柱壁面的阻滞作用产生的摩擦阻力所造成的水头损失。一般情况下,压裂排量越大、管柱直径越小、压裂液黏度越大、支撑剂浓度越大,其产生的管柱沿程摩阻越大。第二部分是近井摩阻,其包括流体通过射孔孔眼的局部摩阻以及近井地带的弯曲摩阻,矿场一般采用降排量法对以上2种近井摩阻进行测试。近井摩阻产生的机理较为复杂,主要归纳如下[2]: 1)孔眼局部摩阻:射孔数不足、孔眼的清洁度差以及孔眼堵塞均会产生孔眼局部摩阻。由于通常采用电缆配套射孔枪对套管进行射孔,导致射孔弹在套管—水泥环内部形成及不规则的圆孔。从径向来看,孔眼内存在的凹凸不平的通道,会对流体的流入过程造成一定的影响,将会在孔眼处产生明显的压力降[3]。 2)裂缝弯曲摩阻:射孔相位不当、固井质量差以及多裂缝竞争延伸均会导致裂缝在延伸过程中并不总沿着一个方向前进,而是会发生弯曲和转向的现象[4],从而产生裂缝弯曲摩阻。这种情况将引起净压力增大,限制近井筒裂缝宽度,从而增大支撑剂的运移难度。裂缝弯曲摩阻一般在压裂施工初期最大,随着施工进行逐渐减小[2]。 2?降低压裂摩阻的工艺措施 2.1?支撑剂段塞工艺 该工艺是目前降低近井摩阻最为常用的方法。其原理是在主压裂的前置液阶段,以脉冲加砂的形式,间断地泵入低砂比携砂液进入地层中,高速的含砂压裂液能够产生很强的水力切割作用,对不完善的射孔孔眼和近井带迂曲且粗糙的水力裂缝进行磨蚀,使压裂液流动路径逐渐趋于完善、光滑,从而达到降低近井摩阻的效果。 一般情况下,孔眼越不完善、近井裂缝迂曲程度越高、表面粗糙度越大,支撑剂段塞的实施效果越好。世界范围内众多水力压裂现场压裂实践经验表明,支撑剂段塞技术配合其他技术可以大幅提高水力压裂成功率[5]。因此,有必要根据测试压裂分析的近井裂缝摩阻数据,科学合理地进行段塞冲刷设计,并实时分析评价段塞冲刷的效果,合理调整携砂液阶段的砂浓度和砂量,并最大限度地提高施工砂浓度,以确保压裂施工达到预期效果。 支撑剂段塞还可以用于封堵微小裂隙,主要用于对天然裂缝进行封堵,从而降低滤失,保证主裂缝的充分延伸[6]。此外,支撑剂段塞还可以增大裂缝延伸的净压力,从而增大水力裂缝的应力干扰强度,促进复杂裂缝网络的形成。因此为了支撑剂段塞的使用达到各自所需的目的,需要对其相关参数进行优化设计,确定合理的支撑剂性能、目数、段塞数量以及泵注时机等。 2.2?增大缝内压裂液黏度 增加压裂液的黏度,可以在裂缝条数较多时有效减少裂缝条数,增加主裂缝的宽度,从而进一步起到减小 水力压裂摩阻类型及降阻措施 刘炜1?刘觐瑄2?华继军1?王小军1?肖佳林1 1. 中国石化江汉油田分公司石油工程技术研究院 湖北 武汉 430000 2. 西南石油大学国家重点实验室 四川 成都 610500 摘要:水力压裂摩阻引起施工压力增加,施工风险增大。水力压裂摩阻包括沿程摩阻和近井摩阻。近井摩阻产生机理最为复杂,其中射孔数不足、孔眼清洁度差以及孔眼堵塞产生孔眼摩阻;射孔相位不当、固井质量差以及多裂缝竞争延伸产生裂缝弯曲摩阻。降低压裂摩阻的工艺措施主要包括定向射孔、支撑剂段塞磨蚀、增大压裂液黏度、压裂液延迟交联等。 关键词:水力压裂?摩阻?降阻?施工压力 Friction?Types?of?Hydraulic?Fracturing?and?Measures?for?Reducing?Friction Liu?Wei1,Liu?Jianbao2,Hua?Jijun1,Wang?Xiaojun1,Xiao?Jialin1 1. Research Institute of Petroleum Engineering Technology,Jianghan Oilfield Branch,Sinopec 430000,Wuhan,Hubei Province Abstract:Hydraulic?fracturing?friction?increases?the?fracturing?work?pressure?and?increases?the?risk?of?construction.?Hydraulic?fracturing?friction?includes?friction?along?the?path?and?friction?near?wellbore.?The?mechanism?of?near-well?friction?is?the?most?complex,in?which?perforation?number?is?insufficient,hole?cleanliness?is?poor?and?hole?plugging?produces?hole?friction;perforation?phase?is?improper,cementing?quality?is?poor,and?multi-fracture?competitive?extension?produces?fracture?bending?friction.?The?technological?measures?to?reduce?fracturing?friction?include?directional?perforation,slug?abrasion?of?proppant,increasing?viscosity?of?fracturing?fluid?and?delayed?crosslinking?of?fracturing?fluid. Keywords:Hydraulic?fracturing;Frictional?resistance;Resistance?reduction;fracturing?work?pressure 下转第149页)

