当前位置:文档之家› 化学分析测量结果不确定度评定中若干问题的论述

化学分析测量结果不确定度评定中若干问题的论述

化学分析测量结果不确定度评定中若干问题的论述
化学分析测量结果不确定度评定中若干问题的论述

测量不确定度评定报告

测量不确定度评定报告1、评定目的识别实验室定量项目检测结果不确定度的来源,明确评定方法,给临床检测结果提供不确定度依据。 、评定依据2CNAS-GL05《测量不确定度要求的实施指南》 JJF 1059-1999《测量不确定度评定和表示》 CNAS— CL01《检测和校准实验室能力认可准则》 、测量不确定度评定流程3 测量不确定度评定总流程见图一。

概述 建立数学模型,确定被测量Y与输入量 测量不确定度来源 标准不确定度分量评 B类评定评类A 计算合成标准不确定 评定扩展不确定 编制不确定度报告 图一测量不确定度评定总流程 测量不确定度评定方法、4建立数学模型 4.1.1 数学模型根据检验工作原理和程序建立,即确定被测量Y(输出量)与影响量(输入量)X,X,…,X间的函数关系f来确定,即:N21 Y=f(X,X,…,X)N12建立数学模型时应说明数学模型中各个量的含义和计量单位。必须注意, 数学模型中不能进入带有正负号(±)的项。另外,数学模型不是唯一的,若采用不同测量方法和不同测量程序,就可能有不同的数学模型。 4.1.2计算灵敏系数 偏导数Y/x=c称为灵敏系数。有时灵敏系数c可由实验测定,iii即通过变化第i个输入量x,而保持其余输入量不变,从而测定Y的变化i量。

不确定度来源分析 测量过程中引起不确定度来源,可能来自于: a、对被测量的定义不完整; b、复现被测量定义的方法不理想; c、取样的代表性不够,即被测量的样本不能完全代表所定义的被测量; d、对测量过程受环境影响的认识不周全或对环境条件的测量和控制不完善; e、对模拟式仪器的读数存在人为偏差(偏移); 、测量仪器的计量性能(如灵敏度、鉴别力阈、分辨力、死区及稳定性f 等)的局限性; 、赋予计量标准的值或标准物质的值不准确;g 、引入的数据和其它参量的不确定度;h 、与测量方法和测量程序有关的近似性和假定性;i 、在表面上完全相同的条件下被测量在重复观测中的变化。j 标准不确定度分量评定 对观测列进行统计分析所作的评估--4.3.1 A 类评定 , x进行n次独立的等精度测量,得到的测量结果为:a对输入量XI 1为xx,…x。算术平均值n2 n1 ∑xx = in n i=1 由贝塞尔公式计算:s(x单次测量的实验标准差)i 1 n ∑ i—i 2 ( xx )S(x)= n-1 i=1

1.2测量的不确定度(2.2测量结果评定)

测量不确定度 2.2测量结果的评定和不确定度 一、测量结果的评定和不确定度 (1)测量真实值不可知,所以无法实际计算出误差。 (2)多次测量后的平均值并不等于真实值。 测量结果的最终数学表述:u x x ±=(x 测量的平均值,u 不确定度) 物理意义:表示一个范围,测量的真值有一定的概率落在这个范围内! cm x 1.01.10±= cm x 2.100.10或= × 二、不确定度的分类与合成 2 2B A c u u u += A 类:由统计学方法得到的不确定度(随机误差) B 类:用非统计方法得到的不确定度(系统误差) 通常需要同时考虑A 类和B 类不确定度! 1. A 类不确定度(本质上考量测量数据的离散程度) 在相同条件下、用同样的方法和仪器,对同一物理量进行测量(等精度测量 ),获得一系列测量值。 ),......2,1(n i x i = 算数平均值:∑==n i i x n x 1 1 ①测量残差 x x i i -=)(υ 每个数据与平均值之间差距 ②标准偏差 1 ) ()(1 --= ∑=n x x i s n i i 测量值及其随机误差的离散程度,标准偏差越大,说明数据越分散

举例:有两个5人小组考试,成绩分别为:A 组:82,81,80,79,78 B 组:84,82,80,78,76A 、B 两组考试平均值都是80,但是A 组的标准偏差值为1.58, B 组的标准偏差值为3.16。说明B 组数据的离散程度比较大。 因为测量平均值误差应该比任何一次测量的误差更小些,所以可以用算数平均值的标准 偏差来表示算数平均值的误差大小:) 1()(1 1 2 --==∑=n n x x S n S n i i x 意义:在)](~)[(x x S x S x +-内包含真值得概率为68.3%! A 类不确定度) 1() (t 1 --? =∑=n n x x u n i i A (t:置信因子为了方便,一般取t=1) ) 1()(1 2 --= ∑=n n x x u n i i A 两种特殊情况: (1)当所有数值都相同时,A 类不确定度为0; (2)n=1时A 类不确定度没有意义。 2. B 类不确定度 用非统计方法求出或评定的不确定度,一般情况下应根据经验 或其他非统计信息估计。 只考虑仪器不确定度:3 a u B = :a 仪器说明书上所标明的“最大误差”或不确定度限值。如未标明,则取最小分度值。 3. 不确定度的合成 ) 1() (1 2 --= ∑=n n x x u n i i A 3 a u B = 2 2 B A c u u u += u x x ±=

