当前位置:文档之家› 铜绿微囊藻中微囊藻毒素LR的UPLC_MS_MS法分析_唐治玉

铜绿微囊藻中微囊藻毒素LR的UPLC_MS_MS法分析_唐治玉

铜绿微囊藻中微囊藻毒素LR的UPLC_MS_MS法分析_唐治玉
铜绿微囊藻中微囊藻毒素LR的UPLC_MS_MS法分析_唐治玉

项目解读 微囊藻毒素

《生活饮用水卫生标准》GB5749- 项目解读微囊藻毒素(1) 1 概述 微囊藻毒素 藻毒素主要的结构特征为N-甲基脱氢丙氨酸及两个L-氮基酸残基x和Z,根据1988年制定的微囊藻毒素(Microcystins或MCYST)命名法规定.x,Z二残基的不同组合由代表氨基酸的字母后缀区分。常见的有LR,RR,YR三种毒素,L,R,Y分别代表亮氨酸,精氨酸,酪氨酸。微囊藻毒素的一般结构为环(D-丙氨酸-L-X-赤-β-甲基-D-异天冬氨酸-L-Z—Adda-D-异谷氨酸-N-甲基脱氢丙氨酸),其中Adda(3氨基9-甲氨基2,6,8-三甲基10-苯基-4,6-二烯酸)是微囊藻毒素生物活性表达所必须的。已证实微囊藻毒素是一种肝毒素,能抑制蛋白质磷酸酯酶,从而帮助解除对细胞增殖的正常的制动作用,促进肿瘤的发育。微囊藻毒素虽然主要存在于藻细胞中.但研究表明藻细胞死亡解体后·不断有藻毒素释放到水体,对人类的饮用水源造成危害,已证明某些地区的肝癌高发率与饮用水源中的水华大量发生有关。微囊藻毒素是一类具生物活性的单环七肽,这类毒素主要由淡水藻类铜绿微囊藻(Microcystins aeruginosa)产生,此外其他种类的微囊藻,如绿色微囊藻(M.viridis)、惠氏微囊藻(M.wesenbergii)以及鱼腥藻(Anabaena)、念珠藻(Nostoc)、颤藻(Oscillatoria)的一些种或株系也能产生这类毒素。目前所检测到的微囊藻毒素异构体已超过50多种。 微囊藻毒素有不同的脂多糖和极性.毒性也不同,微囊藻毒素-LR是最早被阐明化学结构的藻毒素.在对藻毒素的研究中也多以它作为研究对象。它是一个环状的7肽分子,分子量约为1000道尔顿,许多国家出现的由藻毒素引发的事件大都

饮用水中微囊藻毒素处理工艺

Advances in Environmental Protection 环境保护前沿, 2020, 10(2), 282-289 Published Online April 2020 in Hans. https://www.doczj.com/doc/b112883111.html,/journal/aep https://https://www.doczj.com/doc/b112883111.html,/10.12677/aep.2020.102032 Treatment Process of Microcystin in Drinking Water Siqi Shi, Jianhua Li College of Environment Science and Engineer, Tongji University, Shanghai Received: Mar. 28th, 2020; accepted: Apr. 22nd, 2020; published: Apr. 29th, 2020 Abstract The eutrophication has led to the increasing popularity of freshwater cyanobacteria blooms. The concentration of algae toxin in water increases rapidly with the proliferation of cyanobacteria. Microcystin (MCs) is a strong hepatotoxin and has carcinogenicity, which attracted widespread attention. In this article, author mainly introduced the research on the removal of intracellular and extracellular (lysed) algal toxins, introduced the process of removal of algal toxins from three aspects of physical methods, chemistry, and biology. This passage also summarizes the current treatment process simply and introduces the outlook. Keywords Algal Toxins, Microcystin, Degradation, Intracellularalgal Toxins, Extracellular (Lysed) Algal Toxins 饮用水中微囊藻毒素处理工艺 石思琦,李建华 同济大学环境科学与工程学院,上海 收稿日期:2020年3月28日;录用日期:2020年4月22日;发布日期:2020年4月29日 摘要 水体富营养化导致淡水蓝藻水华爆发日趋普遍。水体中藻毒素含量随蓝藻的大量增殖而快速升高,其中微囊藻毒素(MCs)是强烈的肝毒素,具有致癌性而引起广泛关注。文中主要介绍了去除胞内和胞外(溶解)藻毒素的相关研究,从物理方法、化学、生物三个方面介绍藻毒素去除工艺,并对目前的处理工艺进行

