当前位置:文档之家› CMOS相机控制及图像数据传输系统设计

CMOS相机控制及图像数据传输系统设计

CMOS相机控制及图像数据传输系统设计
CMOS相机控制及图像数据传输系统设计

CMOS相机控制及图像数据传输系统设计

时间:2009-06-03 11:04:11 来源:国外电子元器件作者:杨伟程,李鹏西安电子科技大学

摘要:介绍了相机控制接口与数字图像传输系统的设计方案,该系统是以EP2S30为传输通道控制核心实现基于PCI板卡的数字图像传输,采用FPGA模块设计和简洁的

PCI9054中断控制,电路结构紧凑.功能完善,下载的图像质量较高。

关键词:FPGA;数据传输;PCI板卡:数字相机配置

1 引言

高速数字图像采集系统是一种研究瞬间发生的物理现象的有效工具。在军工靶场测量中,需要跟踪、测量快速飞行目标的飞行实况,并分析、处理其测量数据。为了提高测量精度,普遍采用高帧频数字图像采集系统。因此,这里给出了CMOS相机控制及图像数据传输系统设计方案。

2 方案设计

该系统设计通过上位机串口发送命令字给控制系统,控制系统解析命令字控制整个系统的擦除、记录及下载。图1是该系统设计的结构框图。

上位机按照RS485协议以某一频率发送串行数据流到控制逻辑模块,数据流中包括相机配置命令、相机曝光脉冲宽度及其他需要存储的数据信息。控制逻辑模块按照数据帧格式解析这些数据信息,从而控制整个系统运行。在上位机软件设计中,软件程序通过检测PCI9054中断决定发送图像下载命令,从而完成图像下载的握手操作。

3 传输系统接口设计

3.1 图像数据接口

数字相机采用MCl31X,相机接口为CameraLink扩展接口,相机中DS90CR287将28位CMOS/TTL数据转换成4路LVDS数据流,控制板采用DS9OCR288将4路LVDS数据流转换成28位CMOS/TTL数据,作为整个系统图像数据源。图2是其原理框图。

相机高速LVDS数据流经过3个DS90CR288转换成10×8 bit数据流,1路帧信号,3路行信号及3路像素时钟信号。这些信号存人存储模块,从而提供图像数据。

3.2 相机控制接口

相机命令接口支持RS232通信协议,相机控制命令通过上位机RS485串口发送至控制板.经电平转换后输入至FP-GA,由于RS485与RS232数据协议格式相兼容.故通过FP-GA 可直接与相机接口相连,相机接口发送配置命令采用DS90LV047A型接口器件,而采用DS90LV048A接收相机反馈信息。图3是相机控制接口原理框图。

3.3 图像传输通道

上位机通过RS485串口向控制逻辑模块发送读写控制命令,该控制逻辑模块可控制存储模块的读写及擦除操作。图4是图像传输通道设计框图。

CMOS相机控制及图像数据传输系统设计

时间:2009-06-03 11:04:11 来源:国外电子元器件作者:杨伟程,李鹏西安电子科技大学控制逻辑全部由FPGA实现,FPGA采用ALTERA公司的EP2S30F67214,其主要性能指标为:ALUT为12 480;I/O引脚为367个;存储容量为419.328 Kbit;PLL个数为6;DSP的数据流速率则大于250 MHz。图像下载传输通道流程:上位机发送控制命令帧,控制逻辑模块接收并解析该控制命令帧,输出至存储模块,使存储模块处于图像下载状态;由于存储模块的Flash需触发读取,故采用命令触发该控制命令帧帧头;存储模块向控制逻辑模块并行输出数据,控制逻辑模块首先缓存一定容量数据,然后按串行同步传输协议输出到上位机PCI板卡的FPGA控制逻辑;待接收到全部数据则触发PCI9054的DMA 中断,上位机程序通过DMA将一次传输数据写入内存并存储至硬盘;如此循环,直到停止下载图像数据为止。

4 FPGA控制模块设计

通过介绍传输系统各接口设计,FPGA控制逻辑是整个系统设计的核心,各FPGA控制逻辑是在Quartus II开发环境中设计。

4.1 相机控制接口及上位机命令接口

该模块实现相机配置命令传输、相机曝光脉冲产生及上位机命令帧解析。FPGA中的RS232串行接收模块接收命令帧数据流,通过帧头捕捉确认命令帧数据流,并解析出读写命令控制信息、曝光脉冲宽度信息等。图5为相机控制接口与上位机命令接口模块设计。

4.2 图像传输通道模块

存储板同步传输时钟和并行数据,控制逻辑收发模块依据时钟锁存数据缓存至双口RAM,缓存至40 KB数据时,开始读取数据,加同步传输帧头转换成串行数据流,从而同步传输200 MHz时钟输出至PCI板卡。图6为图像传输通道模块设计。

5 结语

该系统设计的控制逻辑模块均由FPGA实现,该FPGA工作电路稳定,数据流速度高,可满足大容量图像数据高速传输要求,采用握手传输方式,可有效防止上位机因不能及时响应中断而丢帧的情况。该传输系统是某高速大容量存储输出系统的图像输出模块,已应用于某光测设备。其实际工作频率为400 Hz,存储容量为100 GB,能存储2-3 min图像数据,

下载图像速度约4幅/s,完全满足工程需要。

照相机成像原理和构造

照相机成像原理和构造 光博会后看到照相机后的观后感,了解照相机原理及构造,以下资料来自专业人士介绍以及所学工程光学教材知识。 照相机的镜头是一个凸透镜,来自物体的光经过凸透镜后,在胶卷上形成一个缩小、倒立的实像。 胶卷上涂着一层感光物质,它能把这个像记录下来,经过显影、定影后成为 底片,用底片洗印就得到相片。 照相时,物体离照相机镜头比较远,像是倒立、缩小的。 照相机是用于摄影的光学器械。被摄景物反射出的光线通过照相镜头(摄景物镜)和控制曝光量的快门聚焦后,被摄景物在暗箱内的感光材料上形成潜像,经冲洗处理(即显影、定影)构成永久性的影像,这种技术称为摄影术。