测量不确定度评定报告

测量不确定度评定报告 1、评定目的 识别实验室定量项目检测结果不确定度的来源,明确评定方法,给临床检测结果提供不确定度依据。 2、评定依据 CNAS-GL05《测量不确定度要求的实施指南》 JJF 1059-1999《测量不确定度评定和表示》 CNAS— CL01《检测和校准实验室能力认可准则》 3 、测量不确定度评定流程 测量不确定度评定总流程见图一。 图一测量不确定度评定总流程 4、测量不确定度评定方法 4.1建立数学模型 4.1.1 数学模型根据检验工作原理和程序建立,即确定被测量Y(输出量)与影

响量(输入量)X 1,X 2 ,…,X N 间的函数关系f来确定,即: Y=f(X 1,X 2 ,…,X N ) 建立数学模型时应说明数学模型中各个量的含义和计量单位。必须注意, 数学模型中不能进入带有正负号(±)的项。另外,数学模型不是唯一的,若采用不同测量方法和不同测量程序,就可能有不同的数学模型。 4.1.2计算灵敏系数 偏导数Y/x i =c i 称为灵敏系数。有时灵敏系数c i 可由实验测定,即通 过变化第i个输入量x i ,而保持其余输入量不变,从而测定Y的变化量。 4.2不确定度来源分析 测量过程中引起不确定度来源,可能来自于: a、对被测量的定义不完整; b、复现被测量定义的方法不理想; c、取样的代表性不够,即被测量的样本不能完全代表所定义的被测量; d、对测量过程受环境影响的认识不周全或对环境条件的测量和控制不完善; e、对模拟式仪器的读数存在人为偏差(偏移); f、测量仪器的计量性能(如灵敏度、鉴别力阈、分辨力、死区及稳定性等)的 局限性; g、赋予计量标准的值或标准物质的值不准确; h、引入的数据和其它参量的不确定度; i、与测量方法和测量程序有关的近似性和假定性; j、在表面上完全相同的条件下被测量在重复观测中的变化。 4.3标准不确定度分量评定 4.3.1 A 类评定--对观测列进行统计分析所作的评估 a对输入量X I 进行n次独立的等精度测量,得到的测量结果为: x 1,x 2 , (x) n 。 算术平均值x为 1 n x n= ∑x i n i=1 单次测量的实验标准差s(x i )由贝塞尔公式计算: 1 n S(x i )= ∑ ( x i — x )2 n-1 i=1

测量结果及其不确定度的有效位数.

测量结果及其不确定度的有效位数 张春滨 (航天科技集团公司第一计量测试研究所,北京,100076) 摘要校准证书及检测报告上的校准结果或检测结果均给出了测量结果的不确定度,并通过大量的实例,介绍了测量结果及其不确定度的有效位数,对不同情况下,与此相关的一些问题进行了讨论。 关键词测量误差,有效数字,修约。 The Significant Figure of the Measurement Result and Its Uncertainty Zhang Chunbin (The First Research Institute for Measurement and Test of CASA,Beijing,100076) Abstract The uncertainty of the result of a calibration or a testing is given in the certificate of calibration and calibration result or test result in the testing report. With many examples, this paper introduces the significant figures in the result of a measurement and its uncertainty. Some problems correlated with the significant figure are also discussed in different conditions. Key Words Measurement error, Significant figure, Round off. 1 引言 校准证书及检测报告上的校准结果或检测结果均给出了测量结果的不确定度,测量结果的报告应尽量详细,以便使用者可以正确地利用测量结果。完整的测量结果至少含有两个基本量:一是被测量的最佳估计值,在很多情况下,测量结果是在重复观测的条件下确定的。二是描述该测量结果分散性的量,即测量结果不确定度。报告测量结果的不确定度有合成标准不确定度和扩展不确定度两种方式。在报告与表示测量结果及其不确定度时,对两者数值的位数,技术规范JJF1059-1999《测量不确定度评定与表示》做出了相应的规定。 2 测量结果不确定度的有效位数 2.1 技术规范的规定 根据技术规范JJF1059-1999《测量不确定度评定与表示》的规定,估计值y的数值和它的标准不确定度u c(y)或扩展不确定度U的数值都不应该给出过多的位数。通常u c(y)和U 以及输入估计值x i的标准不确定度u(x i)最多为两位有效数字。虽然在计算测量结果不确定度的过程中,中间结果的有效位数可保留多位,即在报告最终测量结果时,u c(y)和U取一位或两位均可,两位以上是不允许的。 2.2 测量结果不确定度的修约 测量结果不确定度应按国家标准GB3101-1993《有关量、单位和符号的一般原则》的规定进行修约,使测量结果不确定度有效数字的位数为一位或两位。 例如:一频率测量结果的标准不确定度为u (x i)= 28.05 kHz,要求保留两位有效数字,经修约后为28 kHz。 测量结果的不确定度不允许进行连续修约。即测量结果的不确定度应经一次修约后得到,而不应该经多次修约后得到。 例如:U = 0.145 5℃,要求保留一位有效数字时,应为:U = 0.145 5℃= 0.1℃,而不应为:U = 0.145 5℃= 0.146 ℃= 0.15℃= 0.2℃。可见,在本例中,由于连续修约造成最终结果的误

