当前位置:文档之家› 二次曲线中点弦、切线、切点弦及双切线方程

二次曲线中点弦、切线、切点弦及双切线方程

二次曲线中点弦、切线、切点弦及双切线方程
二次曲线中点弦、切线、切点弦及双切线方程

曲线的切线方程

导数的几何意义、曲线的切线方程: 一、框架 1.命题分析:本题型在高考解答题主要是在第(1)问中出现,也有可能在选择题或填空题中出现,若为解答题,主要考点为:(1)导数的几何意义;(2)直线与函数图象相切的条件。 2.几何意义:函数()x f 在0x 处的导数就是曲线()x f y =在点()()00,x f x 处的切线的斜率,即斜率为()0'x f . 3.物理意义:函数()s f t =在0t 处的导数就是曲线()s f t =在0t 时刻的速度. 4.曲线)(x f y =上在点())(,00x f x 处的切线方程为))(()(00'0x x x f x f y -=-. 5.切线方程的求解方程问题: 第一步:判切点:求曲线的切线方程时先分清是“在点处”的切线方程还是“过点”的切线方程。切点已知直接求,切点未知设切点; 第二步:求斜率(导数):通常若切点为())(,00x f x ,则在该点处曲线的斜率为()0'x f ; 第三步:用公式:所对应的曲线)(x f y =上在点())(,00x f x 处的切线方程为))(()(00'0x x x f x f y -=-。 6.利用切线方程(或切线的性质)判断参数的值(或取值范围) 第一步:求斜率(导数):求出函数()x f y =在0=x x 处的导数()0'x f ,即函数()x f y =的图象在点 ())(,00x f x 处切线的斜率; 第二步:列关系式:根据已知条件,列出关于参数的关系式; 第三步:求解即可得出结论。 7.注意点:求曲线的切线方程时先分清是“在点处”的切线方程还是“过点”的切线方程。切点已知直接求,切点未知设切点。 二、方法诠释 类型一:在某点的切线方程 例1.求曲线y =x 3-2x +1在点(1,0)处的切线方程。 解: y ′=3x 2-2,∴k =y ′|x =1=3-2=1,∴切线方程为y =x -1. 类型二:过某点(某点不在曲线上)的切线方程 例2.求过点(2,0)且与曲线y =x 3相切的直线方程. 解:点(2,0)不在曲线y =x 3上,可令切点坐标为(x 0,x 30).由题意, 所求直线方程的斜率k =x 3 0-0x 0-2=y ′|x =x 0=3x 2 0,即x 30x 0-2 =3x 20,解得x 0=0或x 0=3. 当x 0=0时,得切点坐标是(0,0),斜率k =0,则所求直线方程是y =0; 当x 0=3时,得切点坐标是(3,27),斜率k =27,则所求直线方程是y -27=27(x -3), 即27x -y -54=0. 综上,所求的直线方程为y =0或27x -y -54=0. 类型三:过某点(某点在曲线上)的切线方程,例如例3的第(2)问 例3.(1)求曲线f (x )=x 3-3x 2+2x 在原点(0,0)处的切线方程。 (2)求过原点(0,0)且与曲线f (x )=x 3-3x 2+2x 相切的切线方程. 解:(1)f ′(x )=3x 2-6x +2,设切线的斜率为k ,k =f ′(0)=2,f (0)=0,所求的切线方程为y =2x . (2)当切点是原点时k =f ′(0)=2,f (0)=0,所求的切线方程为y =2x . 当切点不是原点时,设切点是(x 0,y 0)(x 0≠0),则有y 0=x 30-3x 20+2x 0,k =f ′(x 0)=3x 2 0-6x 0+2,①又k =y 0x 0 =x 2 0-3x 0+2,② 由①②得x 0=32,k =y 0x 0=-14. 所以所求曲线的切线方程为y =2x 或y =-14x . 三、巩固训练

圆的切点弦方程

圆的切点弦方程 222001.,(,)x y r M x y +=已知圆的方程求经过圆上一点的切线方程。 22220000(,)x y r M x y xx yy r +=+=【结论1】过圆上一点的切线方程:。 【方法】1.设出直线,再求解; 2.利用轨迹思想,用向量或平面几何知识求解。 【问题】对于坐标平面内任一点),(00y x M ,直线L :200r y y x x =+与圆O :222r y x =+究竟是什么关系呢下面我们进行探究: 一、当点M 在圆O 上时,直线L 是圆的切线。 二、当点M 在圆O 外时, 1.直线L 不是圆O 的切线,下面证明之: ∵圆心O 到L 的距离为2 22y x r d += ,由),(00y x M 在圆O 外,得r y x >+2 020 ∴ r d <,故直线L 与圆O 相交. 2.此时直线L 与过点M 的圆的切线又是什么关系呢 首先研究L 的特征: 易知:OM ⊥L 。 2 2 0r x = 2,OA ON OM ∴=?(N 为L 与OM 的交点) 从而OA ⊥MA ,MA 为圆的一条切线, 故直线L 为过点M 的圆的两条切线的两个切点所在的直线。 事实上(另证), 如图1,设过点M 的圆O 的两条切线为L 1,L 2,切点分别为A 、B, 则直线MA:2 11r y y x x =+,直线MB:2 22r y y x x =+. ∵点M 的坐标),(00y x 满足直线MA 与MB 的方程,

