当前位置:文档之家› 合肥工业大学系统控制仿真综合实验报告

合肥工业大学系统控制仿真综合实验报告

合肥工业大学系统控制仿真综合实验报告
合肥工业大学系统控制仿真综合实验报告

合肥工业大学电气与自动化工程学院综合实验报告

实验名称: 系统仿真综合实验

姓名:

学号:

专业班级:

实验地点: 逸夫楼807

指导教师: 都海波殷礼胜

成绩:

日期:

实验一MATLAB基本操作

实验目的

1.熟悉MATLAB实验环境,练习MATLAB命令、m文件、Simulink的基本操作。2.利用MATLAB编写程序进行矩阵运算、图形绘制、数据处理等。

3.利用Simulink建立系统的数学模型并仿真求解。

实验原理

MATLAB环境是一种为数值计算、数据分析和图形显示服务的交互式的环境。MATLAB有3种窗口,即:命令窗口(The Command Window)、m-文件编辑窗口(The Edit Window)和图形窗口(The Figure Window),而Simulink另外又有Simulink模型编辑窗口。

1.命令窗口(The Command Window)

当MATLAB启动后,出现的最大的窗口就是命令窗口。用户可以在提示符“>>”后面输入交互的命令,这些命令就立即被执行。

在MATLAB中,一连串命令可以放置在一个文件中,不必把它们直接在命令窗口内输入。在命令窗口中输入该文件名,这一连串命令就被执行了。因为这样的文件都是以“.m”为后缀,所以称为m-文件。

2.m-文件编辑窗口(The Edit Window)

我们可以用m-文件编辑窗口来产生新的m-文件,或者编辑已经存在的m-文件。在MATLAB主界面上选择菜单“File/New/M-file”就打开了一个新的m-文件编辑窗口;选择菜单“File/Open”就可以打开一个已经存在的m-文件,并且可以在这个窗口中编辑这个m-文件。

3.图形窗口(The Figure Window)

图形窗口用来显示MATLAB程序产生的图形。图形可以是2维的、3维的数据图形,也可以是照片等。

MATLAB中矩阵运算、绘图、数据处理等内容参见教材《自动控制系统计算机仿真》的相关章节。

Simulink 是MATLAB 的一个部件,它为MATLAB 用户提供了一种有效的对反馈控制系统进行建模、仿真和分析的方式。

有两种方式启动Simulink:

1.在Command window 中,键入simulink ,回车。 2.单击工具栏上Simulink 图标。

启动Simulink 后,即打开了Simulink 库浏览器(Simulink library browser )。在该浏览器的窗口中单击“Create a new model (创建新模型)”图标,这样就打开一个尚未命名的模型窗口。把Simulink 库浏览器中的单元拖拽进入这个模型窗口,构造自己需要的模型。对各个单元部件的参数进行设定,可以双击该单元部件的图标,在弹出的对话框中设置参数。

实验内容

1 用MATLAB 可以识别的格式输入下面两个矩阵

123323571

35732391894A ??

??????=??

??????

144367

82

335542267534218

9543i i B i +??

??+?

?=??+?

?

??

再求出它们的乘积矩阵C ,并将C 矩阵的右下角2×3子矩阵赋给D 矩阵。赋值完成后,调用相应的命令查看MATLAB 工作空间的占用情况。 调用相应的命令查看MATLAB 工作空间的占用情况。 程序

A=[1,2,3,3;2,3,5,7;1,3,5,7;3,2,3,9;1,8,9,4]

B=[1+4i,4,3,6,7,8;2,3,3,5,5,4+2i;2,6+7i,5,3,4,2;1,8,9,5,4,3] C=A*B

D=C(4:5,4:6) 结果

A = 1 2 3 3 2 3 5 7 1 3 5 7 3 2 3 9 1 8 9 4 B= Columns 1 through 4

1.0000 + 4.0000i 4.0000 3.0000 6.0000

2.0000

3.0000 3.0000 5.0000

2.0000 6.0000 + 7.0000i 5.0000

3.0000 1.0000 8.0000 9.0000 5.0000 Columns 5 through 6

7.0000 8.0000 5.0000 4.0000 + 2.0000i 4.0000 2.0000 4.0000 3.0000

C = 1.0e+002 * Columns 1 through 4

0.1400 + 0.0400i 0.5200 + 0.2100i 0.5100 0.4000 0.2500 + 0.0800i 1.0300 + 0.3500i 1.0300 0.7700 0.2400 + 0.0400i 0.9900 + 0.3500i 1.0000 0.7100 0.2200 + 0.1200i 1.0800 + 0.2100i 1.1100 0.8200 0.3900 + 0.0400i 1.1400 + 0.6300i 1.0800 0.9300 Columns 5 through 6

0.4100 0.3100 + 0.0400i 0.7700 0.5900 + 0.0600i 0.7000 0.5100 + 0.0600i 0.7900 0.6500 + 0.0400i 0.9900 0.7000 + 0.1600i

D =82.0000 79.0000 65.0000 + 4.0000i 93.0000 99.0000 70.0000 +16.0000i

>> who

Your variables are: A B C D

2 分别用for 和while 循环结构编写程序,求出

63

2362630

2122222i i K ===++++++∑

while 循环

K=0; i=0; while i<=63 K=K+2^i; i=i+1; end K

结果 K =

1.8447e+019

for 循环

K=0; i=0; for i=0:63 K=K+2^i; end K

结果 K =

1.8447e+019

3 选择合适的步距绘制出下面的图形 (1)1sin(/)t ,其中0110t ∈[.,]

(2)sin(tan )tan(sin )t t -,其中(,)t ππ∈- 程序

figure(1) t=0.1:0.1:10; y=sin(1./t); plot(t,y) figure(2) t=-pi:0.1*pi:pi;

y=sin(tan(t))-tan(sin(t)); plot(t,y)

4 对下面给出的各个矩阵求取矩阵的行列式、秩、特征多项式、范数。

-4

-3

-2

-1

1

2

3

4

1

2

3

4

5

6

7

8

9

10

75350083341009103150037193......A ?????

?=??

-??

??,5765710876810957910B ??

????=?????? 12345678910111213141516C ?????

?=??????,33245518118575131D --????-??=??-??---??

程序

A=[7.5,3.5,0,0;8,33,4.1,0;0,9,103,-1.5;0,0,3.7,19.3]; B=[5,7,6,5;7,10,8,7;6,8,10,9;5,7,9,10]; C=[1,2,3,4;5,6,7,8;9,10,11,12;13,14,15,16]; D=[3,-3,-2,4;5,-5,1,8;11,8,5,-7;5,-1,-3,-1] rank(A) rank(B) rank(C) rank(D) det(A) det(B) det(C) det(D) eig(A) eig(B) eig(C) eig(D) norm(A) norm(B) norm(C) norm(D)

结果 D =

3 -3 -2

4

5 -5 1 8 11 8 5 -7 5 -1 -3 -1 ans = 4 ans =

4

ans =

2

ans =

4

ans =

4.3222e+005 ans =

1.0000

ans =

4.7332e-030 ans =

595.0000

ans =

103.4599

6.4308

33.5410

19.3682

ans =

0.0102

0.8431

3.8581

30.2887

ans =

36.2094

-2.2094

-0.0000

-0.0000

ans =

5.7195 + 5.8646i

5.7195 - 5.8646i

-1.0579

-8.3811

ans =

103.7228

ans =

30.2887

ans =

38.6227

ans =

16.6958

5 求解下面的线性代数方程,并验证得出的解真正满足原方程。

(a)

72124

915327

221151

132130

X

-

????

????

-

????

=

????

---

????

????

