当前位置:文档之家› 人教版必修四1.2.2同角三角函数的基本关系教案

人教版必修四1.2.2同角三角函数的基本关系教案

人教版必修四1.2.2同角三角函数的基本关系教案
人教版必修四1.2.2同角三角函数的基本关系教案

1.2.2同角三角函数的基本关系(3)

教学目的:

知识目标:根据三角函数关系式进行三角式的化简和证明;

能力目标:(1)了解已知一个三角函数关系式求三角函数(式)值的方法。

(2)灵活运用同角三角函数关系式的不同变形,提高三角恒等变形的能力;

德育目标:训练三角恒等变形的能力,进一步树立化归思想方法;

教学重点:同角三角函数的基本关系式

教学难点:如何运用公式对三角式进行化简和证明。

授课类型:新授课

教学模式:启发、诱导发现教学.

教 具:多媒体、实物投影仪

教学过程:

一、复习引入:

1.同角三角函数的基本关系式。

(1)倒数关系:sin csc 1αα?=,cos sec 1αα?=,tan cot 1αα?=.

(2)商数关系:

sin tan cos ααα=,cos cot sin ααα

=. (3)平方关系:22sin cos 1αα+=,221tan sec αα+=,221cot csc αα+=.

(练习)已知tan α43=,求cos α 2.tan αcos α= ,cot αsec α= ,(sec α+tan α)·( )=1

二、讲解新课:

例82tan α=-,试确定使等式成立的角α的集合。

=|1sin ||1sin |cos ||cos |αααα+-- =1sin 1sin |cos |ααα+-+=2sin |cos |

αα.

2tan α-=-, ∴2sin |cos |αα2sin 0cos αα

+=, 即得sin 0α=或|cos |cos 0αα=-≠. 所以,角α的集合为:{|k ααπ=或322,}22

k k k Z πππαπ+<<+∈. 例9.化简(1cot csc )(1tan sec )αααα-+-+.

解:原式=cos 1sin 1(1)(1)sin sin cos cos αααααα

-+-+ 2sin cos 1cos sin 11(sin cos )sin cos sin cos αααααααααα-+-+--=?=?112sin cos 2sin cos αααα-+?==?. 说明:化简后的简单三角函数式应尽量满足以下几点:

(1)所含三角函数的种类最少;

(2)能求值(指准确值)尽量求值;

(3)不含特殊角的三角函数值。

例10.求证:

cos 1sin 1sin cos x x x x

+=-. 证法一:由题义知cos 0x ≠,所以1sin 0,1sin 0x x +≠-≠.

∴左边=2cos (1sin )cos (1sin )(1sin )(1sin )cos x x x x x x x ++=-+1sin cos x x

+==右边. ∴原式成立.

证法二:由题义知cos 0x ≠,所以1sin 0,1sin 0x x +≠-≠.

又∵22

(1sin )(1sin )1sin cos cos cos x x x x x x -+=-==?, ∴

cos 1sin 1sin cos x x x x

+=-. 证法三:由题义知cos 0x ≠,所以1sin 0,1sin 0x x +≠-≠. cos 1sin 1sin cos x x x x

+--cos cos (1sin )(1sin )(1sin )cos x x x x x x ?-+-=-22cos 1sin 0(1sin )cos x x x x -+==-, ∴cos 1sin 1sin cos x x x x

+=-.

例11.求证:22sin tan cos cot 2sin cos tan cot x x x x x x x x ?+?+?=+.

证明:左边=2

2sin 1sin cos 2sin cos cos tan x x x x x x x

?+?+? =32sin cos cos 2sin cos cos sin x x x x x x x

+?+? 4422sin cos 2sin cos sin cos x x x x x x ++=?=222(sin cos )1sin cos sin cos x x x x x x

+=, 右边22sin cos sin cos 1cos sin sin cos sin cos x x x x x x x x x x +=+==. 所以,原式成立。

总结:证明恒等式的过程就是分析、转化、消去等式两边差异来促成统一的过程,证明时常用的方法有:(1)从一边开始,证明它等于另一边(如例5的证法一);(2)证明左右两边同等于同一个式子(如例6);(3)证明与原式等价的另一个式子成立,从而推出原式成立。

例12

.已知1sin cos (0)2

x x x π+=

<<,求sin ,cos x x .

解:由sin cos )x x x π+=<<等式两边平方:

2221sin cos 2sin cos (2

x x x x ++=.

∴sin cos 4

x x =-(*),

即sin cos sin cos x x x x ?+=????=??,

sin ,cos x x

可看作方程21024z z --=

的两个根,解得121,22

z z ==-. 又∵0x π<<,∴sin 0x >.又由(*)式知cos 0x <

因此,1sin ,cos 22x x ==-. 三、巩固与练习

1. 求证:

x

x x x A ctg A A A A A

A A tg A ctg cos sin 1sin 1cos )4()(csc sin )1)(sec sin 1)(3(csc sec 1

cos sin )2(sin )sin ()1(2222222222222+=--=--+=

=-θθθθ 小结:化简三角函数式,化简的一般要求是:(1)尽量使函数种类最少,项数最少,次数最低;(2)尽量使分母不含三角函数式;(3)根式内的三角函数式尽量开出来;(4)能求得数值的应计算出来,其次要注意在三角函数式变形时,常常将式子中的“1”作巧妙的变形,如:1=αααααα2

22222cot csc tan sec cos sin -=-=+ 2、已知方程0)13(22=++-m x x 的两根分别是θθcos sin ,, 求的值。θ-θ

+θ-θ

tan 1cos cot 1sin

解:θ+θ=θ-θθ

-θ=θ-θθ

+θ-θθ

=cos sin cos sin cos sin sin cos cos cos sin sin 2222原式

21

3+=∴由韦达定理知:原式 (化弦法)

3、已知2222,tan sec ,tan sec d c b a c d b d c a +=+=α+α=α-α求证:

证:由题设:?

