当前位置:文档之家› 高三一轮复习导数的应用一单调性与极值教学设计

高三一轮复习导数的应用一单调性与极值教学设计

高三一轮复习导数的应用一单调性与极值教学设计
高三一轮复习导数的应用一单调性与极值教学设计

高三文科数学一轮复习

《导数的应用(一) 函数的单调性》教学设计

(一)、教材分析

导数是高中数学新增内容,它在解决数学有关问题中起到工具的作用,导数的应用是高考的必考内容。作为高三总复习课首先明确考纲的要求:了解函数的单调性和导数的关系;能利用导数研究函数的单调性;会求函数的单调区间(其中多项式函数一般不超过三次).利用导数判断单调性起着基础性作用,能够培养学生掌握一定的分析问题和解决问题的能力;激发学生独立思考和创新的意识,开发学生的自我潜能。

(二)、高考要求:

了解函数的单调性与其导数的关系,能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次)

(三)、学习重点:

能利用导数求函数的单调区间

(四)、学习难点:

已知函数的单调性求参数的取值范围

(五)、课型:复习课

(六)、教法:讲练结合

(七)、课时安排:1课时

教学设计

一、知识梳理

1.函数的单调性与导数

2.函数的极值与导数

(1)函数的极小值

若函数y=f(x)在点x=a处的函数值f(a)比它在点x=a附近其他点的函数值____,且f′(a)=0,而且在点x=a附近的左侧________,右侧________,则点a叫做函数的极小值点,f(a)叫做函数的极小值.

(2)函数的极大值

若函数y=f(x)在点x=b处的函数值f(b)比它在点x=b附近其他点的函数值____,且f′(b)=0,而且在点x=b附近的左侧________,右侧________,则点b叫做函数的极大值点,f(b)叫做函数的极大值,______和______统称为极值.[设计意图]复习函数单调性的求法;函数极值的定义。通过复习让学生熟悉单调性和极值的定义,巩固旧知。

二、问题探究

1.如何利用导数求单调区间和极值?

2.若函数f(x)在(a,b)内单调递增,那么一定有f ′(x)>0吗?f ′(x)>0是否是f(x)在(a,b)内单调递增的充要条件?

【设计意图】通过这两个问题由“定义”到“通法”,由“感性”到“理性”,总结利用导数求单调区间和极值的通法,启发学生发现问题,并培养学生发现问题的意识。

三、基础自测

1.(2015辽宁高考)函数y=1

2x

2-ln x的单调递减区间为().

A.(-1,1] B.(0,1] C.[1,+∞) D.(0,+∞)

2.(2016年全国

卷)函数f (x )=3x 3-ax 2+x -5在区间[1,2]上单调递增,则a 的取值范围是( )A.()-∞,5 B .(-∞,5] C.? ??

??

-∞,37

4 D .(-∞,3]

【设计意图】通过两个简单的例题,也是两道高考题,学生对该节高考所要考察的重要内容有了一定的认识,增强学生的学习自信和学习热情。

四、典例分析:

[例] a ∈R ,函数f (x )=(-x 2+ax )e -x ,(x ∈R ,e 为自然对数的底数)

(1)当a =-2时,求函数f (x )的单调递减区间; (2)若函数f (x )在(-1,1)内单调递减,求a 的取值范围;

(3)函数f (x )是否为R 上的单调函数,若是,求出a 的取值范围;若不是,请说明理由.

(设计意图:意图1:函数单调区间的求法;意图2:已知函数的单调区间,求参数的取值范围)

解析:(1)当a =-2时,f (x )=(-x 2-2x )e -x , ∴f ′(x )=(x 2-2)e -x . 令f ′(x )<0,得x 2-2<0. ∴-2<x < 2.

∴函数的单调递减区间是(-2,2). (注:写成[-2,2]也对) (2)∵f (x )=(-x 2+ax )e -x ,

∴f ′(x )=(-2x +a )e -x +(-x 2+ax )(-e -x )=[x 2-(a +2)x +a ]e -x . 要使f (x )在(-1,1)上单调递减,则f ′(x )≤0对x ∈(-1,1)都成立, ∴x 2-(a +2)x +a ≤0对x ∈(-1,1)都成立. 令g (x )=x 2

-(a +2)x +a ,则?

??

g (-1)≤0,

g (1)≤0.

∴???

1+(a +2)+a ≤0,1-(a +2)+a ≤0.

∴a ≤-32. (3)①若函数f (x )在R 上单调递减,则f ′(x )≤0对x ∈R 都成立. 即[x 2-(a +2)x +a ]e -x ≤0对x ∈R 都成立. ∵e -x >0,∴x 2-(a +2)x +a ≤0对x ∈R 都成立. 令g (x )=x 2-(a +2)x +a ,

∵图像开口向上,∴不可能对x ∈R 都成立. 思维启迪

1.导数法求函数单调区间的一般流程:

求定义域→

求导数f ′(x )

求f ′(x )=0在定义域内的根

用求得的根划分定义区间

确定f ′(x )在各个开区间内的符号→得相应开区间

上的单调性

2.已知函数的单调性,求参数的取值范围,应用条件f ′(x )≥0(或f ′(x )≤0),x ∈(a ,b ),转化为不等式恒成立问题求解.

变式训练1:

已知函数).(111)(R a x a ax nx x f ∈--+-= 当1

2a ≤时,讨论()f x 的单调性.