,(b)

1321390

721264

91532117

2211521

X

????

????

-

????

=

????

-

????

----

????

程序

A=[7,2,1,-2;9,15,3,-2;-2,-2,11,5;1,3,2,13]; B=A^-1;

C=[4;7;-1;0];

X1=B*C

A=[1,3,2,13;7,2,1,-2;9,15,3,-2;-2,-2,11,5]; C=[9,0;6,4;11,7;-2,-1];

X2=(A^-1)*C

结果

X1 =

0.4979

0.1445

0.0629

-0.0813

X2 =

0.9807 0.4979

0.2680 0.1445

-0.2226 0.0629

0.5893 -0.0813

6 假设有一组实测数据

用最小二乘法拟合,求出相应的二次函数。

程序

X=0.1:0.1:1;

Y=[2.3201 2.6470 2.9707 3.2885 3.6008 3.9090 4.2147 4.5190 4.8232 5.1275]; P=polyfit(X,Y,2)

结果 P =

-0.1562 3.2827 1.9967

7 考虑线性微分方程

(4)

(3)

353345sin(4/3)t t y

y

y y y u

u e e t π???

--++++==++输入信号

(1)(2)(3)(0)1,(0)(0)1/2,0.2,y y y y ====方程初值

(1) 试用Simulink 搭建起系统的仿真模型,并绘制出仿真结果曲线。

(2) 将给定的微分方程转换成状态方程,并建立S 函数,再利用Simulink 进行仿真。 (1)

(1)(2)(3)(0)1,(0)(0)1/2,0.2,y y y y ====方程初值

仿真结果曲线:

(2)

建立名为shiyan1721的s函数

function[sys,x0,str,ts]=ex5_4(t,x,u,flag,A,B,C,D) switch flag

case 0

[sys,x0,str,ts]=mdlInitializeSizes(A,D);

case 1

sys=mdlDerivatives(t,x,u,A,B);

case 3

sys=mdlOutputs(t,x,u,C,D);

case{2,4,9}

sys=[];

otherwise

error(['Unhandled flag=',num2str(flag)]); end

function[sys,x0,str,ts]=mdlInitializeSizes(A,D) sizes=simsizes;

sizes.NumContStates=size(A,1);

sizes.NumDiscStates=0;

sizes.NumOutputs=size(A,1)+size(D,1);

sizes.NumInputs=size(D,2);

sizes.DirFeedthrough=1;

sizes.NumSampleTimes=1;

sys=simsizes(sizes);

x0=zeros(size(A,1),1);

str=[];

ts=[-1,0];

function sys=mdlDerivatives(t,x,u,A,B)

sys=A*x+B*u;

function sys=mdlOutputs(t,x,u,C,D)

sys=[C*x+D*u;x];

在simulink 中画出如下

在MATLAB 中的命令窗口输入参数A,B,C,D

矩阵,在Workspace 中就有 A=[0 1 0 0;0 0 1 0;0 0 0 1;-5 -4 -3 -3]; >> B=[0;0;0;1]; >> C=[1 0 0 0]; >> D=0

运行仿真,在Workspace 中就得到tout 和yout 两个变量。其中输出变量yout 的前两列为系统的输出信号,后4列为系统的状态变量。在Matlab 的命令窗口输入 >>plot(tout,yout(:,1:2)) 图片为

8 建立下图所示非线性系统的Simulink 模型,并观察在单位阶跃信号输入下系统的输出曲线和误差曲线。

输出曲线:

误差曲线:

实验二经典控制理论

实验目的

以MATLAB及Simulink为工具,对控制系统进行时域、频域及根轨迹分析。

实验原理

1、时域分析法是根据系统的微分方程(或传递函数),利用拉普拉斯变换直接解出动态方

程,并依据过程曲线及表达式分析系统的性能。时域响应指标如图所示。

延迟时间t d,指响应曲线第一次达到其终值一半所需要的时间。

上升时间t r,指响应曲线从终值10%上升到终值90%所需要的时间;对于有振荡的系

统,也可定义为响应从零第一次上升到终值所需要的时间。上升时间是系统响应速度的一种度量。

峰值时间t p ,指响应超过终值达到第一个峰值所需要的时间。

调节时间t s ,指响应达到并保持在终值±5%(或±2%)内所需要的时间。 超调量σ%,指响应的最大偏离量h(t p )与终值h(∞)之差的百分比,即:

%100)

()

()(%?∞∞-=

h h tp h σ

稳态误差,描述系统稳态性能的一种性能指标。

2、 频域分析法通常从频率特性出发对系统进行研究。在工程分析和设计中,通常把频率特

性画成一些曲线,从频率特性曲线出发进行研究。这些曲线包括幅频特性和相频特性曲线,幅相频率特性曲线,对数频率特性曲线以及对数幅相曲线等,其中以幅相频率特性曲线,对数频率特性曲线应用最广。对于最小相位系统,幅频特性和相频特性之间存在着唯一的对于关系,故根据对数幅频特性,可以唯一地确定相应的相频特性和传递函数。根据系统的开环频率特性去判断闭环系统的性能,并能较方便地分析系统参量对系统性能的影响,从而指出改善系统性能的途径。

3、 根轨迹是求解闭环系统特征根的图解方法。由于控制系统的动态性能是由系统闭环零极

点共同决定,控制系统的稳定性由闭环系统极点唯一确定,利用根轨迹确定闭环系统的零极点在s 平面的位置,分析控制系统的动态性能。

实验内容

*1.控制系统数学模型的转换

《自动控制系统计算机仿真》教材第4章中的所有例题 答:4-1: 程序

num=5*[2 0 3];

den=conv(conv(conv([1 0 0],[3,1]),conv([1 2],[1,2])),[5 0 3 8]); prinsys(mun,den,'s') printsys(num,den,'s') 结果

num/den =

10 s^2 + 15

--------------------------------------------------------------

15 s^8 + 65 s^7 + 89 s^6 + 83 s^5 + 152 s^4 + 140 s^3 + 32 s^2

程序

tf(num,den)

结果

Transfer function:

10 s^2 + 15

--------------------------------------------------------------

15 s^8 + 65 s^7 + 89 s^6 + 83 s^5 + 152 s^4 + 140 s^3 + 32 s^2

4-2:

程序

num=[12 24 0 20];

den=[2 4 6 2 2];

[A B C D]=tf2ss(num,den)

结果

A =

-2 -3 -1 -1

1 0 0 0

0 1 0 0

0 0 1 0

B =

1

C =

6 12 0 10

D =

4-3:

程序

A=[0,1,1;0,0,1;-10,-17,-8];B=[0;0;1];C=[5,6,1];D=0;

[num,den]=ss2tf(A,B,C,D);

G=tf(num,den)

结果

Transfer function:

s^2 + 11 s + 5

-----------------------

s^3 + 8 s^2 + 27 s + 10

4-4:

程序

A=[0,1,1;0,0,1;-10,-17,-8];B=[0;0;1];C=[5,6,1];D=0;

[z,p,k]=ss2zp(A,B,C,D);Gn=zpk(z,p,k)

结果

Zero/pole/gain:

(s+10.52) (s+0.4751)

--------------------------------

(s+0.4199) (s^2 + 7.58s + 23.82)

4-5:

程序

num=[20,10];den=[1,15,74,120];

[R,P,H]=residue(num,den)

结果

R =

-55.0000

90.0000

-35.0000

P =

-6.0000

-5.0000

-4.0000

H =

[]

4-6:

程序

A=[0,1,0;0,0,1;-6,-11,-6];B=[1,0;2,-1;0,2];C=[1,-1,0;2,1,-1];D=zeros(2); T=0.1;G=ss(A,B,C,D);Gd=c2d(G,T)

结果

a =

x1 x2 x3

x1 0.9991 0.0984 0.004097

x2 -0.02458 0.9541 0.07382

x3 -0.4429 -0.8366 0.5112

b =

u1 u2

x1 0.1099 -0.004672

x2 0.1959 -0.0902

x3 -0.1164 0.1936

c =

x1 x2 x3

y1 1 -1 0

d =

u1 u2

y1 0 0

y2 0 0

Sampling time: 0.1

Discrete-time model.