∴?????=+=+2 01022 0101r y y x x r y y x x , 由此可见A 、B 的坐标均满足方程2 00r y y x x =+, 由于两点确定一条直线 ∴直线AB 的方程为2 00r y y x x =+。 所以此时的直线L 是经过点P 的切点弦AB 所在直线的方程,而不是圆O 的切线。 【注】上述点M 、直线L 实质上是射影几何中的极点和极线。 特别的,当M 在圆上时,极线即为切线。 三、当点M 在圆O 内时, 1.直线L 也不是圆O 的切线。下面给出证明: ∵圆心O 到L 的距离为2 22y x r d += ,由),(00y x M 在圆O 内,得r y x <+2 020 ∴ r d > 故直线L 与圆O 相离. 2.此时直线L 与圆的切线的关系又如何呢 首先研究L 的特征: 由上述探讨过程易知, 直线L ⊥OM , 此外,L 一定过点P (P 为两切线的交点,AB ⊥OM ), 从而L 就在图2中过点P 且与AB 平行的位置处。 事实上(另证), ∵直线L 的斜率00y x k l -=,而直线OM 的斜率0 0x y k om =, ∴OM L ⊥ 一方面,过点M 与OM 垂直的直线0L 方程为,0)()(0000=-+-y y y x x x 即2 02 000y x y y x x +=+

圆锥曲线经典中点弦问题

.. . … 中点弦问题专题练习 一.选择题(共8小题) 1.已知椭圆,以及椭圆一点P(4,2),则以P为中点的弦所在直线的斜率为()A.B.C.2D.﹣2 2.已知A(1,2)为椭圆一点,则以A为中点的椭圆的弦所在的直线方程为() A.x+2y+4=0 B.x+2y﹣4=0 C.2x+y+4=0 D.2x+y﹣4=0 3.AB是椭圆(a>b>0)的任意一条与x轴不垂直的弦,O是椭圆的中心,e为椭圆的离心率,M为AB的中点,则K AB?K OM的值为() A.e﹣1 B.1﹣e C. e2﹣1 D. 1﹣e2 4.椭圆4x2+9y2=144有一点P(3,2)过点P的弦恰好以P为中点,那么这弦所在直线的方程为() A.3x+2y﹣12=0 B.2x+3y﹣12=0 C.4x+9y﹣144=0 D.9x+4y﹣144=0 5.若椭圆的弦中点(4,2),则此弦所在直线的斜率是() A.2B.﹣2 C.D. 6.已知椭圆的一条弦所在直线方程是x﹣y+3=0,弦的中点坐标是(﹣2,1),则椭圆的离心率是()A.B.C.D. 7.直线y=x+1被椭圆x2+2y2=4所截得的弦的中点坐标是() A.()B.(﹣,)C.(,﹣)D.(﹣,) 8.以椭圆一点M(1,1)为中点的弦所在的直线方程为() A.4x﹣3y﹣3=0 B.x﹣4y+3=0 C.4x+y﹣5=0 D.x+4y﹣5=0 二.填空题(共9小题) 9.过椭圆一点M(2,0)引椭圆的动弦AB,则弦AB的中点N的轨迹方程是_________ .

10.已知点(1,1)是椭圆某条弦的中点,则此弦所在的直线方程为:_________ . 11.椭圆4x2+9y2=144有一点P(3,2)过点P的弦恰好以P为中点,那么这弦所在直线的斜率为_________ ,直线方程为_________ . 12.椭圆4x2+9y2=144有一点P(3,2)过点P的弦恰好以P为中点,那么这弦所在直线的方程为_________ . 13.过椭圆=1一定点(1,0)作弦,则弦中点的轨迹方程为_________ . 14.设AB是椭圆的不垂直于对称轴的弦,M为AB的中点,O为坐标原点,则k AB?k OM= _________ . 15.以椭圆的点M(1,1)为中点的弦所在直线方程为_________ . 16.在椭圆+=1以点P(﹣2,1)为中点的弦所在的直线方程为_________ . 17.直线y=x+2被椭圆x2+2y2=4截得的线段的中点坐标是_________ . 三.解答题(共13小题) 18.求以坐标轴为对称轴,一焦点为且截直线y=3x﹣2所得弦的中点的横坐标为的椭圆方程.19.已知M(4,2)是直线l被椭圆x2+4y2=36所截的弦AB的中点,其直线l的方程. 20.已知一直线与椭圆4x2+9y2=36相交于A、B两点,弦AB的中点坐标为M(1,1),求直线AB的方程.21.已知椭圆,求以点P(2,﹣1)为中点的弦AB所在的直线方程. 22.已知椭圆与双曲线2x2﹣2y2=1共焦点,且过() (1)求椭圆的标准方程. (2)求斜率为2的一组平行弦的中点轨迹方程. 23.直线l:x﹣2y﹣4=0与椭圆x2+my2=16相交于A、B两点,弦AB的中点为P(2,﹣1).(1)求m的值;(2)设椭圆的中心为O,求△AOB的面积.