??+α-=α+α=α)2(tan sec )

1(tan sec c d b d c a

2222222222tan )(sec )()2()1(d c d c b a ++α+=α++:

α+=α+222222sec )(sec )(d c b a

2222d c b a +=+∴

4、消去式子中的???θ+θ=θ+θ=θ)

2(cot tan )1(cos sin y x : 解:由)3(21

cos sin cos sin 21)1(22-=θθ∴θθ+=x x : 由

)4(1

cos sin cos sin 1

sin cos cos sin )2(y y =θθ∴θθ=θθ+θθ

=:12)4()3(2-=x y :

代入将 (平方消去

法)

四、小 结:本节课学习了以下内容:

1.运用同角三角函数关系式化简、证明。

2.常用的变形措施有:大角化小,切割化弦等。

五、课后作业:

六、板书设计:

. .

高中数学必修三角函数常考题型同角三角函数的基本关系

高中数学必修三角函数常考题型同角三角函数 的基本关系 集团文件版本号:(M928-T898-M248-WU2669-I2896-

同角三角函数的基本关系 【知识梳理】 同角三角函数的基本关系 (1)平方关系:同一个角α的正弦、余弦的平方和等于1.即sin 2 α+cos 2 α=1. (2)商数关系:同一个角α的正弦、余弦的商等于这个角的正切,即 sin α cos α=tan_α ? ?? ??其中α≠k π+π2?k ∈Z ?. 【常考题型】 题型一、已知一个三角函数值求另两个三角函数值 【例1】 (1)已知sin α=12 13 ,并且α是第二象限角,求cos α和tan α. (2)已知cos α=-4 5 ,求sin α和tan α. [解] (1)cos 2 α=1-sin 2 α=1-? ????12132=? ?? ??5132 ,又α是第二象限角, 所以cos α<0,cos α=- 513,tan α=sin αcos α=-125 . (2)sin 2 α=1-cos 2 α=1-? ????-452=? ?? ??352 , 因为cos α=-4 5 <0,所以α是第二或第三象限角, 当α是第二象限角时,sin α=35,tan α=sin αcos α=-3 4;当α是第 三象限角时,sin α=-35,tan α=sin αcos α=3 4 .

【类题通法】 已知三角函数值求其他三角函数值的方法 (1)若已知sin α=m,可以先应用公式cos α=±1-sin2α,求得 cos α的值,再由公式tan α=sin α cos α 求得tan α的值. (2)若已知cos α=m,可以先应用公式sin α=±1-cos2α,求得 sin α的值,再由公式tan α=sin α cos α 求得tan α的值. (3)若已知tan α=m,可以应用公式tan α=sin α cos α =m?sin α= m cos α及sin2α+cos2α=1,求得cos α=± 1 1+m2 ,sin α= ± m 1+m2 的值. 【对点训练】 已知tan α= 4 3 ,且α是第三象限角,求sin α,cos α的值.解:由tan α= sin α cos α = 4 3 ,得sin α= 4 3 cos α,① 又sin2α+cos2α=1,② 由①②得 16 9 cos2α+cos2α=1,即cos2α= 9 25 . 又α是第三象限角,故cos α=- 3 5 ,sin α= 4 3 cos α=- 4 5 . 题型二、化切求值 【例2】已知tan α=3,求下列各式的值.

人教版必修四 同角三角函数的基本关系教案

1.2.2同角三角函数的基本关系(3) 教学目的: 知识目标:根据三角函数关系式进行三角式的化简和证明; 能力目标:(1)了解已知一个三角函数关系式求三角函数(式)值的方法。 (2)灵活运用同角三角函数关系式的不同变形,提高三角恒等变形的能力; 德育目标:训练三角恒等变形的能力,进一步树立化归思想方法; 教学重点:同角三角函数的基本关系式 教学难点:如何运用公式对三角式进行化简和证明。 授课类型:新授课 教学模式:启发、诱导发现教学. 教 具:多媒体、实物投影仪 教学过程: 一、复习引入: 1.同角三角函数的基本关系式。 (1)倒数关系:sin csc 1αα?=,cos sec 1αα?=,tan cot 1αα?=. (2)商数关系: sin tan cos ααα=,cos cot sin ααα =. (3)平方关系:22sin cos 1αα+=,221tan sec αα+=,221cot csc αα+=. (练习)已知tan α43=,求cos α 2.tan αcos α= ,cot αsec α= ,(sec α+tan α)·( )=1 二、讲解新课: 例82tan α=-,试确定使等式成立的角α的集合。 =|1sin ||1sin |cos ||cos |αααα+-- =1sin 1sin |cos |ααα+-+=2sin |cos | αα. 2tan α-=-, ∴2sin |cos |αα2sin 0cos αα +=, 即得sin 0α=或|cos |cos 0αα=-≠. 所以,角α的集合为:{|k ααπ=或322,}22 k k k Z πππαπ+<<+∈. 例9.化简(1cot csc )(1tan sec )αααα-+-+. 解:原式=cos 1sin 1(1)(1)sin sin cos cos αααααα -+-+ 2sin cos 1cos sin 11(sin cos )sin cos sin cos αααααααααα-+-+--=?=?112sin cos 2sin cos αααα-+?==?. 说明:化简后的简单三角函数式应尽量满足以下几点: (1)所含三角函数的种类最少; (2)能求值(指准确值)尽量求值; (3)不含特殊角的三角函数值。 例10.求证: cos 1sin 1sin cos x x x x +=-. 证法一:由题义知cos 0x ≠,所以1sin 0,1sin 0x x +≠-≠.

