当前位置:文档之家› GMW3399:2006多相钢和超高强度钢

GMW3399:2006多相钢和超高强度钢

GMW3399:2006多相钢和超高强度钢
GMW3399:2006多相钢和超高强度钢

700高强度钢板

汽车工业的迅猛发展为国民经济和社会发展发挥了重要作用。但受能源短缺、环境污染等问题的影响,该行业发展之矛盾也日益凸显。为了顺应当前时代汽车轻量化的发展趋势,高强度钢板的研发以及应用开始更加受到行业的瞩目。 与其它汽车轻量化的候选材料镁、铝合金和复合材料相比,高强度钢板具有以下优点:原材料价格低,经济性好; 性能优越,能保证零件的刚性; 可以直接利用现有的(冲压)成形、焊接、涂装和总装生产线,大大节约了设备投资成本。 成形性能好; 高烘烤硬化性能; 能量吸收率较高;

高的疲劳强度和长的疲劳寿命; 高的防撞和抗凹性能。 由于先进高强度钢在强度、抗腐蚀具有一定的相对优越性能,随着先进高强度钢应用技术的进一步成熟,其必将有利于进一步提高汽车的安全性、环保性及节能性。因此,先进高强度钢将会在部分汽车零部件上应用有着比铝、镁合金更大的优势等。 700高强度钢板是南京和菱贸易有限公司对外主营销售的钢材产品,产品质量在行业内部拥有着良好的信誉口碑。如果您有实际的采购需要,欢迎致电联系我们。 南京和菱贸易有限公司,位于六朝古都南京的鼓楼区中储生产资料市场,为钢材市场诚信单位,公司地理位置优越,交通便利。我公司资源丰富,价格合理,服务周到,可按照客户要求,加工开平,可待定期货。材料位于钢厂内,钢厂外仓库为洪申库,方瑞库,中储库,西马船厂库等各大仓库。 公司主要经销:宝钢、涟钢、武钢、马钢、南钢、太钢等大钢厂产品。产品主要包括:耐磨钢(热处理钢板)、高强度工程机械用钢(单张回火调制钢板)等;汽车大梁钢;搅拌车筒体及叶片用钢;耐候钢,耐酸钢;中高碳钢;双相钢;管线钢等。 公司秉承“诚信服务于广大客户”的经营宗旨,坚持以服务开拓市场,以客户为导向。在华东地区建立了广泛的客户群,已与多家国企及上市公司建立长期合作关系,并受到了客户的一致好评,在客户和流通行业中树立了良好的企业形象。

高强度钢板介绍

高强度钢板介绍 牌号Q420钢,强度高,特别是在正火或正火加回火状态有较高的综合力学性能。主要用于大型船舶,桥梁,电站设备,中、高压锅炉,高压容器,机车车辆,起重机械,矿山机械及其他大型焊接结构件。 牌号Q460钢,强度最高,在正火,正火加回火或淬火加回火状态有很高的综合力学性能,全部用铝补充脱氧,质量等级为C、D、E级,可保证钢的良好韧性的备用钢种。用于各种大型工程结构及要求强度高,载荷大的轻型结构。 1.1 国内 国内对汽车用高强度钢板倾向于分为两类: 普通高强度钢板抗拉强度或屈服强度相对较低,或采用传统工艺或传统工艺少许改进即能生产出来高强度钢板。如烘烤硬化钢板、含磷钢板、高强度IF 钢板以及HSLA钢板等。 先进高强度钢板需要采用先进设备及工艺方法才能生产出来的钢板,如双相钢板(DP钢板)、复相钢板(CP钢板)、相变诱发塑性钢板(TRIP钢板)和马氏体钢板(M钢板或Mart钢板)等。 1.2 日本 将抗拉强度不低于340MPa的冷轧钢板和抗拉强度不低于490MPa的热轧钢板通称为高强度钢板(HSS)。 1.3 德国(BMW) 高强度钢板(HSS)屈服强度高于180MPa(包括180MPa),低于300MPa 的钢板。 先进高强度钢板(AHSS)屈服强度高于300MPa(包括300MPa),低于600MPa 的钢板。 超高强度钢板(UHSS)屈服强度高于600MPa(包括600MPa)的钢板。1.4 ULSAB组织 ULSAB组织将高强度钢板分为两类:屈服强度为210~550MPa的钢板定义为高强度钢板(HSS);屈服强度大于550MPa的钢板定义为超高强度钢板(UHSS)。 1.5 国际钢铁协会(IISI) 把高强度钢板从定性概念上定义为高强度钢板(HSS)和先进高强度钢板(AHSS)。 2 高强度钢板的品种介绍 2.1 普通高强度钢板 (1)高强度IF钢板是在IF钢的基础上,添加不同类型的强化元素(如固溶强化元素P、Mn、Si)和适当的轧制工艺控制,使钢材在保证良好塑性和冲压性能的同时,拥有较高的强度,满足复杂形状轿车冲压件性能要求。 (2)烘烤硬化钢板(BH钢)包括IP钢烘烤硬化钢板和低碳烘烤硬化钢板两种。特点是钢板冲压成形前具有较低的屈服强度,通过冲压成形后的涂漆烘烤工艺使钢板的屈服强度增加。 (3)含磷钢板利用磷在钢中的固溶强化作用进行强化。含磷钢板可以用来冲制一些形状比较复杂的汽车冲压件。 (4)超低碳含磷钢板特点是具有良好的深冲性、塑性和韧性,P、Mn、Si 等元素的固溶强化作用保证了其强度。

