当前位置:文档之家› 大功率开关电源的6大优势

大功率开关电源的6大优势

大功率开关电源的6大优势

大功率开关电源的6大优势

深圳市森树强电源适配器厂家

大功率开关电源优势一:系统的一致性好,成本低,生产制造方便。由于控制软件不像模拟器件那样存在差异,所以,其一致性很好。由于采用软件控制,控制板的体积将大大减小,生产成本下降。

大功率开关电源优势二:控制系统的可靠性提高,易于标准化,可以针对不同的系统(或不同型号的产品),采用统一的控制板,而只是对控制软件做一些调整即可。

大功率开关电源优势三:易于采用先进的控制方法和智能控制策略,使电源模块的智能化程度更高,性能更完美。

大功率开关电源优势四:易组成高可靠性的多模块逆变电源并联运行系统。为了得到高性能的并联运行逆变电源系统,每个并联运行的逆变电源单元模块都采用全数字化控制,易于在模块之间更好地进行均流控制和通讯或者在模块中实现复杂的均流控制算法(不需要通讯),从而实现高可靠性、高冗余度的逆变电源并联运行系统。

大功率开关电源优势五:系统维护方便,一旦出现故障,可以很方便地通过RS232接口或RS485接口或USB接口进行调试,故障查询,历史记录查询,故障诊断,软件修复,甚至控制参数的在线修改、调试;也可以通过MODEM远程操作。

大功率开关电源优势六:控制灵活,系统升级方便,甚至可以在线修改控制算法,而不必改动硬件线路。

高效率开关电源设计实例.pdf

高效率开关电源设计实例--10W同步整流B u c k变换器 以下设计实例中,包含了各种技巧来提高开关电源的总体效率。有源钳位和元损吸收电路的设计主 要依靠经验来完成的,所以不在这里介绍。 采用新技术时必须小心,因为很多是有专利的,可能需要直接付专利费给专利持有人,或在购买每 一片控制IC芯片时,支付附加费用。在将这些电源引入生产前,请注意这个问题。 10W同步整流Buck变换器 应用 此设计实例是PWM设计实例1的再设计,它包括了如何设计同步整流器(板载的10W降压Buck 变换器)。 在设计同步整流开关电源时,必须仔细选择控制IC。为了效率最高和体积最小,一般同步控制器在 系统性能上各有千秋,使得控制器只是在供应商提到的应用场合中性能较好。很多运行性能的微妙 之处不能确定,除非认真读过数据手册。例如,每当作者试图设计一个同步整流变换器,并试图使 用现成买来的IC芯片时,3/4设计会被丢弃。这是因为买来的芯片功能或工作模式往往无法改变。 更不用说,当发现现成方案不能满足需求时,是令人沮丧的(见图20的电路图)。 设计指标 输入电压范围: DC+10~+14V 输出电压: DC+5.0V 额定输出电流: 2.0A 过电流限制: 3.0A 输出纹波电压: +30mV(峰峰值) 输出调整:±1% 最大工作温度: +40℃ “黑箱”预估值 输出功率: +5.0V*2A=10.0W(最大) 输入功率: Pout/估计效率=10.0W/0.90=11.1W 功率开关损耗 (11.1W-10W) * 0.5=0.5W 续流二极管损耗: (1l.lW-10W)*0.5=0.5W 输入平均电流 低输入电压时 11.1W/10V=1.1lA 高输入电压时: 11.1W/14V=0.8A 估计峰值电流: 1.4Iout(rated)=1.4×2.0A=2.8A 设计工作频率为300kHz。

新型大功率开关电源的研究与仿真 开题报告

1.1理论意义 随着电子技术的高速发展,电子系统、电子设备的种类愈加丰富多样,人们和这些设备和系统之间的关键也日益紧密。电子设备不可能离开电源独自存在,一个可能且性能稳定的开关对于电子设备的正常运行也是有着举足轻重的作用。开关电源是一种采用开关方式控制的直流稳压电源,通过控制开关的占空比来调整输出电压。传统的开关设备具有很多可靠性,线性稳压电源输出的电压具有波纹小,稳定的优点,但是要保持这些优点,通常对于变压器和滤波器的体积和重量都有要求[1]。大功率开关电源以体型小、质地轻和高效能的工作优势被广泛应用于各种计算机的终端设备和各类通讯设备,现今电子信息的产业如此快速的发展,若是没有大功率开关作为重要的部件对于电子信息产业的发展造成严重的影响。 1.1实际意义 新型的大功率开关电源体积小,重量轻,效率高,性能好的优势使大功率开关得到青睐。现在的电子通讯设备对于电源开关的技术要求是与日俱增,不断提高。利用电力电子(功率半导体)器件控制或变换电能,以达到合理而高效率地使用能源,它是电力、电子、控制三大电气工程技术领域之间的交叉学科[2]。作为联系弱电与强电的纽带,电力电子技术提供了控制电功率流动与改变电能形态的有力手段,在小至数瓦,大至数千千瓦乃至数十兆瓦的范围内都得到了广泛应用。 二、论文综述(综述国内外有关选题的研究动态) 随着电子技术的高速发展,电子系统、电子设备的种类愈加丰富多样,人们和这些设备和系统之间的关键也日益紧密。电子设备不可能离开电源独自存在,一个可能且性能稳定的开关对于电子设备的正常运行也是有着举足轻重的作用。开关电源是一种采用开关方式控制的直流稳压电源,通过控制开关的占空比来调整输出电压[3]。传统的开关设备具有很多可靠性,线性稳压电源输出的电压具有波纹小,稳定的优点,但是要保持这些优点,通常对于变压器和滤波器的体积和重量都有要求[4]。大功率开关电源以体型小、质地轻和高效能的工作优势被广泛应用于各种计算机的终端设备和各类通讯设备,现今电子信息的产业如此快速的发展,若是没有大功率开关作为重要的部件对于电子信息产业的发展造成严重的影响[5]。大功率电源开关以后被广泛用于用于现代化工业建设、国防和科研项目中,前景一片光明。