4-7:

程序

A1=[-9,17;-1,3];B1=[0,-1;-1,0];C1=[-3,2;-13,18];D1=[-1,0;-1,0]; sys1=ss(A1,B1,C1,D1);

sys2=tf([2],[1,2]);sys=feedback(sys1,sys2,2,2,-1)

结果

a =

x1 x2 x3

x1 -9 17 1

x2 -1 3 0

x3 -26 36 -2

b =

u1 u2

x1 0 -1

x2 -1 0

x3 -2 0

c =

x1 x2 x3

y1 -3 2 0

y2 -13 18 0

d =

u1 u2

y1 -1 0

y2 -1 0

Continuous-time model.

4-8:

程序

A=[1,2,-1;0,2,1;1,-3,2];B=[0;1;1];C=[1,0,1];

Qc=ctrb(A,B)

结果

Qc =

1 3 5

1 -1 -10

程序syms s;det(s*eye(3)-A)

结果

ans =

s^3 - 5*s^2 + 12*s - 11

程序if rank(Qc)==3

disp('The system is controllable') else

disp('The system is uncontrollable') end

The system is controllable

Q=Qc*[12,-5,1;-5,1,0;1,0,0],P=inv(Q)

结果

Q =

3 1 0

2 -2 1

7 -6 1

P =

0.2353 -0.0588 0.0588

0.2941 0.1765 -0.1765

0.1176 1.4706 -0.4706

>> Ab=P*A*Q,Bb=P*B,Cb=C*Q

Ab =

0 1.0000 0.0000

0 0 1.0000

11.0000 -12.0000 5.0000

Bb =

0.0000

1.0000

Cb =

4-9:

程序

num=[4,5,1];den=[1,6,11,6]; G=tf(num,den);

[A,B,C,D]=tf2ss(num,den);

G1=ss(A,B,C,D)

结果

a =

x1 x2 x3

x1 -6 -11 -6

x2 1 0 0

x3 0 1 0

b =

u1

x1 1

x2 0

x3 0

c =

x1 x2 x3

y1 4 5 1

d =

u1

y1 0

Continuous-time model.

程序G2=ss(G)

结果

a =

x1 x2 x3 x1 -6 -2.75 -1.5

x2 4 0 0

x3 0 1 0

b =

u1

x1 2

x2 0

x3 0

c =

测控专业综合实验报告

湖南科技大学测控技术与仪器专业专业综合实验报告 姓名 学号 成绩 湖南科技大学机电工程学院 二0—三年 ^一月 ^一日目录 一、液压泵站综合控制实验 3 (一)实验目的 3 (二)实验内容 3 二、液压实验台PLC控制实验 4 (一)实验目的 4 (二)实验内容 4 —振动测试与故障诊断综合实验( 一) 一)实验目的 5 二)实验内容 5 四.振动测试与故障诊断综合实验(二)(一)实验目的 6 (二)实验内容 6 五.基于虚拟仪器的自动控制原理综合实验(一)实验目的7 (二)实验内容7 六.基于虚拟仪器的传感器综合实验8 (一)实验目的8 (二)实验内容8 七.地震仪器综合设计9 (一)实验目的9 (二)实验内容9 八.电法仪器综合设计10 (一)实验目的10 (二)实验内容10 九、实验心得11 一、液压泵站综合控制实验 (一)实验目的 了解液压控制的装置,熟悉PLC编程,并且了解 置的原理并且用于实践生活中去。(二)实验内容 此实验是液压的测量实验用PLC处理器控制来实现,液压PLC综合控制实验室是我公 司根据高校机电一体化对气、电、液控制的教学大纲要求,在我公司专利产品YY-18透明 液压传动演示系统的基础上,综合了我公司气动PLC与液压PLC控制实验设备的优点,采 用了开放型综合实验台结构,广泛征求专家教授与老师的意见,经不断创新改进研制而成的。是目前集气动控制技术、液压传动控制技术以及PLC可编程序控制器控制技术于一体 的理想的综合性实验设备。实验时,它们可以相互辅成,交叉控制。可以让学生直观、感性地对比、了解气、电、液各自具有的特点、特色、及优缺点等。 信号采集电路原理设计: (1)前置放大电路要求有阻抗匹配设计(前置放大器采用集成运放OP07、 采用电压负反馈设计、增益为10、50 两档手动设计) (2)主放大器采用级联组合程控放大、增益动态范围为10 至1500 倍之内。 (增益程档位要求有30 至40 梯度之内,具体每档增益值不做具体要求但要求梯度 增益呈线性) (3)主放大器末端输出值(Up-p)设计为5v,如有溢出则在设计说明中明。 PLC控制在工业领域的发展。理解液压装

运动控制实验报告通用范本

内部编号:AN-QP-HT390 版本/ 修改状态:01 / 00 In Order T o Standardize The Management, Let All Personnel Enhance The Executive Power, Avoid Self- Development And Collective Work Planning Violation, According To The Fixed Mode To Form Daily Report To Hand In, Finally Realize The Effect Of Timely Update Progress, Quickly Grasp The Required Situation. 编辑:__________________ 审核:__________________ 单位:__________________ 运动控制实验报告通用范本

运动控制实验报告通用范本 使用指引:本报告文件可用于为规范管理,让所有人员增强自身的执行力,避免自身发展与集体的工作规划相违背,按固定模式形成日常报告进行上交最终实现及时更新进度,快速掌握所需了解情况的效果。资料下载后可以进行自定义修改,可按照所需进行删减和使用。 实验一晶闸管直流调速系统电流-转速调节器调试 一.实验目的 1.熟悉直流调速系统主要单元部件的工作原理及调速系统对其提出的要求。2.掌握直流调速系统主要单元部件的调试步骤和方法。 二.实验内容 1.调节器的调试 三.实验设备及仪器 1.教学实验台主控制屏。2.MEL—11组件3.MCL—18组件4.双踪示波器5.万用表

控制系统仿真与CAD 实验报告

《控制系统仿真与CAD》 实验课程报告

一、实验教学目标与基本要求 上机实验是本课程重要的实践教学环节。实验的目的不仅仅是验证理论知识,更重要的是通过上机加强学生的实验手段与实践技能,掌握应用 MATLAB/Simulink 求解控制问题的方法,培养学生分析问题、解决问题、应用知识的能力和创新精神,全面提高学生的综合素质。 通过对MATLAB/Simulink进行求解,基本掌握常见控制问题的求解方法与命令调用,更深入地认识和了解MATLAB语言的强大的计算功能与其在控制领域的应用优势。 上机实验最终以书面报告的形式提交,作为期末成绩的考核内容。 二、题目及解答 第一部分:MATLAB 必备基础知识、控制系统模型与转换、线性控制系统的计算机辅助分析 1. >>f=inline('[-x(2)-x(3);x(1)+a*x(2);b+(x(1)-c)*x(3)]','t','x','flag','a','b','c');[t,x]=ode45( f,[0,100],[0;0;0],[],0.2,0.2,5.7);plot3(x(:,1),x(:,2),x(:,3)),grid,figure,plot(x(:,1),x(:,2)), grid