TEMUNGB化学分析中不确定度评定与表示方法规程

一、应用范围和领域 本规程给出了定量化学分析中评估和表述不确定度的详细指导。也适应于仪器校准中不确定度的评定,它是基于“ISO测量不确定度表述指南”〔〕中所采用的方法,适用于各种准确度和所有领域—从日常分析到基础研究、经验方法和合理方法。需要化学测量和仪器校准并可以使用本规程原理的一些常见领域有: (1)制造业中的质量控制和质量保证; (2)判定是否符合法定要求的测试; (3)使用公认方法的测试; (4)标准和设备的校准; (5)与标准物质研制和认证有关的测量活动; (6)研究和开发活动。 本规程未包括化学分析样品的取样和制样操作中不确定度评估。 本规程说明了应该如何使用从下列过程获得的数据进行测量不确定度评估: (1)实验室作为规定测量程序〔〕使用某种方法,对该方法所得分析结果的已识别来源的不确定度影响的评价; (2)实验室中规定的内部质量控制程序的结果; (3)为了确认分析方法而在一些有能力的实验室间进行的协同试验的结果; (4)用于评价实验室分析能力的水平测试项目的结果; (5)本系统内部比对样品的定值; (6)标准和设备的校准结果。 二、引用标准 2.1JJF 1059-1999《测量不确定度评定与表示》 2.2《化学分析中不确定度的评估指南》――中国实验室国家认可委员会 三、术语和定义 3.1不确定度(uncertainty) [测量]不确定度定义 表征合理地赋予被测量之值的分散性,与测量结果相联系的参数。 注: 1此参数可以是诸如标准差或其倍数,或说明了置信水准的区间的半宽度。 2测量不确定度由多个分量组成。其中一些分量可用测量列结果的统计分布估算,也可用标准差表征。称为A类评定。另一些分量,则可用基于经验或其他信息的假定概率分布计算。也可用标准差表征,称为B类评定。 3测量结果应理解为被测量之值的最佳估计,全部不确定度分量均贡献给了分散性,包括那些由系统效应引起的(如,与修正值和参考测量标准有关的)分量。 4不确定度恒为正值。当由方差得出时,取其正平方根。

CNAS-CL07 测量不确定度评估和报告通用要求

CNAS—CL07 测量不确定度评估和报告通用要求General Requirements for Evaluating and Reporting Measurement Uncertainty 中国合格评定国家认可委员会

测量不确定度评估和报告通用要求 1.前言 1.1中国合格评定国家认可委员会(英文缩写:CNAS)充分考虑目前国际上与合格评定相关的各方对测量不确定度的关注,以及测量不确定度对测量、试验结果的可信性、可比性和可接受性的影响,特别是这种影响和关注可能会造成消费者、工业界、政府和市场对合格评定活动提出更高的要求。因此,CNAS在认可体系的运行中给予测量不确定度评估以足够的重视,以满足客户、消费者和其他各有关方的期望和需求。 1.2CNAS在测量不确定度评估和应用要求方面将始终遵循国际规范的相关要求,与国际相关组织的要求保持一致,并在国际规范和有关行业制定的相关导则框架内制订具体的测量不确定度要求。 2.适用范围 本文件适用于CNAS对校准和检测实验室的认可活动。同时也适用于其它涉及校准和检测活动的申请人和获准认可机构。 3.引用文件 下列文件中的条款通过引用而成为本文件的条款。以下引用的文件,注明日期的,仅引用的版本适用;未注明日期的,引用文件的最新版本(包括任何修订)适用。 3.1Guide to the expression of uncertainty in measurement(GUM).BIPM,IEC, IFCC,ISO,IUPAC,IUPAP,OIML,lst edition,1995.《测量不确定度表示指南》3.2International Vocabulary of Basic and General Terms in Metrology(VIM). BIPM,IEC,IFCC,ISO,IUPAC,IUPAP,OIML,2nd edition,1993.《国际通用计量学基本术语》 3.3JJF1001-1998《通用计量术语和定义》 3.4JJF1059-1999《测量不确定度评定和表示》

(完整版)不确定度与测量结果不确定的表达

1.2 不确定度与测量结果不确定的表达 由于误差的存在,使得测量结果具有一定程度的不确定性。为了加强国际间的交流与合作,1996年,中国计量科学研究院在国际权威文件《测量不确定度表达指南》的基础上,制定了我国的《测量不确定度规范》。从此,物理实验的不确定度评定有了国际公认的准则。下面将结合对测量结果的评定对不确定度的概念、分类、合成等问题进行讨论。 1.2.1 不确定度的概念 不确定度是评价测量质量的一个新概念,是表达测量结果具有分散性的一个参数,它是被测量的真值在某个量值范围内的一个评定。不确定度反映了可能存在的误差分布范围,是误差的数字指标。不确定度愈小,测量结果可信赖程度愈高;不确定度愈大,测量结果可信赖程度愈低。在实验和测量工作中,不确定度是作为估计而言的,因为误差是未知的,不可能用指出误差的方法去说明可信赖程度,而只能用误差的某种可能的数值去说明可信赖程度,所以不确定度更能表示测量结果的性质和测量的质量。用不确定度评定实验结果的误差,其中包含了各种来源不同的误差对结果的影响,而它们的计算又反映了这些误差所服从的分布规律,这是更准确地表述了测量结果的可靠程度,因而有必要采用不确定度的概念。 1.2.2 测量结果的表示和合成不确定度 在做物理实验时,要求表示出测量的最终结果。在这个结果中既要包含待测量的近似真实值x,又要包含测量结果的不确定度σ,还要反映出物理量的单位。因此,要写成物理含意深刻的标准表达形式,即 σ± =x x(单位)(1—4)式中x为待测量;x是测量的近似真实值,σ是合成不确定度,一般保留一位有效数字,若首数是1或2时可取2位。这种表达形式反应了三个基本要素:测量值、合成不确定度和单位。 在物理实验中,直接测量时若不需要对被测量进行系统误差的修正,一般就取多次测量的算术平均值x作为近似真实值;若在实验中有时只需测一次或只能测一次,该次测量值就为被测量的近似真实值。如果要求对被测量进行一定系统误差的修正,通常是将一定系统误差(即绝对值和符号都确定的可估计出的误差分量)从算术平均值x或一次测量值中减去,从而求得被修正后的直接测量结果的近似真实值。 在上述的标准式中,近似真实值、合成不确定度、单位三个要素缺一不可,否则就不能全面表达测量结果。同时,近似真实值x的末尾数应该与不确定度的所在位数对齐,近似真实值x与不确定度σ的数量级、单位要相同。在开始实验中,测量结果的正确表示是一个难点,要引起重视,从开始就注意纠正,培养良好的实验习惯,才能逐步克服难点,正确书写测量结果的标准形式。 由于误差的来源很多,测量结果的不确定度一般包含几个分量。在修正了可定系统误差之后,把余下的全部误差归为A、B两类不确定度分量。 ①A类分量(A类不确定度): S—在同一条件下,多次重复测量时,用统计分析 A