解: 21

1)('x

a a x x f -+-=221x a x ax -+--= ),0(+∞∈x ,

令 ,1)(2a x ax x g -+-=),,0(+∞∈x

(1)当0,()1,(0,)a h x x x ==-+∈+∞时

所以,当(0,1),()0,()0x h x f x '∈><时此时,函数()f x 单调递减;

当(1,)x ∈+∞时,()0h x <,此时()0,f x '>函数f(x)单调递

(2)当0a '≠时,由f (x)=0即210ax x a -+-=,解得121

1,1x x a

==-

①当1

2

a =

时,12,()0x x h x =≥恒成立,此时 ()0f x '≤,函数()f x 在(0,+∞)上单调递减;

②当11

0,1102a a

<<->>时

(0,1)x ∈时,()0,()0,()h x f x f x '><此时函数单调递减;

1

(1,1)x a ∈-时,()0,()0,()h x f x f x '<>此时函数单调递增;

1

(1,),()0x h x a

∈-+∞>时,此时()0f x '<,函数()f x 单调递减;

③当0a <时,由于1

10a

-<

(0,1)x ∈时,()0h x >,此时()0f x '<,函数()f x 单调递减; (1,)x ∈+∞时,()0h x <,此时()0f x '>,函数()f x 单调递增。

综上所述:

当0a ≤时,()f x 在(0,1)上单调递减;()f x 在(1,+∞)上单调递增;

当1

2a =

时,函数()f x 在(0,+∞)上单调递减; 当102a <<时,()f x 在(0,1)上单调递减;()f x 在1

(1,1)a -上单调递增;

函数1

()(1,)f x a -+∞在上单调递减,

例2、(2009年陕西高考)已知函数3()31,0f x x ax a =--≠ ()I 求()f x 的单调区间;

()II 若()f x 在1x =-处取得极值,直线y=m 与()y f x =的图象有三个不同 的交点,求m 的取值范围。

解:(1)'22()333(),f x x a x a =-=-

当0a <时,对x R ∈,有'

()0,f x >

∴当0a <时,()f x 的单调增区间为(,)-∞+∞

当0a >时,由'

()0f x >解得x

由'

()0f x <解得x <<

∴当0a >时,()f x 的单调增区间为(,)-∞+∞;()f x 的单调减区间为

(。

(2)Q ()f x 在1x =-处取得极大值,

'2(1)3(1)30, 1.f a a ∴-=?--=∴= 3'2()31,()33,f x x x f x x ∴=--=-

由'

()0f x =解得121,1x x =-=。

由(1)中()f x 的单调性可知,()f x 在1x =-处取得极大值(1)1f -=, 在1x =处取得极小值(1)3f =-。

Q 直线y m =与函数()y f x =的图象有三个不同的交点,又(3)193f -=-<-,

(3)171f =>,结合()f x 的单调性可知,m 的取值范围是(3,1)-。

(设计意图:意图1:函数单调区间和极值的求法;意图2:已知函数的单调区间,求参数的取值范围;意图3:分类讨论思想和函数思想的应用;意图4:让学生了解高考的动向,克服畏惧心理,提高学生学习数学的兴趣) 练习、(浙江高考)已知函数32()(1)(2)f x x a x a a x b =+--++ (,)a b ∈R .

(I )若函数()f x 的图象过原点,且在原点处的切线斜率是3-,求,a b 的值; (II )若函数()f x 在区间(1,1)-上不单调...,求a 的取值范围. 解析:(Ⅰ)由题意得)2()1(23)(2

+--+='a a x a x x f 又??

?-=+-='==3

)2()0(0

)0(a a f b f ,解得0=b ,3-=a 或1=a

(Ⅱ)函数)(x f 在区间)1,1(-不单调,等价于

导函数)(x f '在)1,1(-既能取到大于0的实数,又能取到小于0的实数 即函数)(x f '在)1,1(-上存在零点,根据零点存在定理,有

0)1()1(<'-'f f , 即:0)]2()1(23)][2()1(23[<+---+--+a a a a a a 整理得:0)1)(1)(5(2

<-++a a a ,解得15-<<-a

(设计意图:意图1:函数切线的求法;意图2:已知函数的单调区间,

求参数的取值范围,更好的巩固本节所学内容,提高学生解决问题的能力,让学生在解决问题的过程中获得成就感,从而更好的喜欢数学,激发学生的学习兴趣和热情。)

课堂小结(学生小结):

1、利用导数研究函数的单调性时, 应注意哪些问题?

2、已知函数的单调性,如何求有关参数的取值范围?

3、如何求函数的极值?函数的单调性与极值的关系?

反思

根据高考命题的特点,出题方向注重数学思想的考查和对知识的综合应用能力考查,尤其在解答题中表现的最为突出。他常在知识点的交汇处结合数学中的一些常用思想综合考虑来出题目。所以在解决此类问题中,注重学生对思想方法的思考与运用,在解答过程也要注意规范性,并要对计算能力一定要加强。因为从以往的考试和练习中,大部分学生都有“会而不对,对而不全”的情况。所以在教学过程中培养学生用化归(转化)思想处理数学问题的意识 数学问题可看作是一系列的知识形成的一个关系链 处理数学问题的实质,就是实现新问题向旧问题的转化,复杂问题向简单问题的转化,实现未知向已知的转化。

导数的应用—单调性与极值的习题课

导数的应用—单调性与极值的习题课 【复习目标】 1.理解导数在研究函数的单调性和极值中的作用; 2.理解导数在解决有关不等式、方程的根、曲线交点个数等问题中有广泛的应用。 3.结合实例,借助几何直观探索并了解函数的单调性与导数的关系;能利用导数研究函数的 单调性,会求不超过三次的多项式函数的单调区间; 4.结合函数的图像,了解函数在某点取得极值的必要条件和充分条件;会用导数求不超过三 次的多项式函数的极大值、极小值,体会导数方法在研究函数性质中的一般性和有效性。 【重点难点】 ①利用导数求函数的极值;②利用导数求函数的单调区间;④利用导数证明函数的单调性; ⑤数在实际中的应用;⑥导数与函数、不等式等知识相融合的问题; 【基础过关】1. 函数的单调性 ⑴ 函数y =)(x f 在某个区间内可导,若)(x f '>0,则)(x f 为 ;若)(x f '<0,则) (x f 为 .(逆命题不成立) (2) 如果在某个区间内恒有0)(='x f ,则)(x f . 注:连续函数在开区间和与之相应的闭区间上的单调性是一致的. (3) 求可导函数单调区间的一般步骤和方法: ① 确定函数)(x f 的 ; ② 求)(x f ',令 ,解此方程,求出它在定义区间内的一切实根; ③ 把函数)(x f 的间断点(即)(x f 的无定义点)的横坐标和上面的各个实根按由小到大的顺 序排列起来,然后用这些点把函数)(x f 的定义区间分成若干个小区间; ④ 确定)(x f '在各小开区间内的 ,根据)(x f '的符号判定函数)(x f 在各个相应小开区 间内的增减性. 2.可导函数的极值 ⑴ 极值的概念 设函数)(x f 在点0x 附近有定义,且对0x 附近的所有点都有 (或 ),则称 )(0x f 为函数的一个极大(小)值.称0x 为极大(小)值点. ⑵ 求可导函数极值的步骤: ① 求导数)(x f '; ② 求方程)(x f '=0的 ; ③ 检验)(x f '在方程)(x f '=0的根左右的符号,如果在根的左侧附近为正,右侧附近为负, 那么函数y =)(x f 在这个根处取得 ;如果在根的左侧附近为负,右侧为正,那么函 数y =)(x f 在这个根处取得 . 【基础训练】 例1.如果函数()y f x =的图像如右图,那么导函数, ()y f x =的图像可能是( ) 例2. 曲线x x y ln 22-= 的单调减区间是( )