2. >>y=@(x)x(1)^2-2*x(1)+x(2);ff=optimset;https://www.doczj.com/doc/be9967241.html,rgeScale='off';ff.TolFun=1e-30;ff.Tol X=1e-15;ff.TolCon=1e-20;x0=[1;1;1];xm=[0;0;0];xM=[];A=[];B=[];Aeq=[];Beq=[];[ x,f,c,d]=fmincon(y,x0,A,B,Aeq,Beq,xm,xM,@wzhfc1,ff) Warning: Options LargeScale = 'off' and Algorithm = 'trust-region-reflective' conflict. Ignoring Algorithm and running active-set algorithm. To run trust-region-reflective, set LargeScale = 'on'. To run active-set without this warning, use Algorithm = 'active-set'. > In fmincon at 456 Local minimum possible. Constraints satisfied. fmincon stopped because the size of the current search direction is less than twice the selected value of the step size tolerance and constraints are satisfied to within the selected value of the constraint tolerance. Active inequalities (to within options.TolCon = 1e-20): lower upper ineqlin ineqnonlin 2 x = 1.0000 1.0000 f =

综合实验报告

湖南科技大学测控技术和仪器专业 专业综合实验报告 班级 09测控三班 姓名 学号 指导老师付国红王启明 成绩 湖南科技大学机电工程学院 二〇一三年一月五日 目录 一、液压泵站综合控制实验 (3) (一)实验目的 (3) (二)实验内容 (3) 二、液压实验台PLC控制实验 (4) (一)实验目的 (4) (二)实验内容 (4) 三、物探仪器综合设计(①地震超前探测仪)................................. .... . (5) (一)实验目的 (5) (二)实验内容 (5) 四、物探仪器综合设计(②电法勘探仪器)............................ ........... .. (6) (一)实验目的 (6)

(二)实验内容 (6) 五、实验心得................................................................................... ..... .. (7) 一、液压泵站综合控制实验 (一)实验目的 了解液压控制的装置,熟悉PLC编程,并且了解PLC控制在工业领域的发展。理解液压装置的原理并且用于实践生活中去。 (二)实验内容 此实验是液压的测量实验用PLC处理器控制来实现,液压PLC综合控制实验室是我公司根据高校机电一体化对气、电、液控制的教学大纲要求,在我公司专利产品YY-18透明液压传动演示系统的基础上,综合了我公司气动PLC和液压PLC控制实验设备的优点,采用了开放型综合实验台结构,广泛征求专家教授和老师的意见,经不断创新改进研制而成的。是目前集气动控制技术、液压传动控制技术以及PLC可编程序控制器控制技术于一体的理想的综合性实验设备。实验时,它们可以相互辅成,交叉控制。可以让学生直观、感性地对比、了解气、电、液各自具有的特点、特色、及优缺点等。信号采集电路原理设计: (1) 前置放大电路要求有阻抗匹配设计(前置放大器采用集成运放OP07、 采用电压负反馈设计、增益为10、50两档手动设计) (2) 主放大器采用级联组合程控放大、增益动态范围为10至1500倍之内。 (增益程档位要求有30至40梯度之内,具体每档增益值不做具体要求 但要求梯度增益呈线性) (3) 主放大器末端输出值(Up-p)设计为5v,如有溢出则在设计说明中明。 (4) 调理电路中要有工频滤波器设计。 液压实验元件均为透明有机材料制成,透明直观。便于了解掌握几十种常用液压元件的结构、性能及用途。掌握几十种基本实验回路的工作过程及原理。实验时,组装实验回路快捷、方便。同时,配备独立的继电器控制单元进行电气控制,简单实用。通过和PLC比较,,可以加深对PLC可编程序控制器的了解及掌握。 本实验系统采用专用独立液压实验泵站,配直流电机无级调速系统,而且电机速度控制系统内部具有安全限速功能,可以对输出的最高速度进行限制。同时配有数字式高精度转速表,实时测量泵电机组的转速。并且配有油路压力调定功能,可以调定输出压力油的安全工作压力。泵站配有多路压力油输出及回油,可同时对多路液压回路进行供油回油。并采用闭锁式快速接头,以利于快速接通或封闭油路。实现油箱、油泵、直流

运动控制系统实验报告

运动控制系统实验报告 专业班级 学号 姓名 学院名称 运动控制仿真实验报告 一、实验内容与要求 1.单闭环转速负反馈 2.转速电流双闭环负反馈

3.晶闸管相控整流双闭环直流调速系统仿真模型搭建 具体要求:针对1 2 (1)仿真各环节参数 (2)仿真模型的建立 (3)仿真结果,分为空载还是负载,有无扰动 (4)仿真结果分析 二、Simulink 环境下的仿真 1.单闭环转速负反馈 1.1转速负反馈闭环调速系统仿真各环节参数 直流电动机:额定电压N U =220V ,额定电流dN I =55A ,额定N n =1000r/min ,电动机电动 势系数e C =0.192V ·min/r 。 假定晶闸管整流装置输出电流可逆,装置的放大系数s K =44,滞后时间常数 s T =0.00167s 。 电枢回路总电阻R=1.0Ω,电枢回路电磁时间常l T =0.00167s ,电力拖动统机电时间 常数m T =0.075s 。 转速反馈系数α=0.01V ·min/r 。 对应额定转速是的给定电压 n U =10V 。

1.2仿真模型的建立 图1-1单闭环转速负反馈直流调速系统的仿真模型 PI 调节器的值定为 =0.56, = 11.43。 图1-2单闭环转速负反馈直流调速系统加入扰动负载时的仿真模型 1.3仿真结果 p K 1

图1-3空载启动不加扰动转速和电流波形 图1-4空载启动加负载扰动转速和电流波形 1.4仿真结果分析 (1)空载启动无扰动:由空载启动不加扰动转速和电流波形可知,当 =0.56, = 11.43。系统转速有较大的超调量,但快速性较好的。空载启动电流的最大值有230A 左右,而额定电流 dN I =55A ,远远超过了电动机承受的最大电流。 (1)空载启动加负载扰动:由空载启动加负载扰动转速和电流波形可知,在空载启动1S 后加负载扰动,在1S 到1.5S 时间段,转速和电流有明显的下降,但系统马上进行了调节。 p K 1

《控制系统计算机仿真》实验指导书

实验一 Matlab使用方法和程序设计 一、实验目的 1、掌握Matlab软件使用的基本方法; 2、熟悉Matlab的数据表示、基本运算和程序控制语句 3、熟悉Matlab绘图命令及基本绘图控制 4、熟悉Matlab程序设计的基本方法 二、实验内容 1、帮助命令 使用help命令,查找sqrt(开方)函数的使用方法; 2、矩阵运算 (1)矩阵的乘法 已知A=[1 2;3 4]; B=[5 5;7 8]; 求A^2*B (2)矩阵除法 已知A=[1 2 3;4 5 6;7 8 9]; B=[1 0 0;0 2 0;0 0 3]; A\B,A/B (3)矩阵的转置及共轭转置 已知A=[5+i,2-i,1;6*i,4,9-i]; 求A.', A' (4)使用冒号选出指定元素 已知:A=[1 2 3;4 5 6;7 8 9]; 求A中第3列前2个元素;A中所有列第2,3行的元素; (5)方括号[] 用magic函数生成一个4阶魔术矩阵,删除该矩阵的第四列 3、多项式 (1)求多项式p(x) = x3 - 2x - 4的根 (2)已知A=[1.2 3 5 0.9;5 1.7 5 6;3 9 0 1;1 2 3 4] , 求矩阵A的特征多项式; 求特征多项式中未知数为20时的值; 4、基本绘图命令 (1)绘制余弦曲线y=cos(t),t∈[0,2π] (2)在同一坐标系中绘制余弦曲线y=cos(t-0.25)和正弦曲线y=sin(t-0.5),t∈[0,2π] 5、基本绘图控制 绘制[0,4π]区间上的x1=10sint曲线,并要求: (1)线形为点划线、颜色为红色、数据点标记为加号; (2)坐标轴控制:显示范围、刻度线、比例、网络线 (3)标注控制:坐标轴名称、标题、相应文本; 6、基本程序设计 (1)编写命令文件:计算1+2+?+n<2000时的最大n值; (2)编写函数文件:分别用for和while循环结构编写程序,求2的0到n次幂的和。 三、预习要求 利用所学知识,编写实验内容中2到6的相应程序,并写在预习报告上。