大功率电源设计

《电力电子技术》课程设计说明书 大功率电源设计 院、部:电气与信息工程学院 学生姓名: 指导教师: 专业: 班级: 完成时间:2014年5月29日

摘要 主要介绍36kW 大功率高频开关电源的研制。阐述国内外开关电源的现状.分析全桥移相变换器的工作原理和软开关技术的实现。软开关能降低开关损耗,提高电路效率。给出电源系统的整体设计及主要器件的选择。试验结果表明,该装置完全满足设计要求,并成功应用于电镀生产线。 关键词:高频开关电源;全桥移相;零电压开关;软开关技术

ABSTRACT The analysis and design of 36 kW high frequency switching power supply are presented.The present state of switching power supply is explained.The operating principle of full bridge phase—shifted converter and realization of soft switching techniques are analysed.Soft switching can reduce switching loss and increase circuit s efficiency.Integer designing of power supply system and selection of main device parameters are also proposed.The experiment results demonstrate the power supply device satisfies design requirements completely.It has been applied in electric plating production line success—fully. Keywords:high frequency switching power supply;full bridge phase—shifted;zero voltage switching;soft switching tech— nlques

高效率开关电源设计实例

高效率开关电源设计实 例 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

高效率开关电源设计实例--10W同步整流B u c k变换器 以下设计实例中,包含了各种技巧来提高开关电源的总体效率。有源钳位和元损吸收电路的设计主要依靠经验来完成的,所以不在这里介绍。 采用新技术时必须小心,因为很多是有专利的,可能需要直接付专利费给专利持有人,或在购买每一片控制IC芯片时,支付附加费用。在将这些电源引入生产前,请注意这个问题。 10W同步整流Buck变换器 应用 此设计实例是PWM设计实例1的再设计,它包括了如何设计同步整流器()。 在设计同步整流开关电源时,必须仔细选择控制IC。为了效率最高和体积最小,一般同步控制器在系统性能上各有千秋,使得控制器只是在供应商提到的应用场合中性能较好。很多运行性能的微妙之处不能确定,除非认真读过数据手册。例如,每当作者试图设计一个同步整流变换器,并试图使用现成买来的IC芯片时,3/4设计会被丢弃。这是因为买来的芯片功能或工作模式往往无法改变。更不用说,当发现现成方案不能满足需求时,是令人沮丧的(见图20的电路图)。 设计指标 输入电压范围: DC+10~+14V 输出电压: DC+ 额定输出电流: 过电流限制: 输出纹波电压: +30mV(峰峰值) 输出调整:±1% 最大工作温度: +40℃ “黑箱”预估值 输出功率: +*2A=(最大) 输入功率: Pout/估计效率=/= 功率开关损耗* 0.5= 续流二极管损耗:*= 输入平均电流 低输入电压时/10V= 高输入电压时:/14V=0.8A 估计峰值电流: 1.4Iout(rated)=1.4×2.0A=2.8A 设计工作频率为300kHz。

半桥型开关稳压电源设计讲课讲稿

半桥型开关稳压电源 设计

电力电子技术课程设计(论文)题目:240W半桥型开关稳压电路设计

摘要 本次设计的是240W半桥型开关稳压电源,为负载供电。 电源是各种电子设备不可或缺的组成部分,其性能优劣直接关系到电子设备的技术指标及能否安全可靠地工作。由于开关电源本身消耗的能量低,电源效率比普通线性稳压电源提高一倍,被广泛用于电子计算机、通讯、家电等各个行业。它的效率可达85%以上,稳压范围宽,除此之外,还具有稳压精度高、不使用电源变压器等特点,是一种较理想的稳压电源。本文介绍了一种采用半桥电路的开关电源,其输入电压为单相170 ~ 260V,输出电压为直流24V恒定,最大电流10A。设计内容包括主电路的原理与主电路图的设计、控制电路器件的选取、保护电路方案的确定以及计算机仿真与波形分析等方面。 关键词:半桥变换器;功率MOS管;脉宽调制;稳压电源。

目录 第1章绪论 (1) 1.1电力电子技术概况 (1) 1.2本文设计内容 (2) 第2章电路设计 (3) 2.1稳压电源总体设计方案 (3) 2.2具体电路设计 (4) 2.2.1 主电路设计 (4) 2.2.2 控制电路设计 (5) 2.2.3驱动电路设计 (6) 2.2.4保护电路设计 (7) 2.2.5 整体电路设计 (8) 2.3元器件型号选择 (9) 第3章课程设计总结 (13) 参考文献 (14) 第1章绪论 (1) 1.1电力电子技术概况 (1) 1.2本文设计内容 (2) 第2章电路设计 (3) 2.1稳压电源总体设计方案 (3) 2.2具体电路设计 (4) 2.2.1 主电路设计 (4) 2.2.2 控制电路设计 (5) 2.2.3驱动电路设计 (6)