二组分纤维混纺产品定量化学分析的不确定度评定_以涤棉混纺产品为例_金红芳

2011年12月 第4期第6页 doi :10.3969/j.issn.1674-2346.2011.04.002 二组分纤维混纺产品定量化学分析的不确定度评定 ——以涤棉混纺产品为例 金红芳 陈伟峰吴玲飞 摘 要:依据测量不确定度评定与表示的相关要求,本实验室对二组分纤维混纺产品定量测试进行不确定度评定。 检测和评定以涤棉混纺产品为典型代表,按照GB/T 2910.1-2009和GB/T 2910.11-2009进行定量成分测试,并参照CNAS CL01:2006、CNAS GL05:2006和JJF1059-1999等标准规范要求评定检测结果的测量不确定度。经分析,测试结果的不确定度主要来源于测试操作过程中的随机效应和卤素水分测定仪分辨率及校准产生的系统效应。 关键词:二组分纤维混纺产品;涤棉混纺产品;定量分析;测量不确定度中图分类号:TS101.3 文献标志码:C 文章编号:1674-2346(2011)04-0006-05 ————————————收稿日期:2011-09-14 第一作者简介:金红芳,女,奉化出入境检验检疫局,助理工程师(浙江宁波315500) 浙江纺织服装职业技术学院学报测量不确定度对检测实验室测试结果的可信度、可比性和可接受性具有重要影响。因此中国合格评定国家认可委员会(CNAS )要求检测实验室给予测量不确定度评估以足够的重视,满足客户、消费者和其他各方的需求。二组分纤维产品含量分析是本实验室的主要纺织品检测项目之一,对该项目进行测量不确定度评估有助于深入了解该项目的精确度、主要偏差来源等情况,以便有针对性地实施检测质量控制措施。我们选取该类项目中最典型、样品量最大的涤棉混纺产品,按照GB/T 2910.1-2009《纺织品定量化学分析第1部分:试验通则》和GB/T 2910.11-2009《纺织品定量化学分析第11部分:纤维素纤维和聚酯纤维的混合物(硫酸法)》实施检测,同时参照CNAS CL01:2006《检测与校准实验室认可准则》、CNAS GL05:2006《测量不确定度要求的实施指南》和JJF1059-1999《测量不确定度的评定与表示》等标准和规范的要求评定测量不确定度。1测试原理、设备和方法1.1化学测试原理 用硫酸把纤维素纤维从已知干燥质量的混合物中溶解去除,收集残留物,清洗、烘干和称重,用修正后的质量计算其占混合物干燥质量的百分率。由差值得出纤维素纤维的百分含量。其测试程序为:定性分析—定重—化学溶解—剩余纤维洗涤烘干冷却—剩余纤维称重—计算—结果。1.2主要测试设备 卤素水分测定仪:梅特勒-托利多HG-63P ,称量最小分度值0.001g ;电子分析天平:赛多利斯CPA224s ,最小分度值0.1mg ;水浴锅:上海一恒DK-8AB ;烘箱:上海一恒DHG-9240A 。1.3定量测试主要步骤1.3.1取样

化学分析中测量不确定度的评定方法概述

化学分析中测量不确定度的评定方法概述

化学分析中测量不确定度的评定方法概述化学分析是检验检疫工作中使用频率最高的实验方法之一。对化学分析中测量不确定度的评定已进行过广泛的论述。这里,用较为系统的观点对化学分析中测量不确定度评定的一般方法进行讨论,以便为实际工作提供参考。 在总的范围内,化学分析是相对于物理测量等其他测量方法而言的。而在测量的化学方法中,化学分析是相对于仪器分析而言的,这里所涉及的化学分析是指后一种情况。它包括了很多经典的分析方法,如重量法、容量法。同时,为了扩展化学分析方法的分析范围和提高分析水平,可能还包括了某些复杂的样品处理过程等方面。 在不确定度的评定中,化学分析中许多通用的要素的处理方法可以是一致的,本文大体归纳了这些要素,并将它们作为测量不确定度的分量分别考察,探讨各分量不确定度的评定方法及这些分量之间的相互关系。 1.化学分析中的通用分量及其不确定度的评定方法1.1 化学分析中的测量方法和被测量 重量法和容量法是化学分析中的两类基本方法,根据被测量的不同,会采用不同的分析原理或条件,如容量法中有滴定分析、气体容量分析等方法。 但是,化学分析方法具有共同的特点,其被测量都是样品中某特