高中数学必修4三角函数教案

任意角的三角函数 一、教学目标 1、知识目标:借助单位圆理解任意角的三角函数(正弦、余弦、正切) 的定义,根据定义探讨出三角函数值在各个象限的符号,掌握同一个角的不同三角函数之间的关系。 2、能力目标:能应用任意角的三角函数定义求任意角的三角函数值。 3、情感目标:培养数形结合的思想。 二、教材分析 1、教学重点:理解任意角三角函数(正弦、余弦、正切)的定义。 2、教学难点:从函数角度理解三角函数。 3、教学关键:利用数形结合的思想。 三、教学形式:讲练结合法 四、课时计划:2节课 五、教具:圆规、尺子 六、教学过程 (一)引入 我们已经学过锐角三角函数,知道他们都是以锐角为自变量,以比值 为函数值的函数,你能用直角坐标系中的终边上点的坐标来表示锐角 三角函数吗? 设锐角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,那么它 的终边在第一象限,在α的终边上任取一点P (a,b ),它与原点的距离 r=22b a +>0.根据初中学过的三角函数定义,我们有αsin =r b , r a αcos =

a b αtan =,取r=1,则a b tan αa,cos αb,αsin ===,引入单位圆概念。 (二)新课 1、设α是以任意角,它的终边与单位圆交于P (x,y ),那么: (1) y 叫做α的正弦,记作αsin , 即y αsin =; (2) x 叫做α的余弦,记作αcos ,即x αcos =; (3) x y 叫做α的正切,记作αtan ,即x y αtan =)0(≠x . 注:用单位圆定义的好处就在于r=1,点的横坐标表示余弦值,纵坐标 表示正弦值。 2、根据任意角的三角函数定义,得到三种函数值在各象限的符号。 通过观察发现:第一象限全为正,第二象限只有正弦为正,第三象限只有正切为正,第四象限只有余弦为正。总结出一条法则:一全正,二正弦,三正切,四余弦。 注:这有利于培养学生观察和思考的能力,以方便记忆。 3、利用勾股定理可以推出:1cos sin 22=+αα,根据三角函数定义,当)(2z k k ∈+≠π πα时,有αα αtan cos sin =。这就是说同一个角α的正弦、余弦的平方和等于1,商等于角α的正切。 4、例题 例1求 3 5π的正弦、余弦和正切值。 解:在直角坐标系中,作3π5=∠AOB ,易知AOB ∠的终边与单位圆的交点 坐标为)2 3,21 (-,所以

高一数学必修一和必修四的三角函数公式

三角函数公式 (一)同角三角函数的基本关系式 (1)平方形式:sin 2α+cos 2α=1 (2)倒数形式:sinα/cosα=tanα (二)诱导公式 (1)sin (2k π+α)=sin α cos (2k π+α)=cos α tan (2k π+α)=tan α (其中k ∈Z) (2)sin (2k π-α)=-sin α cos (2k π-α)=cos α tan (2k π-α)=-tan α (其中k ∈Z) (3)sin (-α)=-sin α cos (-α)=cosα tan (-α)=-tan α (4)sin (π-α)=sin α cos (π-α)=-cosα tan (π-α)=-tan α (5)sin (π+α)=-sin α cos (π+α)=-cos α tan (π+α)=tan α (6)sin (π/2-α)=cos α cos (π/2-α)=sin α (7)sin (π/2+α)=cos α cos (π/2+α)=-sin α (8)sin (3π/2+α)=-cos α cos (3π/2+α)=sin α (9)sin (3π/2-α)=-cos α cos (3π/2-α)=-sin α (三) 两角和与差的三角函数公式 (1)sin (α+β)=sin αcosβ+cos αsinβ (2)sin (α-β)=sin αcosβ-cos αsinβ (3)cos (α+β)=cos αcosβ-sin αsinβ (4)cos (α-β)=cos αcosβ+sin αsinβ (5)tan (α+β)= tanα+tanβ1-tanαtanβ (6) tan (α-β)=tanα-tanβ1+tanαtanβ (四)二倍角的正弦、余弦和正切公式 (1)sin2α=2sin αcos α (2)cos2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α (3)tan2α= 2tan α/(1-tan 2α) (五)三角函数的降幂公式 (六)半角的正弦、余弦和正切公式 (七)(辅助角的三角函数的公式) (八)正、余弦定理公式及其变形 ● a sinA =b sinB =c sinC =2R (R 为△ABC 的外接圆的半径) ● a 2=b 2+c 2-2bccosA ● b 2= a 2+ c 2-2accosB ● c 2= b 2+ a 2-2abcosC (ⅰ) sinA=a 2R ,sinB=b 2R ,sinC=c 2R (ⅱ)a=2RsinA b=2RsinB c=2RsinC (ⅲ)a:b:c=sinA: sinB: sinC (ⅳ)asinB=bsinA bsinC=csinB asinC=csinA (九)常用的三角形面积公式 (ⅰ) S=12 absinC=12 acsinB=12 bcsinA (ⅱ)S =12 (a+b+c)r (r 为△ABC 的内切圆的半径) (ⅲ)S=abc 4R (R 为△ABC 的外接圆的半径) (十)利用余弦定理判断三角形的形状 (ⅰ)在△ABC 中,若a 2﹤b 2+c 2,则0°﹤A ﹤90°;反之,若0°﹤A ﹤90°,则a 2﹤b 2+c 2。 (ⅱ)在△ABC 中,若a 2=b 2+c 2,则A=90°;反之,若A=90°,则a 2=b 2+c 2。 (ⅲ)在△ABC 中,若a 2﹥b 2+c 2,则90°﹤A ﹤180°;反之,若90°﹤A ﹤180°,则a 2﹥b 2+c 2。