超高强度钢

超高强度钢现在已发展成为应用范围很广的一类重要钢种,如已经大量应用于火箭发动机外壳、飞机起落架、防弹钢板等性能有特殊要求的领域。 随着洁净化、微合金和控轧控冷等先进冶金技术在钢铁企业的逐步推广和应用,钢材的品质得到了大幅度提高,发达国家正在研制相当于目前常用钢材抗拉强度数倍的超高强度钢。这种钢具有超细化、超洁净、超均质的组织和成分的特征,以及超高强度和超高韧性的特点。超高强度钢与普通结构钢的强度的界限目前尚无统一规定,习惯上是将室温抗拉强度超过1,400MPa、屈服强度大于1,200MPa 的钢称为超高强度钢。超高强度钢除了要求其高的抗拉强度外,还要求具有一定塑性和韧性、尽可能小的缺口敏感性、高的疲劳强度、一定的抗蚀性、良好的工艺性能、符合资源情况及价格低廉等。超高强度钢现在已发展成为应用范围很广的一类重要钢种,如已经大量应用于火箭发动机外壳、飞机起落架、防弹钢板等性能有特殊要求的领域,而且其使用范围正在不断地扩大到建筑、机械制造、车辆和其它军事装备上。因此,超高强度钢不仅是钢铁材料研究的重要方向,而且具有广阔的应用和发展前景。 超高强度钢的发展 超高强度合金钢是为满足某些特殊要求发展起来的,按其物理冶金学特点,超高强度钢大体可以分为低合金超高强度钢、二次硬化超高强度钢和马氏体时效钢。典型的低合金超高强度钢是AISI 4340 和D6AC;典型的二次硬化型中,合金超高强度钢是HY180 和AF1410,由于马氏体时效钢属高合金钢,在这里将不拟述及。 1.低合金超高强度钢 低合金超高强度钢大多是AISI 4130、4140、4330 或4340的改进型钢种。AISI 4340 是最早出现的低合金超高强度钢,它于1950年开始研究,并于1955年开始用于飞机起落架。通过淬火和低温回火处理,AISI 4130、4140、4330 或4340钢的抗拉强度均可超过1,500MPa,而且缺口冲击韧性较高。 为了抑制低合金超高强度钢回火脆性,1952年美国国际镍公司开发了300M。该钢通过添加了1%至2%的硅来提高回火温度(260至315摄氏度),并可抑制马氏体回火脆性。另外,通过调整碳含量和添加少量钒,又开发了AMS 6434 和LadishD6AC钢。20世纪80年代,中国通过对AISI 4330的改进,研制开发了高强韧性能的685和686装甲钢。在AISI 4340 的基础上,中国还研制了新型超高硬度695装甲钢,其抗穿甲弹防护系数达到1.3以上。值得注意的是,尽管以4340和300M 钢为代表的低合金超高强度钢具有高强度,但它们的断裂韧性和抗应力腐蚀能力都比较差,因而其应用受到了一定的限制。 2.二次硬化超高强度钢 随着航空工业的快速发展,开发强度高、断裂韧性好、可焊接性好的新型航空材料成为发展方向。研究者于20 世纪70 年代开发了HY180钢。为了达到航空构件材料的损伤容限和耐久性,70 年代末Speich 和Chendhok 等在对Fe10Ni 系合金钢进行的研究基础上,对HYl80 进行了改进,开发了AF1410超高强度合金钢,该钢经830℃油淬正510℃时效后,σ0.2大于等于1517MPa,KⅠc大于等于154MPa m1/2。因此该钢以极高的强韧性、良好的加工性能和焊接性能成为受航空界欢迎的一种新型高强度钢。

超高强度船体结构钢的开发现状与趋势

超高强度船体结构钢的开发现状与趋势 发表时间:2018-08-10T15:17:55.367Z 来源:《科技中国》2018年4期作者:汤卫兵黄振毅[导读] 摘要:超高强度船体结构钢在制造领域,通常被用来为海洋平台或者大型船舶提供结构上的强度支撑,促进海洋油气开发工程的顺利推进,有着广阔的应用前景。基于此主要发展情况,本文首先分析当前国内外超高强度船体结构钢的开发现状,同时立足于此主要现状,深入探索在未来的制造业消费市场中,超高强度船体结构钢的发展趋势,希望能够为超高强度船体结构钢的科学应用提供理论层面借 鉴。 摘要:超高强度船体结构钢在制造领域,通常被用来为海洋平台或者大型船舶提供结构上的强度支撑,促进海洋油气开发工程的顺利推进,有着广阔的应用前景。基于此主要发展情况,本文首先分析当前国内外超高强度船体结构钢的开发现状,同时立足于此主要现状,深入探索在未来的制造业消费市场中,超高强度船体结构钢的发展趋势,希望能够为超高强度船体结构钢的科学应用提供理论层面借鉴。 关键词:超高强度船体结构钢;焊接性能;析出粒子 引言:在建造船体结构钢的时候,一定要严格按照船级社的建造规范依次开展施工工艺,使得最终制造出来的船体结构钢质量能够满足船体结构的建造需要。通常来说,船体结构钢的强度有着严格的等级划分标准,其中超高强度结构钢属于强度要求最高的一种类型,要求在建造的时候严格按照强度等级超出420MPa的标准来开展生产工艺,使得最终建造出来的钢强度能够满足大型船舶的运航需求。 一、浅析超高强度船体结构钢的开发现状 (一)生产工艺的开发现状 传统的TMCP技术发展至今,已经逐渐演变成了超高强度船体结构钢的生产工艺。在建造超高强度船体结构钢的时候,技术人员通常会注意将TMCP技术的粗轧温度稳定在1000℃-1050℃之间,接着运用大道次压下量的方法,让形变的部位能够逐渐渗透到板坯心部,使得其中的奥氏体材质逐渐结晶。当前已经出现了新的生产工艺,能够结合大型船舶对超高强度船体结构钢质量的使用需求,大幅优化TMCP生产工艺的性能,使得结晶环节中的材料下压率能够超过40%,再逐渐回温到Ar3温度以上,最后可以通过冷却方法的利用,得到具有细小晶粒的室温组织,这种新型生产工艺的好处便是能够显著增强超高强度船体结构钢大强度[1]。 (二)HY系列的开发现状 超高强度船体结构钢HY系列,主要包括美国研制出来的HY80、HY100以及HY130等系列,还有能够替换HY80的HSLA80系列,以及能够替换HY100的HSLA100系列。HY系列的超高强度船体结构钢具有非常高的强度等级,甚至能够达到550MPa-890MPa,主要是因为HY 系列的超高强度船体结构钢具有大量的Ni物质。当超高强度船体结构钢中的Mn含量能够达到1.6%的时候,Ni的含量能够达到1.02%,这时侯超高强度船体结构钢的强度性能最高,正是因为HY系列的超高强度船体结构钢采用了高Mn+低Ni的成分配置方法,所以该系列的钢结构的强度较高,但是焊接性能有所欠缺。 (三)HSLA系列的开发现状 相比之下,HSLA系列的超高强度船体结构钢在碳当量,以及裂纹敏感系数方面的生产工艺都与HY系列存在着较大的不同。首先,HSLA系列的超高强度船体结构钢显著降低了C、Cr、Ni的含量,同时又增加了Cu、Mo和Mn的含量,使得最终制造出来的HSLA系列超高强度船体结构钢,相较HY100钢要多出大量的Mn、Mo、Ni含量,但是Cr的含量却要少很多,只能在一定程度上改善HY系列超高强度船体结构钢的碳当量以及裂纹敏感系数,也就是说实现了焊接性能的有效改善,并且合金元素也有了极大的改善,整体来说HSLA100系列超高强度船体结构钢逐渐转变成了双向组织的超高强度船体结构。 二、浅析超高强度船体结构钢的发展趋势 (一)Cu析出粒子的优化 目前,国内外超高强度船体结构钢的研发,正在逐步向改善强韧化方法以及保持适当碳当量值的方向发展,以期大幅提高超高强度船体结构钢的强度性能。开发超高强度船体结构钢的时候,引出的析出强化粒子主要为Cu粒子,这种Cu粒子的优势在于能够与超高强度船体结构钢的组织类型、变形程度达到良好的契合,从而加强Cu粒子在界面的偏聚情况,使得析出的Cu粒子激活能开始有所降低。如此一来,通过Mn以及Ni的添加,能够显著降低Cu粒子的临界形核功,继而利用三种元素之前的相互契合与相互作用,有效提升奥氏体的稳定性,最终达到强化超高强度船体结构钢结构强度的效果[2]。 (二)化合物析出粒子 在回火温度升高的条件下,超高强度船体结构钢会析出大量富含Nb、Ti的碳氮化物。这些化合类物质的尺寸基本处于10-20nm之间,在Nb、Ti显著增高的前提下也不会导致超高强度船体结构钢中碳当量的增加,能够有效减缓C原子的扩散速度。在电子搅拌离心力的作用下,细小的钛氧化物粒子开始逐渐向周边扩散,等到冷却之后就能够产生纳米钛氧化粒子,可以有效抵抗奥氏体的生产,从而显著改善超高强度船体结构钢的力学性能,使得最终生产出来的超高强度船体结构钢在质量性能商更为优越,是为未来超高强度船体结构钢的主要发展方向。 (三)焊接性能的提升 焊接性能的提升能够改善超高强度船体结构钢的性能,增强其在结构方面的铸造质量。在目前的生产工艺中,超高强度船体结构钢一旦经受了高温热循环处理,便会导致结构的韧性开始下降,影响到钢结构最后的焊接效果。因此,未来提升超高强度船体结构钢的焊接性能将成为主要的发展方向,目的是为了提高焊接前预热、焊接后回火处理的效果,保证超高强度船体结构钢在生产工艺能够获得良好的焊接效果,继而逐步突破超高强度船体结构钢焊接工艺方面存在的难点,促进超高强度船体结构钢强度等级的提高。 结束语:综上所述,目前我国的超高强度船体结构钢开发正在逐步取得新的进展,面临的各项技术瓶颈也在不断的被突破,未来超高强度船体结构钢还将在我国走向纵深化的发展道路。但是与此同时,技术人员还要意识到超高强度船体结构钢开发过程中存在的技术难点,继而从韧性、强度以及焊接性能等方面出发,全面推动超高强度船体结构钢的研发技术走向质的飞跃,提升船体结构的稳定性。参考文献: [1]雷玄威, 黄继华, 陈树海,等. 超高强度船体结构钢的开发现状与趋势[J]. 材料科学与工艺, 2015, 23(4):7-16. [2]陈佳, 孙明, 隋丹,等. 高强度船体结构钢的现状与发展[J]. 工程技术:全文版, 2016(2):00289-00289.