导数与函数的单调性练习题

2.2.1导数与函数的单调性 基础巩固题: 1.函数f(x)= 21 ++x ax 在区间(-2,+∞)上为增函数,那么实数a 的取值范围为( ) A.021 C.a>2 1 D.a>-2 答案:C 解析:∵f(x)=a+221+-x a 在(-2,+∞)递增,∴1-2a<0,即a>2 1 . 2.已知函数f (x )=x 2+2x +a ln x ,若函数f (x )在(0,1)上单调,则实数a 的取值范围是( ) A .a ≥0 B .a <-4 C .a ≥0或a ≤-4 D .a >0或a <-4 答案:C 解析:∵f ′(x )=2x +2+a x ,f (x )在(0,1)上单调, ∴f ′(x )≥0或f ′(x )≤0在(0,1) 上恒成立,即2x 2+2x +a ≥0或2x 2+2x +a ≤0在(0,1)上恒成立, 所以a ≥-(2x 2+2x )或a ≤-(2x 2+2x )在(0,1)上恒成立.记g (x )=-(2x 2+2x ),02 [解析] 若y ′=x 2+2bx +b +2≥0恒成立,则Δ=4b 2-4(b +

函数的极值与导数教案完美版

《函数的极值与导数》教案 §1.3.2函数的极值与导数(1) 【教学目标】 1.理解极大值、极小值的概念. 2.能够运用判别极大值、极小值的方法来求函数的极值. 3.掌握求可导函数的极值的步骤. 【教学重点】极大、极小值的概念和判别方法,以及求可导函数的极值的步骤. 【教学难点】对极大、极小值概念的理解及求可导函数的极值的步骤. 【内容分析】 对极大、极小值概念的理解,可以结合图象进行说明.并且要说明函数的极值是就函数在某一点附近的小区间而言的. 从图象观察得出,判别极大、极小值的方法.判断极值点的关键是这点两侧的导数异号. 【教学过程】 一、复习引入: 1. 函数的导数与函数的单调性的关系:设函数y=f(x) 在某个区间内有导数,如果在这个区间内/ y >0,那么函数y=f(x) 在为这个区间内的增函数;如果在这个区间内/ y <0,那么函数y=f(x) 在为这个区间内的减函数. 2.用导数求函数单调区间的步骤:①求函数f (x )的导数f ′(x ). ②令f ′(x )>0解不等式,得x 的范围就是递增区间.③令f ′(x )<0解不等式,得x 的范围,就是递减区间. 二、讲解新课: 1.极大值: 一般地,设函数f(x)在点x 0附近有定义,如果对x 0附近的所有的点,都有f(x)<f(x 0),就说f(x 0)是函数f(x)的一个极大值,记作y 极大值=f(x 0),x 0是极大值点. 2.极小值:一般地,设函数f(x)在x 0附近有定义,如果对x 0附近的所有的点,都有f(x)>f(x 0).就说f(x 0)是函数f(x)的一个极小值,记作y 极小值=f(x 0),x 0是极小值点. 3.极大值与极小值统称为极值. 在定义中,取得极值的点称为极值点,极值点是自变量的值,极值指的是函数值.请注意以下几点: (ⅰ)极值是一个局部概念由定义,极值只是某个点的函数值与它附近点的函数值比较是最大或最小.并不意味着它在函数的整个的定义域内最大或最小. (ⅱ)函数的极值不是唯一的.即一个函数在某区间上或定义域内极大值或极小值可以不止一个. (ⅲ)极大值与极小值之间无确定的大小关系即一个函数的极大值未必大于极小值,如下图所示,1x 是极大值点,4x 是极小值点,而)(4x f >)(1x f . (ⅳ)函数的极值点一定出现在区间的内部,区间的端点不能成为极值点.而使函数取得最大值、最小值的点可能在区间的内部,也可能在区间的端点. 4. 判别f (x 0)是极大、极小值的方法: 若0x 满足0)(0='x f ,且在0x 的两侧)(x f 的导数异号,则0x 是)(x f 的极值点,) (0x f

word完整版导数的单调性与极值题型归纳

导数的应用(单调性与极值) 一、求函数单调区间 3-3x的单调递减区间是________________ x1、函数y= x的单调递增区间是_______________ -3)e(x)=(x2、函数f 3、函数f(x)=ln x-ax(a>0)的单调递增区间为() 11A.(0,) B.(,+∞) aa1B.C.(-∞,) D.(-∞,a) a 4、函数y=x-2sin x在(0,2π)内的单调增区间为________. 2x x5、求函数f(x)=x(e-1)-的单调区间. 2 a6、已知函数f(x)=+x+(a-1)ln x+15a,其中a<0,且a≠-1.讨论函数f(x)的x单调性.