1.2.2同角的三角函数的基本关系 教案

1. 2.2同角的三角函数的基本关系 一、教学目标: ⒈掌握同角三角函数的基本关系式,理解同角公式都是恒等式的特定意义; 2 通过运用公式的训练过程,培养学生解决三角函数求值、化简、恒等式证明的解题技能,提高运用公式的灵活性; 3 注意运用数形结合的思想解决有关求值问题;在解决三角函数化简问题过程中,注意培养学生思维的灵活性及思维的深化;在恒等式证明的教学过程中,注意培养学生分析问题的能力,从而提高逻辑推理能力. 二、教学重、难点 重点:公式1cos sin 2 2=+αα及 αα α tan cos sin =的推导及运用: (1)已知某任意角的正弦、余弦、正切值中的一个,求其余两个;(2)化简三角函数式;(3)证明简单的三角恒等式. 难点: 根据角α终边所在象限求出其三角函数值;选择适当的方法证明三角恒等式. 三、学法与教学用具 利用三角函数线的定义, 推导同角三角函数的基本关系式: 1cos sin 2 2 =+αα及 αα α tan cos sin =,并灵活应用求三角函数值,化减三角函数式,证明三角恒等式等. 教学用具:圆规、三角板、投影 四、教学过程 【创设情境】 与初中学习锐角三角函数一样,本节课我们来研究同角三角函数之间关系,弄清同角各不同三角函数之间的联系,实现不同函数值之间的互相转化. 【探究新知】 探究:三角函数是以单位圆上点的坐标来定义的,你能从 圆的几何性质出发,讨论一 下同一个角不同三角函数之间的关系吗? 如图:以正弦线MP ,余弦线OM 和半径OP 三者的长构成直角三角形,而且1OP =.由勾股定理由2 2 1MP OM +=, 因此2 2 1x y +=,即22 sin cos 1αα+=. 根据三角函数的定义,当()2a k k Z π π≠+ ∈时,有 sin tan cos α αα =. 这就是说,同一个角α的正弦、余弦的平方等于1,商等于角α的正切. 【例题讲评】 例1化简: 440sin 12- 解:原式 80cos 80cos 80sin 1)80360(sin 122 2 ==-=+-= 例2 已知α α αααsin 1sin 1sin 1sin 1+---+是第三象限角,化简

人教版高中数学版必修四教案 同角的三角函数的基本关系

1.2.2同角三角函数的基本关系 一、教学目标: 1、知识与技能 (1) 使学生掌握同角三角函数的基本关系;(2)已知某角的一个三角函数值,求它的其余各三角函数值;(3)利用同角三角函数关系式化简三角函数式;(4)利用同角三角函数关系式证明三角恒等式;(5)牢固掌握同角三角函数的三个关系式并能灵活运用于解题,提高学生分析,解决三角问题的能力;(6)灵活运用同角三角函数关系式的不同变形,提高三角恒等变形的能力,进一步树立化归思想方法;(7)掌握恒等式证明的一般方法. 2、过程与方法 由圆的几何性质出发,利用三角函数线,探究同一个角的不同三角函数之间的关系;学习已知一个三角函数值,求它的其余各三角函数值;利用同角三角函数关系式化简三角函数式;利用同角三角函数关系式证明三角恒等式等.通过例题讲解,总结方法.通过做练习,巩固所学知识. 3、情态与价值 通过本节的学习,牢固掌握同角三角函数的三个关系式并能灵活运用于解题,提高学生分析,解决三角问题的能力;进一步树立化归思想方法和证明三角恒等式的一般方法. 二、教学重、难点 重点:公式1cos sin 22=+αα及αα αtan cos sin =的推导及运用:(1)已知某任意角的正弦、余弦、正切值中的一个,求其余两个;(2)化简三角函数式;(3)证明简单的三角恒等式. 难点: 根据角α终边所在象限求出其三角函数值;选择适当的方法证明三角恒等式. 三、学法与教学用具 利用三角函数线的定义, 推导同角三角函数的基本关系式: 1cos sin 22=+αα及αα αtan cos sin =,并灵活应用求三角函数值,化减三角函数式,证明三角恒等式等. 教学用具:圆规、三角板、投影 四、教学设想 【创设情境】 与初中学习锐角三角函数一样,本节课我们来研究同角三角函数之间关系,弄清同角各不同三角函数之间的联系,实现不同函数值之间的互相转化. 【探究新知】 1. 探究:三角函数是以单位圆上点的坐标来定义的,你能从圆的几何 性质出发,讨论一 下同一个角不同三角函数之间的关系吗? 如图:以正弦线MP ,余弦线OM 和半径OP 三者的长构成直角三角形, 而且1OP =.由勾股定理由221MP OM +=,因此22 1x y +=,即22sin cos 1αα+=.

必修4三角函数公式大全(经典)

三角函数 公式大全 姓名: 1、两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) =tanAtanB -1tanB tanA + tan(A-B) = tanAtanB 1tanB tanA +- cot(A+B) =cotA cotB 1 -cotAcotB + cot(A-B) =cotA cotB 1 cotAcotB -+ 2、倍角公式 tan2A = A tan 12tanA 2 - Sin2A=2SinA?CosA Cos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 3、三倍角公式 sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosA tan3a = tana ·tan( 3π+a)·tan(3 π-a) 4、半角公式 sin( 2A )=2cos 1A - cos( 2A )=2 cos 1A + tan( 2A )=A A cos 1cos 1+- cot(2A )=A A cos 1cos 1-+ tan( 2 A )=A A sin cos 1-=A A cos 1sin + 5、和差化积 sina+sinb=2sin 2b a +cos 2b a - sina-sinb=2cos 2b a +sin 2b a - cosa+cos b = 2cos 2b a +cos 2 b a - cosa-cosb = -2sin 2b a +sin 2 b a - tana+tanb=b a b a cos cos ) sin(+ 6、积化和差 sinasinb = -21 [cos(a+b)-cos(a-b)] cosacosb = 21 [cos(a+b)+cos(a-b)] sinacosb = 2 1 [sin(a+b)+sin(a-b)] cosasinb = 2 1 [sin(a+b)-sin(a-b)]