国内外钢材强度

3 材料 3.1 结构钢材 3.1.1 概论 本章规范涉及根据以下条款之一进行装配式结构的设计,其中结构钢设计强度不超过460N/mm2。条款1: 遵照附录A1.1的相关材料标准之一和条款3.1.2所列的基本要求并且由具有质量保证体系的厂商生产的钢材。 条款2: 没有按照附录A1.1的相关标准之一但是来自于具有认可质量保证体系的厂商的钢材。这些钢材在使用前需进行测试以表明其能够满足某个相关标准。附录D1列出了关于测试试样尺寸的要求。条款3: 不确定钢材;没有包含在条款1、条款2或条款1H中的钢材。在使用前必须对这些钢材进行拉伸试验,以证明其能够满足预期设计目的。附录D1列出了关于测试试样尺寸的要求。对这些材料的使用进行了用途的约束和限制。 章节3.1涉及热轧型钢和冷成型空腹截面型钢,同时章节3.8涉及冷成型开口截面型钢和压型钢板。 根据条款3.1.3列出的附加的要求和限制,规范包括了一个高强钢材的级别,其强度大于 460N/mm2同时不超过690N/mm2,并且由具有认可质量保证体系的厂商生产。 条款1H: 屈服强度大于460N/mm2并且小于或等于690N/mm2同时满足附录A1.1所列某个相关标准的高强钢材。条款3.1.3给出了关于这些钢材及生产厂商的基本要求。附录D1列出了关于测试试样尺寸的要求。 本规范没有涉及屈服强度大于690N/mm2的超高强度钢材。根据香港建筑权威的批准,其可以以专有高强拉杆或拉筋的形式,用于抗拉螺栓连接的应用,或者其它用途。在这些情况中,RSE必须提供彻底的证明,以确保香港将建筑权威材料文件递呈中的所有要求都能够满足。 本规范包括弹性和塑性分析及设计。塑性分析和设计不允许用于不确定钢材或屈服强度大于 460N/mm2的钢材。高强钢材可能有利于某一些临界极限状态,但限制了抗屈曲能力的改善。它们的使用没有能够改善疲劳和正常使用状态的性能。 表3.1-强度等级概括表

BS960E超高强度钢板现货

BS960E超高强度钢板规格为2.0-25*1000-220,是一种主要应用于重型起重机,叉车等领域的超高强度钢板产品。 BS系列高强结构钢不仅具有高强度,同时还具有良好的塑性,适合冷弯加工成形。对于高强钢来说,折弯半径是冷弯成型工艺的基本参数,应予以关注,建议折弯内径不要小于供货技术条件规定的弯曲直径。另外需要注意的是,冷弯结束后高强钢的回弹比普通钢略大,可能导致高强钢构件形状出现偏差。可通过适当的过弯曲来保证获得所需的折弯角度。 滚压成型时,单次滚压变形量不宜太大,通过调整变形量,可避免边部开裂。 矫形 BS高强钢结构如果出现形状偏差而需要矫形时,建议采用冷矫形方式。如特殊情况下需要采用热矫形时,建议热矫形温度不超过550℃,超过此温度,可能改变钢板性能。 切割 BS高强钢可进行机械剪切加工。剪刃间距是重要的参数,根据我们的客户实际操作经验,高强钢剪切时应该选择相对较小的剪刃间距,避免剪切断面出现断口分离现象。BS高强钢适用于火焰切割。对于氧-乙炔切割,常用规格为2#割嘴,直径1.2mm时,切割速度、气体压力和火焰特性对切割质量有重要影响,其中切割速度的影响较大。随着切割速度增大,