基于UC3846大功率开关电源设计

– 20 – 2012年第11卷第2期1 引言 近年来,随着电力电子技术的迅速发展,高频开关电源 已广泛应用于计算机、通信、航空航天、工业加工等领域, 它具有电能转换效率高、体积小、重量轻、控制精度高和快 速性好等优点。基于这些优点,高频开关电源已经在很多方 面逐步取代了效率低、笨重、精度不高的传统线性电源,本 文介绍和比较了电压型PWM控制器和电流型PWM控制器的优缺 点,着重论述了电流型控制芯片UC3846在大功率全桥开关电 源中的应用,并对电路进行具体的分析。 2 电压型和电流型PWM控制器 2.1 电压型PWM控制器 目前应用广泛的PWM控制器都是采用电压模式控制的,它 只对输出电压进行采样, 采样信号Vf作为反馈信号与基准电 压Vr在误差放大器中进行比较放大,得到误差信号Ve,Ve和 锯齿波信号比较后通过PWM比较器输出一系列高频脉冲来控制 开关管的导通和截止,它的主要缺点是:响应速度慢,稳定 性差,甚至在大信号变化时会产生振荡,造成功率管损坏等 故障[1]。 图1 电压控制型的原理图2.2 电流型PWM控制器针对上述电压型控制器的缺点,最近十几年发展起来电流型控制技术。 现代建设 Modern Construction [作者简介] 吴军(1982- ),男,江苏盐城人,在读硕士,就读于郑州大学信息工程学院,主要研究方向为开关电源设计。 基于UC3846的大功率开关电源的设计 吴军 李长华 刘平 (郑州大学信息工程学院,河南 郑州 450001 ) 摘 要:本文介绍并比较了电压控制型和电流控制型PWM变换器的基本原理,设计出基于电流型控制芯片UC3846的大功率全桥开关电源的实用电路。给出了各部分相应的原理图,并进行了详细的介绍。实践表明,该电路具有良好的性能。关键词:UC3846;电压控制型;电流控制型;脉宽调制 中图分类号:TP303+.3 文献标识码:A 文章编号:1671-8089(2012)02-0020-03 Design of a High Switching Power Supply Based on UC3846 WU Jun LI Changhua LIU Ping (college of Information Engineering ,Zhengzhou university Zhengzhou 450001) Abstract: The basic principles of voltage-mode control and current-mode control PWM converters are introduced and compared .An applied circuit of a high power Full-Bridge switching power supply is designed based on the PWM IC UC3846 for current mode control.The every circuit diagram with corresponding part is provide and detailed.The experiment result shows that the circuit has better performance. Key words: UC3846; voltage-mode control; current-mode control; PWM

开关电源维修步骤及常见故障分析-电源

开关电源维修步骤及常见故障分析- 电源 1、修理开关电源时,首先用万用表检测各功率部件是否击穿短路,如电源整流桥堆,开关管,高频大功率整流管;抑制浪涌电流的大功率电阻是否烧断。再检测各输出电压端口电阻是否异常,上述部件如有损坏则需更换。 2、第一步完成后,接通电源后还不能正常工作,接着要检测功率因数模块(PFC)和脉宽调制组件(PWM),查阅相关资料,熟悉PFC和PWM模块每个脚的功能及其模块正常工作的必备条件。 3、然后,对于具有PFC电路的电源则需测量滤波电容两端电压是否为380VDC左右,如有380VDC左右电压,说明PFC模块工作正常,接着检测PWM组件的工作状态,测量其电源输入端VC ,参考电压输出端VR ,启动控制Vstart/Vcontrol端电压是否正常,利用220VAC/220VAC隔离变压器给开关电源供电,用示波器观测PWM模块CT端对地的波形是否为线性良好的锯齿波或三角形,如TL494 CT端为锯齿波,FA5310其CT端为三角波。输出端V0的波形是否为有序的窄脉冲信号。 4、在开关电源维修实践中,有许多开关电源采用UC38××系列8脚PWM组件,大多数电源不能工作都是因为电源启动电阻损坏,或芯片性能下降。当R断路后无VC,PWM 组件无法工作,需更换与原来功率阻值相同的电阻。当PWM组件启动电流增加后,可减小R值到PWM组件能正常工作为止。在修一台GE DR电源时,PWM模块为UC3843,检测未发现其他异常,在R(220K)上并接一个220K的电阻后,PWM组件工作,输出电压均正常。有时候由于外围电路故障,致使VR端5V电压为0V,PWM组件也不工作,在修柯达8900相机电源时,遇到此情况,把与VR端相连的外电路断开,VR从0V变为5V,PWM 组件正常工作,输出电压均正常。 5、当滤波电容上无380VDC左右电压时,说明PFC电路没有正常工作,PFC模块关键检测脚为电源输入脚VC,启动脚Vstart/control,CT和RT脚及V0脚。修理一台富士3000相机时,测试一板上滤波电容上无380VDC电压。VC,Vstart/control,CT和RT波形以及V0波形均正常,测量场效应功率开关管G极无V0 波形,由于FA5331(PFC)为贴片元件,机器用久后出现V0端与板之间虚焊,V0信号没有送到场效应管G极。将V0端与板上焊点焊好,用万用表测量滤波电容有380VDC电压。当Vstart/control 端为低电平时,PFC亦不能工作,则要检测其端点与外围相连的有关电路。