求曲线方程的几种常用方法

求曲线方程的几种常用方法 求曲线的方程,是学习解析几何的基础,求曲线的方程常用的方法主要有: 1.直接法:就是课本中主要介绍的方法。若命题中所求曲线上的动点与已知条件能直接发生关系,这时,设曲线上动点坐标为(,x y )后,就可根据命题中的已知条件,研究动点形成的几何特征,在此基础上运用几何或代数的基本公式、定理等列出含有,x y 的关系式。从而得到轨迹方程,这种求轨迹方程的方法称作直接法。 例1:在直角△ABC 中,斜边是定长2a (0)a >,求直角顶点C 的轨迹方程。 解法一:由于未给定坐标系,为此,首先建立直角坐标系,取AB 所在的直线为x 轴,AB 的有中点O 为坐标原点,过O 与AB 垂直的直线为y 轴(如图).则A (,0)a -,B (,0)a 。 设动点C 为(,)x y , ∵222||||||AC BC AB +=, ∴2 224a +=, 即222x y a +=. 由于C 点到达A 、B 位置时直角三角形ABC 不存在,轨迹中应除去A 、B 两点, 故所求方程为222x y a +=(x a ≠±)。 解法二:如解法一建立直角坐标系,设A (,0)a -,B (,0)a ,C (,)x y ∵1AC BC k k =-, (1) ∴1y y x a x a =-+- , (2) 化简得:222 x y a += , (3) 由于在x a ≠±时方程(2)与(3)不等价,故所求轨迹方程为222x y a +=(x a ≠±)。 解法三:如解法一建立直角坐标系,设A (,0)a -,B (,0)a ,且设动点C (,)x y 。 ∵1||||2 CO AB =, a =,即222x y a +=。 轨迹中应除去A 、B 两点(理由同解法一),故所求轨迹方程为222x y a +=(x a ≠±)。 说明:利用这种方法求曲线方程的一般方法步骤:

用导数求切线方程的四种类型

用导数求切线方程的四种类型 浙江 曾安雄 求曲线的切线方程是导数的重要应用之一,用导数求切线方程的关键在于求出切点00()P x y ,及斜率,其求法为:设00()P x y ,是曲线()y f x =上的一点,则以P 的切点的切线 方程为:000()()y y f x x x '-=-.若曲线()y f x =在点00(())P x f x ,的切线平行于y 轴(即导数不存在)时,由切线定义知,切线方程为0x x =. 下面例析四种常见的类型及解法. 类型一:已知切点,求曲线的切线方程 此类题较为简单,只须求出曲线的导数()f x ',并代入点斜式方程即可. 例1 曲线3231y x x =-+在点(11)-,处的切线方程为( ) A.34y x =- B.32y x =-+ C.43y x =-+ D.45y x =- 解:由2 ()36f x x x '=-则在点(11)-,处斜率(1)3k f '==-,故所求的切线方程为 (1)3(1)y x --=--,即32y x =-+,因而选B. 类型二:已知斜率,求曲线的切线方程 此类题可利用斜率求出切点,再用点斜式方程加以解决. 例2 与直线240x y -+=的平行的抛物线2y x =的切线方程是( ) A.230x y -+= B.230x y --= C.210x y -+= D.210x y --= 解:设00()P x y ,为切点,则切点的斜率为0022x x y x ='==|. 01x =∴. 由此得到切点(11),.故切线方程为12(1)y x -=-,即210x y --=,故选D. 评注:此题所给的曲线是抛物线,故也可利用?法加以解决,即设切线方程为2y x b =+,代入2y x =,得220x x b --=,又因为0?=,得1b =-,故选D. 类型三:已知过曲线上一点,求切线方程 过曲线上一点的切线,该点未必是切点,故应先设切点,再求切点,即用待定切点法. 例3 求过曲线32y x x =-上的点(11)-,的切线方程. 解:设想00()P x y ,为切点,则切线的斜率为02032x x y x ='=-|. ∴切线方程为2000(32)()y y x x x -=--.

2.2常见曲线的参数方程

2.2 常见曲线的参数方程 第一节 圆锥曲线的参数方程 一椭圆的参数方程 1、中心在坐标原点,焦点在x 轴上,标准方程是22 221(0)x y a b a b +=>>的椭圆的参数方程 为cos (sin x a y b ? ??=??=? 为参数) 同样,中心在坐标原点,焦点在y 轴上,标准方程是22 221(0)y x a b a b +=>>的椭圆的参 数方程为cos (sin x b y a ? ??=??=? 为参数) 2、椭圆参数方程的推导 如图,以原点O 为圆心,,()a b a b o >>为半径分别作两个同心圆,设A 为大圆上的任一点,连接OA ,和小圆交于点B ,过点,A B 分别作x 轴,y 轴的垂线,两垂线交于点M 。 设以Ox 为始边,OA 为终边的角为?,点M 的坐标是(,)x y 。那么点A 的横坐标为x ,点B 的纵坐标为y 。由于点,A B 都在角?的终边上,由三角函数的定义有 cos cos ,sin sin x OA a y OB b ????==== 3 当半径OA 绕点O 旋转一周时,就得到了点M 的轨迹,它的参数方程是cos (sin x a y b ? ?? =??=?为 参数) 这是中心在原点O ,焦点在x 轴上的椭圆的参数方程。 3、椭圆的参数方程中参数?的意义 圆的参数方程cos (sin x r y r θ θθ =?? =?为参数)中的参数θ是动点(,)M x y 的旋转角,但在椭圆 的参数方程cos (sin x a y b ? ?? =?? =?为参数)中的参数?不是动点(,)M x y 的旋转角,它是动点 (,)M x y 所对应的圆的半径OA (或OB )的旋转角,称为点M 的离心角,不是OM 的旋 转角,通常规定[)0,2?π∈ 4、椭圆参数方程和普通方程的互化