最早的照相机结构十分简单,仅包括暗箱、镜头和感光材料。现代照相机比较复杂,具有镜头、光圈、快门、测距、取景、测光、输片、计数、自拍等系统,是一种结合光学、精密机械、电子技术和化学等技术的复杂产品。 1550年,意大利的卡尔达诺将双凸透镜置于原来的针孔位置上,映像的效果比暗箱更为明亮清晰;1558年,意大利的巴尔巴罗又在卡尔达诺的装置上加上光圈,使成像清晰度大为提高;1665年,德国僧侣约翰章设计制作了一种小型的可携带的单镜头反光映像暗箱,因为当时没有感光材料,这种暗箱只能用于绘画。 1822年,法国的涅普斯在感光材料上制出了世界上第一张照片,但成像不太清晰,而且需要八个小时的曝光。1826年,他又在涂有感光性沥青的锡基底版上,通过暗箱拍摄了一张照片。 1839年,法国的达盖尔制成了第一台实用的银版照相机,它是由两个木箱组成,把一个木箱插入另一个木箱中进行调焦,用镜头盖作为快门,来控制长达三十分钟的曝光时间,能拍摄出清晰的图像。 1860年,英国的萨顿设计出带有可转动的反光镜取景器的原始的单镜头反光照相机;1862年,法国的德特里把两只照相机叠在一起,一只取景,一只照相,构成了双镜头照相机的原始形式;1880年,英国的贝克制成了双镜头的反光照相机。 随着感光材料的发展,1871年,出现了用溴化银感光材料涂制的干版,1884年,又出现了用硝酸纤维(赛璐珞)做基片的胶卷。 随着放大技术和微粒胶卷的出现,镜头的质量也相应地提高了。1902年,德国的鲁道夫利用赛得尔于1855年建立的三级像差理论,和1881年阿贝研究成功的高折射率低色散光学玻璃,制成了著名的“天塞”镜头,由于各种像差的降低,使得成像质量大为提高。在此基础上,1913年德国的巴纳克设计制作了使用底片上打有小孔的、35毫米胶卷的小型莱卡照相机。 不过这一时期的35毫米照相机均采用不带测距器的透视式取景器。1930年制成彩色胶卷;1931年,德国的康泰克斯照相机已装有运用三角测距原理的双像重合测距器,提高了调焦准确度,并首先采用了铝合金压铸的机身帘快门。

中国CMOS图像传感器行业研究-行业发展概况

中国CMOS图像传感器行业研究-行业发展概况 (一)行业发展概况 1、集成电路行业 2010年以来,以智能手机、平板电脑为代表的新兴消费电子市场的兴起,以及汽车电子、工业控制、仪器仪表、智能照明、智能家居等物联网市场的快速发展,带动整个半导体行业规模迅速增长。2017年,全球半导体行业整体销售额达到4,122亿美元,同比增长21.63%,增速创七年来新高。 数据来源:全球半导体贸易协会(WSTS)

根据全球半导体贸易协会(WSTS)预测,2018年全球半导体市场规模将达到4,512亿美元,同比增长9.5%。 数据来源:全球半导体贸易协会(WSTS)

2、CMOS图像传感器行业 (1)图像传感器行业概况 图像传感器为物联网感知层众多传感器中最重要的一种核心传感器。图像传感器主要采用感光单元阵列和辅助控制电路获取对象景物的亮度和色彩信号,并通过复杂的信号处理和图像处理技术输出数字化的图像信息。图像传感器中的感光单元一般采用感光二极管(Photodiode)实现光电信号的转换。感光二极管在接受光线照射之后能够产生电流信号,电流的强度与光照的强度成正比例关系。每个感光单元对应图像传感器中的一个像元,像元也被称为像素单元(Pixel)。 图像传感器主要分为CCD图像传感器和CMOS图像传感器两大类。CCD和CMOS 都是利用感光二极管进行光电转换,将图像转换为数字信号,但二者在感光二极管的周边信号处理电路和感光单元产生的电信号的处理方式不同。 CCD和CMOS的感光元件在接受光照之后直接输出的电信号都是模拟信号。在CCD传感器中,每一个感光元件都不对此作进一步的处理,而是将它直接输出到下一个感光元件的存储单元,结合该元件生成的模拟信号后再输出给第三个感光元件,依次类推,直到结合最后一个感光元件的信号才能形成统一的输出。由于感光元件生成的电信号非常微弱,无法直接进行模数转换工作,因此这些输出数据必须做统一的放大处理。由于CCD本身无法将模拟信号直接转换为数字信号,因此还需要一个专门的模数转换芯片进行处理,最终以数字图像矩阵的形式输出给专门的图像处

数码相机的成像原理

1.1 数码相机的成像原理 在对数码相机的特点和基本组件了解之前,下面来了解一下数码相机是如何工作的,这有利于更好地理解和掌握相机的各项关键参数,深入了解相机的性能。 当打开相机的电源开关后,主控程序芯片开始检查整个相机,确定各个部件是否处于可工作状态。如果一切正常,相机将处于待命状态;若某一部分出现故障,LCD屏上会显示一个错误信息,并使相机完全停止工作。 当用户对准拍摄目标,并将快门按下一半时,相机内的微处理器开始工作,以确定对焦距离、快门的速度和光圈的大小。当按下快门后,光学镜头可将光线聚焦到影像传感器上,这种CCD/CMOS半导体器件代替了传统相机中胶卷的位置,它可将捕捉到的景物光信号转换为电信号。 此时就得到了对应于拍摄景物的电子图像,由于这时图像文件还是模拟信号,还不能被计算机识别,所以需要通过A/D(模/数转换器)转换成数字信号,然后才能以数据方式进行储存。接下来微处理器对数字信号进行压缩,并转换为特定的图像格式,常用的用于描述二维图像的文件格式包括Tag TIFF(Image File Format)、RAW(Raw data Format)、FPX(Flash Pix)、JFIF(JPEG File Interchange Format)等,最后以数字信号存在的图像文件会以指定的格式存储到内置存储器中,那么一张数码相片就完成拍摄了,此时通过LCD(液晶显示器)可以查看所拍摄到的照片。 前面只是简单介绍了其大致的过程,下面结合图1-1来详细地介绍相片成像的整个过程。 图1-1 成像原理示意图 (1)当使用数码相机拍摄景物时,景物反射的光线通过数码相机的镜头透射到CD上。 (2)当CCD曝光后,光电二极管受到光线的激发而释放出电荷,生成感光元件的电信号。 (3)CCD控制芯片利用感光元件中的控制信号线路对发光二极管产生的电流进行控制,由电流传输电路输出,CCD会将一次成像产生的电信号收集起来,统一输出到放大器。 (4)经过放大和滤波后的电信号被传送到ADC,由ADC将电信号(模拟信号)转换为数字信号,数值的大小和电信号的强度与电压的高低成正比,这些数值其实也就是图像的数据。 (5)此时这些图像数据还不能直接生成图像,还要输出到DSP(数字信号处理器)中,在DSP中,将会对这些图像数据进行色彩校正、白平衡处理,并编码为数码相机所支持的图像格式、分辨率,然后才会被存储为图像文件。 (6)当完成上述步骤后,图像文件就会被保存到存储器上,我们就可以欣赏了。 1.2 数码相机的基本部件 无论是哪种款式的数码相机,大都包括图1-2、图1-3出示的基本组件。

CMOS图像传感器的研究进展_李继军.