探究大功率LED路灯开关电源的研究

探究大功率LED路灯开关电源的研究 发表时间:2019-09-09T09:39:11.233Z 来源:《防护工程》2019年12期作者:王斌 [导读] 应用AP法设计了变压器,并结合实例设计了EMI滤波器、DC-DC转换电路以及功率因数校正电路。 杭州宇中高虹照明电器有限公司浙江省杭州市 311307 摘要:LED因其环保、长寿、高光电效率等众多优点成为照明领域关注的焦点。本文围绕LED开关电源进行了深入阐述,主要工作内容如下:论文首先全面介绍了LED的发展现状及应用前景,深刻分析了国内外LED开关电源的研究现状,确定了论文的主体方向。其次系统地介绍了LED驱动电源的拓扑结构、调制方式、控制类型等基础知识。应用AP法设计了变压器,并结合实例设计了EMI滤波器、DC-DC 转换电路以及功率因数校正电路。 关键词:LED恒流功率;开关电源;控制 半导体照明(LED)作为一种新型光源,由于具有低温、省电、长寿命、无污染等特点,LED已成为一个新兴产业的制高点,LED灯素有绿色照明能源之称,产品不含国际标准限制的六种有害物质,在同样亮度下,耗电仅为普通白炽灯的1/10,已成为世界上第四代节能产品的代表。当今社会,随着环境和能源问题日益突出,节能减排工作陆续开展,发展LED照明十分必要。在没有开发替代能源的大前提下,如何对现有能源进行更加有效的利用是解决能源短缺问题的有效途径。因为LED灯具备高效节能的优点,LED产业已成为国家、地区与相关行业企业关注和发展的热点,被广泛应用于建筑物外观照明、景观照明、标志与指示性照明、室内空间展示照明、视屏屏幕等。 1、LED开关电源的基本理论 开关电源利用电力电子技术,控制开关管的导通与关断,最终实现输出电压的稳定。一般而言,开关电源包括MOSFET和脉冲宽度调节(PWM)控制芯片,具有效率高、体积小、重量轻等特点。开关电源技术随着电力电子技术的发展而不断创新,并成为当今社会必不可少的电源方式。20世纪90年代末开始,开关电源的集成化技术逐渐成为研究热点,反映了未来开关电源技术发展的方向。不同的开关电源系统具有不同的拓扑结构,不同的拓扑结构各有其优缺点,研制开关电源需要了解各种拓扑结构的原理及特性,根据设计目标选择合适的结构。 1.1开关电源的拓扑结构 开关电源的主回路是功率电流流经的通路,一般包含开关电源中的开关器件、储能器件、变压器、滤波器、输出整流器、供电输入端和负载端等器件。开关电源主回路可以分为隔离式与非隔离式两大类型。 1.1.1非隔离型开关电源变换器 BUCK变换器、BOOST变换器、BUCK-BOOST变换器、CUK变换器等均属于非隔离型开关变化器。由BUCK变换器和BOOST变换器可以演变出后面两种变换器,下面介绍BUCK变换器和BOOST变换器的工作原理。BUCK变换器又称降压变换器、串联开关稳压电源或三端开关型降压稳压电源,是最简单的开关驱动电路,应用于负载电压不高于约85%的输入电压的场合。85%的限制是由控制系统开关延迟造成的。工作原理图如图2.1所示,开关管S处于导通状态时,输入电压Ui经电感L平波、电容C滤波后为负载提供电流;开关管S处于关断状态时,电感L通过二极管续流来保持负载的电流连续。输入电压与输出电压的关系为:Uo/Ui=?,其中,?为导通时间占空比。 升压变换器简称BOOST变换器,改变降压变换器中元件的位置就可把它变成6大功率LED路灯开关电源的研究升压变换器,如图2.2所示。BOOST变换器常应用于LED串的电压比输入电压高时,尤其在输出电压的最小值大约是输入电压的1.5倍时最为常见。在该电路中,开关管与负载并联。开关管S处于导通导通状态时,输入电压对电感L进行充电;开关管S处于关断状态时,电感L向负载和电源放电,输出电压为Ui+Uo,电路起升压作用。输入电压与输出电压的关系为:Uo/Ui=1/(1-?),其中,?为导通时间占空比。

基于UC3845的横机专用输出大功率开关电源

基于UC3845的横机专用4路输出大功率 开关电源 目录 一横机专用开关电源背景 二横机专用开关电源系统级分析 2.1技术指标 2.2拓扑结构 2.21反激式开关电源 2.22正激式开关电源 2.3工作模式 2.31DCM模式 2.32CCM模式 2.4系统框架 三横机专用开关电源电路级设计 3.1主回路 3.11输入保护电路 3.12降功耗的EMI滤波电路 3.13整流电路 3.14输出电路 3.2 13V辅助输出电路 3.21高频变压器 3.22钳位电路 3.23反馈电路 3.24控制电路 3.25输出电路 3.3 24V输出电路 3.31高频变压器 3.32钳位电路 3.33反馈电路 3.34控制电路 3.35输出电路 3.4 12V输出电路 3.41高频变压器 3.42钳位电路 3.43反馈电路 3.44控制电路 3.45输出电路 3.5 5V输出电路 3.51高频变压器 3.52钳位电路 3.53反馈电路 3.54控制电路 3.55输出电路 四实验 附录A电路原理图 附录B PCB和实物