圆的切点弦方程的九种求法

圆的切点弦方程的解法探究 在理解概念熟记公式的基础上,如何正确地多角度观察、分析问题,再运用所学知识解决问题,是解题的关键所在。本文仅通过一个例题,圆的部分的基本题型之一,分别从不同角度进行观察,用不同的知识点和九种不同的解法,以达到介绍如何观察、分析、解决关于圆的切点弦的问题。 一、预备知识: 1、在标准方程 2 22)()r b y a x =-+-(下过圆上一点),00y x P (的切线方程为: 200))(())r b y b y a x a x =--+--(( ; 在一般方程02 2 =++++F Ey Dx y x (042 2>-+F E D ) 下过圆上 一点),00y x P (的切线方程为: 02 20 000=++++++F y y E x x D yy xx 。 2、两相交圆01112 2=++++F y E x D y x (0412 12 1>-+F E D )与 022222=++++F y E x D y x (0422 22 2>-+F E D ) 的公共弦所在的直线方程为:0)()()(212121=-+-+-F F y E E x D D 。 3、过圆02 2 =++++F Ey Dx y x (042 2>-+F E D )外一点 ),11y x P (作圆的切线,其切线长公式为:F Ey Dx y x PA ++++=112121||。 4、过圆02 2 =++++F Ey Dx y x (042 2>-+F E D )外一点 ),11y x P (作圆的切线,切点弦AB 所在直线的方程为:211))(())r b y b y a x a x =--+--(((在圆的标准方程下的形式); 0221 111=++++++F y y E x x D yy xx (在圆的一般方程下的形式) 。 二、题目 已知圆04422 2=---+y x y x 外一点P (-4,-1),过点P 作圆 的切线PA 、PB ,求过切点A 、B 的直线方程。 三、解法 解法一:用判别式法求切线的斜率 如图示1,设要求的切线的斜率为k (当切线的斜率存在时),那么过点P (-4,-1)的切线方程为:)]4([)1(--=--x k y 即 014=-+-k y kx 由 ???=---+=-+-0 4420 142 2y x y x k y kx 消去y 并整 理得 0)12416()268()1(2222=+-+--++k k x k k x k ① 令 0)12416)(1(4)268(2 2 2 2 =+-+---=?k k k k k ② 解②得 0=k 或8 15= k

用点差法解圆锥曲线的中点弦问题

用点差法解圆锥曲线的中点弦问题 与圆锥曲线的弦的中点有关的问题,我们称之为圆锥曲线的中点弦问题。 解圆锥曲线的中点弦问题的一般方法是:联立直线和圆锥曲线的方程,借助于一元二次方程的根的判别式、根与系数的关系、中点坐标公式及参数法求解。 若设直线与圆锥曲线的交点(弦的端点)坐标为),(11y x A 、),(22y x B ,将这两点代入圆锥曲线的方程并对所得两式作差,得到一个与弦AB 的中点和斜率有关的式子,可以大大减少运算量。我们称这种代点作差的方法为“点差法”。 一、 以定点为中点的弦所在直线的方程 例1、过椭圆14 162 2=+y x 内一点)1,2(M 引一条弦,使弦被M 点平分,求这条弦所在直线的方程。 解:设直线与椭圆的交点为),(11y x A 、),(22y x B Θ )1,2(M 为AB 的中点 ∴421=+x x 221=+y y Θ又A 、B 两点在椭圆上,则1642121=+y x ,1642 222=+y x 两式相减得0)(4)(22212221=-+-y y x x 于是0))((4))((21212121=-++-+y y y y x x x x ∴ 2 1244)(421212121-=?-=++-=--y y x x x x y y 即21-=AB k ,故所求直线的方程为)2(2 11--=-x y ,即042=-+y x 。 例2、已知双曲线12 2 2=-y x ,经过点)1,1(M 能否作一条直线l ,使l 与双曲线交于A 、B ,且点M 是线段AB 的中点。若存在这样的直线l ,求出它的方程,若不存在,说明理由。 策略:这是一道探索性习题,一般方法是假设存在这样的直线 ,然后验证它是否满足题设的条件。 本题属于中点弦问题,应考虑点差法或韦达定理。 解:设存在被点M 平分的弦AB ,且),(11y x A 、),(22y x B 则221=+x x ,221=+y y 122121=-y x ,122 222=-y x 两式相减,得 0))((2 1))((21212121=-+--+y y y y x x x x ∴22121 =--=x x y y k AB 故直线)1(21:-=-x y AB 由?? ???=--=-12)1(2122y x x y 消去y ,得03422=+-x x ∴ 08324)4(2<-=??--=? 这说明直线AB 与双曲线不相交,故被点M 平分的弦不存在,即不存在这样的直线l 。 评述:本题如果忽视对判别式的考察,将得出错误的结果,请务必小心。由此题可看到中点弦问题中判断点的M 位置非常重要。(1)若中点M 在圆锥曲线内,则被点M 平分的弦一般存在;(2)若中点M 在圆锥曲线外,则被点M 平分的弦可能不存在。 二、 过定点的弦和平行弦的中点坐标和中点轨迹 例3、已知椭圆1257522=+x y 的一条弦的斜率为3,它与直线2 1=x 的交点恰为这条弦的中点M ,求点M 的坐标。