浅谈负摩阻力

浅谈负摩阻力 [论文关键词]负摩阻力中性点成因影响因素防治措施计算方法 [论文摘要]负摩阻力问题严重影响着建筑物的安全,桩的负摩阻力的大小受多种因素的影响,故其准确数值很难计算。介绍和阐述桩侧负摩阻力产生的条件和机理,桩侧负摩阻力的计算方法,中性点的确定,防治和减少桩侧负摩阻力的方法。 随着人文居住环境的改善以及土地价格的不断攀升,建筑物已从多层不断的转向高层建筑,从而对地基承载力和变形要求也越来越高,越来越严格。因此地基处理变得越来越重要。在地基处理工程中,因负摩阻力问题,造成工程事故屡有发生(建筑物出现沉降、倾斜、开裂),负摩阻力问题在我国工程实践中已变成一个热点问题。下面对负摩阻力的问题进行分析、阐述。

一、负摩阻力的成因 桩周土的沉降大于桩体的沉降!桩土的相对位移(或者相对位移趋势)是形成摩擦力的原因,桩基础中,如果土给桩体提供向上的摩擦力就称为正摩阻力;反之,则为负摩阻力。 地基土沉降过大,桩和土相对位移过大地基土将对桩产生向下的摩擦力拉力,使原来稳定的地基变得不稳定,实际荷载可能超过原来建议的地基承载力。 一般可能由以下原因或组合造成:未固结的新近回填土地基;地面超载;打桩后孔隙水压力消散引起的固结沉降;地下水位降低,有效应力增加引起土层下沉;非饱和填土因浸水而湿陷;可压缩性土经受持续荷载,引起地基土沉降;地震液化。 二、地基设计为什么要考虑负摩阻力

桩周负摩阻力非但不能为承担上部荷载作出贡献,反而要产生作用于桩侧的下拉力。而造成桩端地基的屈服或破坏、桩身破坏、结构物不均匀沉降等影响。因此,考虑桩侧负摩阻力对桩基础的作用是桩基础设计必不可少的问题之一。 三、如何在现场测试和估算负摩阻力 在桩体安装应变计这是目前测单桩负摩阻力问题的最常用的方法。80年代,有工程运用瑞士生产的滑动侧微计(SlidingMicrometer---ISETH)来测定。 普遍的方法都是测定桩体轴力,从而推算桩侧摩阻力。 四、影响负摩阻力大小的主要因素 桩周土的特性当然是首当其冲的,其次桩端土特性也不可忽视(因为其之间影响着中性点的位臵问题)、桩体的形状、桩土模量比等都有影响。

桩基负摩阻力问题讨论

桩基负摩阻力问题讨论 (1)负摩擦力是怎么形成的?[简单成因,机理很复杂] (2)地基设计为什么要考虑负摩擦力? (3)实践中什么情况下一般考虑负摩擦力? (4)如何测试和估算负摩擦力? (5)影响抚摩擦力大小的主要因素? (6)工程实践中都有那些方法减小抚摩擦力? (7)抚摩擦力的群桩效应?[研究大多数是单桩,实践中基本是群桩] (8)目前的最新进展。 (1)负摩擦力是怎么形成的? 桩周土的沉降大于桩体的沉降!桩—土的相对位移(或者相对位移趋势)是形成摩擦力的原因,桩基础中,如果土给桩体提供向上的摩擦力就称为正摩阻力;反之,则为负摩阻力。(2)地基设计为什么要考虑负摩擦力? 桩周负摩阻力非但不能为承担上部荷载作出贡献,反而要产生作用于桩侧的下拽力。而造成桩端地基的屈服或破坏、桩身破坏、结构物不均匀沉降等影响。因此,考虑桩侧负摩阻力对桩基础的作用是桩基础设计必不可少的问题之一。 (3)实践中什么情况下一般考虑负摩擦力? 这个问题,可以从负摩阻力产生原因来说明:产生负摩擦力的原因主要有, 1)欠固结软粘土或新填土的自重固结; 2)大面积堆载使桩周土层下沉; 3)正常固结软粘土地区地下水位全面下降,有效应力增加引起土层下沉; 4)湿陷性黄土湿陷引起沉降。 (4)如何测试和估算负摩擦力? 在桩体安装应变计这是目前测单桩负摩阻力问题的最常用的方法。80年代,有工程运用瑞士生产的滑动侧微计(Sliding Micrometer---ISETH)来测定。 普遍的方法都是测定桩体轴力,从而推算桩侧摩阻力。这个方法来推算桩侧摩阻力、负摩阻力。这个方法大家可以分析一下利弊,从而讨论一个新的途径、方法可以直接测定桩侧摩阻力问题。这样相比结果更精确可靠,我们的研究也将是一个不小的进步!大家都来思考一下罗,“测定桩侧摩阻力问题!” (5)影响负摩擦力大小的主要因素? 桩周土的特性当然是首当其冲的,其次桩端土特性也不可忽视(因为其之间影响着中性点的位置问题)、桩体的形状、桩土模量比等都有影响。 (6)工程实践中都有那些方法减小抚摩擦力? 沥青涂层这个方法运用很是广泛,效果似乎也不错。这个方法以单桩为考虑对象;另外,隔离桩方法,这个以群桩为研究对象,但是似乎目前运用的不是很广,大家可以找找这方面的咚咚,一起讨论一下,分析原因,相比也是一个不错的思考问题的途径。 (7)负摩擦力的群桩效应?[研究大多数是单桩,实践中基本是群桩] 这个估计跟我们的研究方法有问题吧,目前我们的现场实践方面的研究方法都是针对单一的桩体的。另外,群桩方面的研究,运用数值分析方法也有不少研究。群桩的现场研究很

相关主题
文本预览
相关文档 最新文档