一、横机电源背景 21 世纪是建设可持续发展的社会,提倡的是节约资源,提高能效,环境友好。由于开关电源在体积、重量、功能和能耗等方面有显著优势,而且稳定性很高,因此它正广泛应用于通信、航天、家电等领域。随着技术的发展,高功率密度、高变换效率、高可靠性、低污染己成为开关电源的发展方向。 本设计开关电源是为满足针织横机的供电需要,基于当前流行的单片集成开关电源芯片UC3845设计的一款四路集成电源。该电源可靠性高、功率密度大、抗干扰能力、输出电压稳定,高效率、体积小等特点。为用户节约了安装空间,方便了用户的安装使用,提高了人工的安装效率。 二、横机专用开关电源系统级分析 2.1 技术指标 四路集成电源技术指标 序号技术参数备注 1 电源输入:AC220V单相输入 A 误差范围175V ~ 275V B 电源频率50Hz±10% 2 电源输出:V1:5V6A、V2:12V5A、V3:24V14.6A、V4:24V14.6A。 ①5V电源输出(主电源): A 输出电压+5V 出厂调到5.2V B 输出电流6A C 电压调整率<1% D 负载调整率<1% E 纹波噪声(P-P值)100mVmax ②12V电源输出 A 输出电压12V 出厂调到12.10V B 输出电流5A C 电压调整率<1% D 负载调整率<2% E 纹波噪声(P-P值)200mVmax ③24V1电源输出 A 输出电压+24V(22-28可调)出厂调到24.5V B 输出电流14.6A C 电压调整率<2% D 负载调整率<2% E 纹波噪声(P-P值)350mVmax ④24V2电源输出 A 输出电压+24V (22-28可调)出厂调到24.5V B 输出电流14.6A C 电压调整率<2% D 负载调整率<2% E 纹波噪声(P-P值)350mVmax 3 效率(85%)min

移相全桥大功率软开关电源的设计

移相全桥大功率软开关电源的设计 移相全桥大功率软开关电源的设计 1引言 在电镀行业里,一般要求工作电源的输出电压较低,而电流很大。电源的功率要求也比较高,一般都是几千瓦到几十千瓦。目前,如此大功率的电镀电源一般都采用晶闸管相控整流方式。其缺点是体积大、效率低、噪音高、功率因数低、输出纹波大、动态响应慢、稳定性差等。 本文介绍的电镀用开关电源,输出电压从0~12V、电流从0~5000A连续可调,满载输出功率为60kW.由于采用了ZVT软开关等技术,同时采用了较好 的散热结构,该电源的各项指标都满足了用户的要求,现已小批量投入生产。 2主电路的拓扑结构 鉴于如此大功率的输出,高频逆变部分采用以IGBT为功率开关器件的全桥拓扑结构,整个主电路,包括:工频三相交流电输入、二极管整流桥、EMI滤波器、滤波电感电容、高频全桥逆变器、高频变压器、输出整流环节、输出LC滤波器等。 隔直电容Cb是用来平衡变压器伏秒值,防止偏磁的。考虑到效率的问题,谐振电感LS只利用了变压器本身的漏感。因为如果该电感太大,将会导致过高 的关断电压尖峰,这对开关管极为不利,同时也会增大关断损耗。另一方面,还会造成严重的占空比丢失,引起开关器件的电流峰值增高,使得系统的性能降低。 图1主电路原理图 3零电压软开关 高频全桥逆变器的控制方式为移相FB2ZVS控制方式,控制芯片采用Unitrode公司生产的UC3875N。超前桥臂在全负载范围内实现了零电压软开关,滞后桥臂在75%以上负载范围内实现了零电压软开关。图2为滞后桥臂IGBT的驱动电压和集射极电压波形,可以看出实现了零电压开通。

开关频率选择20kHz,这样设计一方面可以减小IGBT的关断损耗,另一方面又可以兼顾高频化,使功率变压器及输出滤波环节的体积减小。 图2IGBT驱动电压和集射极电压波形图 4容性功率母排 在最初的实验样机中,滤波电容C5与IGBT模块之间的连接母排为普通的功率母排。在实验中发现IGBT上的电压及流过IGBT的电流均发生了高频震荡,图3为满功率时采集的变压器初级的电压、电流波形图。原因是并联在IGBT模块上的突波吸收电容与功率母排的寄生电感发生了高频谐振。满载运行一小时后,功率母排的温升为38℃,电容C5的温升为24℃。 图3使用普通功率母排时变压器初级电压、电流波形 为了消除谐振及减小功率母排、滤波电容的温升,我们最终采用了容性功率母排,图4为采用容性功率母排后满功率时采集的变压器初级的电压、电流波形图。从图中可以看出,谐振基本消除,满载运行一小时后,无感功率母排的温升为11℃,电容C5的温升为10℃。 图4使用容性功率母排后变压器初级电压和电流波形 5采用多个变压器串并联结构,使并联的输出整流二极管之间实现自动均流为了进一步减小损耗,输出整流二极管采用多只大电流(400A)、耐高电压(80V)的肖特基二极管并联使用。而且,每个变压器的次级输出采用了全波整流方式。这样,每一次导通期间只有一组二极管流过电流。同时,次级整流二极管配上了RC吸收网络,以抑止由变压器漏感和肖特基二极管本体电容引起 的寄生震荡。这些措施都最大限度地减小了电源的输出损耗,有利于效率的提高。 对于大电流输出来说,一般要把输出整流二极管并联使用。但由于肖特基二极管是负温度系数的器件,并联时一般要考虑它们之间的均流。二极管的并联方