求曲线方程的常用方法

求曲线方程的常用方法 1. 直接法——若动点的运动规律就是一些几何量的等量关系,这些条件简单明确易于表 达,则可根据已知(或可求)的等量关系直接列出方程的方法。 2. 定义法——利用二次曲线的定义求轨迹方程。 (1) 若平面上的动点P(x,y)满足条件:11||||PF PF +=定长2a ,且122||a F F >(F 1F 2 为定点),那么P 点的轨迹为以F 1、F 2为焦点的椭圆。故只须选择恰当的坐标系, 就可直接写出椭圆的方程。 (2) 若平面上的动点P(x,y)满足条件:11||||||PF PF -=定长2a ,且122||a F F <(F 1F 2 为定点),那么P 点的轨迹为以F 1、F 2为焦点的双曲线。当122||a F F =时,P 点的轨迹为射线;如果不含绝对值,那么轨迹是一支双曲线或一条射线。故只 须选择恰当的坐标系,依双曲线的定义,就可直接写出椭圆的方程。 3. 代入法(或称相关点法)——有时动点P 所满足的几何条件不易求出,但它随另一动点 P ’的运动而运动,称之为相关点,若相关点P ’满足的条件简单、明确(或P ’的轨迹方程已知),就可以用动点P 的坐标表示出相关点P ’的坐标,再用条件把相关满足的轨迹方程表示出来(或将相关点坐标代入已知轨迹方程)就可得所求动点的轨迹方程的方法。 4. 几何法——利用平面几何的有关知识找出所求动点满足的几何条件,并写出其方程的方 法。 5. 参数法——有时很难直接找出动点的横纵坐标间的关系,可选择一个(有时已给出)与 所求动点的坐标x,y 都相关的参数,并用这个参数把x,y 表示出来,然后再消去参数的方法。 如:遇求两动直线的交点的轨迹方程问题,可适当引进参数(如斜率、截距等),写出两动直线的方程,然后消去参数就得到所求的两动直线的交点的轨迹方程,这种方法又称交轨法,其关键有二:一是选参,要容易写出动直线的方程;二是消参,消参的途径灵活多变,有时分别从两个方程中解出参数,再消参;有时分别解出x,y ,再消参;有时直接或适当变形后,通过加、减、乘、除,求平方和,求平方差等方法整体消参。 5.定义法—— 注意点:求动点轨迹方程在掌握一般步骤的基础上还要注意以下两点,一选建适当的坐标系,以简化运算;二是要注意曲线图形的范围,即根据条件限定方程中变量x,y 的取值范围,将方程中不适合题意的解去掉。 思路方法技巧: 1.“直接法”求动点的轨迹方程 例1. 在正三角形ABC 内有一动点P ,已知P 到三个顶点的距离分别为|PA|、|PB|、|PC| 且满足22||||||P A P B P C =+,求动点P 的轨迹方程。 222()4(0(2)x y a y +=<≤ 例2. 互相垂直的两条直线1l 、2l 的交点为P(a,b),长为2r 的线段MN 的两端点分别在1l 、 2l 上滑动,求线段MN 的中点Q 的轨迹。 (|PQ|=1/2|MN|222()()x a y b r -+-=) 例3. 已知一条曲线在x 轴的上方,它上面的每一个点到A(0,2) 的距离减去它到x 轴的

切线方程与切点弦方程

切线方程与切点弦方程 一、圆的切线方程 一、圆的方程为:(x - a)2+ (y - b)2= r2 1. 已知:圆的方程为:(x - a)2+ (y - b)2= r2, 圆上一点P(x0, y0)。 求过点P的切线方程 解:圆心C(a, b);直线CP的斜率:k1 = ( y0- b) / ( x0- a) 因为直线CP与切线垂直, 所以切线的斜率:k2 = -1/k1 = - (x0 - a) / (y0 - b) 根据点斜式, 求得切线方程: y - y0 = k2 (x - x0) y - y0 = [- (x0 - a) / (y0 - b)] (x - x0) 整理得:(x - x0)(x0 - a) + (y - y0)(y0 - b) = 0 (切线方程公式) 展开后: x0x - ax + ax0 + y0y - by + by0 - x02- y02= 0 (1) 因为点P在圆上, 所以它的坐标满足方程: (x0 - a)2+ (y0 - b)2= r2 化简: x02- 2ax0 + a2+ y02- 2by0 + b2= r2 移项: - x02- y02= -2ax0 - 2by0 + a2+ b2- r2(2) 由(2)代入(1), 得:x0x - ax + ax0 + y0y - by + by0 + (-2ax0 - 2by0 + a2+ b2- r2) = 0 化简:(x0x - ax - ax0 + a2) + (y0y - yb- by0 + b2) = r2 整理:(x0 - a)(x - a) + (y0 - b)(y - b) = r2 变式-1 已知:圆的方程为:(x - a)2+ (y - b)2= r2, 圆外一点P(x0, y0) 二、对于圆的一般方程:x2+ y2+ Dx + Ey + F = 0, 过圆上的点的切线方程. 2.已知:圆的方程为:x2+ y2+ Dx + Ey + F = 0, 圆上一点P(x0, y0) 解:圆心C( -D/2, -E/2 ) 直线CP的斜率:k1 = (y0 + E/2) / (x0 + D/2) 因为直线CP与切线垂直, 所以切线的斜率:k2 = -1/k1 = - (x0 + D/2) / (y0 + E/2) 根据点斜式, 求得切线方程: y - y0 = k2 (x - x0) y - y0 = [- (x0 + D/2) / (y0 + E/2)] (x - x0) 整理得:x0x + y0y + Dx/2 + Ey/2 - Dx0/2 - Ey0/2 -x02- y02= 0 (3) 因为点P在圆上, 所以它的坐标满足方程: x02+ y02+ Dx0 + Ey0 + F = 0 移项: - x02- y02= Dx0 + Ey0 + F (4)