微囊藻毒素检测方法的研究进展

微囊藻毒素检测方法的研究进展 湖泊、水库和河流中接纳过多的氮和磷等营养物质,使水体的生态结构和功能发生变化,导致藻类特别是蓝藻(Cyanobacteria)的异常繁殖生长而出现的蓝藻水华现象。随着水体富营养化的加剧而引起有害藻类水华(HAB,harmful algal bloom)的频繁发生已成为国内外普遍关注的环境问题。当蓝藻水华严重时,水面形成厚厚的蓝绿色湖靛,散发出难闻的气味。不仅影响人的感官,破坏了健康平衡的水生生态系统,而且因藻细胞破裂后释放出多种藻毒素而对人和动物的饮用水安全构成了严重的威胁。世界上25%~70%的蓝藻水华污染可产生藻毒素,在已发现的各种不同藻毒素中,微囊藻毒(Microcystins,MC)是目前已知的一种在蓝藻水华污染中出现频率最高、产生量最大和造成危害最严重的藻毒素种类。在20世纪80年代对全国范围内的水源水质进行过全面的调查,结果表明34个湖泊中有一半以上的湖泊面积处于富营养状态。进入20世纪90年代,全国淡水水体富营养化日益严重,涉及范围不断扩大。通过对各大饮用水水源及各种湖泊的监测表明,在夏秋季节藻类水华严重,每年长达7~8个月,而天然水体蓝藻水华80%是产生毒素的。从加拿大、日本、芬兰、美国、中国等地对湖水、河水、水库水、井水及自来水等水样的检测结果看,有的水体中微囊藻毒素检出率高达60%~87%,源水中微囊藻毒素浓度从130ng/ml~2μg/ml,经加氯处理后的浓度也在0.09~0.6μg/L之间。淡水水源受到微囊藻毒素的检测方法的研究日益深入,需要建立一种简单、快速、准确的系统的检测方法。 1 微囊藻毒素简介 1.1 微囊藻毒素 淡水藻类通常以蓝藻、绿藻、硅藻、甲藻、隐藻、裸藻、金藻、黄藻等8个门为主。蓝藻门是已知的产生毒素最多的门类,这些毒藻可产生具有明显肝毒性的肽类物质,称为微囊藻毒素(Microcystins,MC)。它是一种肝毒素,是肝癌的强烈致癌剂。 1.2 微囊藻毒素的结构 Louw认为,微囊藻毒素是一种具有强烈慢性肝脏中毒特征的生物碱。Hughes等人在1958年发现并分离得到铜绿微囊藻NRC-1有毒品系。1959年Bishop等人对铜绿微囊藻NRC-1有毒品系的毒性做全面研究,发现这种微囊藻毒素是由7种氨基酸组成的小分子环状多肽,为单环结构:D-丙氨酸-L-X-赤-β-甲基-D-谷氨酸-Mdha。其中Mdha是一种特殊的氨基酸;Adda为3-氨基-9-甲氧基-2,6,8-三甲基-10-苯-4,6-二烯酸;X和Y为两种可变L氨基酸。目前已鉴定的约有65个微囊藻毒素变式,其中多数毒性较高,如MC-LR,MC-RR和MC-YR等。 1.3 微囊毒素的产生 MC是细胞内毒素,它在细胞内合成,细胞破裂后释放出来并表现出毒性。由于它有很小的体积(分子量1000左右)、环状结构及其氨基酸的特殊结构,一般认为它不在核糖体内合成,而是由肽合成酶复合体合成的生物活性小肽,类似于在一些杆菌和真菌中小肽的合成。这些小肽大多是抗生素、免疫抑制物和一些对动物和植物有毒的物质。关于微囊藻毒素产生的机理有很多假设,但目前为止尚无令人满意的结果,现在常提到的有环境因素和遗传因素。微囊藻毒素受光照、温度、营养盐等多种环境因素影响,其中光照可起到非常重要的作用。但遗传论者认为微囊藻毒素的合成是由毒素肽合成酶基因多基因控制的,并由肽合成酶复合体合成(非核糖体合成的多肽)。 1.4 微囊藻毒素对生物的影响 因为MC主要以肝脏为靶器官,当动物被灌喂或腹腔注射后,破坏细胞内的蛋白磷酸化平衡,改变多种酶活性,引起肝脏病变,造成一系列的生理紊乱。中毒症状主要表现为虚弱、呼吸沉重、皮肤变白、呕吐、腹泻、毛立和嗜睡等。如猴子的中毒症状为昏迷、肌肉痉挛、呼吸急促、腹泻等,在数小时内或几天内死亡。1987年Brook WP用HC标记的MC-LR腹腔注射染毒小鼠,1分钟后肝脏内出现总标记的70%,3小时后肝脏内积聚的MC-LR占总量的90%,表明肝脏是MC-LR分布的主要器官。它不仅对动物有影响,而且对植物也有一定的影响。Mcelhiney等发现MC-LR的存在可对茄属植物的生长和豆类植物根的发育产生不良影响。Singh等研究了MC对藻类、微生物和真菌生长的效应,发现在初始50mg/L的MC可完全抑制灰色念珠藻和鱼腥藻的生长并使藻细胞溶解。观察到了MC对二氧化碳的吸收和光合作用的不良影响,

微囊藻毒素在土壤中的污染特征及迁移转化规律

目录 摘要................................................................................................................................................ I Abstract ......................................................................................................................................... I II 目录................................................................................................................................................ V 1 绪论 (1) 1.1 选题背景 (1) 1.1.1 微囊藻毒素的来源 (1) 1.1.2 微囊藻毒素的化学结构和理化性质 (1) 1.1.3 微囊藻毒素的毒性及污染状况 (3) 1.1.4 微囊藻毒素的产生机理 (5) 1.1.5 微囊藻毒素的控制方法 (6) 1.1.6 微囊藻毒素在土壤环境中的研究现状 (7) 1.2 研究框架 (10) 1.2.1 研究目的与意义 (10) 1.2.2 研究内容与方案 (10) 1.2.3 研究创新点 (11) 2 滇池周边农田土壤中微囊藻毒素的污染特征及风险评价 (12) 2.1 材料与方法 (12) 2.1.1 仪器与试剂 (12) 2.1.2 样品采集与预处理 (12) 2.1.3 微囊藻毒素测定与质量控制 (13) 2.1.4 风险评价方法 (14) 2.1.5 数据处理 (15) 2.2 结果与讨论 (15) 2.2.1 滇池周边农田土壤中3种典型微囊藻毒素的含量水平与分布特征 (15) 2.2.2 滇池周边农田土壤中微囊藻毒素的健康风险评价 (16) 2.2.3 滇池周边农田土壤中微囊藻毒素的生态风险评价 (17) 2.3 小结与展望 (18) 3 三种典型微囊藻毒素在土壤中的降解行为研究 (19) 3.1 材料与方法 (19) V

藻毒素检测方法

藻毒素检测方法 原理: 样品中的微囊藻毒素与微囊藻毒素酶标记物竞争结合数量有限的抗体结点。 测试孔中包被有抗免IgG,用于捕获加入的免抗微囊藻毒素抗体,微囊藻毒素酶标记物和样品中的微囊藻毒素竞争结合数量有限的抗体结点,抗体与测试板中包被抗免IgG结合。 注意:颜色与微囊藻毒素的含量成反比。 较深的颜色=较低的浓度 较浅的颜色=较高的浓度 所需仪器: 仪器型号规格生产厂商大致价格数量 酶标仪及连带电 脑Bio-rad 680型30000-40000 1台 洗板机Bio-rad 1575 32000 1台移液器Acura(范围:20~200μl)1881 1支八通道精密移液 器Acura(范围:20~200μl)4993 1支 一次性移液器吸 头 (50μl、100μl)恒温培养箱37℃ 分析实验室专用 纯水机超纯水或去离子水(符合分析实验室用水国家标准GB6682一级水) 试剂盒 美国Beacon微囊藻毒素 定量检测试剂盒 3600 所需其它实验材料: PE手套、封口膜(保鲜膜)、振荡器(96孔板振荡器) 步骤: 1.将所有试剂及样品置于室温下。