控制系统综合实验模板

科技学院 综合实验报告 ( -- 第1 学期) 名称: 控制系统综合实验 题目: 水位控制系统综合实验 院系: 动力工程系 班级: 自动化09K1 学号: 09191 116 学生姓名: 秦术员 指导教师: 平玉环 设计周数: 1周 成绩: 日期: 1月7日

《控制系统》综合实验 任务书 一、目的与要求 本综合实验是自动化专业的实践环节。经过本实践环节, 使学生对实际控制系统的结构、系统中各环节的关系、数字控制器的应用和控制系统的整定等建立起完整的概念。培养学生利用所学理论知识分析、解决实际问题的能力。 1. 了解单容水箱水位控制系统的实际结构及各环节之间的关 系。 2. 学会数字控制器组态方法。 3. 掌握控制系统整定方法, 熟悉工程整定的全部内容。 二、主要内容 1.熟悉紧凑型过程控制系统, 并将系统调整为水位控制状态。 2.对数字控制器组态。 3.求取对象动态特性。 4.计算调节器参数。 5.调节器参数整定。 6.做扰动实验, 验证整定结果。 7.写出实验报告。 三、进度计划

四、实验成果要求 完成实验报告, 实验报告包括: 1.实验目的 2.实验设备 3.实验内容, 必须写出参数整定过程, 并分析控制器各参数的作用, 总结出一般工程整定的步骤。 4.实验总结, 此次实验的收获。 以上内容以打印报告形式提交。 五、考核方式 根据实验时的表现、及实验报告确定成绩。 成绩评分为经过以及不经过。 学生姓名: 秦术员 指导教师: 平玉环 1月7日

一、综合实验的目的与要求 本综合实验是自动化专业的实践环节。经过本实践环节, 使学生对实际控制系统的结构、系统中各环节的关系、数字控制器的应用和控制系统的整定等建立起完整的概念。培养学生利用所学理论知识分析、解决实际问题的能力。 1. 了解单容水箱水位控制系统的实际结构及各环节之间的关 系。 2. 学会数字控制器组态方法。 3. 掌握控制系统整定方法, 熟悉工程整定的全部内容。 二、实验正文 1. 实验设备 紧凑型过程控制系统; 上位机 2. 液位控制系统 2.1 液位控制系统流程图, 如图1

DCS实验报告.

华北电力大学 实验报告 实验名称基于DCS实验平台实现的 水箱液位控制系统综合设计课程名称计算机控制技术与系统 专业班级:自动实 1101学生姓名:潘浩 学号:201102030117成绩: 指导教师:刘延泉实验日期:2014/6/29

基于DCS实验平台实现的 水箱液位控制系统综合设计 一.实验目的 通过使用LN2000分散控制系统对水箱水位进行控制,熟悉掌握DCS控制系统基本设计过程。 二.实验设备 PCS过程控制实验装置; LN2000 DCS系统; 上位机(操作员站) 三.系统控制原理 采用DCS控制,将上水箱液位控制在设定高度。将液位信号输出给DCS,根据PID参数进行运算,输出信号给电动调节阀,由DDF电动阀来控制水泵的进水流量,从而达到控制设定液位基本恒定的目的。系统控制框图如下:

四.控制方案改进 可考虑在现有控制方案基础上,将给水增压泵流量信号引入作为导前微分或控制器输出前馈补偿信号。 五.操作员站监控画面组态 本设计要求设计关于上水箱水位的简单流程图画面(包含参数显示)、操作画面,并把有关的动态点同控制算法连接起来。 1.工艺流程画面组态 在LN2000上设计简单形象的流程图,并在图中能够显示需要监视的数据。 要求:界面上显示所有的测点数值(共4个),例如水位、开度、流量等;执行机构运行时为红色,停止时为绿色;阀门手动时为绿色,自动时为红色。

2.操作器画面组态 与SAMA图对应,需要设计的操作器包括增压泵及水箱水位控制DDF阀手操器: A.设备驱动器的组态过程: 添加启动、停止、确认按钮(启动时为红色,停止和确认时为绿色) 添加启停状态开关量显示(已启时为红色,已停时为绿色) B.M/A手操器的组态过程: PV(测量值)、SP(设定值)、OUT(输出值)的动态数据显示,标明单位,以上三个量的棒状图动态显示,设好最大填充值和最大值;手、自动按钮(手动时为1,显示绿色;自动时为0,显示红色),以及SP、OUT的增减按钮;SP(设定值)、OUT(输出值)的直接给值(用数字键盘)

【实验报告】单轴电机运动控制实验报告范文

单轴电机运动控制实验报告范文 实验一晶闸管直流调速系统电流-转速调节器调试 一.实验目的 1.熟悉直流调速系统主要单元部件的工作原理及调速系统对其提出的要求。2.掌握直流调速系统主要单元部件的调试步骤和方法。 二.实验内容 1.调节器的调试 三.实验设备及仪器 1.教学实验台主控制屏。2.MEL―11组件3.MCL―18组件4.双踪示波器5.万用表 四.实验方法 1.速度调节器(ASR)的调试 按图1-5接线,DZS(零速封锁器)的扭子开关扳向“解除”。 (1)调整输出正、负限幅值“5”、“6”端接可调电容,使ASR调节器为PI 调节器,加入一定的输入电压(由MCL―18的给定提供,以下同),调整正、负限幅电位器RP1、RP2,使输出正负值等于5V。 (2)测定输入输出特性将反馈网络中的电容短接(“5”、“6”端短接),使ASR调节器为P调节器,向调节器输入端逐渐加入正负电压,测出相应的输出电压,直至输出限幅值,并画 图1-5 速度调节器和电流调节器的调试接线图

出曲线。 (3)观察PI特性 拆除“5”、“6”端短接线,突加给定电压(0.1V),用慢扫描示波器观察输出电压的变化规律,改变调节器的放大倍数及反馈电容,观察输出电压的变化。反馈电容由外接电容箱改变数值。 2.电流调节器(ACR)的调试按图1-5接线。 (1)调整输出正,负限幅值 “9”、“10”端接可调电容,使调节器为PI调节器,加入一定的输入电压,调整正,负限幅电位器,使输出正负最大值等于5V。 (2)测定输入输出特性 将反馈网络中的电容短接(“9”、“10”端短接),使调节器为P调节器,向调节器输入端逐渐加入正负电压,测出相应的输出电压,直至输出限幅值,并画出曲线。 (3)观察PI特性 拆除“9”、“10”端短接线,突加给定电压,用慢扫描示波器观察输出电压的变化规律,改变调节器的放大倍数及反馈电容,观察输出电压的变化。反馈电容由外接电容箱改变数值。 一.实验目的 1.了解双闭环不可逆直流调速系统的原理,组成及各主要单元部件的原理。2.熟悉电力电子及教学实验台主控制屏的结构及调试方法。3.熟悉MCL-18,MCL-33的结构及调试方法