大功率开关电源的原理与分析

4 6000W 电源剖析 经实体解剖证实,两种3500W 电源的PFC 贴片控制板电路结构、元器件完全相同。随后解剖了两种新搞到的6000W 电源证明,其PFC 贴片控制板电路结构与原3500W 也基本相同。Ascom 公司2000 年投产的两种高档6000W 电源(直流输出48V/112A 和350V/17A),是更换淘汰IBM 军用电源的工业级产品。说明了PFC 控制电路设计已十分成熟,没有必要再改。 在打开6000W 电源的外壳铁盖后,看到其大号的CBB 多只高压电容器上,均标出了厂年月为“9926”、“9938”等。其中48V/112A 通信电源的散热器加高了2~3 倍,重达8kg;细看电源主板上的5 只大号φ47mm 磁环电感器与3500W 电源相同,主功率变压器和Boost 储能电感器的外形结构也相似相近,只是又加长了约30%或体积增大了些。后来解剖发现两种6000W 电源相同的Boost-PFC 大电感器磁芯增加到4 付8 块EE55 组合而成;48V/112A 电源的主功率变压器改用3 块φ73mm 扁平磁环叠合而成。 6000W 电源的MOSFET 均改用工业级标准型号公开的新品,是IR 公司或IXYS 产品,每台电源用6 只MOSFET 均为SOT-227B 封装的四螺孔接线形式,并新增加一块专用功率印制板紧固6 只MOSFET 的漏极、源极、栅极螺孔连线片,明显改进了维修更换条件。功率板上的99″驱动变压器和驱动 IC-M1C4421(99″)等,与3500W 电源相同。 5 高功率因数的实现 在实体拆焊解剖原贴片式PFC 控制板时发现二个非常奇怪的现象:一是PFC 主芯片IC脚16 驱动输出端铜箔走线居然被悬空,不接电路板上任何其他元器件;二是IC 脚14 反常地接地线,它原是IC 内部高频振荡器的CT 电容器外接引脚端。为此,我于2001 年底特别请教了李龙文先生,他是十年前我国最早消化、吸收、引进美国Unitrode 公司专用IC 的开关电源应用专家。 早期问世的UC3854,作为高频有源功率因数校正器的代表性产品,专用于大功率电源抑制谐波电流污染电网,它是国际上经典的PFC 功率因数校正“绿色能源”产品,早已选作美国的国家电源工业标准。十几年来专业期刊上发表的研究文献,均是整体选用UC3854 作为PFC电路主芯片,没有见过停用UC3854 内部高频振荡器和驱动输出的8 只IC 组合的PFC 设计。 为什么3500W 电源的实测PF≥0.999,能达到如此高性能指标,结论只有在调查的末尾才可得到。在充分准备之后,用特殊烙铁头逐一拆焊了高密度贴片PFC 控制板上的近百个元器件,并逐一粘固在事先作了编号的硬壳白纸上。随后又细致测量了每一只电阻器和电容器的实际数值;并用万用表的R×kΩ 档(内含1.5V 电池)、R×10k 档(内含9V+1.5V 电池)量程测量记录了十几只二极管的正向电阻值和反向电阻值,包括整流、开关、稳压二极管,肖特基二极管等。 现给出PFC 控制板拆焊全部贴片元器件,并用砂纸磨掉焊锡和绿漆之后,显露出来的印制板铜箔走线,其正面和反面分别见图6(a)及图6(b)。然后继续磨掉铜线后,两面分别显现的内部双夹层走线、焊点、绝缘圈等,见图6(c)及图6(d)。 (a) 印刷板正面