圆锥曲线中点弦问题

关于圆锥曲线的中点弦问题 直线与圆锥曲线相交所得弦中点问题,是解析几何中的重要内容之一,也是高考的一个热点问题。这类问题一般有以下三种类型: (1)求中点弦所在直线方程问题; (2)求弦中点的轨迹方程问题; (3)求弦中点的坐标问题。其解法有代点相减法、设而不求法、参数法、待定系数法及中心对称变换法等。 一、求中点弦所在直线方程问题 例1 过椭圆14 162 2=+y x 内一点M (2,1)引一条弦,使弦被点M 平分,求这条弦所在的直线方程。 解法一:设所求直线方程为y-1=k(x-2),代入椭圆方程并整理得: 016)12(4)2(8)14(2222=--+--+k x k k x k 又设直线与椭圆的交点为A(11,y x ),B (22,y x ),则21,x x 是方程的两个根,于是 1 4) 2(82 221+-=+k k k x x , 又M 为AB 的中点,所以21 4) 2(422 221=+-=+k k k x x , 解得2 1 -=k , 故所求直线方程为042=-+y x 。 解法二:设直线与椭圆的交点为A(11,y x ),B (22,y x ),M (2,1)为AB 的中点, 所以421=+x x ,221=+y y , 又A 、B 两点在椭圆上,则1642 12 1=+y x ,1642 22 2=+y x , 两式相减得0)(4)(2 22 12 22 1=-+-y y x x , 所以 21)(421212121-=++-=--y y x x x x y y ,即21 -=AB k , 故所求直线方程为042=-+y x 。 解法三:设所求直线与椭圆的一个交点为A(y x ,),由于中点为M (2,1), 则另一个交点为B(4-y x -2,), 因为A 、B 两点在椭圆上,所以有???=-+-=+16 )2(4)4(1642 222y x y x , 两式相减得042=-+y x , 由于过A 、B 的直线只有一条, 故所求直线方程为042=-+y x 。 二、求弦中点的轨迹方程问题 例2 过椭圆 136 642 2=+y x 上一点P (-8,0)作直线交椭圆于Q 点,求PQ 中点的轨迹方程。 解法一:设弦PQ 中点M (y x ,),弦端点P (11,y x ),Q (22,y x ),

圆锥曲线的切线方程及切点弦方程的应用

圆锥曲线的切线方程及切点弦方程的应用 张生 引例 给定圆2 22)()(r b y a x =-+-和点),(00y x P ,证明: (1)若点P 在圆上,则过点P 的圆的切线方程为2 00))(())((r b y b y a x a x =--+--; (2)若点P 在圆外,设过点P 所作圆的两条切线的切点分别为B A ,,则直线AB 的方程为2 00))(())((r b y b y a x a x =--+--。 高考链接 3. (2011江西)若椭圆22221x y a b +=的焦点在x 轴上,过点(1,12 )作圆22 +=1x y 的切线, 切点分别为A,B ,直线AB 恰好经过椭圆的右焦点和上顶点,则椭圆方程是 【答案】22 154 x y += (2013山东)过点(3,1)作圆 22 (1)1x y -+=的两条切线,切点分别为A ,B ,则直线AB 的方程为 ( ) A .230x y +-= B .230x y --= C .430x y --= D .430x y +-= 【答案】A 过点)4,3(P 作圆1:2 2 =+y x O 的两条切线,切点分别为B A ,,点)0,0)(,(>>b a b a M 在直线AB 上,则b a 2 1+的最小值为 。6411+ 过椭圆14 92 2=+y x 上点P 作圆2:22=+y x O 的两条切线,切点分别为B A ,,过B A ,的直线l 与x 轴y 轴分别交于点Q P ,两点,则POQ ?的面积的最小值为 。 3 2 已知椭圆)1(12222>>=+b a b y a x ,圆2 22:b y x O =+,过椭圆上任一与顶点不重合的点P

求曲线方程的几种常见方法

求曲线方程的几种常见方法 案场各岗位服务流程 销售大厅服务岗: 1、销售大厅服务岗岗位职责: 1)为来访客户提供全程的休息区域及饮品; 2)保持销售区域台面整洁; 3)及时补足销售大厅物资,如糖果或杂志等; 4)收集客户意见、建议及现场问题点; 2、销售大厅服务岗工作及服务流程 阶段工作及服务流程 班前阶段1)自检仪容仪表以饱满的精神面貌进入工作区域 2)检查使用工具及销售大厅物资情况,异常情况及时登记并报告上级。 班中工作程序服务 流程 行为 规范 迎接 指引 递阅 资料 上饮品 (糕点) 添加茶水 工作 要求 1)眼神关注客人,当客人距3米距离 时,应主动跨出自己的位置迎宾,然后 侯客迎询问客户送客户