同角三角函数基本关系教案

同角三角函数基本关系

1. 教学分析: 教材分析 同角三角函数基本关系式是学习三角函数定义后,安排的一节继续深入 学习的内容,三角函数值、化简三角函数式、证明三角恒等式的基本工具,是整个三角函数的基础,在教材中起承上启下的作用.同时,它体现的数学思想与方法在整个中学数学学习中起重要作用. 学情分析 学生从认知角度上看,已经比较熟练的掌握了三角函数定义.从方法上 看,学生已经对数形结合,猜想证明有所了解.从能力上看,学生主动学习能力、探究能力有待于提高. 2.教学目标 1.通过三角函数的定义导出同角三角函数基本关系式,并能运用同角三角函数的基本关系式进行三角函数的求值. 2.同角三角函数的基本关系式主要有两个方面的应用:(1)求值(知一求二); (2)证明三角恒等式.本节主要学习三角函数的求值,通过这节课学生应明了如何进行三角函数的求值. 3.通过同角三角函数关系的应用使学生养成探究、分析的习惯,提高三角恒等变形的能力,树立转化与化归的思想方法. 3.教学重点与难点 教学重点: 公式1cos sin 22=+αα及 ααα tan cos sin =的推导及运用. 教学难点:公式1cos sin 22=+αα及αα α tan cos sin =的推导,运用同角三角函 数基本关系求三角函数值. 4.教学基本流程 (1)情境引入:大家都听过一句话:南美洲亚马逊河雨林中的一只蝴蝶,偶尔 扇动几下翅膀,可能在两周后引起美国德克萨斯州的一场龙卷风.这就

是著名的“蝴蝶效应”, 两个似乎毫不相干的事物,却有着这样的联系.那么我们来看看前些天我们所学习的三角函数.在三个式子中有着“同一个角”其中的联系应该更为紧密! (2)回顾复习:三角函数定义、三角函数线 设任意角α的顶点在原点O ,始边与x 轴非负半轴重合,终边与单位圆相交与点 P (,)x y ,过P 作x 轴的垂线,垂足为M ;过点(1,0)A 作单位圆的切线,它与角α的终边或其反向延长线交与点T . y 叫做α的正弦,记做sin α,即 sin =y α x 叫做α的余弦,记做cos α,即 cos x α= 叫做α的正切,记做tan α,即 tan y x α= 我们就分别称有向线段MP 、OM 、AT 为正弦线、余弦线、正切线. 初中时我们学过以下两个公式: 2 2 sin cos 1αα+= sin tan cos α αα = 请同学们思考:这两个等式是否对任意角α都成立怎么证明,在三角函数中有什么作用 这就是本节课要学习的内容:同角三角函数基本关系. (3)新课: 如图:以正弦线MP ,余弦线OM 和半径OP 三者的长构成直角三角形,而且1OP =. x y

人教新课标版数学高二人教版必修四教案 任意角的三角函数(第二课时)

第二课时任意角的三角函数(二) 【复习回顾】 1、三角函数的定义; 2、三角函数在各象限角的符号; 3、三角函数在轴上角的值; 4、诱导公式(一):终边相同的角的同一三角函数的值相等; 5、三角函数的定义域. 要求:记忆.并指出,三角函数没有定义的地方一定是在轴上角,所以, 凡是碰到轴上角时,要结合定义进行分析;并要求在理解的基础上记忆. 【探究新知】 1.引入:角是一个图形概念,也是一个数量概念(弧度数).作为角的 函数——三角函数是一个数量概念(比值),但它是否也是一个图形概念 呢?换句话说,能否用几何方式来表示三角函数呢? 2.[边描述边画]以坐标原点为圆心,Array以单位长度1为半径画一个圆,这个圆 就叫做单位圆(注意:这个单位长度不 一定就是1厘米或1米).当角α为第一 象限角时,则其终边与单位圆必有一个 交点(,) P x y,过点P作PM x ⊥轴交x轴于 点M,则请你观察: 根据三角函数的定义:|||||sin| MP yα ==;|||||cos| == OM xα 随着α在第一象限内转动,MP、OM是否也跟着变化?

3.思考:(1)为了去掉上述等式中的绝对值符号,能否给线段MP、OM规定一个适当的方向,使它们的取值与点P的坐标一致? (2)你能借助单位圆,找到一条如MP、OM一样的线段来表示角α的正切值吗? 我们知道,指标坐标系内点的坐标与坐标轴的方向有关.当角α的终边不在坐标轴时,以O为始点、M为终点,规定: 当线段OM与x轴同向时,OM的方向为正向,且有正值x;当线段OM 与x轴反向时,OM的方向为负向,且有正值x;其中x为P点的横坐标.这样,无论那种情况都有 == OM xα cos 同理,当角α的终边不在x轴上时,以M为始点、P为终点,规定: 当线段MP与y轴同向时,MP的方向为正向,且有正值y;当线段MP与y轴反向 时,MP的方向为负向,且有正值y;其中y为P点的横坐标.这样,无论那种情况都有 == sin MP yα 4.像MP OM 、这种被看作带有方向的线段,叫做有向线段(direct line segment). 5.如何用有向线段来表示角α的正切呢? 如上图,过点(1,0) A作单位圆的切线,这条切线必然平行于轴,设它与α的终边交于点T,请根据正切函数的定义与相似三角形的知识,借助有向线段OA AT 、,我们有

高中数学必修四三角函数重要公式

高中数学必修四三角函数重要公式 公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin(2kπ+α)=sinα cos(2kπ+α)=cosα tan(2kπ+α)=tanα cot(2kπ+α)=cotα 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα 公式三: 任意角α与-α的三角函数值之间的关系: sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα 公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα 公式五: 利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系: sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα 公式六:

π/2±α及3π/2±α与α的三角函数值之间的关系: sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα sin(3π/2+α)=-cosα cos(3π/2+α)=sinα tan(3π/2+α)=-cotα cot(3π/2+α)=-tanα sin(3π/2-α)=-cosα cos(3π/2-α)=-sinα tan(3π/2-α)=cotα cot(3π/2-α)=tanα (以上k∈Z) 诱导公式记忆口诀 ※规律总结※ 上面这些诱导公式可以概括为: 对于k·π/2±α(k∈Z)的个三角函数值, ①当k是偶数时,得到α的同名函数值,即函数名不改变; ②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan. (奇变偶不变) 然后在前面加上把α看成锐角时原函数值的符号。 (符号看象限) 例如: sin(2π-α)=sin(4·π/2-α),k=4为偶数,所以取sinα。 当α是锐角时,2π-α∈(270°,360°),sin(2π-α)<0,符号为“-”。 所以sin(2π-α)=-sinα

高中数学同角三角函数的基本关系教案

同角三角函数的基本关系 教学目的: 知识目标:1.能根据三角函数的定义导出同角三角函数的基本关 系式及它们之间的联系; 2.熟练掌握已知一个角的三角函数值求其它三角函 数值的方法。 能力目标: 牢固掌握同角三角函数的两个关系式,并能灵活运用 于解题,提高学生分析、解决三角的思维能力; 教学重点:同角三角函数的基本关系式 教学难点:三角函数值的符号的确定,同角三角函数的基本关系式的变式应用 教学过程: 一、复习引入: 1.任意角的三角函数定义: 设角α是一个任意角,α终边上任意一点(,)P x y ,它与原点的距离为 (0)r r ==>,那么:sin y r α=,cos x r α=,tan y x α=, 2.当角α分别在不同的象限时,sin α、cos α、tg α的符号分别是怎样的? 3.背景:如果5 3sin =A ,A 为第一象限的角,如何求角A 的其它三角函数值; 4.问题:由于α的三角函数都是由x 、y 、r 表示的,则角α的三个三角函数之间有什么关系? 二、讲解新课:

(一)同角三角函数的基本关系式: (板书课题:同角的三角函数的基本关系) 1. 由三角函数的定义,我们可以得到以下关系: (1)商数关系:α ααcon sin tan = (2)平方关系:1sin 22=+ααcon 说明: ①注意“同角”,至于角的形式无关重要,如22sin 4cos 41αα+=等; ②注意这些关系式都是对于使它们有意义的角而言的,如 tan cot 1(,)2 k k Z πααα?=≠∈; ③对这些关系式不仅要牢固掌握,还要能灵活运用(正用、反用、 变形用),如: cos α= 22sin 1cos αα=-, sin cos tan ααα =等。 2.例题分析: 一、求值问题 例1.(1)已知12sin 13α= ,并且α是第二象限角,求cos ,tan ,cot ααα. (2)已知4 cos 5α=-,求sin ,tan αα. 解:(1)∵22sin cos 1αα+=, ∴2222125cos 1sin 1()()1313 αα=-=-= 又∵α是第二象限角, ∴cos 0α<,即有5cos 13 α=-,从而 sin 12tan cos 5ααα==-, 15cot tan 12αα==- (2)∵22sin cos 1αα+=, ∴222243sin 1cos 1()()55αα=-=--=, 又∵4cos 05α=-<, ∴α在第二或三象限角。 当α在第二象限时,即有sin 0α>,从而3sin 5 α=,sin 3tan cos 4 ααα==-; 当α在第四象限时,即有sin 0α<,从而3sin 5α=-,sin 3tan cos 4ααα==. 总结: 1. 已知一个角的某一个三角函数值,便可运用基本关系式求出其它 三角函数值。在求值中,确定角的终边位置是关键和必要的。有时,由于角的终边位置的不确定,因此解的情况不止一种。

(精心整理)同角三角函数基本关系式练习题

任意角的三角函数 1.已知sin α=45 ,且α为第二象限角,那么tan α的值等于 ( ) (A)3 4 (B)43 - (C)4 3 (D)4 3- 2.若θ是第三象限角,且02 cos <θ,则2 θ是 ( ) A .第一象限角 B .第二象限角 C .第三象限角 D .第四象限 3.设是第二象限角,则sin cos αα ( ) (A) 1 (B)tan 2α (C) - tan 2α (D) 1- 4.若tan θ=3 1,π<θ<32 π,则sin θ·cos θ的值为 ( ) (A)±3 10 (B) 3 10 5 若α 是三角形的一个内角,且sin α+cos α=3 2 ,则三角形为 ( ) (A) 钝角三角形 (B)锐角三角形 (C)直角三角形 (D)等腰三角形 6.已知α的终边经过P (ππ6 5cos ,6 5sin ),则α可能是 ( ) A .π6 5 B . 6 π C .3 π- D .3 π 7.如果).cos(|cos |π+-=x x 则x 的取值范围是 ( ) A .)(] 22 ,22 [Z k k k ∈++-ππππ B .)() 22 3,22 (Z k k k ∈++ππππ C .)(] 22 3,22 [Z k k k ∈++ππππ D .)()2,2(Z k k k ∈++-ππππ 8.1tan sin )(++=x b x a x f ,满足.7)5(=f 则)5(-f 的值为 ( ) A .5 B .-5 C .6 D .-6 9. 扇形的周期是16,圆心角是2弧度,则扇形面积是______________