PLC控制系统综合实验报告

PLC控制系统综合实验报告 实习任务一: 一、实验目的 学会使用组态软件(组态王)和PLC(SIMEINS S7-200)控制系统连接,采用下位机执行,上位机监视控制的方法,构建完成水塔水位自动控制系统。 二、设计方案: 本实习的具体要组建水塔水位监控系统。水塔系统如图一所示: 水塔 水池阀 泵 图一水塔系统 1、将S21-4挂箱中电压输出单元的输出电压Ug1与Ug2分别作为水池与水塔的液位信号,信号围为1~5VDC。并由PLC的模拟信号输入输出模块读取液位信号。水池液位的变化围为0~4m,即液位信号Ug1对应的测量围为0~4m。水塔液位的变化围为0~2m,即液位信号Ug2对应的测量围为0~2m。 2、阀、泵的自动控制 在自动控制状态下,当水池水位低于水位下限时,阀Y打开(由水塔水位控制单元中灯Y亮表示),当水池水位高于水位上限时,阀Y关闭(由水塔水位控制单元中灯Y灭表示)。当水池水位高于水位下限,且水塔水位低于水位下限时,泵M1运转抽水(由水塔水位控制单元中灯M1亮表示)。当水塔水位高于水位上限时泵M1停止(由水塔水位控制单元中灯M1灭表示)。 3、阀、泵的手动控制 在手动控制状态下,由组态软件中的开关button来控制阀的打开与关闭,当开关闭合时阀打开,当开关断开时阀关闭。由组态软件中的开关buttonM1来控制泵的启动与停止,当开关闭合时泵启动,当开关断开时泵停止。

4、控制状态的切换与显示 由组态软件中开关button手/自动实现控制状态的切换,当开关闭合时系统处于自动控制状态,当开关断开时系统处于手动控制状态。 由基本指令编程练习单元中的灯Q0.0实现控制状态的显示,灯亮表示系统处于自动控制状态,灯灭表示系统处于手动控制状态。 5、组灯控制 由基本指令编程练习单元中的灯Q0.5、Q0.6、Q0.7、Q1.0、Q1.1构成组灯,以组灯的不同状态表示水流的不同状态。具体说明如下: 当阀泵均处于关闭状态时,组灯灭。 当阀处于打开状态而泵处于关闭状态时,组灯中Q1.1、Q1.0、Q0.7依次循环点亮,且当其中某一灯亮时,其前一灯灭。 当阀处于关闭状态而泵处于打开状态时,组灯中Q0.7、Q0.6、Q0.5依次循环点亮,且当其中某一灯亮时,其前一灯灭。 当阀泵均处于打开状态时,组灯中Q1.1、Q1.0、Q0.7、Q0.6、Q0.5依次循环点亮,且当其中某一灯亮时,其前一灯灭。 6、组态程序与PLC程序的连接 7、组态王组态程序 (1)系统运行状态的显示 能够显示系统的控制状态(手动或自动)、水池和水塔的液位、阀泵的开关状态及水流状态。 (2)水位限值的设置 使用户能够设置水池与水塔液位的上下限值,即能够调整阀泵自动开关的条件。 (3)历史数据的记录和查询 能够记录一段时间系统的控制状态、水池和水塔的液位、水池与水塔液位的上下限值以及阀泵的开关状态。并能对历史数据进行查询。 (4)报警功能 能够显示如下报警信息: 当水池液位低于0.5m时,水池液位下下限报警。 当水池液位高于3.5m时,水池液位上上限报警。 当水塔液位低于0.25m时,水塔液位下下限报警。 当水塔液位高于1.75m时,水塔液位上上限报警。 (5)操作权限的区分 设置两个用户组分别为工程师组和操作工组。创建若干分属于不同用户组的用户,两组用户均具有登录系统的权限,但仅工程师组用户具有设置水位上下

运动控制仿真实验报告

运动控制仿真实验报告 姓名:班级:学号: ——晶闸管三相全控桥式整流仿真实验 ——实用 Buck 变换仿真实验 晶闸管三相全控桥式整流仿真实验(大电感负载) 原理电路:

R2 晶闸管三相可控整流仿真实验2原理电路框图 输入三相交流电,额定电压380伏(相电压220伏),额定频率50Hz,星型联接。输入变压器可省略。为便于理解电路原理,要求用6只晶闸管搭建全控桥。 实验内容: 1、根据原理框图构建Matlab仿真模型。所需元件参考下表: 仿真元件库:Simulink Library Browser 示波器Simulink/sink/Scope 要观察到整个仿真时间段的结果波形必须取消对输出数据的5000点限制。 要观察波形的FFT结果时,使能保存数据到工作站。仿真结束后即可点击仿真模型左上方powergui打开FFT窗口,设定相关参数:开始时间、分析波形的周期数、基波频率、最大频率等后,点Display即可看到结果。 交流电源SimPowerSystems/Electrical Sources/AC Voltage Source 设定频率、幅值、相角,相位依次滞后120度。 晶闸管SimPowerSystems/Power Electronics/Thyristor 6脉冲触发器SimPowerSystems/Extra Library/Control Blocks/Synchronized 6-Pulse Generator 设定为50Hz,双脉冲 利用电压检测构造线电压输入。Block端输入常数0. 输出通过信号分离器分为6路信号加到晶闸管门极,分离器输出脉冲自动会按顺序从1到6排列,注意按号分配给主电路对应晶闸管。 电阻、电容、电感SimPowerSystems/Elements/Series RLC Branch 设定参数 负载切换开关SimPowerSystems/Elements/Breaker 设定动作时间 信号合成、分离Simulink/Signal Routing/Demux,Mux 电流傅立叶分解SimPowerSystems/Extra Library/Discrete Measurements/Discrete Fourier 设定输出为50Hz,基波 有效值SimPowerSystems/Extra Library/Discrete Measurements/Discrete RMS value 设定为50Hz 位移功率因数计算Simulink/User-Difined Functions/Fcn 将度转换为弧度后计算余弦

控制系统仿真实验报告

哈尔滨理工大学实验报告 控制系统仿真 专业:自动化12-1 学号:1230130101 姓名:

一.分析系统性能 课程名称控制系统仿真实验名称分析系统性能时间8.29 地点3# 姓名蔡庆刚学号1230130101 班级自动化12-1 一.实验目的及内容: 1. 熟悉MATLAB软件的操作过程; 2. 熟悉闭环系统稳定性的判断方法; 3. 熟悉闭环系统阶跃响应性能指标的求取。 二.实验用设备仪器及材料: PC, Matlab 软件平台 三、实验步骤 1. 编写MATLAB程序代码; 2. 在MATLAT中输入程序代码,运行程序; 3.分析结果。 四.实验结果分析: 1.程序截图

得到阶跃响应曲线 得到响应指标截图如下

2.求取零极点程序截图 得到零极点分布图 3.分析系统稳定性 根据稳定的充分必要条件判别线性系统的稳定性最简单的方法是求出系统所有极点,并观察是否含有实部大于0的极点,如果有系统不稳定。有零极点分布图可知系统稳定。

二.单容过程的阶跃响应 一、实验目的 1. 熟悉MATLAB软件的操作过程 2. 了解自衡单容过程的阶跃响应过程 3. 得出自衡单容过程的单位阶跃响应曲线 二、实验内容 已知两个单容过程的模型分别为 1 () 0.5 G s s =和5 1 () 51 s G s e s - = + ,试在 Simulink中建立模型,并求单位阶跃响应曲线。 三、实验步骤 1. 在Simulink中建立模型,得出实验原理图。 2. 运行模型后,双击Scope,得到的单位阶跃响应曲线。 四、实验结果 1.建立系统Simulink仿真模型图,其仿真模型为