其切割面逐渐由平直向倾斜过渡,宏观割面质量逐渐变差;其割形成了热影响区(HAZ)的宽度随着切割速度的增加而逐渐减小。与中性焰相比,氧化焰的切割质量相对较差,其HAZ宽度也相对更大,故不推荐采用。 如果想要了解更多有关超高强度钢板的相关信息或者有实际的采购需要,欢迎致电联系南京和菱贸易有限公司。 南京和菱贸易有限公司,位于六朝古都南京的鼓楼区中储生产资料市场,为钢材市场诚信单位,公司地理位置优越,交通便利。我公司资源丰富,价格合理,服务周到,可按照客户要求,加工开平,可待定期货。材料位于钢厂内,钢厂外仓库为洪申库,方瑞库,中储库,西马船厂库等各大仓库。 公司主要经销:宝钢、涟钢、武钢、马钢、南钢、太钢等大钢厂产品。产品主要包括:耐磨钢(热处理钢板)、高强度工程机械用钢(单张回火调制钢板)等;汽车大梁钢;搅拌车筒体及叶片用钢;耐候钢,耐酸钢;中高碳钢;双相钢;管线钢等。 公司秉承“诚信服务于广大客户”的经营宗旨,坚持以服务开拓市场,以客户为导向。在华东地区建立了广泛的客户群,已与多家国企及上市公司建立长期合作关系,并受到了客户的一致好评,在客户和流通行业中树立了良好的企业形象。

高强钢

高强度钢材在建筑工程中的应用2012年05月16日08:05网络21次阅读0次被顶共有评论0条从钢结构工程的发展历史来看,钢结构的发展始终是与钢材的强度以及生产工艺的发展带来的加强性能紧密相关。也是由于钢结构的发展,对材料的各种性能指标不断推出新的要求,促进了钢材种类的扩展及强度的提高;正是钢结构材料的不断改进,提高了钢结构的承载力,经济性能和使用性能,满足和促进了钢结构工程的发展,应用,推广及进步,同时与高强度钢材匹配的具有良好韧性,延性,和足够强度的焊接金属材料和焊接工艺逐渐地成熟,完全能满足钢结构加工制作的要求,使高强度钢材的应用成为可能。 近几年,国内的高层钢结构建筑,大跨度空间结构的发展,对钢材的强度等指标提出了更高的要求,像国家体育场就使用了Q460E,水立方工程使用了Q420,CCTV新址使用了Q460,均是经专门论证而使用的.我国新的钢材规范低合金高强度结构钢GB/T1591-2008,代替GB/T1591-1994,也给出了Q500,Q550,Q620,Q690级性能钢材,取消了Q295强度级别钢材。有的学者,将强度级别460Mpa-1100Mpa钢材称为超高强度钢材,笔者认为,700MPA 以下钢材还是根据国内习惯及规范中的叫法称为高强度钢材为宜(指低合金钢),更高强度级别的钢材也可称为超高强度钢材。 高强度钢材的优点有很多,研究结果表明,在同样的轴心受压条件下,采用高强度钢材的钢柱,在整体稳定方面,极限应力δu与屈服强度fy的比值δu/fy(即整体稳定系数φ),要比普通强度钢材钢柱高很多。 这主要是因为相对于普通强度钢材钢柱,构件的初始缺陷(主要包括几何初始缺陷和残余应力)对高强度钢材钢柱的影响要小很多,残余应力特别是残余压应力的数值与钢材的屈服强度没有直接关系。在钢柱截面起控制作用的关键部位,对于高强度钢材钢柱而言,残余应力与钢材屈强度的比值要比普通钢材钢柱小很多;恰恰是这一比值对钢柱的整体稳定系数有很大影响,而不是残余应力的绝对数值大小。 关于几何初始缺陷的影响,已有研究者在仅考虑相同几何初始缺陷条件下,针对两种钢材(235MPa和690MPa)的H形截面轴心受压钢柱绕强轴的整体稳定承载力进行了初步计算和对比,结果表明高强度钢材(690MPa)钢柱的相对强度(即整体稳定系数φ)更高。 相对于普通钢材,钢结构采用高强度钢材具有以下优势:能够减小构件尺寸和结构重量,相应地减少焊接工作量和焊接材料用量,减少各种涂层(防锈、防火等)的用量及其施工工作量,使得运输安装更加容易,降低钢结构的加工制作、运输和安装成本;在建筑物使用方面,减小构件尺寸能够创造更大的使用净空间;特别是,能够减小所需板的厚度,从而相应减小焊缝厚度,改善焊缝质量,提高结构疲劳使用寿命。采用高强度钢材,有利于可持续发展战略和保护环境基本国策的实施。高强度钢材能够降低钢材用量,从而大大减少铁矿石资源的消耗;焊接材料和各种涂层(防锈、防火等)用量的减少,也能够大大减少不可再生资源的消耗,同时能够减少因资源开采对环境的破坏,这对于我国实施可持续发展战略、改变“高资源消耗”的传统工业化发展模式、充分利用技术进步建立“效益优先型”、“资源节约型”和“环境友好型”国民经济体系都有极大的促进作用。 欧美国家以及日本,对高强度钢材的发展及应用均十分重视,像欧洲的建筑用高强度钢材规范EN10025-6,给出了高强度钢材的力学性能,化学成份以及冲击韧性等,从而保证钢材具有良好的焊接性能也为其他工程中开阔了畅通的道路。例如: 1,索尼中心(Sony Center) 德国柏林索尼中心大楼(Sony Center)(图)为了保护已有的一个砌体结构建物,将大楼的一部分楼层悬挂在屋顶桁架上。屋顶桁架跨度60m,高12m,其杆件用600mm×100mm矩形实心截面,采用了S460和S690钢材(强度标准值460MPa和690MPa),以尽可能减小构件截面。

超高强度钢应用.