二、导函数图像与原函数图像关系 1 导函数正负决定原函数递增递减导函数大小等于原函数上点切线的斜率 导函数大小决定原函数陡峭平缓 1、若函数y=f(x)的导函数在区间[a,b]上是增函数,则函数y=f(x)在区间[a, b]上的图象可能是() 2、若函数y=f(x)的导函数在区间[a,b]上是先增后减的函数,则函数y=f(x)在区间[a,b]上的图象可能是() 2x cos x)·,则函数y=g(g在其任一点+1(x,y)处切线斜率为(x)=3、设曲线yx) (的部分图象可以为

) 的图象,如图所示,则(xx)的导函数f′()f4、函数 ( 0是极小值点B.x=x=1是最小值点 (1,2)上单增在xf D 是极小值点=.C x2 .函数()三、恒成立问题2

123+bx+cxf(x)=x-b-∞,+∞)上是增函数,求.若f(x)1、已知函数在(2; 的取值范围

利用导数求函数的单调区间

利用导数求函数的单调区间 一学习目标: 1结合实例,找出函数的单调性与导数的关系; 2会利用导数研究函数的单调性,会求简单函数的单调区间。 二重点、难点: 重点:求函数的单调区间. 难点:求含参数函数的单调区间。. 三教材分析 本节课主要对函数单调性求法的学习; 它是在学习导数的概念的基础上进行学习的,同时又为导数的应用学习奠定了基础,所以他在教材中起着承前启后的重要作用;(可以看看这一课题的前后章节来写) 它是历年高考的热点、难点问题 四教学方法 开放式探究法、启发式引导法、小组合作讨论法、反馈式评价法 五教学过程 预习学案: 1.函数单调性的定义是什么?函数的单调区间怎样求? 2.讨论以下问题 (1)求函数y=x的导数,判断其导数的符号; (2)求函数y=x2的导数,判断其导数的符号. 3.根据上述问题,思考导数的符号与函数的单调性之间的关系,并加以总结: 设函数y=f(x)在区间(a,b)内可导: 如果在(a,b)内,______________,则f(x)在此区间是增函数; 如果在(a,b)内,______________,则f(x)在此区间是减函数. 4.根据上述总结,思考一下,函数在某个区间上是单调递增函数,是不是其导数就一定大于零呢?如果函数在某个区间上是单调递减函数,是不是其导数就一定小于零?能否举个例子说明一下?

小测验: 1.当0>x 时,()x x x f 4+ =的单调减区间 2.函数53 123++-=x x y 的单调增区间为_______________,单调减区间为______________. 利用导数求函数的单调区间(讲授学案)——冯秀转 题型:求函数的单调区间 例1、求下列函数的单调区间; (1)x x y 23+= (2)()221 ln x x x f -= 注意:求函数单调区间时必须先考虑函数的定义域. (小结)求函数单调区间的步骤: 练习:求()x e x x f 2=的单调区间。

函数的极值与导数优秀教学设计

函数的极值与导数教学设计 【内容分析】 本节内容选自人民教育出版社A版的理科选修2-2或者文科选修1-1的导数及其应用的内容,这些是在学生学习了函数的单调与导数的下一节课的内容,函数是描述客观世界变化规律的重要数学模型,而导数是研究函数的最有效的工具,运用导数研究函数的性质,从中可以体会到导数在研究函数中的巨大作用. 【学情分析】 在高一就学习了函数的最大(小)值,这与本小节所要研究的对象——函数极值有着本质区别的,学生容易产生混淆,易把极大值当做最大值,极小值当做最小值.在认识理解导数大小与函数单调性的关系后,结合函数图像直观地引入函数极值的概念,强化极值是描述函数局部特征的概念,使得学生对极值与最值的概念区分开来,也为下节“函数的最值与导数”做好铺垫. 【教学目标】 (1)理解极大值、极小值的概念. (2)能够运用判别极大值、极小值的方法来求函数的极值. (3)掌握求可导函数的极值的步骤 【教学重点】 极大、极小值的概念和判别方法,以及求可导函数的极值的步骤. 【教学难点】 极大、极小值概念的理解,熟悉求可导函数的极值的步骤 【学法指导】阅读自学、探究交流、合作展示. 【数学思想】数形结合、合情推理. 【知识百科】 1.函数的最值 函数最值一般分为函数最小值与函数最大值.简单来说,最小值即定义域中函数值的最小值,最大值即定义域中函数值的最大值.函数最大(小)值的几何意义---函数图像的最高(低)点的纵坐标即为该函数的最大(小)值. 2.函数的极值 函数在其定义域的某些局部区域所达到的相对最大值或相对最小值.当函数在其定义域的某一点的值大于该点周围任何点的值时,称函数在该点有极大值;当函数在其定义域的某一点的值小于该点周围任何点的值时,称函数在该点有极小值.这里的极大值和极小值只具有局部意义.函数极值点的几何意义---函数图像的某段子区间内上极

《导数在研究函数中的应用-函数的单调性与导数》说课稿

《导数在研究函数中的应用—函数的单调性与导数》说课稿 周国会 一、教材分析 1教材的地位和作用 “函数的单调性和导数”这节新知识是在教材选修1—1,第三章《导数及其应用》的函数的单调性与导数.本节计划两个课时完成。在练习解二次不等式、含参数二次不等式的问题后,结合导数的几何意义回忆函数的单调性与函数的关系。例题精讲强化函数单调性的判断方法,例题的选择有梯度,由无参数的一般问题转化为解关于导函数的不等式,再解关于含参数的问题,最后提出函数单调性与导数关系逆推成立。培养学生数形结合思想、转化思想、分类讨论的数学思想。能利用导数研究函数的单调性;会求函数的单调区间.在高考中常利用导数研究函数的单调性,并求单调区间、极值、最值、以及利用导数解决生活中的优化问题。其中利用导数判断单调性起着基础性的作用,形成初步的知识体系,培养学生掌握一定的分析问题和解决问题的能力。 (一)知识与技能目标: 1、能探索并应用函数的单调性与导数的关系求单调区间; 2、能解决含参数函数的单调性问题以及函数单调性与导数关系逆推。 (二)过程与方法目标: 1、通过本节的学习,掌握用导数研究函数单调性的方法。 2、培养学生的观察、比较、分析、概括的能力,数形结合思想、转化思想、分类讨论的数学思想。 (三)情感、态度与价值观目标: 1、通过在教学过程中让学生多动手、多观察、勤思考、善总结, 2、培养学生的探索精神,渗透辩证唯物主义的方法论和认识论教育。激发学生独立思考和创新的意识,让学生有创新的机会,充分体验成功的喜悦,开发了学生的自我潜能。(四)教学重点,难点 教学重点:利用导数研究函数的单调性、求函数的单调区间。 教学难点:探求含参数函数的单调性的问题。 二、教法分析 针对本知识点在高考中的地位、作用,以及学生前期预备基础,应注重理解函数单调性与导数的关系,进行合理的推理,引导学生明确求可导函数单调区间的一般步骤和方法,无参数的一般问题转化为解关于导函数的不等式。解关于含参数的问题,注意分类讨论点的确认,灵活应用已知函数的单调性求参数的取值范围。采用启发式教学,强调数形结合思想、转化思想、分类讨论的数学思想的应用,