定元素的含量或纯度。对于含量分析来说,其最终目的是得到该元素的含量值,一般采用直接测量和计算的结果;而纯度是将相关或规定的元素含量扣除后的结果。无论最终结果使用那种单位或形式表示,都可以表示为式1的形式: ()n 21X ,X ,X f Y Λ=, (1) 其中,X i 为对被测量Y 有影响的输入量。这些输入量可以是直接 测量得到的,也可以是从其他测量结果导入的。 1.2 化学分析中涉及的通用分量及其与被测量的关系 大多数情况下,化学分析方法中采用手工方法,对化学分析结果的不确定度产生影响的因素很多,大体可以分为质量、体积、样品因素和非样品因素等。质量因素和样品因素存在于所有化学分析中,而容量分析中必然涉及体积因素。由于测量原理的不完善及测量过程的不同,在化学分析中还可能存在非样品因素。 只要能够明确地给出被测量与对其不确定度有贡献的分量之间的关系(如式1),则这些分量怎样分组以及这些分量如何进一步分解为下一级分量并不影响不确定度的评定。因此,可以将这些通用分量与被测量的关系采用图1所示的因果图表示。

盲样测量不确定度评定报告

盲样测量不确定度评定报告 1、概述 1.1 测量依据 JJG119-2005《实验室(酸度)计检定规程》 1.2 环境条件: 温度(23±3)℃;相对湿度≤85%RH 1.3 测量标准: pH 标准缓冲溶液,中国计量测试技术研究院提供;酸度计:型号:pHS-3E ; 编号:600709040019;制造厂:上海精密科学仪器有限公司;量程:(0.00~14.00)pH;分辨率:0.01pH;电极编号:05598709J 1.4 被测对象:盲样(新疆维吾尔自治区计量测试研究院提供) 1.5 测量过程: 选用JJG119-2005《实验室(酸度)计检定规程》附录A 表1中规定的一种(或多种)标准溶液,在规定温度的重复性条件下,对pHS-3E 型酸度计进行校准后,测量盲样溶液,重复校准和测量操作6次,6次测量结果的平均值即为盲样的pH 值。 2、数学模型 y=x 3、输入量引入的标准不确定度 3.1测量重复性引入的标准不确定度分量u 1 按照贝塞尔公式计算单次测量的实验标准差: () 1 1 2 --= ∑=n pH pH s n i i (n=6) 平均值的实验标准差: u 1= 6

盲样检测 3.2酸度计引入的不确定度分量u2 用性能已知的pH(酸度)计,对未知pH值的盲样(酸度计溶液标准物质)进行测量。 选用JJG119-2005《实验室(酸度)计检定规程》参照酸度计使用说明书中校准点对传递的酸度计进行校准,用校准过的酸度计对盲样(酸度计溶液标准物质)进行测定6次,得出测量重复性引入的标准不确定度分量u 1 。结合酸度 计引入的不确定度分量u 2和盲样引入的标准不确定度分量u 3 得到合成标准不确 定度,扩展不确定度。

测量结果不确定度及精确度分析

测量结果不确定度及精确度分析 刘智敏 国际不确定度工作组成员 中国计量科学研究院研究员 一、术语概念 1.真值true value 与所给特定量定义一致的值。 2.约定真值conventional true value 取作有时是约定作的特定量的值,对所给目的,它有一个合适的不确定度。3.接受参考值accepted reference value 用做比较的同意的参考值。 4.不确定度uncertainty 用以表征合理赋予被测量的值的分散性,它是测量结果含有的一个参数。结果带着的估计值,它表征真值的范围,而真值被认定在其中。 5.精密度precision 在规定条件下,独立测得结果间的一致程度。 6.重复性repeatability 在重复性条件下,对相同被测量进行接连测量所得结果间的一致程度。 注:重复性条件含:同测量程序、同观测者、同仪器、同地点、短期内重复。 7.再现性reproducibility 在改变了的测量条件下,对相同被测量测量结果之间的一致程度。 注:改变条件可含:原理、方法、观测者、仪器、标准、地点、条件、时间,改变条件应列出。 8.正确度,真实度trueness 由很大一系列测得结果平均值与接受参考值之间的一致程度。 9.偏倚bias 测得结果的期望与接受参考值之差。正确度测度常用偏倚。 10.精确度,准确度accuracy 测量结果与被测量真值间的一致程度。 注:精确度定量表示用不确定度,精确度简称精度。 11.误差error 测量结果减被测量真值。

12. 随机误差 random error 以不可预知方式变化的误差。 13. 系统误差 systematic error 保持不变或按预期规律变化的误差。 14. 概率 probability 随机事件带有的一个实数,范围从0到1。 15. 随机变量(ξ)random variable ()()x F x P =≤ξ 可定 注:离散型:()i i p x P ==ξ 连续型:()()dx x f x F x ?∞?=, ()x f 为分布密度 16. 期望 expectation 离散型:∑=i i x p E ξ 连续型:()dx x xf E ?=ξ 17. 方差 variance ()2 ξξξE E V ?= 18. 标准差,标准偏差 standard deviation ξξσV = 19. 变异系数,变化系数(CV , COV )coefficient of variation 对非负号 ξ ξ σE =CV

化学光谱分析测量不确定度评估报告(c元素)