数学必修四三角函数公式总结与归纳

数学必修四三角函数公式盘点与归纳 1、诱导公式: sin(2kπ+α)=sinα, cos(2kπ+α)=cosα sin(-α)=-sinα, cos(-α)=cosα sin(2π-α)=-sinα, cos(2π-α)=cosα sin(π-α)=sinα, cos(π-α)=-cosα sin(π+α)=-sinα, cos(π+α)=-cosα sin(+α)=cosα, cos(+α)=-sinα sin(-α)=cosα, cos(-α)=sinα 2、同角三角函数基本关系: sin2α+cos2α=1, =tanα, tanα×cotα=1, 1+tan2α=, 1+cot2α= cosα=, sinα= 3、两角和与差的三角函数: cos(α+β)=cosαcosβ-sinαsinβ, cos(α-β)=cosαcosβ+sinαsinβ, sin(α+β)=sinαcosβ+cosαsinβ,

sin(α-β)=sinαcosβ-cosαsinβ tan(α+β)=, tan(α-β)=, 4、二倍角的三角函数: sin2α=2sinαcosα, cos2α=cos2α-sin2α =1-2sin2α =2cos2α-1, tan2α=, sin=, cos=, tan= = = 5、万能公式: sin2α=, cos2α= 6、合一变式: asinα+bcosα =sin(α+γ)(tanγ=)7、其他公式: sinαcosβ=[sin(α+β)+sin(α-β)], cosαsinβ=[sin(α+β)-sin(α-β)],

cosαcosβ=[cos(α+β)+cos(α-β)],sinαsinβ=[cos(α+β)-cos(α-β)],sinα+sinβ=2sin cos, sinα-sinβ=2cos sin, cosα+cosβ=2cos cos, cosα-cosβ=2sin cos

必修4三角函数所有知识点归纳归纳

《三角函数》【知识网络】 一、任意角的概念与弧度制 1、将沿x轴正向的射线,围绕原点旋转所形成的图形称作角.

逆时针旋转为正角,顺时针旋转为负角,不旋转为零角 2、同终边的角可表示为 {}()360k k Z ααβ? =+∈ x 轴上角:{}()180k k Z αα=∈ y 轴上角:{}()90180k k Z αα=+∈ 3、第一象限角:{}()0360 90360k k k Z αα? ?+<<+∈ 第二象限角:{}()90360180360k k k Z αα??+<<+∈ 第三象限角:{}()180360270360k k k Z αα? ?+<<+∈ 第四象限角: {}()270 360360360k k k Z αα??+<<+∈ 4、区分第一象限角、锐角以及小于90的角 第一象限角:{}()0360 90360k k k Z αα? ?+<<+∈ 锐角: {}090αα<< 小于90的角:{}90αα< 5、若α为第二象限角,那么 2 α 为第几象限角? ππαππ k k 222 +≤≤+ ππ α ππ k k +≤ ≤ +2 2 4 ,24,0παπ≤≤=k ,2345,1παπ≤≤=k 所以2 α 在第一、三象限 6、弧度制:弧长等于半径时,所对的圆心角为1弧度的圆心角,记作1rad . 7、角度与弧度的转化:01745.0180 1≈=?π 815730.571801'?=?≈? = π 8、角度与弧度对应表: 9、弧长与面积计算公式

弧长:l R α=?;面积:211 22 S l R R α=?=?,注意:这里的α均为弧度制. 二、任意角的三角函数 1、正弦:sin y r α=;余弦cos x r α=;正切tan y x α= 其中(),x y 为角α 终边上任意点坐标,r = 2、三角函数值对应表: 3、三角函数在各象限中的符号 口诀:一全正,二正弦,三正切,四余弦.(简记为“全s t c ”)

同角三角函数的基本关系教案

同角三角函数的基本关系 东宁县绥阳中学 教学目的: 知识目标:1.能根据三角函数的定义导出同角三角函数的基本关 系式及它们之间的联系; 2.熟练掌握已知一个角的三角函数值求其它三角函 数值的方法。 能力目标: 牢固掌握同角三角函数的两个关系式,并能灵活运用 于解题,提高学生分析、解决三角的思维能力; 教学重点:同角三角函数的基本关系式 教学难点:三角函数值的符号的确定,同角三角函数的基本关系式的变式应用 教学过程: 一、复习引入: 1.任意角的三角函数定义: 设角α是一个任意角,α终边上任意一点(,)P x y ,它与原点的距离为 (0)r r ==>,那么:sin y r α=,cos x r α=,tan y x α=, 2.当角α分别在不同的象限时,sin α、cos α、tg α的符号分别是怎样的? 3.背景:如果5 3sin =A ,A 为第一象限的角,如何求角A 的其它三角函数值; 4.问题:由于α的三角函数都是由x 、y 、r 表示的,则角α的三个三角函数之间有什么关系? 二、讲解新课: (一)同角三角函数的基本关系式:

(板书课题:同角的三角函数的基本关系) 1. 由三角函数的定义,我们可以得到以下关系: (1)商数关系:α ααcon sin tan = (2)平方关系:1sin 22=+ααcon 说明: ①注意“同角”,至于角的形式无关重要,如22sin 4cos 41αα+=等; ②注意这些关系式都是对于使它们有意义的角而言的,如 tan cot 1(,)2 k k Z πααα?=≠∈; ③对这些关系式不仅要牢固掌握,还要能灵活运用(正用、反用、 变形用),如: cos α= 22sin 1cos αα=-, sin cos tan ααα =等。 2.例题分析: 一、求值问题 例1.(1)已知12sin 13α= ,并且α是第二象限角,求cos ,tan ,cot ααα. (2)已知4 cos 5α=-,求sin ,tan αα. 解:(1)∵22sin cos 1αα+=, ∴2222125cos 1sin 1()()1313 αα=-=-= 又∵α是第二象限角, ∴cos 0α<,即有5cos 13 α=- ,从而 sin 12tan cos 5ααα==-, 15cot tan 12αα==- (2)∵22sin cos 1αα+=, ∴222243sin 1cos 1()()55αα=-=--=, 又∵4cos 05α=-<, ∴α在第二或三象限角。 当α在第二象限时,即有sin 0α>,从而3sin 5 α=,sin 3tan cos 4 ααα==-; 当α在第四象限时,即有sin 0α<,从而3sin 5α=-,sin 3tan cos 4ααα==. 总结: 1. 已知一个角的某一个三角函数值,便可运用基本关系式求出其它三角函数值。在求值中,确定角的终边位置是关键和必要的。有时,由于角的终边位置的不确定,因此解的情况不止一种。 2. 解题时产生遗漏的主要原因是:①没有确定好或不去确定角的终边位置;②利用平方关系开平方时,漏掉了负的平方根。 例2.已知tan α为非零实数,用tan α表示sin ,cos αα.