2.从铝箔袋中拿出要求数量的微孔条,放入干燥剂并重新封好袋子以免微孔条受潮。3.稀释100倍浓缩清洗液为1倍清洗液,例:取5ml 100倍清洗液到500ml洗瓶中并加入495ml蒸馏水。 4.吸取50μl酶标记物到微孔板的每个孔中。 5.吸取50μl标准,阴性对照,样品到对应微孔中,必须保证每种溶液使用干净的吸头吸取,避免交叉污染。 6.加入50μl抗体溶液到每个小孔中。 7.快速震荡使孔中的溶液混合,并敷上薄膜,或者微孔板可以放在振荡器上震荡孵育,从而达到在孵育期间持续震荡的效果。 8.37℃孵育30分钟。 9.孵育完后,去掉封口膜将微孔中的溶液倒入水槽中,用1倍清洗液清洗完全充满微孔,震荡后倒掉,重复四次,总共五次洗板。在吸水纸上拍打,尽可能将水拍干。10.每个微孔中加入100μl底物溶液。 11.盖上小孔并37℃孵育30分钟。 12.按照加底物的顺序每孔中加入100μl停止液。停止液为1 N盐酸,需小心操作。13.450nm下读板,如果酶标仪有双波长,可同时测605或650nm双波长。 14.如果酶标仪可以处理数据,可用半对数线性或4参数曲线拟合,如果为手动计算,则可按照以下部分进行。

地表水中微囊藻毒素的危害与控制综述

[收稿日期] 2003-06-26 [基金项目] 广东省科技攻关项目(2003C32902),广东省水利厅水资源保护重点项目 [作者简介] 王朝晖(1968-),女,副教授,副教授,研究方向:污染生态学和生态毒理学. 地表水中微囊藻毒素的危害与控制(综述) 王朝晖1, 许忠能1, 胡 韧1, 林秋奇1, 韩博平1, 章诗芳2 (1.暨南大学水生生物研究所,广东广州510632; 2.广州市自来水公司水质部,广东广州510160) [摘 要] 微囊藻毒素(microcystin ,MC )是一类环状多肽类物质,具有很强的肝毒性.微囊藻毒素在我国淡水水体分布广泛,许多大型水体和供水水库都已发生微囊藻水华,一些城市饮用水源受到污染.检测水体微囊藻毒素的方法主要有高效液相色谱(HP LC )和酶联免疫法(E LIS A ),但目前仍缺乏一种快速、经济的常规检测方法.要控制饮用水源中微囊藻毒素的含量,除了物理、化学、生物等去除手段外,水体富营养化防治是最有效、也是最根本的控制手段. [关键词] 微囊藻毒素; 地表水; 肝毒素; 监测技术; 控制方法 [中图分类号] X 17115 [文献标识码] A [文章编号] 1000-9965(2004)01-0110-06 我国城市饮水的主要来源为河流、湖泊(含水库)等地面水体.随着工农业的发展以及生活水平的提高,大量富含营养物质的工农业废水和生活污水排入水体,使水体富营养化进程加快、程度加剧.其结果导致一些小型的耐污性蓝绿藻大量繁殖生长,水华时常发生.许多蓝藻能产生以微囊藻毒素(microcystin ,MC )为代表的毒素,危害人类健康[1].目前我国已有许多饮用水源发生蓝藻水华并监测出微囊藻毒素[2~5].本文介绍了微囊藻毒素的来源、危害、检测、控制方面的研究动态及其在我国地表水中的分布和危害,为水资源特别是饮用水资源的保护和可持续发展提供参考. 1 微囊藻毒素的来源及结构和性质 微囊藻毒素(MC )是由蓝藻中的微囊藻属(Microcystis )、鱼腥藻属(Anabaena )、颤藻属(Oscillatoria )及念珠藻属(Nostoc )的某些种类或品系产生的次生代谢产物[1]. MC 是一类单环七肽物质,一般结构为环(D -丙氨酸-L -X -赤-β-甲基-D 异天冬氨酸-L -Y-Ad 2da -D -异谷氨酸-N -甲基脱氢丙氨酸,其中Adda 为一种特殊的氨基酸,结构为3-氨基-9-甲氧基-2,6,8-三甲基-10-苯-4,6-二烯酸,X 、Y 为两种可变的L 氨基酸.由于X 、Y 两种L 氨基酸的不同以及天冬氨酸、脱氢丙氨酸的甲基化(去甲基化),可以构成不同的异构体,目前已从不同的微囊藻藻株中分离鉴定出60多种异构体,其中存在最普遍也是含量较多的是LR 、RR 、Y R ,其中L 、R 、Y 代表亮氨酸、精氨酸和酪氨酸. 由于环状结构和间隔双键,微囊藻毒素具有相当的稳定性,加热到300℃很长时间仍未能使之分解,而且尽管它们是多肽类物质,但普通的蛋白质水解酶对它们不起作用[6].微囊藻毒素在阳光下也较稳定,但在蓝藻色素存在的条件下或在微生物的作用下,光降解速度加快[7]. 第25卷第1期2004年2月 暨南大学学报(自然科学版) Journal of Jinan University (Natural Science ) Vol.25No.1 Feb.2004

水中微囊藻毒素测定

编号: 作业指导书水中微囊藻毒素的测定高效液相色谱法 临江市环境保护监测站

1、方法提要 微囊藻毒素在238nm下有 1、方法的适用范围 本标准规定了高效液相色谱法和间接竞争酶联免疫吸附法测定水中微囊藻毒素(环状七肽)的条件和详细分析步骤。 本标准适应于饮用水、湖泊水、河水、地表水中微囊藻毒素的测定。 样品中微囊藻毒素的检出限:高效液相色谱法和酶联免疫吸附法均匀为μg/L。 2、微囊藻毒素的分子式、分子质量及结构式 分子式 微囊藻毒素-RR(MC-RR):C49H75N13O12, 微囊藻毒素-YR(MC-YR):C52H72N10O13, 微囊藻毒素-LR(MC-LR):C49H74N10O12.。 分子质量 MC-RR:,MC-YR:μg,MC-LR:μg。 结构式