. net 光学制造 1内蒙古工业大学理学院, 内蒙古呼和浩特 0100512北京师范大学遥感与 GIS 研究中心遥感科学国家重点实验室, 北京 10087! " 5 Li Jijun 1 Du Yungang 1Zhang Lihua 1, 2 Liu Quanlong 1Chen Jianrui 1 1School of Science, Inner Mongolia University of Technology , Hohhot, Inner Mongolia 010051, China, 2State Key Laboratory of Remote Sensing Science, Research Center of Remote Sensing &GIS, Beijing Normal University ,Beijing 100875, China #$$$$$$$$$$$% &’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ( 摘要 20世纪 90年代以来, 随着超大规模集成 (VLSI 技术的发展, CMOS 图像传感器显示出强劲的发展势头。简要介绍了 CMOS 图像传感器的结构及工作原理, 详细比较了 CMOS 图像传感器与 CCD 的性能特点, 讨论了 CMOS 图像传感器的关键技术问题,并给出了相应的解决途径,综述了 CMOS 图像传感器的国内外研 究现状, 最后对 CMOS 图像传感器的发展趋势进行了展望。 关键词光电子学; 传感器; CMOS 图像传感器; CCD ; 关键技术问题 Abstract

Since the 1990s, with the development of very large scale integration (VLSI,CMOS image sensors have been developed rapidly. The structure and working principle of CMOS image sensors are introduced. The performances between CMOS image sensor and CCD are compared in detail. The key technical problems of CMOS image sensors are discussed, and the related solving ways are given. The development situation of CMOS image sensors at home and abroad is reviewed, and the development trends of CMOS image sensors are prospected. Key words optoelectronics; sensor; CMOS image sensor; CCD; key technical problem 中图分类号 O436 doi :10.3788/LOP20094604.0045 1引言 CMOS 图像传感器的研究始于 20世纪 60年代末, 受当时工艺技术的限制, 发展和应用有限。直到 20世纪 90年代初,随着大规模集成电路设计技术和信号处理技术的提高, CMOS 图像传感器才日益受到重视 [1~3], 成为固体图像传感器的研发热点。近几年来, 随着集成电路设计技术和工艺水平的长足进步 , CMOS 图像传感器的一些性能指标已接近甚至超过CCD 图像传感器 [4~6]。 本文简要介绍了 CMOS 图像传感器的结构及工作原理,详细比较了 CMOS 图像传感器与 CCD 的性 能特点,讨论了 CMOS 图像传感器的关键技术问题, 并给出了相应的解决途径, 综述了 CMOS 图像传感器的国内外研究现状, 最后对 CMOS 图像传感器的发展趋势进行了展望。 2结构及工作原理 CMOS 图像传感器的总体结构如图 1所示

单反相机的原理和结构

一单反相机的原理和结构 銅峰电子刘根 数码单反相机的全称是数码单镜头反光相机(Digital single lens reflex),缩写为DSLR。数码单反相机专指使用单镜头取景方式对景物进行拍摄的一种照相机,拍摄者使用相机背后的光学取景框进行观察,通过观察安装在相机前段的镜头所提供的视觉角度的大小进行拍摄。 在单反相机的结构中,作为重要的是照相的反光镜和相机上端圆拱结构内安装的五面镜或五棱镜。拍摄者正是使用这种结构从取景器中直接观察到镜头的影像。由单镜头反光相机的构造图可以看到,光线透过镜头到达反光镜后,折射到上面的对焦屏,并结成影像,透过接目镜和五棱镜,拍摄者就可以在取景器中看到外面的景物。这个过程有点像人们透过窗户看到外面的世界,窗户的大小便是人们看到外面景物的范围。

当拍摄者看到自己满意的角度和拍摄内容的时候,既可以按动快门。按动快门的过程就是一个拍摄和成像的过程,术语称为曝光。不管是胶片单反相机还是数码单反相机,曝光原理是完全相同的。在按下快门的瞬间,反光镜向上弹起,胶片前面的快门幕帘同时打开,通过镜头的光线(影像)投射到感光部件上,使胶片或数码相机的感光元件曝光。在按下快门的这一瞬间,光学取景器中会出现黑屏的情况(黑屏的时间根据快门的快慢而不同),之后反光镜立即恢复原状,取景器中再次可以看到影像(此时已经完成了一次曝光)。

单反相机的这种构造,决定了镜头在相机的结构中占有相当重要的地位。使用这种相机的最大优势是摄影师在光学取景器中看到的取景范围和感光元件的影像实际拍摄范围基本一致。摄影师使用不同的镜头配置可以达到很好的拍摄效果,从具有冲击力的7.5mm鱼眼镜头到长达1600mm以上的超级远摄远镜头,都可以安装在同一台相机上,从而拍摄出效果迥异的图片。此外,单反相机在一定程度上消除了旁轴相机的取景视觉差异,使摄影师可以更精确地控制取景范围,选择最完美的拍摄角度。

CMOS图像传感器的基本原理及设计考虑.

CMOS图像传感器的基本原理及设计考虑 摘要:介绍CMOS图像传感器的基本原理、潜在优点、设计方法以及设计考虑。 关键词:互补型金属-氧化物-半导体图像传感器;无源像素传感器;有源像素传感器 1引言 20世纪70年代,CCD图像传感器和CMOS图像传感器同时起步。CCD图像传感器由于灵敏度高、噪声低,逐步成为图像传感器的主流。但由于工艺上的原因,敏感元件和信号处理电路不能集成在同一芯片上,造成由CCD图像传感器组装的摄像机体积大、功耗大。CMOS图像传感器以其体积小、功耗低在图像传感器市场上独树一帜。但最初市场上的CMOS图像传感器,一直没有摆脱光照灵敏度低和图像分辨率低的缺点,图像质量还无法与CCD图像传感器相比。 如果把CMOS图像传感器的光照灵敏度再提高5倍~10倍,把噪声进一步降低,CMOS 图像传感器的图像质量就可以达到或略微超过CCD图像传感器的水平,同时能保持体积小、重量轻、功耗低、集成度高、价位低等优点,如此,CMOS图像传感器取代CCD图像传感器就会成为事实。 由于CMOS图像传感器的应用,新一代图像系统的开发研制得到了极大的发展,并且随着经济规模的形成,其生产成本也得到降低。现在,CMOS图像传感器的画面质量也能与CCD图像传感器相媲美,这主要归功于图像传感器芯片设计的改进,以及亚微米和深亚微米级设计增加了像素内部的新功能。 实际上,更确切地说,CMOS图像传感器应当是一个图像系统。一个典型的CMOS图像传感器通常包含:一个图像传感器核心(是将离散信号电平多路传输到一个单一的输出,这与CCD图像传感器很相似),所有的时序逻辑、单一时钟及芯片内的可编程功能,比如增益调节、积分时间、窗口和模数转换器。事实上,当一位设计者购买了CMOS图像传感器后,他得到的是一个包括图像阵列逻辑寄存器、存储器、定时脉冲发生器和转换器在内的全部系统。与传统的CCD图像系统相比,把整个图像系统集成在一块芯片上不仅降低了功耗,而且具有重量较轻,占用空间减少以及总体价格更低的优点。 2基本原理 从某一方面来说,CMOS图像传感器在每个像素位置内都有一个放大器,这就使其