德韧干巷汽车系统(上海)有限公司 DURA Ganxiang Automotive Systems(Shanghai)Co.,Ltd 测量不确定度评估报告 HHSB-TR- -2010 A/0 Evaluation of Uncertainty in Measurement Report No. 样品名称Specimen 20# 钢 样品编号 Specimen No 20120313 检测方法 Test method GB/T 4336-2002 检测设备 Test Equipment 全谱直读光谱仪 评估过程 Evaluation Process 1.数学模型的建立 SPECTRO TESTCCD 型直读光谱仪自动化程度高,数据采集和处理能力完善,屏幕直接显示待测数据,故其数学模型为: y=x y —测量值 x —仪器显示值 (对于直接测量c =x y ??/=x x / =1可以不计算灵敏系数,故在下列不确定度分量评定时未提及。 ) 2.不确定度来源的识别 本方法测定化学元素含量的不确定度主要来源于以下分量: a. 测量结果的重复性; b. 标准物质校准仪器的变动性; c. 标准物质标准值的不确定度; d. 仪器变动性、显示分辨力的不确定度分量。 3.碳含量不确定度分量的评定 3.1测量重复性不确定度分量的评定(A 类评定) 重复测量一份样品10次,并计算其重复性标准不确定度u(s)和相对标准不确定度u rel (s),运用实例见表1: 表1 样品碳含量测量重复性的A 类不确定度 测量项目 C 1 0.177% 2 0.176% 3 0.173% 4 0.189% 5 0.173% 6 0.191% 7 0.172% 8 0.195% 9 0.175% 10 0.178% 平均值 0.180% 标准偏差 0.00267% 标准不确定度u(s) 0.00267% 相对标准不确定度u rel (s) 0.0148 3.2 标准物质校准仪器的变动性 根据标准物质证书的信息,碳认定值w (C)=0.217%,并校准该标准物质5次,校准实验数据见表2. 测量项目 C

钢卷尺测量不确定度评定报告

钢卷尺测量不确定度评定报告 1测量方法及数学模型 1.1测量依据:依据JJG4-1999《钢卷尺检定规程》 钢卷尺的示值误差:△L=L a-L s+L a*αa*Δt-L s*αs*Δt 式中:L a——被检钢卷尺的长度; L s——标准钢卷尺的长度; αa——被检钢卷尺的膨胀系数; αs——标准钢卷尺的膨胀系数; Δt——被检钢卷尺和标准钢卷尺对参考温度20℃的偏离值。 由于L a-L s很小,则数学模型: △L= L a-L s +L s*△α*Δt 式中:△α——被检钢卷尺和标准钢卷尺的膨胀系数差 1.2方差及传播系数的确定 对以上数学模型各分量求偏导: 得出:c(L a)=1;c(L s)= -1+△α*Δt≈-1;c(△α)= L s*Δt;c(Δt)= L s*△α≈0 则:u c2 =u2(△L)=u2(L s)+ u2(L a) + (L s*Δt )2u2(△α) 2计算分量标准不确定度 2.1标准钢卷尺给出的不确定度u (L s) (1)由标准钢卷尺的测量不确定度给出的分量u (L s1) 根据规程JJG741—2005《标准钢卷尺》,标准钢卷尺的测量不确定度为: U=0.02mm其为正态分布,覆盖因子k=3,自由度v=∞,故其标准不确定度: u (L s1)= 0.02∕3 =0.007 (2)由年稳定度给出的不确定度分量u (L s2) 根据几年的观测,本钢卷尺年变动量不超过0.05mm,认为是均匀分布,则:L a≤5m:u (L s2)=0.05∕31/2 =0.029mm 估计u (L s2)的不可靠性为10%,则自由度v=1/2×(0.1)-2=50 (3)由拉力偏差给出的不确定度分量u (L s3) 由拉力引起的偏差为:△=L×103×△p/(9.8×E×F)

不确定度测定汇总

测量不确定度评定与表示 测量的目的是确定被测量值或获取测量结果。有测量必然存在测量误差,在经典的误差理论中,由于被测量自身定义和测量手段的不完善,使得真值不可知,造成严格意义上的测量误差不可求。而测量不确定度的大小反映着测量水平的高低,评定测量不确定度就是评价测量结果的质量。 图1 1 识别测量不确定度的来源 测量不确定度来源的识别应从分析测量过程入手,即对测量方法、测量系统和测量程序作详细研究,为此必要时应尽可能画出测量系统原理或测量方法的方框图和测量流程图。 检测和校准结果不确定度可能来自: (1)对被测量的定义不完善; (2)实现被测量的定义的方法不理想; (3)取样的代表性不够,即被测量的样本不能代表所定义的被测量; (4)对测量过程受环境影响的认识不全,或对环境条件的测量与控制不完善; (5)对模拟仪器的读数存在人为偏移; (6)测量仪器的计量性能 (如最大允许误差、灵敏度、鉴别力、分辨力、死区及稳定性等)的局限性,即导致仪器的不确定度; (7)赋予计量标准的值或标准物质的值不准确; (8)引用于数据计算的常量和其它参量不准确; (9)测量方法和测量程序的近似性和假定性; (10)在表面上看来完全相同的条件下,被测量重复观测值的变化。 分析时,除了定义的不确定度外,可从测量仪器、测量环境、测量人员、测量方

法等方面全面考虑,特别要注意对测量结果影响较大的不确定度来源,应尽量做到不遗漏、不重复。 2 定义 2.1 测量误差简称误差,是指“测得的量值减去参考量值。” 2.2 系统测量误差简称系统误差,是指“在重复测量中保持恒定不变或按可预见的方式变化的测量误差的分量。” 系统测量误差的参考量值是真值,或是测量不确定度可忽略不计的测量标准的测量值, 或是约定量值。系统测量误差及其来源可以是已知的或未知的。对于已知的系统测量误差可 以采用修正来补偿。系统测量误差等于测量误差减随机测量误差。 2.3 随机测量误差简称随机误差,是指“在重复测量中按不可预见的方式变化的测量误差的分量。” 随机测量误差的参考量值是对同一个被测量由无穷多次重复测量得到的平均值。随机测量误差等于测量误差减系统测量误差。 图2 测量误差示意图 2.4 测量不确定度简称不确定度,是指“根据用到的信息,表征赋予被测量值分散性的非负参数。” 测量不确定度一般由若干分量组成。其中一些分量可根据一系列测量值的统计分布,按测量不确定度的A类评定(随机效应引起的)进行评定,并用标准偏差表征;而另一些分量则可根据基于经验或其它信息所获得的概率密度函数,按测量不确定度的B类评定(系统效应引起的)进行评定,也用标准偏差表征。 2.5 标准不确定度是“以标准偏差表示的测量不确定度。”