MC-RR、MC-YR、MC-LR、X和Y 表1 MC-RR、MC-YR、MC-LR、X和Y 3、水样采集和保存 用采水器采集1500ml~2000ml水样(水样采集后,应在4 h内完成以下前处理步骤)。用500目的不锈钢筛()过滤,除去水样中大部分浮游生物和悬浮物。取过滤后的水样1200ml于玻璃杯式滤器()中,依次经滤膜()减压过滤。准确量取1000ml 滤液置于棕色试剂瓶中。注:如减压过滤后的水样不能立即分析,可置于玻璃容器中,在-20℃保存,30d内分析完毕。 4、试剂和材料 除非另有说明,分析时均使用符合国家标准的分析纯试剂和不含有机物的蒸馏水。

甲醇,HPLC级(色谱级甲醇) 二氯甲烷,农残级 阿特拉津标准贮备溶液,ρ=100μg/mL。 准确称取阿特拉津标准样品,用少量二氯甲烷溶解后,再用甲醇准确定容至100mL,作为阿特拉津标准贮备溶液。在4℃冰箱中保存,保存期半年。 阿特拉津标准使用液,ρ=μg/mL。 取阿特拉津标准贮备溶液于容量瓶中,甲醇定容,混匀,配制成标准使用溶液。在4℃冰箱中保存,保存期半年。 无水硫酸钠:在400℃灼烧4小时,冷却后密闭保存在玻璃瓶中。 氯化钠:在400℃灼烧4小时,冷却后密闭保存在玻璃瓶中。 5、仪器和设备 除非另有说明,分析时均使用符合国家标准A级玻璃量器。 高效液相色谱仪:具有可调波长紫外检测器或二极管阵列检测器。 色谱柱:填料为μm ODS,柱长200mm,内经反相色谱柱或其他性能相近的色谱柱。 振荡器:可调速。 浓缩装置:旋转蒸发装置或K-D浓缩器、浓缩仪等性能相当的设备。 分液漏斗:250mL。

微囊藻毒素健康风险评价

微囊藻毒素健康风险评价 1、暴露途径 人群接触微囊藻毒素(MCs)的常规途径为饮水暴露、食物暴露和娱乐暴露。根据深圳市市民的生活习惯,市民接触MCs的主要途径一条为直接饮用未经处理的河流水和水库水,另一条途径为食用河流水库中的鱼类水产品。 国家《生活饮用水卫生标准》(GB 5749-2006)中规定饮用水MC-LR的最高浓度为1μg/L,《地表水环境质量标准》(GB 3838-2002)中规定地表水MC-LR最高浓度为10μg/L,根据文献调研中浙江和重庆某水库河流的MC-LR浓度数据[1-2]保守估计深圳河流域水库的MC-LR浓度为5μg/L,饮用水中MC-LR浓度为1μg/L。由于生物富集作用,推测鱼类水产品肌肉中MC-LR浓度为0.05μg/g,假定深圳市每日人均水产品摄入量为30g。 目前国际上尚无MC-LR的致癌风险的研究数据,故本文仅对MC-LR的非致癌健康风险进行初步平均评价。 2、非致癌风险评估 2.1 饮水途径非致癌风险 采用USEPA水环境健康风险评估模型定量评估深圳河流域MC-LR对人群的健康风险。 Rni= Di RfDi×L 式中:Rni——化合物i通过饮水途径所带来的年非致癌风险度,a-1; Di——化合物i通过饮水途径单位体重的日均暴露计量,mg/(kg×d); RfDi——化合物i通过饮水途径的参考计量,mg/(kg×d); L——人均预期寿命,a。 通过饮水途径的单位体重的日均暴露计量计算: Di=α×l×Ci/BW 式中:l——成人日均饮用水量,取2.5L/d; α——饮用未处理水系数,取0.1; Ci——水环境中化合物i的实际质量浓度,mg/L; BW——成人人均体重,取70kg。 2.2 食物途径非致癌风险 采用国际环境建模和软件协会(iEMSs)推荐优化的USEPA模型进行食入途径的非致癌风险健康评估。

微囊藻毒素研究进展

微囊藻毒素研究进展 王雪艳1,聂晶晶2 1大连海事大学环境科学与工程学院(116026) 2云南农业大学资环学院(650201) E-mail:wangxyan@https://www.doczj.com/doc/b112883111.html, 摘要:微囊藻毒素(Microcystins,MCYSTs,MCs)为富营养化淡水水体中最常见的藻类毒素,从毒理学、环境科学、生物学及化学等方面对MCs巳的研究已有较多报道。本文综述了MCs的具体的概念、对生物的影响,并对关于MCs在产生机理、分离检测方法和水处理过程中的去除方法等方面的研究进展,并对目前研究的不足提出了几点意见。 关键词:微囊藻毒素,水华,毒素,藻类植物 1.前言 日趋严重的水体富营氧化使水华(Water bloom)发生已成为全球性的环境问题。我国多数淡水湖泊中形成水花的优势藻种,主要为有毒的蓝藻,这些毒藻可产生具有明显肝毒性的肽类物质,称为微囊藻毒素(Microcystins,MCYST)。近年来,由于饮用藻毒素污染的水体,而导致家禽、野生动物中毒,甚至死亡的事件频繁发生,藻类毒素对人体健康的危害已引起了人们的关注。我国的一些饮用水水源也已受到了有毒藻类的严重污染。本文就微囊藻毒素对生物危害、采集、检测及去除微囊藻的方法作了简单的介绍,着重在于微囊藻毒素的产生与环境的关系的介绍。 2.微囊藻毒素(MCYST) 2.1 微囊藻毒素 淡水藻类中,毒性最强、污染最广、最严重的是蓝藻门。目前已肯定的有毒藻类有铜锈微囊藻、水华鱼腥藻、水华束丝藻、阿氏颤藻、泡沫节球藻及念珠藻等。这些藻类不只产生一种毒素,如环境发生变化,一种藻类可产生几种毒素。它是一种肝毒素,这种毒素是肝癌的强烈致癌剂[1]。虽然在1878年Francis就最早报道了泡沫节球藻会对动物产生毒害作用,但人们对藻类分子结构的认识还不满40年。1959年Bishop首次分离出藻毒素后,不断有相关报道发表。美国、日本、澳大利亚、印度、加拿大、芬兰等lO多个国家都曾报道了其湖泊、水库中有毒水华的形成,并分离出有毒藻株[2]。我国的东湖、巢湖、太湖、滇池、淀山湖、黄浦江等饮用水水源及各种湖泊在夏秋季节藻类水华严重,每年长达7—8个月,而天然水体蓝藻水华80%是产毒的[3]。从加拿大、日本、芬兰、美国、中国等地对湖水、河水、水库水、井水及自来水等水样的检测结果看,有的水体中微囊藻毒素检出率高达60%一87%,源水中微囊藻毒素浓度从130ng/ml一2ug/ml不等,经加氯处理后的浓度也有0.09—0.6ug /L不等[4]。由此可见淡水水源受到微囊藻毒素污染的严重状况。 2.2 微囊藻毒素对生物的影响 MCYSTs主要以肝脏为靶器官[5-6]。动物经灌喂或腹腔注射后,破坏细胞内的蛋白磷酸化平衡,改变多种酶活性,引起肝脏病变,造成一系列的生理紊乱。中毒症状主要表现为虚 - 1 -