照相机原理和构造56701

一、人眼成像的原理 摄影又称摄影术,就是人们通使用照相机把反射在景物上的光线,通过镜头在感光材料上感光而形成影像的过程。所以有些国家把照相机称为“照光机”,这是比较准确的,也就是说,摄影的过程并不是把景物摄录下来,而是把景物反射出的光线记录在感光材料上,形成的影像本不是景物的影像,而是光线在感光材料上形成了潜影。 照相机最早是谁发明的已无从查考,但第一个在底片的银盐上成像的是法国人达盖尔,就是今天的数码成像也是在达盖尔的银盐成像的基础上发展起来的,成像的原理一直不变。 归根结底,照相机是对人眼的仿生,照相机成像的原理与人眼看到景物在视网膜上成像的原理也是一样的——当然人眼比世界上最先进的照相机都更为先进,结构也更为复杂。下图就是人眼接受外界光线而成像的结构图。(这可是UU比照着生物老师的教科书画的,差点累死) 图(1)简约眼视网膜像的形成图

从上图我们可以看出,人眼中的晶状体就如同一个凸透镜,物体AB经过晶体透过节点后,会在视网膜上形成像ab,当然进入眼中的光线还必须通过瞳孔而到达后主焦点,而瞳孔则会根据光线的强弱自动调节其开孔大小。 眼睛之所以能看见周围的各种物体,一是必须有光,二是眼球内可以成像的构造。当我们睁开眼睛,从周围物体发射或反射而来的光,穿过瞳孔和晶状体,聚集在眼睛后面的视网膜上,形成这些物体的图像。连接视网膜的视神经立即把这些信息传送到大脑,所以我们就能看到这些物体。人以左右眼看同样的对象,两眼所见角度不同,在视网膜上形成的像并不完全相同,这两个像经过大脑综合以后就能区分物体的前后、远近,从而产生立体视觉。当然就这一点而言,照相机只相当于人的一只眼,不可能产生立体的感觉了。 二、照相机的工作原理 明白了以上的道理,我们就很容易理解照相机的成像原理了。下图是简易照相机的成像光路图。

CMOS图像传感器的性能

CMOS图像传感器的性能 2.2.1光电转换的原理和性能 当光子入射到半导体材料中,光子被吸收而激发产生电子–空穴对,称为光生载流子,如图2.3(a)所示。量子效率(Quantum Efficiency,QE)被定义为产生光生载流子的光子数占总入射光子数的百分比;或者被定义为η,即每个入射光子激发出来的光生载流子数。 式中,N e为被激发出来的电子数;N v为入射的光子数。不同的半导体材料对入射光的响应随其波长而变化,对于硅材料而言波长覆盖整个可见光范围,截止在 约1.12μm的近红外波长,如图2.3(b)所示。 (a)(b) 图2.3硅半导体材料的光照响应 光电信号的噪声水平决定了能检测到的最小光功率,即光电转换的灵敏度。硅光电传感器的噪声构成包括: ●来源于信号和背景的散粒噪声(shot noise);

●闪烁噪声(flicker noise),即1/f噪声; ●来源于电荷载流子热扰动的热噪声(thermal noise)。 噪声特性用噪声等效功率NEP(Noise Equivalent Power)表达,信号功 率和噪声等效功率的比值,被称为信噪比(Signal Noise Ratio,SNR),是描述传感器性能的重要参数之一。 当入射光子照射在半导体材料的PN结上,如图2.4(a)所示,如果在PN 结上施加电压使光生载流子形成电流,产生如图2.4(b)所示的I-V特性曲线。曲线上V>0的正向偏置一段被称为太阳能电池模式;PN结反向偏置V<0的平直一段曲线,被称为光电二极管模式;I-V特性的反向击穿段被称为雪崩模式。通常在图像传感器中,光电转换元件工作在光电二极管模式,如图2.3(c)所 示。图2.3中PN结的反向电流I leak为 I leak=I ph+I diff (a)(b) 图2.4PN结光电二极管示意图

数码相机成像的具体步骤详细讲解!

数码相机成像的具体步骤详细讲解! 数码相机成像的具体步骤详细讲解!电子元件知识10月7日讯,到目前为止,人们对数字相机性能的关注大部分集中在所摄图片的像素高低上。像素的高低直接取决于数字相机图像传感器的尺寸和密度。图像传感器是数字相机的核心结构,主要分为CCD(Charge-CoupledDevice)光电荷耦合器件和CMOS(ComplementaryMetalOxideSemiconductor)互补金属氧化物半导体集成电路两种。图像传感器由具有光传感单元和光敏二极管列阵硅芯片制成。这些光传感单元与像素高低直接相关,它们能够与撞击到上面的光脉冲相作用,并将其转换成电荷信号。 图像传感器上的光敏单元数目(像素)有两种表示方法。一是用X/Y轴方向(即传感器的宽度和高度方向)数目乘积表示,如640480;另一种是用光敏单元总数来表示,如一百万像素。 制造商通常对于给定的图像传感器会给出两个像素数目指标。第一个数字是传感器上所有的像素数目,如三百三十四万像素或者写为3.34MegaPixels。第二个数字是传感器上真正用于捕捉图像的光敏单元(激活像素)数目。第二个数字一般比第一个小5%左右。 在超净环境中生产数字相机 造成这5%差别的原因有很多。在目前的传感器制作工艺中,生产一个100%完美毫无缺陷的产品几乎是不可能的,我们通常把图像传感器生产过程中出现的有缺陷光敏单元称为暗像素或者缺陷像素。还有部分像素被用于其它方面,例如用于从传感器读取数据时的校准过程,或者为了保证图像比例而故意不使用。很小的一部分处在传感器边缘区域的像素被人为遮蔽,避免接受外来光线,而是用于检测CCD背景所产生的噪声,以便在实际图像数据中将背景噪声加以扣除。 需要技术的像素数与CCD尺寸关系不是线性的,从三百万像素提高到四百万像素像素数