测量不确定度评定报告(完整资料).doc

此文档下载后即可编辑 测量不确定度评定报告 1、评定目的 识别实验室定量项目检测结果不确定度的来源,明确评定方法,给临床检测结果提供不确定度依据。 2、评定依据 CNAS-GL05《测量不确定度要求的实施指南》 JJF 1059-1999《测量不确定度评定和表示》 CNAS— CL01《检测和校准实验室能力认可准则》 3 、测量不确定度评定流程 测量不确定度评定总流程见图一。

图一 测量不确定度评定总流程 4、测量不确定度评定方法 4.1建立数学模型 4.1.1 数学模型根据检验工作原理和程序建立,即确定被测量Y (输出量)与影响量(输入量)X 1,X 2,…,X N 间的函数关系f 来确定,即: Y=f (X 1,X 2,…,X N ) 建立数学模型时应说明数学模型中各个量的含义和计量单位。必须注意, 数学模型中不能进入带有正负号(±)的项。另外,数学模型不是唯一的,若采用不同测量方法和不同测量程序,就可能有不同的数学模型。 4.1.2计算灵敏系数 偏导数Y/x i =c i 称为灵敏系数。有时灵敏系数c i 可由 实验测定,即通过变化第i 个输入量x i ,而保持其余输入量不变,从而测定Y 的变化量。

4.2不确定度来源分析 测量过程中引起不确定度来源,可能来自于: a 、对被测量的定义不完整; b 、复现被测量定义的方法不理想; c 、取样的代表性不够,即被测量的样本不能完全代表所定义的被测量; d 、对测量过程受环境影响的认识不周全或对环境条件的测量和控制不完善; e 、对模拟式仪器的读数存在人为偏差(偏移); f 、测量仪器的计量性能(如灵敏度、鉴别力阈、分辨力、死区 及稳定性等)的局限性; g 、赋予计量标准的值或标准物质的值不准确; h 、引入的数据和其它参量的不确定度; i 、与测量方法和测量程序有关的近似性和假定性; j 、在表面上完全相同的条件下被测量在重复观测中的变化。 4.3标准不确定度分量评定 4.3.1 A 类评定--对观测列进行统计分析所作的评估 a 对输入量XI 进行n 次独立的等精度测量,得到的测量结果为: x 1,x 2,…x n 。算术平均值x 为 1 n x n = ∑x i

6测量不确定度评定方法.doc

测量不确定度的评定方法 1适用范围 本方法适用于对产品或参数进行检测时,所得检测结果的测量不 确定度的评 定与表示。 2编制依据 JJF 1059 —1999测量不确定度评定与表示 3评定步骤 3.1概述:对受检测的产品或参数、检测原理及方法、检测用仪器 设备、检测时的环境条件、本测量不确定度评定报告的使用作一简要的描述; 3.2建立用于评定的数学模型; 3.3根据所建立的数学模型,确定各不确定度分量(即数学模型中 的各输入量)的来源; 3.4分析、计算各输入量的标准不确定度及其自由度; 3.5计算合成不确定度及其有效自由度; 3.6计算扩展不确定度; 3.7给出测量不确定度评定报告。 4评定方法 4.1数学模型的建立 数学模型是指被测量(被检测参数)Y 与各输入量 X i之间的函数

关系,若被测量 Y 的测量结果为 y,输入量的估计值为x i,则数学模型为 y f x1 , x2 ,......, x n。 数学模型中应包括对测量结果及其不确定度由影响的所有输入 量,输入量一般有以下二种: ⑴ 当前直接测定的值。它们的值可得自单一观测、重复观测、 依据经验信息的估计,并包含测量仪器读数修正值,以及对周围温度、大气压、湿度等影响的修正值。 ⑵ 外部来源引入的量。如已校准的测量标准、有证标准物质、 由手册所得的参考数据。 4.2测量不确定度来源的确定 根据数学模型,列出对被测量有明显影响的测量不确定度来源,并要做到不遗漏、不重复。如果所给出的测量结果是经过修正后的结果,注意应考虑由修正值所引入的标准不确定度分量。如果某一标准不确定度分量对合成不确定度的贡献较小,则其分量可以忽略不计。 测量中可能导致不确定度的来源一般有: ⑴被测量的定义不完整; ⑵复现被测量的测量方法不理想; ⑶取样的代表性不够,即被测样本不能代表所定义的被测量; ⑷对测量过程受环境影响的认识不恰如其分或对环境的测量 与控制不完善; ⑸对模拟式仪器的读数存在人为偏移;