导数与单调性极值最基础值习题

导数与单调性极值最基础值习题 评卷人得分 一.选择题(共14小题) 1.可导函数y=f(x)在某一点的导数值为0是该函数在这点取极值的() A.充分条件B.必要条件 C.充要条件?D.必要非充分条件 2.函数y=1+3x﹣x3有( ) A.极小值﹣1,极大值3?B.极小值﹣2,极大值3 C.极小值﹣1,极大值1 D.极小值﹣2,极大值2 3.函数f(x)=x3+ax2﹣3x﹣9,已知f(x)的两个极值点为x1,x2,则x1?x2=() A.9 B.﹣9C.1 D.﹣1 4.函数的最大值为() A.?B.e2C.e D.e﹣1 5.已知a为函数f(x)=x3﹣12x的极小值点,则a=() A.﹣4 B.﹣2 C.4 D.2 6.已知函数y=x3﹣3x+c的图象与x轴恰有两个公共点,则c=() A.﹣2或2? B.﹣9或3 C.﹣1或1 D.﹣3或1 7.设函数f(x)=xex,则() A.x=1为f(x)的极大值点 B.x=1为f(x)的极小值点 C.x=﹣1为f(x)的极大值点?D.x=﹣1为f(x)的极小值点 8.函数y=x3﹣2ax+a在(0,1)内有极小值,则实数a的取值范围是() A.(0,3)?B.(0,)?C.(0,+∞)?D.(﹣∞,3) 9.已知函数f(x)=x3+ax2+bx+a2在x=1处有极值10,则f(2)等于() A.11或18?B.11 C.18?D.17或18 10.设三次函数f(x)的导函数为f′(x),函数y=x?f′(x)的图象的一部分如图所

示,则正确的是() A.f(x)的极大值为,极小值为 B.f(x)的极大值为,极小值为 C.f(x)的极大值为f(﹣3),极小值为f(3) D.f(x)的极大值为f(3),极小值为f(﹣3) 11.若f(x)=x3+2ax2+3(a+2)x+1有极大值和极小值,则a的取值范围是( )A.﹣a2或a<﹣1C.a≥2或a≤﹣1?D.a>1或a<﹣2 12.函数y=xe﹣x,x∈[0,4]的最小值为() A.0 B.?C.?D. 13.函数y=2x3﹣3x2﹣12x+5在区间[0,3]上最大值与最小值分别是()A.5,﹣15 B.5,﹣4C.﹣4,﹣15?D.5,﹣16 14.已知f(x)=2x3﹣6x2+m(m为常数)在[﹣2,2]上有最大值3,那么此函数在[﹣2,2]上的最小值是( ) A.﹣37 B.﹣29 C.﹣5 D.以上都不对 评卷人得分 二.填空题(共10小题) 15.函数f(x)=x3﹣3x2+1的极小值点为. 16.已知f(x)=x3﹣ax2﹣bx+a2,当x=1时,有极值10,则a+b=. 17.已知函数f(x)=x(x﹣c)2在x=2处有极大值,则c= . 18.已知函数f(x)=x3+3ax2+3(a+2)x+1既有极大值又有极小值,则实数a 的取值范围是. 19.已知函数f(x)=x3+mx2+(m+6)x+1既存在极大值又存在极小值,则实数m的

用导数求函数的单调性

用导数求函数的单调性 南江县第四中学 何其孝 指导老师:范永德 一、第一段:点明课题、展示目标、自主学习 1、展示学习目标 (1)理解)0(0(x)f <>'时,f(x)在0x x =附近单调性; (2)掌握用导数求函数的单调区间。 2、板书课题:用导数求函数的单调性 3、学生围绕学习目标看教材第89-93页,进行自主学习。(约10分钟) 二、第二段:合作探究、启发点拨 1、探究1:怎样从导数的几何意义,判断)0(0(x)f <>'时,f(x)在0x x =附近单调性?点拨:以直代曲 探究2:用导数求函数单调性的步骤 点拨:(1)求定义域 (2)求导函数(x)f ' (3)求)0(0(x)f <>',判断函数的单调性 (4)写出f(x)的单调区间 2、应用举例 例 判断下列函数的单调性,写出f(x)区间 (1) )(0,x x,-sinx f(x)π∈= (2) 12432f(x)23+-+=x x x

解:f′(x)=6x2 + 6x -24 当f′(x)>0,解得:2 1712171+->--',判断函数的单调性 (4)写出f(x)的单调区间 作业:课本第98页 习题3.3A 组1、(3) (4) 2、(3) (4)

《函数的单调性与极值》教学案设计

《函数的单调性与极值》教学案设计 教学目标:正确理解利用导数判断函数的单调性的原理; 掌握利用导数判断函数单调性的方法; 教学重点:利用导数判断函数单调性; 教学难点:利用导数判断函数单调性 教学过程: 一 引入: 以前,我们用定义来判断函数的单调性.在假设x 10时,函数y=f(x) 在区间(2,∞+)内为增函数;在区间(∞-,2)内, 切线的斜率为负,函数y=f(x)的值随着x 的增大而减小,即/y <0时,函数y=f(x) 在区间 (∞-,2)内为减函数. 定义:一般地,设函数y=f(x) 在某个区间内有导数,如果在这个区间内/y >0,那么函数y=f(x) 在为这个区间内的增函数;,如果在这个区间内/ y <0,那么函数y=f(x) 在为这个区间内的减函数。 例1 确定函数422+-=x x y 在哪个区间内是增函数,哪个区间内是减函数。 例2 确定函数76223+-=x x y 的单调区间。 y