CMOS图像传感器的工作原理及研究

CMOS图像传感器的工作原理及研究 摘要:介绍了CMOS图像传感器的工作原理,比较了CCD图像传感器与CMOS图像传感器的优缺点,指出了CMOS图像传感器的技术问题和解决途径,综述了CMOS图像传感器的现状和发展趋势。 1 引言 自从上世纪60年代末期,美国贝尔实验室提出固态成像器件概念后,固体图像传感器便得到了迅速发展,成为传感技术中的一个重要分支,它是PC机多媒体不可缺少的外设,也是监控中的核心器件。互补金属氧化物半导体(CMOS)图像传感器与电荷耦合器件(CCD)图像传感器的研究几乎是同时起步,但由于受当时工艺水平的限制,CMOS图像传感器图像质量差、分辨率低、噪声降不下来和光照灵敏度不够,因而没有得到重视和发展。而CCD 器件因为有光照灵敏度高、噪音低、像素少等优点一直主宰着图像传感器市场。由于集成电路设计技术和工艺水平的提高,CMOS图像传感器过去存在的缺点,现在都可以找到办法克服,而且它固有的优点更是CCD器件所无法比拟的,因而它再次成为研究的热点。 70年代初CMOS传感器在NASA的Jet Pro pul sion Laboratory(JPL)制造成功,80年代末,英国爱丁堡大学成功试制出了世界第一块单片CMOS型图像传感器件,1995年像元数为(128×128)的高性能CMOS有源像素图像传感器由喷气推进实验室首先研制成功[1],1997年英国爱丁堡VLSI Ver sion公司首次实现了CMOS图像传感器的商品化,就在这一年,实用CMOS技术的特征尺寸已达到0.35mm,东芝研制成功了光敏二极管型APS,其像元尺寸为5.6mm×5.6mm,具有彩色滤色膜和微透镜阵列,2000年日本东芝公司和美国斯坦福大学采用0.35mm技术开发的CMOS-APS已成为开发超微型CMOS摄像机的主流产品。 2 技术原理 CCD型和CMOS型固态图像传感器在光检测方面都利用了硅的光电效应原理,不同点在于像素光生电荷的读出方式。CMOS图像传感器芯片的结构 [2]如图1所示。典型的CMOS像素阵列[3],是一个二维可编址传感器阵列。传感器的每一列与一个位线相连,行允许线允许所选择的行内每一个敏感单元输出信号送入它所对应的位线上(图2),位线末端是多路选择器,按照各列独立的列编址进行选择。根据像素的不同结构[4],CMOS图像传感器可以分为无源像素被动式传感器(PPS)和有源像素主动式传感器(APS)。根据光生电荷的不同产生方式APS又分为光敏二极管型、光栅型和对数响应型,现在又提出了DPS(digital pixel sensor)概念。

CMOS图像传感器的基本原理及设计

CMOS图像传感器的基本原理及设计考虑 1、引言 20世纪70年代,CCD图像传感器和CMOS图像传感器同时起步。CCD图像传感器由于灵敏度高、噪声低,逐步成为图像传感器的主流。但由于工艺上的原因,敏感元件和信号处理电路不能集成在同一芯片上,造成由CCD图像传感器组装的摄像机体积大、功耗大。CMOS图像传感器以其体积小、功耗低在图像传感器市场上独树一帜。但最初市场上的CMOS图像传感器,一直没有摆脱光照灵敏度低和图像分辨率低的缺点,图像质量还无法与CCD图像传感器相比。 如果把CMOS图像传感器的光照灵敏度再提高5倍~10倍,把噪声进一步降低,CMOS图像传感器的图像质量就可以达到或略微超过C CD图像传感器的水平,同时能保持体积小、重量轻、功耗低、集成度高、价位低等优点,如此,CMOS图像传感器取代CCD图像传感器就会成为事实。 由于CMOS图像传感器的应用,新一代图像系统的开发研制得到了极大的发展,并且随着经济规模的形成,其生产成本也得到降低。现在,CMOS图像传感器的画面质量也能与CCD图像传感器相媲美,这

主要归功于图像传感器芯片设计的改进,以及亚微米和深亚微米级设计增加了像素内部的新功能。 实际上,更确切地说,CMOS图像传感器应当是一个图像系统。一个典型的CMOS图像传感器通常包含:一个图像传感器核心(是将离散信号电平多路传输到一个单一的输出,这与CCD图像传感器很相似),所有的时序逻辑、单一时钟及芯片内的可编程功能,比如增益调节、积分时间、窗口和模数转换器。事实上,当一位设计者购买了CM OS图像传感器后,他得到的是一个包括图像阵列逻辑寄存器、存储器、定时脉冲发生器和转换器在内的全部系统。与传统的CCD图像系统相比,把整个图像系统集成在一块芯片上不仅降低了功耗,而且具有重量较轻,占用空间减少以及总体价格更低的优点。 2、基本原理 从某一方面来说,CMOS图像传感器在每个像素位置内都有一个放大器,这就使其能在很低的带宽情况下把离散的电荷信号包转换成电压输出,而且也仅需要在帧速率下进行重置。CMOS图像传感器的优点之一就是它具有低的带宽,并增加了信噪比。由于制造工艺的限制,早先的CMOS图像传感器无法将放大器放在像素位置以内。这种被称为PPS的技术,噪声性能很不理想,而且还引来对CMOS图像传感器的种种干扰。

光学和数码变焦的原理

光学和数码变焦的原理

光学和数码变焦的原理 在我们接触数码相机时,许多机型都会出现光学变焦以及数码变焦的概念。对于刚刚接触数码相机,并准备作出选购的消费者来说,往往只是看到两者均能够将远处物体放大,而无法具体的分辨出两者的实质区别。这样往往导致具体选购的抉择出现失误。事实上,光学变焦是数码相机镜头的一个极为重要的参数,它和数码变焦存在着本质上的区别。 两者的区别不但体现出它们的工作原理上,在最终的成像效果上,两者也会有明显的差别。单单从成像质量来说,光学变焦比数码变焦优秀很多。但是数码变焦由于成本低廉,也广泛配备在消费级数码相机中。而且,随着图象处理技术的提高,数码变焦的效果也有所改善,例如索尼SmartZoom数码变焦技术,就是一个较为实用的数码变焦技术。 在面临着众多的技术信息,消费者选购起来也更加棘手,到底在光学变焦与数码变焦之间该如何作出选择呢?下面我们就对两者的区别、实