大功率直流开关电源设计

大功率直流开关电源设计 前言 开关电源的发展及国外现状 随着通信用开关电源技术的广泛应用和不断深入,实际工作中人们对开关电源提出了更高的要求,提出了应用技术的高频化、硬件结构的模块化、软件控制的数字化、产品性能的绿色化、新一代电源的技术含量大大提高,使之更加可靠、稳定、高效、小型、安全。在高频化方面,为提高开关频率并克服一般的PWM和准谐振、多谐振变换器的缺点,又开发了相移脉宽调制零电压开关谐振变换器,这种电路克服了PWM方式硬开关造成的较大的开关损耗的缺点,又实现了恒频工作,克服了准谐振和多谐振变换器工作频率变化及电压、电流幅度大的缺点。采用这种工作原理,大大减小了开关管的损耗,不但提高了效率也提高了工作频率,减小了体积,更重要的是降低了变换电路对分布参数的敏感性,拓宽了开关器件的安全工作区,在一定程度上降低了对器件的要求,从而显著提高了开关电源的可靠性。 1. 开关电源主电路的设计 开关电源最重要的两部分就是主电路和控制电路。本章将根据大功率直流开关电源的要求对主电路各部分进行性能分析并计算各项参数,根据计算所得的数据结果选择各元器件,设计出各个独立模块,最后组装成开关电源的主电路。 1.1 开关电源的设计要求 在本课题研究的过程中,主要对大功率开关直流电源的工作原理、电路的拓扑结构和运行模式进行了深入研究,并结合系统的技术参数,确定系统主电路的拓扑,设计出主电路,即分别设计出滤波、整流、DC-DC变换器、软启动和保护控制等部分。下面就对电源主电路的设计进行详细说明。

1.2 主电路组成框图 根据需要设计大功率开关电源的技术要求,本文进行了方案的验证与比较,设计如图2-1所示的软开关直流开关电源的主电路框图。虚线以上是主电路,主电路主要分为输入整流滤波、逆变开关电路、逆变变压器和输出整流滤波;虚线以下为控制回路,控制回路主要包括信息检测电路、控制和保护单元、监控单元和辅助电源。 本电源采用ZVZCS- PWM 拓扑,原边加箝位二极管,三相交流输入整流后,加LC 滤波,以提高输入功率因数,主功率管选用IGBT ,控制电路采用UC3875移相控制专用集成芯片,电流电压双闭环控制。具体设计主电路如图2-2所示,包括三个部分:(1) 输入整流滤波电路;(2) 单相逆变桥;(3) 输出整流滤波电路. EMI 全桥整流滤波 高频逆变 整流滤波 辅助电源 控制和保护单元 反馈 监控单元 交流输入 集中监控单元 直流输出 图2-1 直流开关电源的主电路框图 1.2.1 输入整流滤波电路 三相交流电经电源内部EMI 滤波后,加到整流滤波模块。EMI 滤波器的作用是滤除功率管开关产生的电压电流尖峰和毛刺,减小电源内部对电网的干扰,同时又能减小其他用电设备通过电网传向电源的干扰。滤波电路采用LC 滤波,电感的作用是拓开电流导通时间,限制电流峰值,可以提高电源的输入功率因数。滤波电容采用四个电解电容,两个串联后并联使用,满足三相整流后的高压要求。电阻R1、R2是平衡串联电容上的电压,高频电容与电解电容并联使用,滤除高频谐波,弥补电解电容高频特性差的缺陷。

一款基于sg3525的大功率开关电源的研制

一款基于SG3525的大功率开关电源的研制 引言 随着电子技术的高速发展,电子设备的种类与日俱增。任何电子设备都离不开可靠的供电电源,对电源供电质量的要求也越来越高,而开关电源在效率、重量、体积等方面相对于传统的晶体管线性电源具有显着优势。正是由于开关电源的这些特点,它在新兴的电子设备中得到广泛应用,已逐渐取代了连续控制式的线性电源。 功率主电路 图1 功率主电路原理图 本电源模块采用半桥式功率逆变电路。如图1所示,三相交流电经EMI滤波器滤波,大大减少了交流电源输入的电磁干扰,同时防止开关电源产生的谐波串扰到输入电源端。再经过桥式整流电路、滤波电路变成直流电压加在P、N两点间。P、N之间接入一个小容量、高耐压的无感电容,起到高频滤波的作用。半桥式功率变换电路与全桥式功率变换电路类似,只是其中两个功率开关器件改由两个容量相等的电容C1和C2代替。在实际应用中为了提高电容的容量以及耐压程度,C1和C2往往采用由多个等值电容并联组成的电容组。C1、C2的容量选值应尽可能大,以减小输出电压的纹波系数和低频振荡。由于对体积和重量的限制,C1和C2的值不可能无限大,为使输出电压的纹波达到规定的要求,该电容值有一个计算公式,即:

式中,IL为输出负载电流,VL为输出负载电压,VM为输入交流电压幅值,f为输入交流电频率,VU为输出的纹波电压值。 这是一个理论上的计算公式,得到的满足要求的电容计算值比较大,实际取的电容应尽量大一些,由于输出端电压较小,也可以在二次整流滤波时加大电容,这样折算到该公式的电容值也不小。C1和C2在这里实现了静态时分压,使VA=Vin/2。 当VT1导通、VT2截止时,输入电流方向为图中虚线方向,向C2充电,同时C1通过VT1放电;当VT2导通、VT1截止时,输入电流方向为图中实线方向,向C1充电,同时C2通过VT2放电。 当VT1导通、VT2截止时,VT2两端承受的电压为输入直流电压Vin。IGBT的集-射极间并接RC吸收网络,降低开关管的开关应力,减小IGBT关断产生的尖峰电压;并联二极管实现续流的作用。二次整流采用单相桥式整流电路,通过后续的LC滤波电路,消除高频纹波,减小输出直流电压的低频振荡。LC滤波电路中的电容由多个高耐压、大容量的电容并联组成,以提高电源的可靠性,使输出直流电压更加平稳。 PWM集成芯片SG3525的功能特点 SG3525是一款功能齐全、通用性强的单片集成PWM芯片。它采用恒频脉宽调制控制方案,适合于各种开关电源、斩波器的控制。其主要功能包括基准电压产生电路、振荡器、误差放大器、PWM比较器、欠压锁定电路、软启动控制电路、推拉输出形式。SG3525的基本外围电路接线图如图2所示。该芯片与其它同类型的芯片相比具有许多突出的特点。