2 极大值与极小值 观察例2的图可以看出,函数在X=0的函数值比它附近所有各点的函数值都大,我们说f(0)是函数的一个极大值;函数在X=2的函数值比它附近所有各点的函数值都小,我们说f(0)是函数的一个极小值。 一般地,设函数y=f(x)在0x x 及其附近有定义,如果)(0x f 的值比0x 附近所有各点的函数值都大,我们说f(0x )是函数y=f(x)的一个极大值;如果)(0x f 的值比0x 附近所有各点的函数值都小,我们说f(0x )是函数y=f(x)的一个极小值。极大值与极小值统称极值。 在定义中,取得极值的点称为极值点,极值点是自变量的值,极值指的是函数值。请注意以下几点: (ⅰ)极值是一个局部概念。由定义,极值只是某个点的函数值与它附近点的函数值比较是最大或最小。并不意味着它在函数的整个的定义域内最大或最小。 (ⅱ)函数的极值不是唯一的。即一个函数在某区间上或定义域内极大值或极小值可以不止一个。 (ⅲ)极大值与极小值之间无确定的大小关系。即一个函数的极大值未必大于极小值,如下图所示,

导数应用:含参函数的单调性讨论(二)

导数应用:含参函数的单调性讨论(二) 对函数(可求导函数)的单调性讨论可归结为对相应导函数在何处正何处负的讨论,若有多个讨论点时,要注意讨论层次与顺序,一般先根据参数对导函数类型进行分类,从简单到复杂。 一、典型例题 例1、已知函数3 2 ()331,f x ax x x a R =+++∈,讨论函数)(x f 的单调性. 分析:讨论单调性就是确定函数在何区间上单调递增,在何区间单调递减。而确定函数的增区间就是确定0)('>x f 的解区间;确定函数的减区间就是确定0)('时,/2 ()3(21)f x ax x =++的图像开口向上,36(1)a ?=- I) 当136(1)0,a a ≥?=-≤时,时,/ ()0f x ≥,所以函数()f x 在R 上递增; II) 当0136(1)0,a a <时,时,方程/ ()0f x =的两个根分别为 121111,,a a x x a a ----+-= =且12,x x < 所以函数()f x 在11(, )a a ----∞,11(,)a a -+-+∞上单调递增, 在1111( ,)a a a a ----+-上单调递减; (3) 当0a <时,/2 ()3(21)f x ax x =++的图像开口向下,且36(1)0a ?=-> 方程/ ()0f x =的两个根分别为121111,,a a x x a a ----+-= =且12,x x > 所以函数()f x 在11(, )a a -+--∞,11(,)a a ---+∞上单调递减, 在1111( ,)a a a a -+----上单调递增。 综上所述,当0a <时,所以函数()f x 在1111( ,)a a a a -+----上单调递增, 在11(, )a a -+--∞,11(,)a a ---+∞上单调递减; 当0a =时,()f x 在1(,]2-∞-上单调递增,在1 [,)2 -+∞上单调递减; 当01a <<时,所以函数()f x 在11(,)a a ----∞,11(,)a a -+-+∞上单调递增, 在1111( ,)a a a a ----+-上单调递减; 当1a ≥时,函数()f x 在R 上递增; 小结: 导函数为二次型的一股先根据二次项系数分三种情况讨论(先讨论其为0情形),然后讨论判别式(先讨论判别式为负或为0的情形,对应导函数只有一种符号,原函数在定义域上为单调的),判别式为正的情况下还要确定两根的大小(若不能确定的要进行一步讨论),最后根据导函数正负确定原函数相应单调性,记得写出综述结论。

高中数学选修2-2函数的单调性与导数

1.3.1函数的单调性与导数 [学习目标] 1.结合实例,直观探索并掌握函数的单调性与导数的关系.2.能利用导数研究函数的单调性,并能够利用单调性证明一些简单的不等式.3.会求函数的单调区间(其中多项式函数的最高次数一般不超过三次). 知识点一函数的单调性与其导数的关系 在区间(a,b)内函数的导数与单调性有如下关系: 思考以前,我们用定义来判断函数的单调性,在假设x1<x2的前提下,比较f(x1)与f(x2)的大小,在函数y=f(x)比较复杂的情况下,比较f(x1)与f(x2)的大小并不很容易,如何利用导数来判断函数的单调性? 答案根据导数的几何意义,可以用曲线切线的斜率来解释导数与单调性的关系,如果切线的斜率大于零,则其倾斜角是锐角,函数曲线呈上升的状态,即函数单调递增;如果切线的斜率小于零,则其倾斜角是钝角,函数曲线呈下降的状态,即函数单调递减. 知识点二利用导数求函数的单调区间 利用导数确定函数的单调区间的步骤: (1)确定函数f(x)的定义域. (2)求出函数的导数f′(x). (3)解不等式f′(x)>0,得函数的单调递增区间;解不等式f′(x)<0,得函数的单调递减区间. 知识点三导数绝对值的大小与函数图象的关系

一般地,如果一个函数在某一范围内导数的绝对值较大,那么函数在这个范围内变化较快,这时,函数的图象就比较“陡峭”(向上或向下);反之,函数的图象就“平缓”一些.也就是说导数绝对值的大小反映了函数在某个区间或某点附近变化的快慢程度. 如图,函数y =f (x )在(a,0)和(0,b )内的图象“陡峭”,在(-∞,a )和(b ,+∞)内的图象“平缓”. 题型一 利用导数确定函数的单调区间 例1 求下列函数的单调区间. (1)f (x )=3x 2-2ln x ;(2)f (x )=x 2·e - x ; (3)f (x )=x +1x . 解 (1)函数的定义域为D =(0,+∞).∵f ′(x )=6x -2x ,令f ′(x )=0,得x 1=33,x 2=- 3 3(舍去),用x 1分割定义域D ,得下表: ∴函数f (x )的单调递减区间为? ???0, 33,单调递增区间为??? ?3 3,+∞. (2)函数的定义域为D =(-∞,+∞).∵f ′(x )=(x 2)′e - x +x 2(e - x )′=2x e - x -x 2e - x =e - x (2x -x 2),令f ′(x )=0,由于e - x >0,∴x 1=0,x 2=2,用x 1,x 2分割定义域D ,得下表: ∴f (x )的单调递减区间为(-∞,0)和(2,+∞),单调递增区间为(0,2). (3)函数的定义域为D =(-∞,0)∪(0,+∞). ∵f ′(x )=1-1 x 2,令f ′(x )=0,得x 1=-1,x 2=1,用x 1,x 2分割定义域D ,得下表:

高中数学选修2-2精品教案 3.2 函数的极值与导数

§1.3.2函数的极值与导数(1课时) 【学情分析】: 在高一就学习了函数的最大(小)值,这与本小节所要研究的对象——函数极值有着本质区别的,学生容易产生混淆,易把极大值当做最大值,极小值当做最小值。在认识理解导数大小与函数单调性的关系后,结合函数图像直观地引入函数极值的概念,强化极值是描述函数局部特征的概念,使得学生对极值与最值的概念区分开来,也为下节“函数的最值与导数”做好铺垫。 【教学目标】: (1)理解极大值、极小值的概念. (2)能够运用判别极大值、极小值的方法来求函数的极值. (3)掌握求可导函数的极值的步骤 【教学重点】: 极大、极小值的概念和判别方法,以及求可导函数的极值的步骤. 【教学难点】: 极大、极小值概念的理解,熟悉求可导函数的极值的步骤 教学 环节 教学活动设计意图 创设情景 观察图3.3-8,我们发现,t a =时,高台跳水运动员距水面高度最大.那么,函数() h t在此点的导数是多少呢?此点附近的图像有什么特点?相应地,导数的符号有什么变化规律? 放大t a =附近函数() h t的图像,如图3.3-9.可以看出() h a ';在t a =,当t a <时,函数() h t单调递增,()0 h t'>;当t a >时,函数() h t单调递减,()0 h t'<;这就说明,在t a =附近,函数值先增(t a <,()0 h t'>)后减(t a >,()0 h t'<).这样,当t在a的附近从小到大经过a时,() h t'先正后负,且() h t'连续变化,于是有()0 h a '=. 对于一般的函数() y f x =,是否也有这样的性质呢? 附:对极大、极小值概念的理解,可以结合图象进行说明.并且要说明函数的极值是就函数在某一点附近的小区间而言的. 从图象观察得出,判别极大、极小值的方法.判断极值点的关键是这点两侧的导数异号

导数及其应用单调性

选修2-2 第1章 导数及其应用 §1.3.1 单调性 第1课时 总第53教案 一、教学目的:1.正确理解利用导数判断函数的单调性的原理; 2.掌握利用导数判断函数单调性的方法. 二、教学重点:利用导数判断函数单调性. 教学难点:利用导数判断函数单调性. 三、教学过程: 预习测评:1. 函数的导数与函数的单调性的关系: 我们已经知道,曲线y=f(x)的切线的斜率就是函数y=f(x)的导数.从函数342 +-=x x y 的图像可以看到: 定义:一般地,设函数y=f(x) 在某个区间内有导数,如果在这个区间内/ y >0,那么函数y=f(x) 在为这个区间内的增函数;如果在这个区间内/ y <0,那么函数y=f(x) 在为这个区间内的减函数 . 2.用导数求函数单调区间的步骤: ①求函数f (x )的导数f ′(x ). ②令f ′(x )>0解不等式,得x 的范围就是递增区间. ③令f ′(x )<0解不等式,得x 的范围,就是递减区间. 典题互动: 例1、确定下列函数的单调区间 ①x x x f -=3 )( ②x x x f ln )(-= ③x x f 21)(= ④x x x f sin 2 1 )(+= ⑤1+-=x e y x ⑥)34(4 134 +--=x x y ⑦x x y -=3 ⑧x x y 1+= ⑨1 2-=x bx y y =f (x )=x 2 -4x +3 切线的斜率 f ′(x ) (2,+∞) (-∞,2) 3 2 1 f x () = x 2-4?x ()+3 x O y B A

例2: 若x ax x f +=3 )(恰有三个单调区间,试确定实数a 的取值范围,并求出这三个单调区间。 例3: 要使函数2)1(3)(2 -++=x a x x f 在区间]3,(-∞上是减函数,求实数a 的取值范围。 例4:已知x>1,求证:)1ln(x x +> 学效自测: 1、讨论函数)(x f 的单调性 (1)b kx y += (2)x k y = (3))0( 2 ≠++=a c bx ax y 2、证明:(1) x e x f =)(在区间),(+∞-∞上是增函数;(2) x e x f x -=)(在区间)0,(-∞上是减函数。

(完整版)利用导数研究函数的单调性(超好复习题型)

利用导数研究函数的单调性 考点一 函数单调性的判断 知识点: 函数()f x 在某个区间(),a b 内的单调性与其导数的正负关系 (1)若 ,则()f x 在(),a b 上单调递增; (2)若 ,则()f x 在(),a b 上单调递减; (3)若 ,则()f x 在(),a b 是常数函数. 1、求下列函数的单调区间. (1)()ln f x x e x =+ (2)2 1()ln 2 f x x x =- (3)()()3x f x x e =- (4)()2x f x e x =- (5)()3ln f x x x =+ (6)ln ()x f x x = (7)2()(0)1 ax f x a x =>+ (8)32333()x x x x f x e +--=

2、讨论下列函数的单调性. (1)()ln (1),f x x a x a R =+-∈ (2)3(),f x x ax b a R =--∈ (3)2 ()ln ,2 x f x a x a R =-∈ (4)32(),,f x x ax b a b R =++∈ (5)2()(22),0x f x e ax x a =-+> (6)2 1()2ln (2),2 f x x a x a x a R =-+-∈ (7)2()1ln ,0f x x a x a x =-+-> (8)221 ()(ln ),x f x a x x a R x -=-+∈

3、已知函数32(),f x ax x a R =+∈在4 3 x =-处取得极值. (1)确定a 的值; (2)若()()x g x f x e =,讨论函数()g x 的单调性. 4、设2()(5)6ln ,f x a x x a R =-+∈,曲线()y f x =在点()1,(1)f 处的切线与y 轴相交于点()0,6. (1)确定a 的值; (2)求函数()f x 的单调区间. 5、(2016全国卷2节选)讨论2()2 x x f x e x -=+的单调性, 并证明当0x >时,(2)20x x e x -++>. 6、(2016年全国卷1节选)已知函数2()(2)(1)x f x x e a x =-+-.讨论()f x 的单调性.