超高强度钢不仅具有高的抗拉强度, 还具有一定塑性和韧性、小的缺口敏感性、高的疲劳强度、一定的抗蚀性、良好的工艺性能、符合资源情况及价格低廉等优点,在航空工业的应用越来越广泛。 我国在高性能材料的研究上与国外相比还比较落后, 目前各型国产飞机的承力构件大部分以 30CrMnSiA 等低合金高强度钢为主体材料,超高强度钢较少,在超高强度钢结构件的制造技术方面更显薄弱, 针对这些新型材料的高效加工技术有必要进行研究。 国内的新研机型中超高强度钢结构件的数量逐年增多, 尤其是某型机的襟翼主滑轨 , 结构相当复杂,尺寸公差要求相当严格。 国外先进飞机的主承力构件大量使用了超钢强度钢, 如美国的军机和主要民航飞机的起落架材料都广泛的应用, F-15、 F-16、 DC-10、 MD-11 等军用战斗机都采用了超高强度钢, 此外波音 747 等民用飞机的起落架及波音 767 飞机机翼的襟翼滑轨、缝翼管道等也采用超钢强度钢制造。 超高强度钢具有刀具易磨损、切削力大、断屑困难等加工特点。为适应新材料的迅速广泛应用, 国外发达国家在零件加工参数、加工冷却、变形控制、刀具寿命、加工设备等方面进行大量的研究和试验, 积累了超高强度钢结构件的加工技术和经验, 建立了超高强度钢的加工工艺知识数据库和切削参数数据库, 规范了各种技术资料, 拥有配套的加工刀具和设备, 实现了超高强度钢结构件的高效加工, 保证产品的质量, 切削参数基本实现最优化状态,充分发挥了设备、刀具的最大潜力。 随着我国超高强度钢应用比例的不断加大, 国内科研院所对其高效加工进行了不同程度的研究。然而在超高强度钢结构件切削参数选择、工艺方法制定、高效加工等方面没有行成系统的工艺知识库和典型规范来指导企业生产, 直接导致超高强度钢结构件加工周期长、效率低、加工质量不稳定的现状。

超高强度钢定义

超咼强度钢定乂 超高强度钢 超高强度钢一般是指屈服强度大于1380MPa的高强度结构钢。20世纪40年代中期,美国用AISI4340结构钢通过降低回火温度,使钢的抗拉强度达到1600?1900MPa 50年代以后,相继研制成功多种低合金和中合金超高强度钢,如300M D6AC和H 一11钢等。60年代研制成功马氏体时效钢,逐步形成18Ni马氏体时效钢系列,70年代中期,美国研制成功高纯度HP310钢,抗拉强度达到2200MPa法国研制的35NCD16钢,抗拉强度大于1850MPa而断裂韧度和抗应力腐蚀性能都有明显的改进。80年代初,美国研制成功AF1410二次硬化型超高强度钢,在抗拉强度为1860MPS时,钢的断裂韧度达

到160 MP a m以上,AF1410钢是目前航空和航天工业部门正在推广应用的一种新材料。 中国于50年代初研制成功30CrMnSiNi2A超高强度钢,抗拉强度为1700MPa 70年代初,结合中国资源条件,研制成功32Si2M n2MoVA和 40CrMnSiMoVA(G(一4)钢。1980 年以来,从国 外引进新技术,采用真空冶炼新工艺,先后研制 成功45CrNiMoVA (D6AC)、34Si2MnCrMoVA

(406A) 、35CrNi4MoA、40CrNi2Si2MoVA(300M) 和18Ni马氏体时效钢,成功地用于制做飞机起落架、固体燃料火箭发动机壳体和浓缩铀离心机简体等。目前超高强度钢已形成不同强度级别系列,在国防工业和经济建设中发挥着重要的作用。 现在,以改变合金成分提高超高强度钢的强 度和韧性已很困难。发展超高强度钢的主要方向是开发新工艺、新技术,提高冶金质量,如采用真空冶炼技术,最大限度降低钢中气体和杂质元素含量,研制超纯净超高强度钢;通过多向锻造和形变热处理,改变钢的组织结构和细化晶粒尺寸,从而提高钢的强度和韧性,例如正在发展的相变诱发塑性钢(TRIP钢)等。 超高强度钢的合金成分、组织和特性 (1)中碳低合金超高强度钢此类钢是通过淬火和回火处理获得较高的强度和韧性,钢的强度主要取决于钢中马氏体的固溶碳浓度。含碳量增加,钢的强度升高;而塑性和韧性相应降低。因此,在保证足够强度的原则下,尽可能降低钢中含碳量,一般含碳量在0?30?0. 45% o钢中合

超高强度钢

超高强度钢 超高强度钢一般是指屈服强度大于1380MPa的高强度结构钢。20世纪40年代中期,美国用AISI4340结构钢通过降低回火温度,使钢的抗拉强度达到1600~1900MPa。50年代以后,相继研制成功多种低合金和中合金超高强度钢,如300M、D6AC和H一11钢等。60年代研制成功马氏体时效钢,逐步形成18Ni马氏体时效钢系列,70年代中期,美国研制成功高纯度HP310钢,抗拉强度达到2200MPa。法国研制的35NCDl6钢,抗拉强度大于1850MPa,而断裂韧度和抗应力腐蚀性能都有明显的改进。80年代初,美国研制成功AFl410二次硬化 型超高强度钢,在抗拉强度为1860MPa时,钢的断裂韧度达到160 MPa·m以上,AFl410 钢是目前航空和航天工业部门正在推广应用的一种新材料。 中国于50年代初研制成功30CrMnSiNi2A超高强度钢,抗拉强度为1700MPa。70年代初,结合中国资源条件,研制成功32Si2Mn2MoVA和40CrMnSiMoVA(GC一4)钢。1980年以来,从国外引进新技术,采用真空冶炼新工艺,先后研制成功45CrNiMoVA (D6AC)、34Si2MnCrMoVA (406A)、35CrNi4MoA、40CrNi2Si2MoVA(300M)和18Ni马氏体时效钢,成功地用于制做飞机起落架、固体燃料火箭发动机壳体和浓缩铀离心机简体等。目前超高强度钢已形成不同强度级别系列,在国防工业和经济建设中发挥着重要的作用。 现在,以改变合金成分提高超高强度钢的强度和韧性已很困难。发展超高强度钢的主要方向是开发新工艺、新技术,提高冶金质量,如采用真空冶炼技术,最大限度降低钢中气体和杂质元素含量,研制超纯净超高强度钢;通过多向锻造和形变热处理,改变钢的组织结构和细化晶粒尺寸,从而提高钢的强度和韧性,例如正在发展的相变诱发塑性钢(TRIP钢)等。 一超高强度钢的合金成分、组织和特性 (1)中碳低合金超高强度钢此类钢是通过淬火和回火处理获得较高的强度和韧性,钢的强度主要取决于钢中马氏体的固溶碳浓度。含碳量增加,钢的强度升高;而塑性和韧性相应降低。因此,在保证足够强度的原则下,尽可能降低钢中含碳量,一般含碳量在0.30~0.45%。钢中合金元素总量约在5%左右,Cr、Ni和Mn在钢中的主要作用是提高钢的淬透性,以保证较大的零件在适当的冷却条件下获得马氏体组织,Mo、W和v的主要作用是提高钢的抗回火能力和细化晶粒等。几种典型钢种的化学成分如表2·12.1。 该类钢通过淬火处理,在Ms点温度以下发生无扩散相变,形成马氏体组织。采用适宜的温度进行回火处理,析出ε—碳化物,改善钢的韧性,获得强度和韧性的最佳配合。提高回火温度(250—450℃回火)时,板条马氏体的ε—碳化物发生转变和残留奥氏体分解形成Fe3C渗碳体,钢的韧性明显下降,此现象称为回火马氏体脆性。产生此种回火脆性的原因主要是由于钢中的硫、磷等杂质元素在奥氏体晶界偏聚和渗碳体沿晶界分布,降低了晶界结合强度。300M钢等含有1.5%硅,能有效地仰制ε—碳化物转变和残留奥氏体分解,使钢的回火马氏体脆性温度提高到350~500℃。硅在钢中只能提高回火马氏体脆性区的温度,但