高效率开关电源设计实例

高效率开关电源设计实例 1 0 W同步整流Buck变换器 以下设计实例中,包含了各种技巧来提高开关电源的总体效率。有源钳位和元损吸收电路 的设计主要依靠经验来完成的,所以不在这里介绍。 采用新技术时必须小心,因为很多是有专利的,可能需要直接付专利费给专利持有人,或在购买每一片控制IC芯片时,支付附加费用。在将这些电源引入生产前,请注意这个问题。 10W同步整流Buck变换器 应用 此设计实例是PW履计实例1的再设计,它包括了如何设计同步整流器(板载的10W降压 Buck变换器)。 在设计同步整流开关电源时,必须仔细选择控制IC。为了效率最高和体积最小,一般同步 控制器在系统性能上各有千秋,使得控制器只是在供应商提到的应用场合中性能较好。很多运行性能的微妙之处不能确定,除非认真读过数据手册。例如,每当作者试图设计一个同步整流变换器,并试图使用现成买来的IC芯片时,3/4设计会被丢弃。这是因为买来的芯片功能或工作模式往往无法改变。更不用说,当发现现成方案不能满足需求时,是令人沮丧的(见图20的电路图)。 设计指标 输入电压范围:DC+10- +14V 输出电压:DC+5.0V

额定输出电流:2.0A 过电流限制:3.0A 输出纹波电压:+30mV (峰峰值) 输出调整:土1% 最大工作温度:+40 C “黑箱”预估值 输出功率:+5.0V *2A=10.0W最大) 输入功率:Pout/估计效率=10.0W^0.90=11.1W 功率开关损耗(11.1W-10W) * 0 . 5=0.5W 续流二极管损耗:(1I.IW-10W) *0.5=0.5W 输入平均电流 低输入电压时11.1W / 10V=1.1IA 高输入电压时:11.1W/ 14V=0. 8A 估计峰值电流:1 . 4lout(rated)=1 . 4X 2. 0A=2. 8A 设计工作频率为300kHz。

高性能、大功率直流开关电源

摘要 开关电源具有效率高、体积小、重量轻等显著特点。目前世界各国都有广泛的应用,特别是对大容量高频开关电源的研究和开发已成为当今电力电子学的主要研究领域,并派生了很多新的研究方向。本文的主要内容就是研制一种高性能、大功率直流开关电源。 本文详细分析了高性能、大功率直流开关电源的工作原理,并提出了主电路和控制电路的详细设计方案。在此基础上,完成了整个系统的硬件电路设计和软件程序的编制,并对电源装置的硬件和软件进行了调试和修改。 在分析原理的基础上,本文从三相桥式不控整流、全桥变换器、高频变压器、滤波电路等环节对该系统的主电路进行了阐述,同时探讨了该电源系统实现大功率的解决方案,即采用多个电源模块并联运行。本文还探讨了多个电源模块并联运行时的自动均流技术,并详细介绍了基于平均值的自动均流电路。在电压调节环节上,详细分析了基于UC3825控制芯片的PWM控制电路。 本文研制的直流开关电源具有输出电压可调、输出电流大、纹波小等特点,而且还具有换档、远程控制等功能。实验结果表明它基本达到设计要求,从而验证了理论分析的正确性,具有广阔的应用前景。 关键词:DC-DC变换器,开关电源,均流,高频变压器,PWM控制

ABSTRACT Switching power has many remarkable characteristics such as high efficiency,smallness and lightness. Countries all over the world have extensive application in switching power, especially research on large capacity high-frequency switching powernowadays has already become the main research field of power electronics and many new research directions has derived from it. The main content of this paper is to develop a kind of high performance, large capacity adjustable switching power. This paper has analyzed the theory of high performance, large capacity adjustable switching power in detail, and has proposed the main circuit and control circuit designation. On this basis, this paper schemed out the hardware circuit and software and has carried on the debugging and modification of the hardware and software of the switching power. On the basis of analyzing the theory, this paper has discussed 3-phase uncontrolled rectifier, the full-bridge converter, high-frequency transformer, and filter of the main circuit of this switching power system. This paper explained the solution of this large capacity power system at the same time, namely some power modules are to be connected in parallel. This paper also has studied current sharing circuit while some power modules were being connected in parallel, in the part of current sharing circuit, this paper has introduced current sharing circuit on the base of average current in detail. On the voltage regulation part, this paper has analyzed PWM control circuit on the basis of UC3825 in detail. Direct current switching power studied in this paper has many characteristics such as adjustable output voltage, heavy output current, low voltage ripple and so on. It also has the functions of changing output voltage gear, remote-control etc.The experimental result indicated that the switching power has reached the design demand, thus it has proved the exactness of the theory analyses, so, this switching power has wide application fields. Keywords: DC-DC converter, switching power, current sharing, high-frequency transformer, PWM control

相关主题
文本预览
相关文档 最新文档