微囊藻毒素研究进展

微囊藻毒素研究进展 摘要:微囊藻毒素(Microcystins,MCYSTs,MCs)为富营养化淡水水体中最常见的藻类毒素,从毒理学、环境科学、生物学及化学等方面对MCs 巳的研究已有较多报道。本文综述了MCs 的具体的概念、对生物的影响,并对关于MCs 在产生机理、分离检测方法和水理过程中的去除方法等方面的研究进展,并对目前研究的不足提出了几点意见。 关键词:微囊藻毒素,水华,毒素,藻类植物 1. 前言 日趋严重的水体富营氧化使水华(Water bloom)发生已成为全球性的环境问题。我国多数淡水湖泊中形成水花的优势藻种,主要为有毒的蓝藻,这些毒藻可产生具有明显肝毒性的肽类物质,称为微囊藻毒素(Microcystins,MCYST)。近年来,由于饮用藻毒素污染的水体,而导致家禽、野生动物中毒,甚至死亡的事件频繁发生,藻类毒素对人体健康的危害已引起了人们的关注。我国的一些饮用水水源也已受到了有毒藻类的严重污染。本文就微囊藻毒素对生物危害、采集、检测及去除微囊藻的方法作了简单的介绍,着重在于微囊藻毒素的产生与环境的关系的介绍。 2. 微囊藻毒素(MCYST) 2.1 微囊藻毒素 淡水藻类中,毒性最强、污染最广、最严重的是蓝藻门。目前已肯定的有毒藻类有铜锈微囊藻、水华鱼腥藻、水华束丝藻、阿氏颤藻、泡沫节球藻及念珠藻等。这些藻类不只产生一种毒素,如环境发生变化,一种藻类可产生几种毒素。它是一种肝毒素,这种毒素是肝癌的强烈致癌剂[1]。虽然在1878 年Francis就最早报道了泡沫节球藻会对动物产生毒害作用,但人们对藻类分子结构的认识还不满40 年。1959 年Bishop首次分离出藻毒素后,不断有相关报道发表。美国、日本、澳大利亚、印度、加拿大、芬兰等lO多个国家都曾报道了其湖泊、水库中有毒水华的形成,并分离出有毒藻株[2]。我国的东湖、巢湖、太湖、滇池、淀山湖、黄浦江等饮用水水源及各种湖泊在夏秋季节藻类水华严重,每年长达7—8 个月,而天然水体蓝藻水华80%是产毒的[3]。从加拿大、日本、芬兰、美国、中国等地对湖水、河水、水库水、井水及自来水等水样的检测结果看,有的水体中微囊藻毒素检出率高达60%一87%,源水中微囊藻毒素浓度从130ng/ml一2ug/ml不等,经加氯处理后的浓度也有0.09—0.6ug/L不等[4]。由此可见淡水水源受到微囊藻毒素污染的严重状况。 2.2 微囊藻毒素对生物的影响 MCYSTs主要以肝脏为靶器官[5-6]。动物经灌喂或腹腔注射后,破坏细胞内的蛋白磷酸化平衡,改变多种酶活性,引起肝脏病变,造成一系列的生理紊乱。中毒症状主要表现为虚弱、呼吸沉重、皮肤变白、呕吐、腹泻、毛立和嗜睡等。Mcelhiney等[7]发现MC—LR的存在可对茄属植物(Solanum)的生长和豆类植物(Phaseolus vulgaris)根的发育产生不良影响。Singh等[8]研究了MC对藻类、微生物和真菌生长的效应,发现在初始50 mg/L的MC可完全抑制灰色念珠藻和鱼腥藻的生长并使藻细胞溶解,观察到了MC对二氧化碳的吸收和光合作用的不良影响,同时推断出铜绿微囊藻通过MC的杀藻作用是保持其在自然条件下保持为优势藻种的重要原因。 2.3 微囊藻毒素的结构 Louw认为,微囊藻毒素是一种具有强烈慢性肝脏中毒特征的生物碱。Hughes等(1958)发现并分离得到铜绿微囊藻NRC-1 有毒品系。Bishop等(1959)对铜绿微囊藻NRC-1 品系的毒性作全面研究,发现这种微囊藻毒素是由7 种氨基酸组成的小分子环状多肽,为单环结构:D-丙氨酸-L-X-赤-β-甲基-D-异谷氨酸-Mdha。其中Mdha是一种特殊氨基酸;Adda为3-氨基-9-甲氧基-2,6,8-三甲基-10-苯-4,6-二烯酸;X和Y为两种可变L氨基酸(图1)[9] 。目前已鉴定约有65 个微囊藻毒素变式,其中多数毒性较高,如MCYST-LR、MCYST-RR和