超高强度钢

超高强度钢 随着潜艇、机、箭、天器和兵器的发展,对超高强度钢的需求显著增长。根据钢中的合金含量可以将超高强度钢分为低合金超高强度钢、合金超高强度钢和高合金超高强度钢。据合结钢的物理冶金学特点可以将超高强度钢分为低合金超高强度钢、次硬化超高强度钢和马氏体时效钢。低合金超高强度钢大多是 AISI4130、4140、4330或4340的改进型钢;HY180和AF1410是典型的二次硬化型中合金超高强度钢;高合金超高强度钢的典型代表是马氏体时效钢。AISI4340是最早出现的低合金超高强度钢。它于1950年开始研究,并于1955年应用于飞机起落架。通过淬火和低温回火处理,AISI413041404330或4340钢的屈服强度可以超过1500MPa,然而缺口冲击韧性降低。在钢中添加1%~2%的硅可以抑制回火时ε-碳化物生长及Fe3C形成,提高回火温度(260-315℃)来消除热应力和相变应力以提高韧性,同时又可避免马氏体回火脆性。坩埚熔炼Hy-Tuf和300M便是利用上述原理开发的高硅低合金超高强度钢。1952年美国国际镍公司开发的300M钢是在4340钢中添加硅和钒元素。300M钢在300℃回火可获得最佳的强度和韧性配合。通过调整碳含量和添加钒,开发了AMS6434和LadishD6AC钢。通过对AISI4330的改进,我国开发了高性能685和686装甲钢。在工艺性能相当的条件下,高性能685装甲钢的抗枪弹和抗炮弹性能优于目前我国大量应用的前苏联2п和43пCM装甲钢。在AISI4340的基础上,我国还研制了高硬度695装甲钢,其抗穿甲弹防护系数达到1.3以上。值得注意的是,尽管以4340和300M钢为代表的低合金超高强度钢具有高强度,但它们的断裂韧性和抗应力腐蚀能力较差。马氏体时效钢强化作用是通过马氏体相变和等温时效析出金属间化合物Ni3Mo来达到的。马氏体时效钢的基本化学成分是18%Ni-8%Co-5%Mo。随着钛含量从0.20%提高到1.4%,屈服强度可以在1375-2410MPa之间变化。为了获得高韧性,应尽量降低钢中的磷、、和氮含量。目前马氏体时效钢的发展方向是:为了获得更高的强度和韧性,开发更高洁净度的马氏体时效钢;为了降低成本,开发经济的无钴马氏体时效钢。 除了广泛应用的AF1410等二次硬化超高强度钢之外,为了获得更高的强度和韧性配合,美国SRG在二次硬化钢的物理冶金学研究基础上,开发了高洁净度的AerMet钢。高洁净度保证了Aer-Met100钢 (0.23%C-3%Cr-11.1%Ni-13.4%Co-1.2%Mo)具备目前最佳的强度和韧性配Met100

先进高强度钢研究与发展状况

先进高强度钢研究与发展状况 传统的高强度钢多是通过固溶、析出和细化晶粒作为主要强化手段,而先进高强度钢(AHSS )是指通过相变进行强化的钢种,组织中含有马氏体、贝氏体和(或)残余奥氏体,主要包括双相(DP) 钢、相变诱导塑性(TRIP) 钢、马氏体(M) 钢、复相(CP) 钢、热成形(HF) 钢和孪晶诱导塑性(TWIP) 钢。 先进高强度钢的强度和塑性配合优于普通高强钢,兼具高强度和较好的成形性,特别是加工硬化指数高,有利于提高冲撞过程中的能量吸收,这对减重的同时保证安全性十分有利。AHSS 的强度在500MPa到1500MPa之间,具有很好吸能性,在汽车轻量化和提高安全性方面起着非常重要的作用,已经广泛应用于汽车工业,主要应用于汽车结构件、安全件和加强件如A/B/C柱、车门槛、前后保险杠、车门防撞梁、横梁、纵梁、座椅滑轨等零件;DP钢最早于1983年由瑞典SSAB钢板有限公司实现量产。先进高强度钢开发和研究进展 所有的高速钢的生产都要控制奥氏体相或奥氏体加铁素体相的冷却速度,可以在外围表面进行热磨削(如热轧产品),也可以在连续退火炉中局部冷却(连续退火或热浸涂产品)。马氏体钢是通过快速淬火致使大部分奥氏体转变成马氏体相而产生的。铁素体加马氏体双相钢的生产,是通过控制其冷却速度,使奥氏体相(见于热轧钢中)或铁素体+马氏体双相(见于连续退火和热浸涂钢中)在残余奥氏体快速冷却转变成马氏体之前,将其中一