自动控制完整系统综合实验综合实验报告

综合实验报告 实验名称自动控制系统综合实验 题目 指导教师 设计起止日期2013年1月7日~1月18日 系别自动化学院控制工程系 专业自动化 学生姓名 班级 学号 成绩

前言 自动控制系统综合实验是在完成了自控理论,检测技术与仪表,过程控制系统等课程后的一次综合训练。要求同学在给定的时间内利用前期学过的知识和技术在过程控制实验室的现有设备上,基于mcgs组态软件或step7、wincc组态软件设计一个监控系统,完成相应参数的控制。在设计工作中,学会查阅资料、设计、调试、分析、撰写报告等,达到综合能力培养的目的。

目录 前言 (2) 第一章、设计题目 (4) 第二章、系统概述 (5) 第一节、实验装置的组成 (5) 第二节、MCGS组态软件 (11) 第三章、系统软件设计 (14) 实时数据库 (14) 设备窗口 (16) 运行策略 (19) 用户窗口 (21) 主控窗口 (30) 第四章、系统在线仿真调试 (32) 第五章、课程设计总结 (38) 第六章、附录 (39) 附录一、宇光智能仪表通讯规则 (39)

第一章、设计题目 题目1 单容水箱液位定值控制系统 选择上小水箱、上大水箱或下水箱作为被测对象,实现对其液位的定值控制。 实验所需设备:THPCA T-2型现场总线控制系统实验装置(常规仪表侧),水箱装置,AT-1挂件,智能仪表,485通信线缆一根(或者如果用数据采集卡做,AT-4 挂件,AT-1挂件、PCL通讯线一根)。 实验所需软件:MCGS组态软件 要求: 1.用MCGS软件设计开发,包括用户界面组态、设备组态、数据库组态、策略组态等,连接电路, 实现单容水箱的液位定值控制; 2.施加扰动后,经过一段调节时间,液位应仍稳定在原设定值; 3.改变设定值,经过一段调节时间,液位应稳定在新的设定值。

运动控制综合实验报告

班级:学号:姓名:指导老师:

实验一不可逆单闭环直流调速系统静特性的研究一.实验目的 1.研究晶闸管直流电动机调速系统在反馈控制下的工作。 2.研究直流调速系统中速度调节器ASR的工作及其对系统静特性的影响。 3.学习反馈控制系统的调试技术。 二.预习要求 1.了解速度调节器在比例工作与比例—积分工作时的输入—输出特性。 2.弄清不可逆单闭环直流调速系统的工作原理。 三.实验线路及原理 见图4-7。 四.实验设备及仪表 1.MCL系列教学实验台主控制屏。 2.MCL—31A组件(适合MCL—Ⅲ)。 3.MCL—33(A)组件 4.MEL-11挂箱 5.MEL—03三相可调电阻(或自配滑线变阻器)。 6.电机导轨及测速发电机、直流发电机M01(或电机导轨及测功机、MEL—13组件)。 7.直流电动机M03。 8.双踪示波器。 五.注意事项 1.直流电动机工作前,必须先加上直流励磁。 2.接入ASR构成转速负反馈时,为了防止振荡,可预先把ASR的RP3电位器逆时针旋到底,使调节器放大倍数最小,同时,ASR的“5”、“6”端接入可调电容(预置7μF)。 3.测取静特性时,须注意主电路电流不许超过电机的额定值(1A)。 4.三相主电源连线时需注意,不可换错相序。 5.电源开关闭合时,过流保护发光二极管可能会亮,只需按下对应的复位开关SB1即可正常工作。 6.系统开环连接时,不允许突加给定信号U g起动电机。 7.起动电机时,需把MEL-13的测功机加载旋钮逆时针旋到底,以免带负载起动。 8.改变接线时,必须先按下主控制屏总电源开关的“断开”红色按钮,同时使系统的给定为零。 9.双踪示波器的两个探头地线通过示波器外壳短接,故在使用时,必须使两探头的地线同电位(只用一根地线即可),以免造成短路事故。

控制系统仿真实验报告1

昆明理工大学电力工程学院学生实验报告 实验课程名称:控制系统仿真实验 开课实验室:年月日

实验一 电路的建模与仿真 一、实验目的 1、了解KCL 、KVL 原理; 2、掌握建立矩阵并编写M 文件; 3、调试M 文件,验证KCL 、KVL ; 4、掌握用simulink 模块搭建电路并且进行仿真。 二、实验内容 电路如图1所示,该电路是一个分压电路,已知13R =Ω,27R =Ω,20S V V =。试求恒压源的电流I 和电压1V 、2V 。 I V S V 1 V 2 图1 三、列写电路方程 (1)用欧姆定律求出电流和电压 (2)通过KCL 和KVL 求解电流和电压

四、编写M文件进行电路求解(1)M文件源程序 (2)M文件求解结果 五、用simulink进行仿真建模(1)给出simulink下的电路建模图(2)给出simulink仿真的波形和数值

六、结果比较与分析

实验二数值算法编程实现 一、实验目的 掌握各种计算方法的基本原理,在计算机上利用MATLAB完成算法程序的编写拉格朗日插值算法程序,利用编写的算法程序进行实例的运算。 二、实验说明 1.给出拉格朗日插值法计算数据表; 2.利用拉格朗日插值公式,编写编程算法流程,画出程序框图,作为下述编程的依据; 3.根据MATLAB软件特点和算法流程框图,利用MATLAB软件进行上机编程; 4.调试和完善MATLAB程序; 5.由编写的程序根据实验要求得到实验计算的结果。 三、实验原始数据 上机编写拉格朗日插值算法的程序,并以下面给出的函数表为数据基础,在整个插值区间上采用拉格朗日插值法计算(0.6) f,写出程序源代码,输出计算结果: 四、拉格朗日插值算法公式及流程框图

传感器综合实验报告

传感器综合实验报告 ( 2012-2013年度第二学期) 名称:传感器综合实验报告 题目: 利用传感器测量重物质量院系:自动化系 班级:测控1003 班 小组成员: 指导教师:仝卫国 实验周数:1周 成绩: 日期:2013 年7 月7日

目录 一、实验目的 (2) 二、实验设备、器材 (2) 三、传感器工作原理 (2) 1、电容式传感器的工作原理 (2) 2、电涡流式传感器的工作原理 (3) 3、金属箔式应变片传感器工作原理 (3) 四、传感器特性测试 (3) (一)电容式传感器特性分析 (3) (二)电涡流传感器特性分析 (8) 五、实际测试与实验数据处理 (10) (一)电容传感器测重物质量 (10) (二)电涡流式传感器测质量(用于验证) (12) 六、实验结果分析 (14) 七、结论 (14) 1、数据结论 (14) 2、心得体会 (15) 八、参考文献 (16) 相敏检波器实验 (17) 一、实验目的 (17) 二、实验设备、三实验原理 (17) 四、实验步骤 (17)