用性以及具体的选购等问题做些简单陈述,希望能给大家的选购提供些建议。 光学变焦与数码变焦的各自原理 光学变焦 要了解光学变焦的原理,首先我们来看看镜头成像的过程。在我们的初中物理课上,老师都会给我们做放大镜成像的试验,燃烧的蜡烛通过放大镜会在白板上清晰地投影出来,同时随着放大镜的前后移动,燃烧的蜡烛在白板上影像的大小会发生变化。这既是相机成像的原理,也是光学变焦的原理所在。相机的光学变焦就是通过改变镜头中焦点的位置,来改变进入镜头光线的角度,从而使同一距离的被摄物体在感光元件上变得更大,或者让更远的物体能够更清晰得聚焦在感光元件上。

上面是相机成像简单的平面图,光学变焦就是通过移动镜头内部镜片来改变焦点的位置,改变镜头焦距的长短,并改变镜头的视角大小,从而实现影像的放大与缩小。上图中,红色三角形较长的直角边就是相机的焦距。当改变焦点的位置时,焦距也会发生变化。例如将焦点向成像面反方向移动,则焦距会变长,图中的视角也会变小。这样,视角范围内的景物在成像面上会变得更大。这就是光学变焦的原理。 我们平时接触的数码相机光学变焦的焦距,它实际上就是上图中焦距的长度。例如佳能A95的3倍光学变焦镜头,它的焦距为7.8-23.4mm,指的就是焦距长度能够变化的范围,实际上也就是被摄物体能够放大的范围。而等效焦长是将上述焦距换算为传统35mm相机的焦距,从而变得更加直观,这个问题就不在我们的讨论范围了。数码变焦 数码变焦在原理上理解起来就比较复杂一些。就现在的主流技术来看,数码变焦是利用影像处理器将感光元件中某一区域的感光单元所 获得的图象信息进行单独的放大。但是,这种单

工业相机原理

工作原理: 在单反数码相机的工作系统中,光线透过镜头到达反光镜后,折射到上面的对焦屏并结成影像,透过接目镜和五棱镜,我们可以在观景窗中看到外面的景物。与此相对的,一般数码相机只能通过LCD屏或者电子取景器(EVF)看到所拍摄的影像。显然直接看到的影像比通过处理看到的影像更利于拍摄。 在DSLR拍摄时,当按下快门钮,反光镜便会往上弹起,感光元件(CCD或CMOS)前面的快门幕帘便同时打开,通过镜头的光线便投影到感光原件上感光,然后后反光镜便立即恢复原状,观景窗中再次可以看到影像。单镜头反光相机的这种构造,确定了它是完全透过镜头对焦拍摄的,它能使观景窗中所看到的影像和胶片上永远一样,它的取景范围和实际拍摄范围基本上一致,十分有利于直观地取景构图。 主要特点: 单反数码相机的一个很大的特点就是可以交换不同规格的镜头,这是单反相机天生的优点,是普通数码相机不能比拟的。 另外,现在单反数码相机都定位于数码相机中的高端产品,因此在关系数码相机摄影质量的感光元件(CCD或CMOS)的面积上,单反数码的面积远远大于普通数码相机,这使得单反数码相机的每个像素点的感光面积也远远大于普通数码相机,因此每个像素点也就能表现出更加细致的亮度和色彩范围,使单反数码相机的摄影质量明显高于普通数码相机。 感光器件 提到数码相机,不得不说到就是数码相机的心脏——感光器件。与传统相机相比,传统相机使用“胶卷”作为其记录信息的载体,而数码相机的“胶卷”就是其成像感光器件,而且是与相机一体的,是数码相机的心脏。感光器是数码相机的核心,也是最关键的技术。数码相机的发展道路,可以说就是感光器的发展道路。目前数码相机的核心成像部件有两种:一种是广泛使用的CCD(电荷藕合)元件;另一种是CMOS(互补金属氧化物导体)器件。 电荷藕合器件图像传感器CCD(Charge Coupled Device),它使用一种高感光度的半导体材料制成,能把光线转变成电荷,通过模数转换器芯片转换成数字信号,数字信号经过压缩以后由相机内部的闪速存储器或内置硬盘卡保存,因而可以轻而易举地把数据传输给计算机,并借助于计算机的处理手段,根据需要和想像来修改图像。CCD由许多感光单位组成,通常以百万像素为单位。当CCD表面受到光线照射时,每个感光单位会将电荷反映在组件上,所有的感光单位所产生的信号加在一起,就构成了一幅完整的画面。

数码相机工作原理

数码相机工作原理 在过去二十年里,消费电子产品的大多数重要技术突破实 际上可归结于一项更大意义上的突破。仔细观察就会发 现,CD 、DVD 、高清电视、MP3和DVR 其实都是基于相同的原理,即:将传统的模拟信息(用起伏波表示)转变为数 字信息(用1和0,或比特表示)。这一技术上的根本转 变完全改变了我们处理图像和声音信息的方式,使许多事 情成为可能。 数码相机的出现是这一转变最显著的例子——它与传统 相机存在本质上的差异。传统相机完全依赖化学和机械工 艺——你甚至不需要用电来操作相机。而所有数码相机都 内置有计算机,并且都以电子形式记录图像。 这种新方法已经获得巨大成功。由于目前胶卷提供的照片质量仍然高于数码相机,因此数码相机还没有完全取代传统相机。但是,随着数字图像技术的进步,数码相机已经迅速超越传统相机,将变得更加普及。 在这篇文章中,我们将一起了解这类神奇数码装置的具体工作原理。 了解基本原理 假设你想拍一张照片并通过电子邮件发送给朋友。要实现这 一点,你必须借助计算机能够识别的语言来表示这个图像, 即比特和字节。数字图像本质上仅仅是由1和0组成的长字 串,1和0可用来表示微小的色点(或像素),所有色点(或像素)共同组成图像。(有关数据的取样及数字化表示方面 的信息,请参见对声波数字化进行的说明。光波数字化的原 理与此类似。) 如果你希望将一张照片转变成数字形式,可以采用两种方法: ? 第一种方法是先使用传统胶卷相机拍摄一张照片,然后通过化学方式处理胶卷,并将其打印在相纸上,然后使用数字扫描仪对打印照片进行取样(将光图记录为一系列的像素值)。 ? 第二种方法是可以直接对拍摄对象所反射的原始光进行采样,直接将光图分解为一系列像素值。换句话说,你可以使用数码相机。 从最根本来说,这正是数码相机要实现的功能。数码相机也和传统相机一样,包含一系列镜片,使光线聚焦、景物成像。但是,数码相机不是使光线聚焦在胶卷上,而是聚焦在能够借助电子形式记录光的半导体装置中,然后通过计算机将这种电子信息分解为数字数据。数码相机正是因为这一过程而变得好玩和有趣。 尼康数码相机 数码相机工作原理