注意事项 15度鞠躬微笑问候:“您好!欢迎光临!”2)在客人前方1-2米距离领位,指引请客人向休息区,在客人入座后问客人对座位是否满意:“您好!请问坐这儿可以吗?”得到同意后为客人拉椅入座“好的,请入座!” 3)若客人无置业顾问陪同,可询问:请问您有专属的置业顾问吗?,为客人取阅项目资料,并礼貌的告知请客人稍等,置业顾问会很快过来介绍,同时请置业顾问关注该客人; 4)问候的起始语应为“先生-小姐-女士早上好,这里是XX销售中心,这边请”5)问候时间段为8:30-11:30 早上好11:30-14:30 中午好 14:30-18:00下午好 6)关注客人物品,如物品较多,则主动询问是否需要帮助(如拾到物品须两名人员在场方能打开,提示客人注意贵重物品); 7)在满座位的情况下,须先向客人致歉,在请其到沙盘区进行观摩稍作等

待; 阶段工作及服务流程 班中工作程序工作 要求 注意 事项 饮料(糕点服务) 1)在所有饮料(糕点)服务中必须使用 托盘; 2)所有饮料服务均已“对不起,打扰一 下,请问您需要什么饮品”为起始; 3)服务方向:从客人的右面服务; 4)当客人的饮料杯中只剩三分之一时, 必须询问客人是否需要再添一杯,在二 次服务中特别注意瓶口绝对不可以与 客人使用的杯子接触; 5)在客人再次需要饮料时必须更换杯 子; 下班程 序1)检查使用的工具及销售案场物资情况,异常情况及时记录并报告上级领导; 2)填写物资领用申请表并整理客户意见;3)参加班后总结会; 4)积极配合销售人员的接待工作,如果下班时间已经到,必须待客人离开后下班;

过一点求曲线的切线方程的三种类型

过一点求曲线的切线方程的三种类型 舒云水 过一点求曲线的切线方程有三种不同的类型,下面举例说明﹒ 1.已知曲线)(x f y =上一点))(,(00x f x P ,求曲线在该点处的切线方程﹒ 这是求曲线的切线方程的基本类型,课本上的例、习题都是这种类型﹒其求法为:先求出函数)(x f 的导数)(x f ',再将0x 代入)(x f '求出)(0x f ',即得切线的斜率,后写出切线方程)(0x f y -=)(0x f ')(0x x -,并化简﹒ 例1 求曲线33)(23+-=x x x f 在点)1,1(P 处的切线方程﹒ 解:由题设知点P 在曲线上, ∵x x y 632-=',∴曲线在点)1,1(P 处的切线斜率为3)1(-='f ,所求的切线方程为)1(31--=-x y ,即43+-=x y ﹒ 2. 已知曲线)(x f y =上一点))(,(11x f x A ,求过点A 的曲线的切线方程﹒ 这种类型容易出错,一般学生误认为点A 一定为切点,事实上可能存在过点A 而点A 不是切点的切线,如下面例2,这不同于以前学过的圆、椭圆等二次曲线的情况,要引起注意,这类题型的求法为:设切点为))(,(00x f x P ,先求出函数)(x f 的导数)(x f ',再将0x 代入)(x f '求出)(0x f ',即得切线的斜率(用0x 表示),写出切线方程 )(0x f y -=)(0x f ')(0x x -,再将点A 坐标),(11y x 代入切线方程得)(01x f y -=)(0x f ')(01x x -,求出0x ,最后将0x 代入方程

)(0x f y -=)(0x f ')(0x x -求出切线方程﹒ 例2 求过曲线x x y 23-=上的点)1,1(-的切线方程﹒ 解:设切点为点)2,(0300x x x -,232-='x y ,切线斜率为2320-x , 切线方程为))(23()2(020030x x x x x y --=--﹒ 又知切线过点)1,1(-,把它代入上述方程,得 )1)(23()2(100030x x x x --=---﹒ 解得10=x ,或2 10-=x ﹒ 所求切线方程为)1)(23()21(--=--x y ,或)21)(243()181(+-=+--x y ,即02=--y x ,或0145=-+y x ﹒ 上面所求出的两条直线中,直线02=--y x 是以)1,1(-为切点的切线,而切线0145=-+y x 并不以)1,1(-为切点,实际上它是经过了点)1,1(-且以)87,21(-为切点的直线,如下图所示﹒这说明过曲线上一点的切线,该点未必是切点﹒ 3. 已知曲线)(x f y =外一点))(,(11x f x A ,求过点A 作的曲线的切线方程﹒ 这种类型的题目的解法同上面第二种类型﹒ 例3 过原点O 作曲线6324+-=x x y 的切线,求切线方程﹒(2009年全国卷Ⅰ文21题改编 )

高中数学第2章参数方程2.4一些常见曲线的参数方程讲义新人教B版选修44

高中数学第2章参数方程2.4一些常见曲线的参数方程讲义新人 教B 版选修44 学习目标:1.了解圆的渐开线和摆线的参数方程.(重点)2.了解渐开线与摆线的参数方程的推导过程.(难点) 1.摆线 (1)定义 一圆周沿一直线作无滑动滚动时,圆周上的一定点M 的轨迹称为摆线. (2)参数方程 ????? x =a (t -sin t )y =a (1-cos t ) (t 是参数). 2.圆的渐开线 (1)定义 把一条没有弹性的细绳绕在一个固定不动的圆盘的侧面上,把绳拉紧逐渐展开,绳的外端点随之移动,且绳的拉直部分始终和圆相切.绳的端点移动的轨迹就是一条圆的渐开线,固定的圆称为渐开线的基圆. (2)参数方程 ? ?? ?? x =a (cos t +t sin t )y =a (sin t -t cos t )(t 是参数). 思考:圆的渐开线和摆线的参数方程中,参数t 的几何意义是什么? [提示] 根据渐开线的定义和求解参数方程的过程,可知其中的字母a 是指基圆的半径,而参数t 是指绳子外端运动时绳子与基圆的切点B 转过的角度,如图,其中的∠AOB 即是角 t .显然点M 由参数t 惟一确定.在我们解决有关问题时可以适当利用其几何意义,把点的坐 标转化为与三角函数有关的问题,使求解过程更加简单. 同样,根据圆的摆线的定义和建立参数方程的过程,可知其中的字母a 是指定圆的半径,参数t 是指圆上定点相对于定直线与圆的切点所张开的角度.参数的几何意义可以在解决问题中加以引用,简化运算过程.当然这个几何意义还不是很明显,直接使用还要注意其取值的具体情况.