微囊藻毒素引起肝脏损伤的研究进展

微囊藻毒素引起肝脏损伤的研究进展 摘要】微囊藻毒素可以特异性作用于肝脏,引起肝脏损伤,进而导致肝癌发生,本文对微囊藻毒素肝脏损伤作用特点及作用机理等方面研究进展进行综述。微囊 藻毒素可明显损伤肝脏细胞,影响肝脏细胞形态的完整性,同时影响肝细胞的生 理生化功能,引起细胞内酶学改变。另外,藻毒素对DNA可造成损伤,进而影响肝脏功能,造成肝脏损伤。其机制包括:抑制丝氨酸/苏氨酸蛋白磷酸酶PP1和PP2A活性,使体内蛋白质过磷酸化;引起肝细胞内活性氧类(ROS)如过氧化物、羟基增加,造成脂质过氧化和DNA损伤;抑制肝细胞GJIC功能。 【关键词】微囊藻毒素肝脏损伤 【中图分类号】R657.3 【文献标识码】A 【文 章编号】1672-5085(2014)14-0058-02 近年来,随着人类生产、生活活动的迅速发展以及工农业排污的增加,水体 富营养化日益加剧,导致江河湖泊中藻类尤其是蓝藻异常生长繁殖,其产物―蓝 藻毒素尤其是微囊藻毒素(Microcystins, MC)不仅破坏了水生生态系统的平衡, 而且给人类生命健康造成巨大的影响,由微囊藻毒素引起的人和动物急性中毒和 死亡事件屡屡发生。 我们根据藻类毒素的作用方式,可将其分为肝毒素(如微囊藻毒素)、神经毒 素(如类毒素)、皮肤刺激物或其他毒素。其中,肝毒素因可特异性地作用于肝脏,引起肝脏的损伤,危害最大。它主要是由微囊藻、项圈藻和念珠藻等属的某些种 类产生,但是大部分肝毒素都是微囊藻毒素。目前发现的该种类毒素至少有60 多种,常见的是LR、RR、YR三种毒素。饮水中的MC污染与肝肿瘤发生的相关 性已得到流行病学证明。目前,以微囊藻毒素为代表的藻类肝毒素已被公认为是 除肝炎病毒和黄曲霉毒素以外,环境中导致肝癌发生的第三个重要原因,可与乙 肝病毒和黄曲霉毒素协同致癌[1]。本文就微囊藻毒素引起肝脏损伤的研究进展综 述如下。 1.肝脏损伤作用特点 研究表明,微囊藻毒素主要通过侵蚀小肠粘膜上皮细胞和粘膜固有层而进入 血浆中,然后转运到肝、肺和心脏,最后分布到全身。机体是通过小肠和大肠的 杯状细胞分泌粘液来排泄MC[2,3]。同时放射性自显影研究表明,125I-MCLR在 肝脏内定位于肝细胞核内。最新研究发现有机阴离子转运多肽超家族(啮齿动物Oatps,人类OATPs)与调节转运藻毒素进入肝细胞以及通过血脑屏障有关,并且 可能决定了藻毒素的器官特异性。 微囊藻提取物(MCE)可明显损伤肝脏细胞,影响肝脏细胞形态的完整性。 动物实验造成藻毒素急性中毒时,肝脏损伤表现为:广泛出血、坏死、肝脏肿胀、淤血、肝/体比重增加。光镜下可见Diss间隙微绒毛消失,肝窦状血管破坏、血 窦内皮损伤、细胞索破坏,细胞间隙增大。电镜下,肝细胞超微结构发生改变, 出现粗面内质网折叠、线粒体脊膜扩张、胞质空泡样变、浆膜反折,细胞内器重 新分布,有时可见核崩解,肝细胞索压缩,细胞骨架破坏,肝细胞坏死融合成带,出现桥接样坏死[4]。Batisda T等[5]发现MCLR对原代人类肝细胞也可造成类似影响,如肝细胞空泡样变、裂解、相互分离,细胞核浓缩。Falconer等[6]用含MC 的水喂饲小鼠1年后,小鼠肝细胞呈现渐进性的损伤和坏死,肝脏纤维化样变, 淋巴细胞、中性粒细胞浸润,肝组织淀粉样变,表明MC可引起受试小鼠肝脏的 慢性炎症。