CMOS图像传感器的工作原理

CMOS图像传感器的工作原理 1引言 图像传感器是将光信号转换为电信号的装置,在数字电视、可视通信市场中有着广泛的应用。60年代末期,美国贝尔实脸室发现电荷通过半导体势阱发生转移的现象,提出了固态成像这一新概念和一维CCD(Charge-Coupled Device 电荷耦合器件)模型器件。到90年代初,CCD技术已比较成热,得到非常广泛的应用。但是随着CCD应用范围的扩大,其缺点逐渐暴露出来。首先,CCD技术芯片技术工艺复杂,不能与标准工艺兼容。其次,CCD技术芯片需要的电压功耗大,因此CCD技术芯片价格昂贵且使用不便。目前,最引人注目,最有发展潜力的是采用标准的CMOS(Complementary Metal Oxide Semiconductor 互补金属氧化物场效应管)技术来生产图像传感器,即CMOS图像传感器。CMOS图像传感器芯片采用了CMOS工艺,可将图像采集单元和信号处理单元集成到同一块芯片上。由于具有上述特点,它适合大规模批量生产,适用于要求小尺寸、低价格、摄像质量无过高要求的应用,如保安用小型、微型相机、手机、计算机网络视频会议系统、无线手持式视频会议系统、条形码扫描器、传真机、玩具、生物显微计数、某些车用摄像系统等大量商用领域。20世纪80年代,英国爱丁堡大学成功地制造出了世界上第一块单片CMOS图像传感器件。目前,CMOS图像传感器正在得到广泛的应用,具有很强地市场竞争力和广阔地发展前景。 2 CMOS图像传感器基本工作原理

右图为CMOS图像传感器的功能框图。 首先,外界光照射像素阵列,发生光电效应,在像素单元内产生相应的电荷。行选择逻辑单元根据需要,选通相应的行像素单元。行像素单元内的图像信号通过各自所在列的信号总线传输到对应的模拟信号处理单元以及A/D转换器,转换成数字图像信号输出。其中的行选择逻辑单元可以对像素阵列逐行扫描也可隔行扫描。行选择逻辑单元与列选择逻辑单元配合使用可以实现图像的窗口提取功能。模拟信号处理单元的主要功能是对信号进行放大处理,并且提高信噪比。另外,为了获得质量合格的实用摄像头,芯片中必须包含各种控制电路,如曝光时间控制、自动增益控制等。为了使芯片中各部分电路按规定的节拍动作,必须使用多个时序控制信号。为了便于摄像头的应用,还要求该芯片能输出一些时序信号,如同步信号、行起始信号、场起始信号等。 3象素阵列工作原理 图像传感器一个直观的性能指标就是对图像的复现的能力。而象素阵列就是直接关系到这一指标的关键的功能模块。按照像素阵列单元结构的不同,可以将

数码相机成像过程

数码相机成像过程 1.经过镜头光聚焦在CCD或CMOS上 2.CCD或CMOS将光转换成电信号 3.经处理器加工,记录在相机的内存上 4.通过电脑处理和显示器的电光转换,或经打印机打印便形成影象。具体过程: 照相机的工作原理(4张) 对胶片相机而言,景物的反射光线经过镜头的会聚,在胶片上形成潜应影,这个潜影是光和胶片上的乳剂产生化学反应的结果。再经过显影和定影处理就形成了影像。 数码相机是通过光学系统将影像聚焦在成像元件CCD/ CMOS 上,通过A/D转换器将每个像素上光电信号转变成数码信号,再经DSP处理成数码图像,存储到存储介质当中。 光线从镜头进入相机,CCD进行滤色、感光(光电转化),按照一定的排列方式将拍摄物体“分解”成了一个一个的像素点,这些像素点以模拟图像信号的形式转移到“模数转换器”上,转换成数字信号,传送到图像处理器上,处理成真正的图像,之后压缩存储到存储介质中。 编辑本段分类划分 照相机一般可按其使用技术特征如:画幅大小、取景方式、快门形式、测光方式来分类,也可按照相机的外形和结构来分类。具体分类情况如下:

汤姆900照相机 1、照相机根据其成像介质的不同 可以分为胶片相机与数码照相机以及宝丽来相机。胶片相机主要是指通过镜头成像并应用胶片记录影像的设备。而数码照相机则是应用半导体光电耦合器件和数字存储方法记录影像的摄影设备,有使用方便,照片传输方便,保存方便等特点。宝丽来相机又称一次成像相机,是将影象直接感光在特种像纸上,可在一分钟内看到照片,合适留念照等。 2.按照相机使用的胶片和画幅尺寸 可分为35mm照相机(常称135照相机)、120照相机、110照相机、126照相机、中幅照相机、大幅照相机、APS相机、微型相机等。135照相机使用35mm胶片,其所拍摄的标准画幅为24mm X 36mm,一般每个胶卷可拍照36张或24张。 3.按照相机的外型和结构 可分为平视取景照相机(VIEWFINDER)和单镜头反光照相机(单反相机)。此外还有折叠式照相机、双镜头反光相机、平视测距器相机(RANGFINDER)、转机、座机等等。 4.按照相机的快门形式 可分为镜头快门照相机(又称中心快门照相机)、焦平面快门照相机、程序快门照相机等。 5.按照相机具有的功能和技术特性 可分为自动调焦照相机,电测光手控曝光照相机,电测光自动曝光照相机等。此外还有快门优先式、光圈优先式、程序控制式、双优先式、电动卷片(自动卷片、倒片)照相机,自动对焦(AF)照相机,日期后背照相机,内装闪光灯照相机等。 有时也可按照相机的用途来分,如专业相机和消费类相机(傻瓜相机)、一步成象照相机、立体照相机;有时也可按镜头的特性分为变焦或双焦点照相机。实际上一架现代照相机往往具有多方面的特征,因此应以综合性的方式来定义。