1.关于渐开线和摆线的叙述,正确的是( ) A .只有圆才有渐开线 B .渐开线和摆线的定义是一样的,只是绘图的方法不一样,所以才得到了不同的图形 C .正方形也可以有渐开线 D .对于同一个圆,如果建立的平面直角坐标系的位置不同,画出的渐开线形状就不同 [解析] 不仅圆有渐开线,其他图形如椭圆、正方形也有渐开线;渐开线和摆线的实质是完全不一样的,因此得出的图形也不相同;对于同一个圆不论在什么地方建立平面直角坐标系,画出的图形的大小和形状都是一样的,只是方程的形式及图形在坐标系中的位置可能不同. [答案] C 2.半径为3的圆的摆线上某点的纵坐标为0,那么其横坐标可能是( ) A .π B .2π C .12π D .14π [解析] 根据条件可知圆的摆线的参数方程为? ?? ?? x =3t -3sin t y =3-3cos t (t 为参数),把y =0代 入可得cos t =1,所以t =2k π(k ∈Z ).而x =3t -3sin t =6k π(k ∈Z ).根据选项可知应选C. [答案] C 3.半径为4的圆的渐开线的参数方程是________. [解析] 将a =4代入圆的渐开线方程即可. [答案] ? ?? ?? x =4(cos t +t sin t ) y =4(sin t -t cos t ) 4.给出某渐开线的参数方程? ?? ?? x =3cos t +3t sin t y =3sin t -3t cos t (t 为参数),根据参数方程可以看 出该渐开线的基圆半径是______,当参数t 取π 2 时,对应的曲线上的点的坐标是________. [解析] 与渐开线的参数方程进行对照可知,a =3,即基圆半径是3,然后把t =π 2代入, 可得????? x =3π2,y =3. [答案] (3π 2 ,3)

圆的切点弦方程

2 圆的切点弦方程 1已知圆的方程x 2 y 2 r 2,求经过圆上一点 M (x °,y °)的切线方程。 【方法】1.设出直线,再求解; 2. 利用轨迹思想,用向量或平面几何知识求解。 究竟是什么关系呢下面我们进行探究: ???点M 的坐标(X o , y o )满足直线MA 与 MB 的方程, 、当点M 在圆 O 上时,直线L 是圆的切线。 二、当点M 在圆 O 外时, 1.直线 L 不是圆 O 的切线, F 面证明之: ???圆心 O 到L 的距离为d .2 2 ,由M (X o , y o )在圆O 外,得 一 x °2 X y 2 y o r ,故直线L 与圆0相交. 2.此时直线L 与过点M 的圆的切线又是什么关系呢 首先研究L 的特征: 易知: OM L 。 r 2 2 r 2 2 y o 2 OA ON OM ,(N 为 L 与 OM 的交点) 从而OA MA MA 为圆的一条切线, 故直线L 为过点M 的圆的两条切线的两个切点所在的直线。 事实上(另证), 如图1,设过点M 的圆O 的两条切线为L i ,L 2,切点分别为 A B, 则直线MA IXM y^ r 2,直线 MB:X 2X y 2y r 2 【结论1】过圆x 2 y 2 r 2上一点M (X 。,y 。)的切线方程 :XX o yy o r 。 【问题】对于坐标平面内任一点 M (x o , y o ),直线L : X o X y o y 2 2 r 与圆O : x

2 X i X。y』o r … 2, X2X0 y i y o r 由此可见A B的坐标均满足方程x0x y0y r2, 由于两点确定一条直线 ???直线AB的方程为X o X y o y r2。 所以此时的直线L是经过点P的切点弦AB所在直线的方程,而不是圆0的切线。 【注】上述点M直线L实质上是射影几何中的极点和极线。 特别的,当M在圆上时,极线即为切线。 三、当点M在圆0内时, 1.直线L也不是圆0的切线。下面给出证明: 2 ___________________________________________________________ ???圆心0到L的距离为d , r,由M(X o,y°)在圆0内,得Jx°2 y。2 r ..X2 y2 d r故直线L与圆0相离. 丿 2.此时直线L与圆的切线的关系又如何呢y V L o 首先研究L的特征: 由上述探讨过程易知, 直线L 0M 图2 此外,L 一定过点P ( P为两切线的交点,AB 0M, 从而L就在图2中过点P且与AB平行的位置处。 事实上(另证), ???直线L的斜率k i 匹,而直线0M勺斜率k om 山, y o X o ? L 0M 一方面,过点M与OM垂直的直线L0方程为(x x0)x0 (y y0)y0 0, 即X0X y°y X02y。2

相关主题
文本预览
相关文档 最新文档