微囊藻毒素的毒性

微囊藻毒素的毒性 1毒性综述 对于微囊藻毒素的毒性和毒理学研究,李效宇等曾进行了综述。文献报导微囊藻毒素可通过对肝脏中的肝细胞和肝巨噬细胞的作用, 抑制肝细胞中蛋白磷酸酶的活性, 诱发巨噬细胞中肿瘤坏死因子和白细胞介素1, 导致疾病产生; 高浓度时,可引起急性反应如肝炎症、肝出血, 甚至肝坏死[1]。 自从1878年Franics首次发现泡沫节球藻水华能够引起家畜、禽类中毒、死亡以来,有关藻类水华引起的野生动物、鱼类、家畜、家禽及宠物中毒、死亡的报道很多,其中以微囊藻水华的危害最严重、广泛. 动物通过直接接触或饮用含有微囊藻毒素的水而中毒,中毒症状主要有昏迷、肌肉痉挛、呼吸急促、腹泻, 甚至在数小时以至数天内死亡.研究证明,中毒死亡主要是由于肝损伤,微囊藻毒素造成肝内出血甚至肝坏死。[3] 虽然早在1878年就有泡沫节球藻水华引起家畜及禽类中毒死亡的研究报道,但MC分子结构和毒理的研究只有10a左右的历史。研究结果显示M的致毒机理是通过与蛋白磷酸酶( pro tein pho sphatase) 中的丝氨酸/苏氨酸亚基结合,抑制其活性,从而诱发细胞角蛋白高度磷酸化,使哺乳动物肝细胞微丝分解、破裂和出血,使肝充血肿大,动物失血休克死亡。另外,由于蛋白磷酸酶的活性受到抑制,这样就相对增加了蛋白激酶的活力,打破了磷酸化和脱磷酸化的平衡,从而促进了肿瘤的发生。M C-L R对小白鼠的致死量LD50在36到122μg /kg 之间。饮用水中微量M C的存在与人群中原发性肝癌、大肠癌的发病率有很大的相关性[2]。 微囊藻毒素对动物的毒害程度主要与水华密度、水体毒素含量有关,也与动物种类和大小有关.单胃动物没有反自动物和鸟类敏感[3]。家畜及野生动物饮用了含藻毒素的水后, 会出现腹泻、乏力、厌食、呕吐、嗜睡、口眼分泌物增多等症状, 甚至死亡。病理病变有肝脏肿大、充血或坏死,肠炎出血、肺水肿等[2]。 2对动物的毒性 水体中含一定浓度的M C可导致鱼卵变形, 蚤类死亡,鱼类行为和生长异常及死亡。在泥鳅胚胎和幼体发育阶段, 泥鳅卵发育阶段对MC-L R最敏感,泥鳅发育异常的主要表现为心脏发育异常、小头和身体弯曲, 并发现心脏和肝是M C-L R的主要攻击目标。Mcelhiney等发现M C-L R的存在可对茄属植物( Solanum )的生长和豆类植物( Phaseolus vulgaris)根的发育产生不良影响。Sing h等研究了M C对藻类、微生物和真菌生长的效应, 发现在初始50 mg /L的M C可完全抑制灰色念珠藻和鱼腥藻的生长并使藻细胞溶解,观察到了M C对二氧化碳的吸收和光合作用的不良影响,同时推断出铜绿微囊藻通过M C的杀藻作用是保持其在自然条件下保持为优势藻种的重要原因。[2] 3对人类的毒性 微囊藻毒素同样也危害人类健康.人们直接接触含有毒素的水华,如在湖泊、河流、水库中进行游泳等娱乐活动,会引起皮肤、眼睛过敏,发烧,疲劳以及急性肠胃炎,如果经常暴露于含有毒素的水体,会引发皮肤癌、肝炎及肝癌.有研究证明,饮用含有微囊藻毒素的水,人群肝癌的发病率明显高于饮用深井水.由于微囊藻毒素专一性地作用于肝脏,是极强的促肿瘤剂,其对人类健康的危害正日益受到全世界关注.目前,许多国家已建立了饮用水微囊藻毒素限制标准, 其最高允许含量为1μg/L。[3] 1996年在巴西造成100多名急性肝功能故障, 7个月内至少50人死于藻毒素产生的急性效应,引起举世瞩目[1]。 虽然人们知道藻毒素对生物体有毒性,但迄今为止其在分子水平上的致毒机理仍然不很清楚, 并给其在环境中的安全性评价造成困难[1]. [1]张维昊,徐小清,丘昌强.水环境中微囊藻毒素研究进展[J].环境科学研究,2001,14(2):57~61 [2]闫海,潘纲,张明明.微囊藻毒素研究进展[J].生态学报,2002,22(11):1968~1975

微囊藻毒素(MC)说明书

微囊藻毒素(MC)酶联免疫酶联免疫分析分析分析 试剂试剂盒使用说明书盒使用说明书盒使用说明书 本试剂盒仅供研究使用。 检测范围检测范围:: 96T 30 ng/L -850 ng/L 使用目的使用目的:: 本试剂盒用于测定样本中微囊藻毒素(MC)含量。 实验原理 本试剂盒应用双抗体夹心法测定标本中微囊藻毒素(MC)水平。用纯化的微囊藻毒素(MC)抗体包被微孔板,制成固相抗体,往包被单抗的微孔中依次加入微囊藻毒素(MC),再与HRP 标记的微囊藻毒素(MC)抗体结合,形成抗体-抗原-酶标抗体复合物,经过彻底洗涤后加底物TMB 显色。TMB 在HRP 酶的催化下转化成蓝色,并在酸的作用下转化成最终的黄色。颜色的深浅和样品中的微囊藻毒素(MC)呈正相关。用酶标仪在450nm 波长下测定吸光度(OD 值),通过标准曲线计算样品中微囊藻毒素(MC)浓度。 试剂盒组成 1 30倍浓缩洗涤液 20ml ×1瓶 7 终止液 6ml ×1瓶 2 酶标试剂 6ml ×1瓶 8 标准品(1600 ng/L ) 0.5ml ×1瓶 3 酶标包被板 12孔×8条 9 标准品稀释液 1.5ml ×1瓶 4 样品稀释液 6ml ×1瓶 10 说明书 1份 5 显色剂A 液 6ml ×1瓶 11 封板膜 2张 6 显色剂B 液 6ml ×1/瓶 12 密封袋 1个 标本标本要求要求 1.标本采集后尽早进行提取,提取按相关文献进行,提取后应尽快进行实验。若不能马上进行试验,可将标本放于-20℃保存,但应避免反复冻融 2.不能检测含NaN3的样品,因NaN3抑制辣根过氧化物酶的(HRP )活性。 操作步骤 1. 标准品的稀释:本试剂盒提供原倍标准品一支,用户可按照下列图表在小试管中进行稀 释。 800 ng/L 5号标准品 150μl 的原倍标准品加入150μl 标准品稀释液 400 ng/L 4号标准品 150μl 的5号标准品加入150μl 标准品稀释液 200 ng/L 3号标准品 150μl 的4号标准品加入150μl 标准品稀释液 100 ng/L 2号标准品 150μl 的3号标准品加入150μl 标准品稀释液 50 ng/L 1号标准品 150μl 的2号标准品加入150μl 标准品稀释液 2. 加样:分别设空白孔(空白对照孔不加样品及酶标试剂,其余各步操作相同)、标准孔、 待测样品孔。在酶标包被板上标准品准确加样50μl ,待测样品孔中先加样品稀释液40μl ,