传感器综合实验报告 一、实验目的 1、了解各种传感器的工作原理与工作特性。 2、掌握多种传感器应用于电子称的原理。 3、根据不同传感器的特性,选择不同的传感器测给定物体的重量。 4、能根据原理特性分析结果,加深对传感器的认识与应用。 5、测量精度要求达到1%。 二、实验设备、器材 1、金属箔式应变片传感器用到的设备: 直流稳压电源、双平行梁、测微器、金属箔式应变片、标准电阻、差动放大器、直流数字电压表。 2、电容式传感器用到的设备: 电容传感器、电容变换器、差动放大器、低通滤波器、电压表、示波器。 3、电涡流式传感器用到的设备: 电涡流式传感器、测微器、铝测片、铁测片、铜测片、电压表、示波器。 三、传感器工作原理 1、电容式传感器的工作原理: 电容器的电容量C是的函数,当被测量变化使S、d或 任意一个参数发生变化时,电容量也随之而变,从而可实现由被测量到电容量的转换。电容式传感器的工作原理就是建立在上述关系上的,若保持两个参数不变,仅改变另一参数,就可以把该参数的变化转换为电容量的变化,通过测量电路再转换为电量输出。 差动平行变面积式传感器是由两组定片和一组动片组成。当安装于振动台上的动片上、下改变位置,与两组静片之间的相对面积发生变化,极间电容也发生相应变化,成为差动电容。如将上层定片与动片形成的电容定为C X1,下层定片与动片形成的电容定为C X2,当将C X1和C X2接入双T型桥路作为相邻两臂时,桥路的输出电压与电容量的变化有关,即与振动台的位移有关。依据该原理,在振动台上加上砝码可测定重量与桥路输出电压的对应关系,称未知重量物体时只要测得桥路的输出电压即可得出该重物的重量。

控制系统数字仿真实验报告

控制系统数字仿真实验报告 班级:机械1304 姓名:俞文龙 学号: 0801130801

实验一数字仿真方法验证1 一、实验目的 1.掌握基于数值积分法的系统仿真、了解各仿真参数的影响; 2.掌握基于离散相似法的系统仿真、了解各仿真参数的影响; 3.熟悉MATLAB语言及应用环境。 二、实验环境 网络计算机系统(新校区机电大楼D520),MATLAB语言环境 三实验内容 (一)试将示例1的问题改为调用ode45函数求解,并比较结果。 实验程序如下; function dy = vdp(t,y) dy=[y-2*t/y]; end [t,y]=ode45('vdp',[0 1],1); plot(t,y); xlabel('t'); ylabel('y');

(二)试用四阶RK 法编程求解下列微分方程初值问题。仿真时间2s ,取步长h=0.1。 ?????=-=1 )0(2y t y dt dy 实验程序如下: clear t0=0; y0=1; h=0.1; n=2/h; y(1)=1; t(1)=0; for i=0:n-1 k1=y0-t0^2; k2=(y0+h*k1/2)-(t0+h/2)^2; k3=(y0+h*k2/2)-(t0+h/2)^2;

k4=(y0+h*k3)-(t0+h)^2; y1=y0+h*(k1+2*k2+2*k3+k4)/6; t1=t0+h; y0=y1; t0=t1; y(i+2)=y1; t(i+2)=t1; end y1 t1 figure(1) plot(t,y,'r'); xlabel('t'); ylabel('y'); (三)试求示例3分别在周期为5s的方波信号和脉冲信号下的响应,仿真时间20s,采样周期Ts=0.1。

PLC综合实践

综合实践实验报告 (测控系统部分) 第二组 班级:自动化08-2班 姓名:程光亮 学号:08051209 日期:2012年2月28日

一、实验任务 任务一 1、按下启动按钮后,循环点亮配电柜上的八个指示灯,每个亮0.5秒钟,熄灭;同时下一个指示灯点亮;到达第8个指示灯后,反方向点亮。按下停止按钮后,全部停止闪烁。再次按下启动按钮后,彩灯在上次的基础上继续闪烁。 2、在操作员屏幕上实现上述控制任务。 操作员屏幕上设置启停按钮,显示彩灯。 任务二利用IO扫描实现网络数据交换 大组1:第1小组第2小组 大组2:第3小组第4小组 大组3:第5小组第6小组 大组4:第7小组第8小组 利用IO扫描实现网络数据交换。 1、在大组之内进行数据交换,如第1小组将本机的%MW10~%MW19的数据写入第2小组的%MW100~%MW109中,并将该数据读出放在本机的%MW20~%MW29中,比较%MW10~19和%MW20~29的数据,看是否相符。同理,第二组按照同样的方法进行测试。 2、在大组之内的小组之间进行数据交换,第1小组读取第2小组PLC 的%MW0~9数据到本小组PLC的%MW50~59;第1小组将自己PLC的%MW20~29的数据写到第2小组PLC的%MW70~79;同时第2小组在动态数据表中,更改MW0~9的数值,看第1小组读取是否正确;并在动态数据表中显示MW70~79的数据,与第1小组写入的进行对比。 同理,第二组也可进行同样的测试,如读取第1组的%MW100~109的数据到本组的%MW150~159,并将本组的%MW120~129数据写入到第二组的%MW170~179。同时第1小组在动态数据表中进行显示和修改,与第二组读取和写入的数据进行对比。 3、增加数据交换范围,增设其它小组PLC的IP,进行数据交换。如第1小组将本机的%MW10~19的数据写入第2小组的%MW100~109,将本机的%MW20~%MW29的数据写入第3小组的%MW100~109,依次类推。并将写入的数据分别读出,与写入数据进行对比。任务三抽油机系统启动及数据采集 1、利用变频器启动并控制抽油机启动(参见《Altivar_71异步电机变频器编程手册》),通过图形终端改变抽油机转动的速度。 2、在抽油机转动的过程中测量抽油机的位移及载荷,并在操作员屏幕上把数据显示出来。(其中位移测量在第一个模拟量测量模块的第1通道,工程单位0~400mm;载荷测量在第一个模拟量测量模块的第2通道,工程单位0~120N。变送器的量程都是4~20mA) 3、电机的转速测量由计数模块的第0个通道进行测量。将电机的转速在操作员屏幕上显示出来。 4、在操作员屏幕上显示载荷的趋势变化曲线,通过气泵加入气体,观察曲

《MATLAB与控制系统。。仿真》实验报告

《MATLAB与控制系统仿真》 实验报告 班级: 学号: 姓名: 时间:2013 年 6 月

目录实验一MATLAB环境的熟悉与基本运算(一)实验二MATLAB环境的熟悉与基本运算(二)实验三MATLAB语言的程序设计 实验四MATLAB的图形绘制 实验五基于SIMULINK的系统仿真 实验六控制系统的频域与时域分析 实验七控制系统PID校正器设计法 实验八线性方程组求解及函数求极值

实验一MATLAB环境的熟悉与基本运算(一) 一、实验目的 1.熟悉MATLAB开发环境 2.掌握矩阵、变量、表达式的各种基本运算 二、实验基本原理 1.熟悉MATLAB环境: MATLAB桌面和命令窗口、命令历史窗口、帮助信息浏览器、工作空间浏览器、文件和搜索路径浏览器。 2.掌握MATLAB常用命令 表1 MATLAB常用命令 变量与运算符 3.1变量命名规则 3.2 MATLAB的各种常用运算符 表3 MATLAB关系运算符 表4 MATLAB逻辑运算符

| Or 逻辑或 ~ Not 逻辑非 Xor逻辑异或 符号功能说明示例符号功能说明示例 :1:1:4;1:2:11 . ;分隔行.. ,分隔列… ()% 注释 [] 构成向量、矩阵!调用操作系统命令 {} 构成单元数组= 用于赋值 的一维、二维数组的寻访 表6 子数组访问与赋值常用的相关指令格式 三、主要仪器设备及耗材 计算机 四.实验程序及结果 1、新建一个文件夹(自己的名字命名,在机器的最后一个盘符) 2、启动MATLAB,将该文件夹添加到MATLAB路径管理器中。 3、学习使用help命令。

相关主题
文本预览
相关文档 最新文档