单反相机及成像原理讲解

单反相机成像原理 数码单镜头反光DSLR(Digital Single L ens R eflex)照相机,简称数码单反相机。在这种系统中,反光镜和棱镜的独到设计使得摄影者可以从取景器中直接观察到通过镜头的影像。单镜头反光照相机的构造图中可以看到,光线透过镜头到达反光镜后,折射到上面的对焦屏并结成影像,透过接目镜和五棱镜,我们可以在观景窗中看到外面的景物。 光通过透镜(1),被反光镜(2)反射到磨砂取景屏(5)中。通过一块凸透镜(6) 并在五棱镜(7)中反射,最终图像出现在取景框(8)中。当按下快门,反光镜沿箭头所示方向移动,反光镜(2) 被拾起,图像被被摄在CCD(4)上,与取景屏上所看到的一致。 数码单镜头反光照相机的优势: ·不存在视差 ·精确的取景和对焦。这一点对于微距和远距摄影很重要 ·广泛的可更换镜头 ·常见的单反镜头比固定镜头相机提供了更广泛的光圈范围,尤其是增加了最大光圈 数码单镜头反光照相机的劣势: ·体积大 ·在小光圈的情况下,取景器很暗

单反数码相机和普通数码相机的区别 1、结构不同 单反数码相机与我们接触较多的普通消费数码相机是完全不同的两个系统,这里说的不同主要体现在两者的内部结构上,和传统单反相机一样采用了特殊的构造,数码单反相机根本上解决了象差的问题,就是说从取景器内部看到的就是将要暴光在胶片上的图像,普通数码相机由于采用了CCD感光模式,大家在LCD上看到的就是CCD感受到的图像,也就是说拍摄者在液晶屏上看到的也是大家将要拍摄的图像,也不存在像差问题,所以普通数码相机也能拍摄好微距!所以从这点来说,单反相机不占优势。 2、快门问题 普通数码相机对于普通用户拍摄到此一游的照片已经足够,但是它的快门速度对有较高要求的要适应恶劣拍摄环境的摄影者来说却是极为重要的,在普通数码相机中最快快门速度极为重要维持在1/1000秒左右,而单反数码相机的最快快门速度轻松就能达到1/10000秒左右,这么快的快门速度让普通数码相机望尘莫及,非常适合拍摄生态环境。 3、镜头不同 提到单反数码相机很多人都会津津乐道它拥有多种可支持的镜头,也有人认为单反数码相机与普通数码相机最大的区别就在于一个可更换镜头另一个则不可以,乍一听好像很有道理,仔细想想其实不然。比如Olympus的E20P就是一部不可换镜头的单反数码相机,当然市场上绝大多数单反数码相机背后都有配套的镜头群的支持。在拍摄活动中我们可以更换不同的特效镜头,通过取景器便可以查看不同的特殊效果,最终选择合适的镜头尝试拍摄。 单反数码相机不单支持的配套镜头多,更重要的是在镜头指标上也有普通数码相机达不到的高度。首先如广角端的拍摄效果,普通数码相机大都坚守35mm~38mm的阵地,少数高端机型的镜头支持到28mm广角,但是单反数码相机通常情况下使用原配镜头就可以拍摄出令人欣慰的广

有源像素CMOS图像传感器

有源像素CMOS 图像传感器 图1示出了有源像素CMO 图像传感器(Active Sensor , APS)的功能结构图 其中成像部分为光极管阵列(Photo Diode Array) 图l 肓澤曜CMOE 弗車锋暮E 慚功能结码團 四场效应管(4T)有源像素CMO 图像传感器的每个像素由光敏二极管、复位管 T 。、转移管T1、源跟随器T 。和行选通开关管T 。组成,如图2所示[9]。 转移管T1,被用来将光敏二极管连接至源跟随器 T3。,并通过复位管T2与 VDD 相连.T3的栅极与T1和T2之间的N+扩散区相连。与3T 结构的APS 相比,减 少了与T3的栅极相关的漏电流效应。源跟随器 T3的作用是实现对信号的放大和缓 冲,改善APS 的噪声问题。T4是用来将信号与列总线相连。其工作过程是:首先进 入“复位状态”,T2打开,对光敏二极管复位;然后进入“取样状态”,T2关闭, 光照射到光敏二极管上产生光生载流子,并通过源跟随器 T3放大输出;最后进入 “读出状态”,这时行选通管 T4打开,信号通过列 总线输出。 CIS 图像传感器 IMAM LIMF 」 iryht r TT READOUT SlUUCTUftf TT. |fOL( MKAJKi /T± PHQ-TVUIUW KEfPfR , AK.A'*?. 匚AM 和 COKFROl JNRHpAfE I CXI, 一 rnMFM^r FAME , puftr Wi 」代Met T1MIMG R?X1 巾 UVlJMJtf

接触式图像传感器( CIS(Contact Image Sensor) 是90 年代新型图像传感 器。与电荷耦合器件(CCD相比.CIS的优点主要有a无须外加光源、光学透镜等辅助机构b具有尺寸小、重量轻、结构紧凑及便于安装c采用R a 3光源.系统功耗低d采用陶瓷基底.有良好的温度特性。 目前.已有部分传真机及多功能打印机(MFP采用了CIS。世界著名的扫描仪制造商Microtek 公司于1998年底推出了世界上第1台超 薄型平台扫描仪Simscan C3 ,.首次使用CIS。近年来美军及北约的军用传真机及MFP中,相当一部分采用了CIS,近些年来.国外有数家公司致力CIS的研制、生产或相关技术的研究工作。然而.目前CIS技术还不如CCD成熟.CIS的分辨率还不很高. 应用情况还不够理想,但可以预见. 随着CIS 技术的发展.CIS 必将有广阔的应用前景。 CIS的结构组成与原理 图1中给出了CIS头截面剖视图2如图所示.CIS头由LED光源阵列、微自聚焦棒状透镜阵列、光电传感器的阵列、保护玻璃、铝质壳体及聚光棱镜等组成。CIS头的内部组成框图如图2所示.该CIS头物理分辨率为203DPI(8 point/mm),有效扫描宽度为216mm其传感器单元及棒状聚焦透镜一一对应地排成线阵,共有1728个传感单元,可分别检测1728个像素点,VLED和GLEE为内LED阵列的电源和地。SCLK为CIS的扫描控制时钟;SI为启动扫描控制信号,A0为CIS的模拟输出端,工作时CIS 头与扫描文稿直接接触,来自CIS头内LED 阵列的光源经聚光棱镜后照射在扫描文稿上,其反射光经棒状聚焦透镜后照射在CIS头内的光电检测单元上。反射光线的强弱随扫描文稿上被扫描处的黑/白程度 变化。

相关主题
文本预览
相关文档 最新文档