些奥氏体转变成铁素体。TRIP钢通常需要保持在中温等温的条件以产生贝氏体。较高的硅碳含量使TRIP钢在最后的微观结构含过多的残余奥氏体。多相钢还遵循一个类似的冷却方式,但这种情况之下,化学元素的调整会产生极少的残余奥氏体并形成细小的析出以加强马氏体和贝氏体相。 汽车用高强度钢分为热轧、冷轧和热镀锌产品,其工艺特点都是通过相变实现强化。此外,还有一种热冲压成形模具淬火硬化的超高强钢再欧洲的汽车制造业获得了广泛应用。 随着安全性和燃油经济性需求的增长,汽车工业对高强度、轻质材料的需求越来越大。再汽车轻量化的推动下,汽车中铝合金、镁合金、塑料等零部件的使用比例逐年增加,钢铁在汽车材料中的主导地位也受到了威胁。为提高汽车的安全性并应对来自其他材料的挑战,目前钢铁材料的开发重点是高强度钢。 1 双相钢双相钢是由低碳钢或低碳微合金钢经两相区热处理或控轧控冷而得到,其显微组织主要为铁素体和马氏体。普通的高强钢是通过控制轧制细化晶粒,并通过微合金元素的碳氮化物的析出来强化基体,而双相钢是在纯净的铁素体晶界或晶内弥散分布着较硬的马氏体相,因此其强度与韧性得到了很好的协调。双相钢的强度主要由硬的马氏体相的比例来决定,其变化范围为5 ~30 。拉伸力学性能特点是:①应力一应变曲线呈光滑的拱形,无屈服点延伸;②具有高的加工硬化速率,尤其是初始加工硬化速率;③低的屈服强度和高的抗拉强度,成形后构件具有高的压溃抗力、抗撞击

高强度钢和超高强度钢的切削加工

简介:1 什么是高强度钢和超高强度钢?所谓高强度钢,是指那些在强度和韧性方面结合很好的钢种。低合金结构钢,经调质处理后,具有很好的综合力学性能。其抗拉强度sb>1 200MPa时,叫高强度钢;其抗拉强度sb>1500MPa时,称为超高强度钢。超高强度钢,视其合金含量的多少,可分为低合金超高强度钢(合金含量不大于6%)、中合金超高强度钢和高合金超高强度钢。含一种合金元素的高强度合金钢有铬钢、关键字:刀具夹具切削铣削车削机床测量 1 什么是高强度钢和超高强度钢? 所谓高强度钢,是指那些在强度和韧性方面结合很好的钢种。低合金结构钢,经调 质处理后,具有很好的综合力学性能。其抗拉强度σb>1200MPa时,叫高强度钢; 其抗拉强度σb>1500MPa时,称为超高强度钢。 超高强度钢,视其合金含量的多少,可分为低合金超高强度钢(合金含量不大于6%)、中合金超高强度钢和高合金超高强度钢。 含一种合金元素的高强度合金钢有铬钢、镍钢、锰钢等;含两种合金元素的合金钢 有铬镍钢、铬锰钢、铬钼钢等;含三种以上合金元素的高强度合金钢有铬锰硅钢、 铬镍钨钢、铬镍钼钢、铬锰钛钢、铬锰钼钒钢等。 高强度钢和超高强度钢的原始强度和硬度并不高,但是经过调质处理后可获得较高 的强度,硬度在HRC30~50之间。 钢的抗拉强度与硬度之间存在一定的关系。一般来说,硬度提高强度也随之增高, 但不能说高强度钢就是高硬度钢。所谓高强度钢和超高强度钢,是指综合性能而言 的。淬火钢的硬度很高,但不能称为高强度钢和超高强度钢,其原因是它的综合性 能不好,几乎没有塑性,韧性也很差,只能作耐磨零件和工具。 2 高强度钢和超高强度钢有哪些切削特点?

超高强度钢研究进展及其在军事上的应用

超高强度钢研究进展及其在军事上的应用 随着洁净化、微合金和控轧控冷等先进冶金技术在钢铁企业的逐步推广和应用,钢材的品质得到了大幅度提高,发达国家正在研制相当于目前常用钢材抗拉强度数倍的超高强度钢。这种钢具有超细化、超洁净、超均质的组织和成分的特征,以及超高强度和超高韧性的特点。超高强度钢与普通结构钢的强度的界限目前尚无统一规定,习惯上是将室温抗拉强度超过1400MPa、屈服强度大于1200 MPa 的钢称为超高强度钢。超高强度钢除了要求其高的抗拉强度外,还要求具有一定塑性和韧性、尽可能小的缺口敏感性、高的疲劳强度、一定的抗蚀性、良好的工艺性能、符合资源情况及价格低廉等。超高强度钢现在已发展成为应用范围很广的一类重要钢种,如已经大量应用于火箭发动机外壳、飞机起落架、防弹钢板等性能有特殊要求的领域,而且其使用范围正在不断地扩大到建筑、机械制造、车辆和其它军事装备上。因此,超高强度钢不仅是钢铁材料研究的重要方向,而且具有广阔的应用和发展前景。 超高强度钢的发展 超高强度合金钢是为满足某些特殊要求发展起来的,按其物理冶金学特点,超高强度钢大体可以分为低合金超高强度钢、二次硬化超高强度钢和马氏体时效钢。目前,典型的低合金超高强度钢是AISI 4340 和D6AC;典型的二次硬化型中,合金超高强度钢是HY180 和AF1410,由于马氏体时效钢属高合金钢, 在这里将不拟述及。 1 低合金超高强度钢

低合金超高强度钢大多是AISI 4130、4140、4330 或4340的改进型钢种。AISI 4340 是最早出现的低合金超高强度钢,它于1950 年开始研究,并于1955 年开始用于飞机起落架。通过淬火和低温回火处理,AISI 4130、4140、4330 或4340钢的抗拉强度均可超过1500MPa,而且缺口冲击韧性较高。 为了抑制低合金超高强度钢回火脆性,1952 年美国国际镍公司开发了300M。该钢通过添加了1%~2%的硅来提高回火温度(260~315℃),并可抑制马氏体回火脆性。另外,通过调整碳含量和添加少量钒,又开发了AMS 6434 和LadishD6AC 钢。20 世纪80 年代,我国通过对AISI 4330 的改进,研制开发了高强韧性能的685 和686 装甲钢。在工艺性能相当的条件下,高性能685 装甲钢的抗枪弹和抗炮弹性能优于目前我国大量应用的前苏联2П和43ПСМ装甲钢。在AISI 4340 的基础上,我国还研制了新型超高硬度695 装甲钢,其抗穿甲弹防护系数达到1.3 以上。值得注意的是,尽管以4340 和300M 钢为代表的低合金超高强度钢具有高强度,但它们的断裂韧性和抗应力腐蚀能力都比较差,因而其应用受到了一定的限制。国外典型的低合金超高强度钢的化学成分见表 1。 表1 国外常用低合金超高强度钢合金的化学成分(mass%)