函数的极值与导数教学设计一等奖

函数的极值与导数 作者单位:宁夏西吉中学作者姓名:蒙彦强联系电话: 一.教材分析 本节课选自高中数学人教A版选修2-2教材函数的极值与导数,就本册教材而言本节既是前面所学导数的概念、导数的几何意义、导数的计算、函数的单调性与导数等内容的延续和深化,又为下节课最值的学习奠定了知识与方法的基础,起着承上启下的作用.就整个高中教学而言,函数是高中数学主要研究的内容之一,而导数又是研究函数的主要工具,同时导数在化学、物理中都有所涉及可见它的重要性. 二.教学目标 1. 了解极大值、极小值的概念,体会极值是函数的局部性质; 2. 了解函数在某点取得极值的必要条件与充分条件; 3. 会用导数求函数的极值; 4. 培养学生观察、分析、探究、推理得出数学概念和规律的学习能力; 5. 感受导数在研究函数性质中的一般性和有效性,体会导数的工具作用.三.重点与难点 重点是会用导数求函数的极值. 难点是导函数的零点是函数极值点的必要不充分条件的理解. 四.学情分析 基于本班学生基础较差,思维水平参差不齐,所以备课上既要考虑到薄弱同学的理解与接受,又要考虑到其他同学视野的拓展,因此在本节课中我设置了许多的问题,来引导学生怎样学,以问答的方式来激发学生的学习兴趣,同时让更多的学生参与到教学中来.学生已经学习了函数的单调性与导数的关系,学生已经初步具备了运用导数研究函数的能力,为了进一步培养学生的这种能力,体会导数的工具作用,本节进一步研究函数的极值与导数. 五.教具教法 多媒体、展台,问题引导、归纳、类比、合作探究发现式教学 六.学法分析 借助多媒体辅助教学,通过观察函数图像分析极值的特征后,得出极值的定义;通过函数图像上极值点及两侧附近导数符号规律的探究,归纳出极值与导数的关系;通过求极值的问题归纳用导数求函数极值的方法与步骤. 七.教学过程 1.引入 让学生观察庐山连绵起伏的图片思考“山势有什么特点”并结合诗句“横看成岭侧成峰,远近高低各不同”,由此联想庐山的连绵起伏形成好多的“峰点”与“谷点”,这就是数学上研究的函数的极值引出课题. 【设计意图】从庐山美景出发并结合学生熟悉的诗句来激发学生学习兴趣,让学生在愉快中知道学什么.

导数的单调性及极值问题

二轮复习导数 (一) 2015. 02. 07 一、 运用导数研究函数的单调性 单调区间: (1) 求单调区间 (2)已知单调区间 (3)在某区间上不单调 运用导数求函数单调区间的思维流程图: 答题步骤: 第一步:求定义域; 第二步:求)(x 'f ; 第三步:令)(x 'f =0,求相应的导函数零点值;(是一次型还是二次型?是否有解?有几个解) 第四步:列表分析函数的单调性, (列表实际上就是画数轴,也可以认为是穿根解不等式,首先要做的是比较根的大小以及根于定义域边界的大小) 第五步:由表格写结论。 例1:(2012西城一模)已知函数()e (1)ax a f x a x =?++,其中1-≥a . 求)(x f 的单调区间. 解:2 (1)[(1)1] ()e ax x a x f x a x ++-'=,0x ≠.……………6分 ①当1-=a 时,令()0f x '=,解得1x =-. )(x f 的单调递减区间为(,1)-∞-;单调递增区间为(1,0)-,(0,)+∞.……8分 当1a ≠-时,令()0f x '=,解得1x =-,或1 1 x a = +. ②当01<<-a 时,)(x f 的单调递减区间为(,1)-∞-,1 ( ,)1 a +∞+; 单调递增区间为(1,0)-,1 (0, )1 a +.………10分 ③当0=a 时,()f x 为常值函数,不存在单调区间.…………11分 ④当0a >时,)(x f 的单调递减区间为(1,0)-,1 (0, )1 a +; 单调递增区间为(,1)-∞-,1 ( ,)1 a +∞+.…………13分

1)分类讨论的特点:二次项系数不确定 ,一元二次方程根的大小确定 。 例2:(2012-2013朝阳第一学期期末)已知函数1 ()()2ln ()f x a x x a x =--∈R .求函数()f x 的单调区间. 解:函数()f x 的定义域为(0,)+∞.222 122()(1)ax x a f x a x x x -+'=+-= (1)当0a ≤时,2()20h x ax x a =-+<在(0,)+∞上恒成立, 则()0f x '<在(0,)+∞上恒成立,此时()f x 在(0,)+∞上单调递减.……………4分 (2)当0a >时,244a ?=-, (ⅰ)若01a <<, 由()0f x '>,即()0h x >,得1x a <或1x a +>;………………5分 由()0f x '<,即()0h x -, .......................................2分 令()0f x '=,得到121 2,0x x a = -= , 由12a ≥可知120a -≤ ,即10x ≤....................5分 ① 即12a =时,121 20x x a =-==.所以,2 '2 ()0,(1,)2(1) x f x x x =-≤∈-+∞+,............6分 故()f x 的单调递减区间为(1,)-+∞ . ................................7分 ② 当 112a <<时,1 120a -<-<,即1210x x -<<=, 所以,在区间1 (1,2)a --和(0,)+∞上,'()0f x <;........8分在区间1(2,0)a -上,'()0f x >..........9分 故 ()f x 的单调递减区间是1 (1,2)a --和(0,)+∞,单调递增区间是1(2,0)a -. .........10分 ③当1a ≥时,11 21x a = -≤-,

相关主题
文本预览
相关文档 最新文档