高中数学必修4重点公式与解题技巧

高中数学必修4重点公式与解题技巧公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin(2kπ+α)=sinα cos(2kπ+α)=cosα tan(2kπ+α)=tanα cot(2kπ+α)=cotα 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα 公式三: 任意角α与-α的三角函数值之间的关系: sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα 公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα 公式五: 利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinα cos(2π-α)=cosα

上述的记忆口诀是: 奇变偶不变,符号看象限。 公式右边的符号为把α视为锐角时,角k·360°+α(k∈Z),-α、180°±α,360°-α 所在象限的原三角函数值的符号可记忆 水平诱导名不变;符号看象限。 各种三角函数在四个象限的符号如何判断,也可以记住口诀“一全正;二正弦;三为切; 四余弦”。 这十二字口诀的意思就是说: 第一象限内任何一个角的四种三角函数值都是“+”; 第二象限内只有正弦是“+”,其余全部是“-”; 第三象限内切函数是“+”,弦函数是“-”; 第四象限内只有余弦是“+”,其余全部是“-”。 其他三角函数关系: ⒈同角三角函数的基本关系式 倒数关系: tanα·cotα=1 sinα·cscα=1 cosα·secα=1 商的关系: sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα 平方关系: sin^2(α)+cos^2(α)=1 1+tan^2(α)=sec^2(α) 1+cot^2(α)=csc^2(α) 同角三角函数关系六角形记忆法 六角形记忆法:(参看图片或参考资料链接) 构造以"上弦、中切、下割;左正、右余、中间1"的正六边形为模型。 (1)倒数关系:对角线上两个函数互为倒数; (2)商数关系:六边形任意一顶点上的函数值等于与它相邻的两个顶点上函数值的乘积。 (主要是两条虚线两端的三角函数值的乘积)。由此,可得商数关系式。 (3)平方关系:在带有阴影线的三角形中,上面两个顶点上的三角函数值的平方和等于下面顶点上的三角函数值的平方。

高中数学必修公式大全

必修4常用公式手册 公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin (2kπ+α)=sinα cos (2kπ+α)=cosα tan (2kπ+α)=tanα 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin (π+α)=-sinα cos (π+α)=-cosα tan (π+α)=tanα 公式三: 任意角α与 -α的三角函数值之间的关系: sin (-α)=-sinα cos (-α)=cosα tan (-α)=-tanα 公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin (π-α)=sinα cos (π-α)=-cosα tan (π-α)=-tanα 公式五: 利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系: sin (2π-α)=-sinα cos (2π-α)=cosα tan (2π-α)=-tanα 公式六:2π±α及32π±α与α的三角函数值之间的关系: sin(2 π+α)=cosα sin(2π-α)=cosα sin(32π+α)=-cosα sin(32π-α)=-cosα cos(2π +α)=-sinα cos(2π-α)=sinα cos(32π+α)=sinα cos(32π-α)=-sinα 1.同角三角函数的基本关系式 商的关系: sin tan cos ααα = 平方关系:221sin cos αα+= 2211tan cos αα =+ ⒉两角和与差的三角函数公式 sin sin cos cos sin αβαβαβ(+)=+ s in sin cos cos sin αβαβαβ(-)=- ⒊二倍角的正弦、余弦和正切公式 ⒋半角的正弦、余弦和正切公式 21cos sin ()22αα-= 21cos cos ()22αα+= 21cos tan ()21cos ααα-=+

北师版新课标高中数学必修二教案《同角三角函数的基本关系》

《同角三角函数的基本关系》教学设计 与三角函数的定义域、符号的确定一样,同角三角函数的基本关系式的推导,紧扣了定义,是按照一切从定义出发的原则进行的,通过对基本关系的推导,应注意学生重视对基本概念学习的良好习惯的形成,学会通过对基本概念的学习,善于钻研,从中不断发掘更深层次的内涵. 同角三角函数的基本关系式将“同角”的四种不同的三角函数直接或间接地联系起来,在使用时一要注意“同角”,至于角的表达形式是至关重要的,如sin 24π+cos 24π=1等,二要注意这些关系式都是对于使它们有意义的那些角而言的,如tanα中的α是使得tanα有意义的值,即α≠kπ+2 ,k ∈Z . 已知任意角的正弦、余弦、正切中的一个值便可以运用基本关系式求出另外的两个,这是同角三角函数关系式的一个最基本功能,在求值时,根据已知的三角函数值,确定角的终边的位置是关键和必要的,有时由于角的终边的位置不确定,因此解的情况不止一种,解题时产生遗漏的主要原因一是没有确定好或不去确定终边的位置;二是利用平方关系开方时,漏掉了负的平方根. 1.通过三角函数的定义导出同角三角函数基本关系式,并能运用同角三角函数的基本关系式进行三角函数的化简与证明. 2.同角三角函数的基本关系式主要有三个方面的应用:(1)求值(知一求二);(2)化简三角函数式;(3)证明三角恒等式.通过本节的学习,学生应明了如何进行三角函数式的化简与三角恒等式的证明. 3.通过同角三角函数关系的应用使学生养成探究、分析的习惯,提高三角恒等变形的能力,树立转化与化归的思想方法. 教学重点:课本的三个公式的推导及应用. 教学难点:课本的三个公式的推导及应用.

相关主题
文本预览
相关文档 最新文档