测量结果的不确定度

测量结果与不确定度表示 JJF1059第8.13节指出输入量和输出量的估计值,应修约到与它们的不确定度的位数一致。这里所谓的位数实指其末位所到达的位数。例如,当测量结果及其不确定度以相同的计量单位给出时,其末位应对齐。也就是说不能达不到,也不能多出。其中更需注意的是所报告的测量结果(输出量的最佳估计值),应与所报告的扩展不确定度U或U p的末位对齐。多数情况下是:确定了扩展不确定度取几位(一或两位)之后,按这一修约间隔来修约所报告的测量结果。但有时也会碰到,特别是通过数字显示式仪器的一次测量结果作为被测量的最终结果时,评定出的扩展不确定度的末位已小于所显示的末位。这时,对测量结果是否能采用补零的方式使其末位对齐?专家们对不同意见进行了讨论,例如:通过数字式电压表一次测量的结果为220. 043V,其扩展不确定度U=2.5mV(k=2),U修约成两位,末位达到0.1mV,但测量结果只到1mV,专家们认为这时的测量结果应报告成:220.0430V。写成V=(220.0430±0.0025)V,其末位是对齐的。应该认为,表明测量结果可靠程度的不是所给出的结果本身而是其不确定度。那种认为物理实验结果只能保留一位不可靠的值(只有末位不可靠而不能有两位是不可靠的)的观点和做法,与当今不确定度的表述并不一致。现在认为不确定度可以有两位有效数,从而测量结果的末两位均为可疑值了。 关于所报告的扩展不确定度(U,U p和U rel,U p rel)应采取何种规则进行修约,在JJF1059第8.13节给出两种方法均可以用,其一为“只进不舍”,其二为通用的修约规则,即大于半个修约间隔则进,小于半个修约间隔则舍,正好等于半个修约间隔则看前面一位是奇数还是偶数而定。根据第一种方法,如果对U=0.1112修约成为一位有效数,按只进不舍,就成为U=0.2,比修约前增大了几乎一倍,虽不违反规则,但显然并不可取。如果U=0.3112,也只取一位有效数而给成为U=0.4,比修约前也大了1/4左右,似亦不可取。专家们推荐采用:当第一个有效数为1和2时,取两位有效数为好,至于3以上,既可取一位也可取两位,对于一般测量,可均只取一位。至于是按上述两种修约方法中的哪一种,评定人员可自行选用。上述的这种建议,在JJF1059以及GUM中都未提及,只是在某些国家的标准中提到,例如DIN,不无道理,未必不可以参照使用。 现在在一些检定证书或是校准证书上,给出了测量结果(校准结果、某些检定点或校准点的示值误差或修正值)。对于校准(自愿行为),给出校准值及其不确定度,是符合JJF1059中8.2节要求“证书上的校准结果或修正值应给出测量不确定度。”但是在检定中,例如:对压力表、千分尺、台案秤等类衡器,按检定规程,其证书上是不给出测量结果的,现在也要求给出检定结果,有时甚至也给出其不确定度。从测量仪器的使用上来说,这些内容不起任何作用,因不能按测量结果修正使用。惟一的作用是让使用者知道这些仪器距离不合格还有多远。专家们认为,究竟在证书上如何给出和给出什么,应按有关规程处理,至于自愿的校准要求,则可按用户需要。 关于测量仪器特性评定问题,目前仍按JJG1027-1991技术规范中的有关规定处理。计量司官员在会上表示,用于代替该技术规范这部分的内容的新的技术规范现已审定通过,处于报批之中,预计今年内可发布。其中规定了测量仪器特性评定的基本原则、通用方法、准确度等、级、响应特性、灵敏度、鉴别力、稳定性、漂移、响应时间等性能的评定以及有关不确定度问题。关于测量仪器重复性的评定,该规范给出了基本方法,即按重复性条件下通过重复观测,采用贝塞尔公式计算出单次结果的实验标准差s。s的相对标准不确定度: 式中:n——重复观测次数。 对于只有一个被测量来说,上式也就是:

化学分析测量误差,不确定度评定和数据处理

化学分析测量误差、不确定度评定和数据处理 一、化学分析测量误差 1.测量及其分类 1.1 测量就是将待测量与选作计量标准的同类量进行比较得出其倍数的过程。倍数值称为待测量的数值,选作的计量标准称为单位,因此,表示一个被测对象的测量值必须包括数值和单位。 1.2 根据测量方式测量分为直接测量和间接测量。 直接测量:可直接从仪器或量具上直接读出待测量大小的测量。例如:用天平称取样品的质量;从滴定管上读取溶液体积等。 间接测量:待测量的量值是由若干个直接测量量值经过一定的函数关系运算才获得,这样的测量称为间接测载量。 1.3根据测量条件是否相同测量又可分为等精度测量和不等精度测量。 在相同条件下进行的一系列测量是等精度测量。例如:同一个人,使用同一仪器,采用同样方法,对同一待测量连续进行多次重复测量,此时应该认为每次测量的可靠程度都相同,故称为等精度测量。这样一组测量值称为测量列。应该指出:重复测量必须是重复进行测量整个操作过程,而不是仅仅为重复读数。 在对某一被测量进行多次测量时测量条件完全不同或部分不同则各次测量结果的可靠程度自然也不同的一系列测量称为不等精度测量。例如,对同一待测量连续进行多次重复测量时,选用的仪器不同,或测量方法不同,或测量人员不同等,都属于不等精度测量。处理不等精度测量的结果时,根据每个测量的“权重”进行“加权平均”。事实上,在化学分析测试中,保持测量条件完全相同的多次测量是极其困难的,但条件变化对测试结果影响不大时,仍可认为这种测量为等精度测量,等精度的误差分析和数据处理比较容易,所以将绝大多数的化学分析测量都采用等精度测量。 2.误差及其分类 2.1 (量的)真值 与给定的特性量定义一致的值称为真值。 量的真值只有通过完善的测量才有可能获得,真值按其本性是不确定的,与给定的特性量定义一致的值不一定只有一个。 2.2 (测量)误差 测量结果减去被测量的真值称为(测量)误差。 误差之值只取一个符号非正即负。因为它是指与真值之差值常称为绝对误差。绝对误差是一个有量纲的数值,它表示测量值偏离的程度。绝对误差除以真值称为相对误差。相对误差是一个无量纲的量,常常用百分比来表示准确度的高低。 2.3 误差的分类

相关主题
文本预览
相关文档 最新文档