NM500高强度耐磨钢板简介

1 NM500高强度耐磨钢板简介 NM500耐磨板具有相当高的机械强度;其机械性能是普通低合金钢板的3倍到5倍;可显著提高机械相关部件的磨损耐性;因此提高机械的使用寿命,降低生产成本;该产品表面硬度通常达到430~470HB;用于矿山及各种工程机械用耐磨易损件加工和制造等适用的结构钢板,也常用作为屈服强度≥850MPa高强度结构钢使用;屈服在950多,抗拉强度在1180上。 2 NM500尺寸、外形、重量及允许偏差 2.1 钢板的尺寸、外形、重量及允许偏差应符合GB/T 709的规定。 2.2 经供需双方协议,可供应其他尺寸、外形、及允许偏差的钢板。 3 NM500技术要求 3.1 N牌号及化学成分 3.1.1 钢的牌号和化学成分(熔炼分析)应符合“牌号及化学成分”表中的规定。 3.1.1.1 在保证钢板性能的前提下,“牌号及化学成分”中规定的Cr、Ni、Mo合金元素可任意组合加入,也可添加“牌号及化学成分”表规定以外的其他微合金元素,具体含量应在质量证明书中注明。 3.1.1.2 钢中的Cu为残余元素时,其含量应不大于0.30%;As含量应不大于0.08%。如供方能保证,可不做分析。 3.1.1.3 当采用全铝(Alt)含量计算时,Alt应不小于0.015%。 3.1.2 成品钢板的化学成分允许偏差应符合GB/T 222的规定。 3.2 冶炼方法 钢由转炉或电炉冶炼,并进行炉外精炼。 3.5 表面质量 3.5.1 钢板表面不允许存在裂纹、气泡、结疤、折叠和夹杂等缺陷。钢板不得有分层。如有上述表面缺陷,允许清理,清理深度从钢板实际尺寸算起,不得超过钢板厚度公差之半,

超级高强度钢

高强度钢 “超高强度钢”的定义是相对于时代要求的技术进步程度而在变化的。一般讲,屈服强度在 1 370MPa(140 kgf/mm2)以上,抗拉强度在 1 620 MPa(165 kgf/mm2)以上的合金钢称超高强度钢。按其合金化程度和显微组织分为低合金中碳马氏体强化超高强 度钢、中合金中碳二次沉淀硬化型超高强度钢、高合金中碳Ni—Co型超高强度钢、超 低碳马氏体时效硬化型超高强度钢、半奥氏体沉淀硬化型不锈钢等。 低合金中碳马氏体强化型超高强度钢(MART)是在低合金调质钢的基础上发展起来的,合金元素总量一般不超过6%。主要牌号包括传统的镍铬钼调质钢4340(40CrNiMo),碳含量0.45%的镍铬钼钒钢D6AC(45 CrNiMoV),碳含量0.30%的铬锰硅镍钢(30CrMnSiNi2A),在4340钢基础上通过加入硅( 1.6%)和钒(0.1%)而研制成的300M 钢(43CrNiSiMoV)以及不含镍的硅锰钼钒或硅锰铬钼钒等。通过真空熔炼降低钢中杂 质元素含量,改善钢的横向塑性和韧性,由于钢中合金元素含量较低,成本低,生产工 艺简单,广泛用于飞机大梁、起落架、发动机轴、高强度螺栓、固体火箭发动机壳体和 化工高压容器等。 中合金中碳二次沉淀硬化型超高强度钢是从5%Cr型模具钢移而来的。由于它在高 温回火状态下有很高的强度和较满意的塑性和韧性,抗热性好,组织稳定,用于飞机起 落架、火箭壳体等。典型钢种为H11和H13等。其主要成分为: C 0.32%--0.45%;Cr 4.75%--5.5%;Mo 1.1%--1.75%;Si 0.8%--1.2%。 高合金中碳Ni—Co(9Ni--4Co--××)型超高强度钢,是在具有高韧性、低脆性转 变温度的9%Ni型低温钢的基础上发展起来的。在9%Ni钢中添加钻是为了提高钢的Ms (马氏体转变)温度,减少钢中的残余奥氏体,同时,钻在镍钢中起固溶强化作用,还 通过加钻来获得钢的自回火特性,从而使这类钢具有优良的焊接性能。碳在这类钢中起 强化作用。钢中还含有少量铬和钼,以便在回火时产生弥散强化效应。主要牌号有 HP9-4-25,HP9-4-30,HP9-4-45以及改型的AF1410 (0.16%C-10%Ni-14%Co-1%Mo-2%Cr-0.05%V)等。这类钢综合力学性能高。抗应力腐蚀 性好,具有良好的工艺性能和焊接性能,广泛用于航空、航天和潜艇亮体等产品上。 超低碳马氏体时效硬化型超高强度钢,通常称马氏体时效钢。钢的基体为超低碳的 铁镍或铁镍钴马氏体。其特点是,马氏体形成时不需要快冷,可变温及等温形成;具有 体心立方结构;硬度约为HRC20,塑性很好;再加热时不出现像在低碳马氏体中发生的 回火现象,并有很大的逆转变温度迟滞,因而可以在较高温度进行马氏体基体内的时效 硬化。在这样的高镍马氏体中含有能引起时效强化的合金元素,借助于时效强化,从过 饱和的马氏体中析出弥散分布的金属间化合物,使钢获得高强度和高韧性。按镍含量, 马氏体时效钢分为25%Ni、20%Ni、18%Ni和12%Ni等类型.18%Ni型应用较广,为含有钼、钛等强化原素的超低碳铁-镍(18%)-钻(8.5%)合金,包括3个牌号:18%Ni(200)、18%Ni(250)、和18%Ni(300)(200、250、300为抗拉强度等级,单位为Ksi)。这种钢是通过金属间化合物的析出使钢强化。借无碳的马氏体基体取得高塑性,最后达到

相关主题
文本预览
相关文档 最新文档