水产品中微囊藻毒素的测定-编制说明

《食品安全国家标准水产品中微囊藻毒素的测定》 (征求意见稿)编制说明 一、工作简况 (一)任务来源、起草单位、起草人 《水产品中微囊藻毒素的测定》列入食品安全国家标准2014年制(修)订国家标准项目计划,由中国科学院水生生物研究所和山东出入境检验检疫局组织起草,本标准主要起草人:甘南琴、吴振兴、宋立荣、赵华梅、戴国飞等。 (二)简要起草过程 2014年6月初,起草单位中国科学院水生生物研究所完成了1法和2法的讨论稿、编制说明及各种样品的检测数据。2015年1月-4月,验证单位威海出入境检验检疫局检验检疫技术中心、武汉大学、辽宁出入境检验检疫局检验检疫技术中心分别完成了1法和2法的验证工作。2015年3月,完成专家征求意见。 二、与我国有关法律法规和其他标准的关系 我国现行标准只有SN/T 2678-2010《进出口淡水产品中微囊藻毒素的检测方法酶联免疫吸附法》,尚未制定微囊藻毒素限量标准。鉴于微囊藻毒素对环境、水产品可能产生健康风险,根据食品标准清理结果,为开展食品安全风险监测、风险评估等工作,制定本标准。 三、国外有关法律、法规和标准情况的说明 2004年WHO“Guideline for drinking-water q uality” 3rd (ed) Vol 1 Recommendation p407对Microcystin-LR规定暂时指导值0.001mg/L (novisional guideline value), HPLC 用75%甲醇在细胞中抽提后C18浓缩,检出限量为0.1-1μg/L, ELISA对MC溶于水或细胞用水抽提后为0.1-0.5μg/L,比HPLC准确度稍差,但可用于筛检。蛋白磷酸酶法0.5-1.5μg/L,准确度亦低于HPLC,但可用于筛检。综合国内外对水体中微囊藻毒素的测定标准方法及相关文献报道,本标准建立了高效液相色谱法-串联质谱(HPLC-MS/MS)和间接竞争酶联吸附实验法(ELISA)两种检测水产中微囊藻毒素含量的方法。 四、标准的制(修)订原则 1法参照采用ISO 20179:2005(E), Water quality—Determination of microcystins—Method using solid phase extraction (SPE) and high performance liquid chromatography (HPLC) with ultraviolet (UV) detection. 2法参照Rivasseau C. Racaud P. Deguin A. 和Hennion M.C. 1999年发表的《ELISA检测试剂盒检测环境中水样和藻样的评价》。

关于微囊藻毒素的调查与分析

关于微囊藻毒素的调查与分析 --食品安全与卫生论文 我们每个人,每天都需要依靠食物来提供能量继续生存下去,甚至于世界上所有生命都需要食物,而且每一刻都在某个地方存在进食的现象,俗话也说“民以食为天”。所以,食物,在整个社会历史发展中都是尤为重要的,自然而然的,食品安全与卫生检测就是攸关生死的大事了,对于食物中所含毒素的研究,也显得尤为重要了。通过学习这门通识课,我学到很多,也发现其中乐趣之多,感到这门课非常值得学习。既然我是水产学院的一员,相对而言就对水产品更为熟悉,所以就选择调查分析一些常见的食品鱼类所含毒素。作为满足人类食物要求的重要产业,淡水水产养殖业在不断扩大规模的同时,也给养殖区域的水环境带来严重后果。 2001年7、11月有人对太湖水域进行调查,发现次生代谢产物——微囊藻毒素MC对水体环境和人类健康构成巨大威胁。采自太湖的28尾淡水鱼体内均检出MC,其中,肝脏中MC含量远远高于肌肉中含量。肝脏中含量最高的是鲤鱼、鲢鱼和鳙鱼,肌肉中最高的是鲢鱼和鳙鱼。间接证明我国局部地区人群肝功能损害,甚至肝癌的高发可能与当地的水源、食品鱼类有密切关系。 微囊藻毒素是由蓝藻水华,如固氮的鱼腥藻、束丝藻、拟柱胞藻、胶刺藻和节球藻等暴发所产生的一种肝毒素,它对蛋白磷酸酶1 和蛋白磷酸酶2A 具有抑制作用,因此与肿瘤促进作用有直接关系。微囊藻毒素为七肽单环肝毒素,结构中存在着环状结构和间隔双键,因而具有相当的稳定性。它能够强烈抑制蛋白磷酸酶的活性,当细胞破裂或衰老时毒素释放进入水中,同时它还是强烈的肝脏肿瘤促进剂。MC具有水溶性和耐热性,易溶于水,甲醇或丙酮,不挥发,抗pH 变化。化学性质相当稳定,自然降解过程十分缓慢。 1996年巴西一透析中心因透析液遭MC污染最终导致53人死亡。流行病学调查显示,饮用水源中微囊藻毒素是中国南方一些地区原发性肝癌发病率高的主要原因之一。对江西鄱阳湖的调查显示,水体微囊藻毒素最大为1 036. 9pg·ml-1,同时发现鱼体内有毒素积累。动物模型实验表明,MC具有明显的嗜肝性,其污染与肝癌的发生、肝坏死以及肝内出血有密切关系,严重时甚至能引起受试生物死亡。MC跨膜转运需要ATP 依赖性的转运蛋白。对大鼠毒理学研究表明,胆汁酸转运蛋白。很可能是MC的转运载体。而MC的毒性主要限于肝脏,是因为其细胞膜上具有有机阴离子转运蛋白的器官;随着有关MC毒性的不断深入研究,还发现MC具有多器官毒性、遗传毒性、神经毒性、免疫毒性和潜在的促癌性,并能引起受试生物发育异常。可见MC的毒性效应范围十分广泛。 MC是一种肝毒素,这种毒素是肝癌的强烈促癌剂。家畜及野生动物饮用了含藻毒素的水后,会出现腹泻、乏力、厌食、呕吐、嗜睡、口眼分泌物增多等症状,甚至死亡。对于人类健康,微囊藻毒素也具有很大危害性。人们在洗澡、游泳及其他水上休闲和运动时,皮肤接触含藻毒素水体可引起敏感部位(如眼睛)和皮肤过敏;少量喝入可引起急性肠胃炎;长期饮用则可能引发肝癌。除此之外,还有肾毒性、生殖毒性、免疫系统毒性、心脏毒性等。大量研究表明,随着MCs 暴露时间及浓度的不同,可引发不同癌基因和抑癌基因的表达发生变化。主要致癌途径为蛋白磷酸酶抑制途径、损伤遗传物质、活性氧途径等。

相关主题
文本预览
相关文档 最新文档