当前位置:文档之家› XML DOM访问Attr节点

XML DOM访问Attr节点

XML  DOM访问Attr节点
XML  DOM访问Attr节点

XML DOM访问Attr节点

XML文件中标记所包含的属性,在节点树中,对应的是Attr节点。Attr节点是Attr接口的实例化对象,Attr接口表示Element对象中的属性,Attr对象继承Node 接口,但由于它们实际上不是它们描述的元素的子节点,DOM不会将它们看作文档树的一部分,DOM认为元素的属性是其特性,而不是一个来自于它们所关联的元素的独立的身份;这应该使实现把这种特征作为与所有给定类型的元素相关联的默认属性更为有效。

此外,Attr节点不可以是DocumentFragment的直接子节点。不过,它们可以与包含在DocumentFragment内的Element节点相关联。简而言之,DOM的用户和实现者需要知道Attr节点与从Node接口继承的其他对象有些共同之处,但它们还是截然不同的。在节点树中,如果要获得某个标记的属性,应通过相应的Element节点调用getAttribute()方法。

Attr节点对象常用的方法如表6-4所示:

现在创建案例,演示属性节点的使用。创建XML文档,打开记事本,输入下列代码:

将上述代码保存,名称为Example6.java。创建解析XML文档的Java程序,打

四大波谱基本概念以及解析综述

四大谱图基本原理及图谱解析 一.质谱 1.基本原理: 用来测量质谱的仪器称为质谱仪,可以分成三个部分:离子化器、质量分析器与侦测器。其基本原理是使试样中的成分在离子化器中发生电离,生成不同荷质比的带正电荷离子,经加速电场的作用,形成离子束,进入质量分析器。在质量分析器中,再利用电场或磁场使不同质荷比的离子在空间上或时间上分离,或是透过过滤的方式,将它们分别聚焦到侦测器而得到质谱图,从而获得质量与浓度(或分压)相关的图谱。 在质谱计的离子源中有机化合物的分子被离子化。丢失一个电子形成带一个正电荷的奇电子离子(M+·)叫分子离子。它还会发生一些化学键的断裂生成各种 碎片离子。带正电荷离子的运动轨迹:经整理可写成: 式中:m/e为质荷比是离子质量与所带电荷数之比;近年来常用m/z表示质荷比;z表示带一个至多个电荷。由于大多数离子只带一个电荷,故m/z就可以看作离子的质量数。 质谱的基本公式表明: (1)当磁场强度(H)和加速电压(V)一定时,离子的质荷比与其在磁场中运动半径的平方成正比(m/z ∝r2m),质荷比(m/z)越大的离子在磁场中运动的轨道半径(rm)也越大。这就是磁场的重要作用,即对不同质荷比离子的色散作用。 (2)当加速电压(V)一定以及离子运动的轨道半径(即收集器的位置)一定时,离子的质荷比(m/z)与磁场强度的平方成正比(m/z∝H2)改变H即所谓的磁场扫描,磁场由小到大改变,则由小质荷比到大质荷比的离子依次通过收集狭缝,分别被收集、检出和记录下来。 (3)若磁场强度(H)和离子的轨道半径(rm)一定时,离子的质荷比(m/z)与加速电压(V)成反比(m/z∝1/V),表明加速电压越高,仪器所能测量的质量范

spring在web.xml中的配置

把如下代码添加到web.xml即可完成spring的基本配置 SetCharacterEncoding org.springframework.web.filter.CharacterEncodingFilter encoding UTF-8 forceEncoding true SetCharacterEncoding /* contextConfigLocation /WEB-INF/applicationContext.xml, /WEB-INF/action-servlet.xml org.springframework.web.context.ContextLoaderListener

四大图谱综合解析

2013/12/2四大图谱综合解析[解] 从分子式CHO,求得不饱和度为零,故未知物应为512饱和脂肪族化合物。 1 某未知物分子式为CHO,它的质谱、红外光谱以及核磁共振谱如图,512未知物的红外光谱是在CCl溶液中测定的,样品的CCl稀溶液它的紫外吸收光谱在200 nm以上没有吸收,试确定该化合物结构。44-1的红外光谱在3640cm处有1尖峰,这是游离O H基的特征吸收峰。样品的CCl4浓溶液在3360cm-1处有1宽峰,但当溶液稀释后复又消失,说明存在着分子间氢键。未知物核磁共振谱中δ4. 1处的宽峰,经重水交换后消失。上述事实确定,未知物分子中存在着羟基。未知物核磁共振谱中δ0.9处的单峰,积分值相当3个质子,可看成是连在同一碳原子上的3个甲基。δ3.2处的单峰,积分值相当2个质子,对应1个亚甲基,看来该次甲基在分子中位于特丁基和羟基之间。质谱中从分子离子峰失去质量31(-CHOH)部分而形成基2峰m/e57的事实为上述看法提供了证据,因此,未知物的结构CH是3CCl稀溶液的红外光谱, CCl浓溶液44 CHOH C HC在3360cm-1处有1宽峰23 CH3 2. 某未知物,它的质谱、红外光谱以及核磁共振谱如图,它的根据这一结构式,未知物质谱中的主要碎片离子得到了如下紫外吸收光谱在210nm以上没有吸收,确定此未知物。解释。CH CH3+3.+ +C CH HCOH CHOH C HC3223 m/e31CH CH33 m/e88m/e57-2H -CH-H-CH33m/e29 CH m/e73CHC23+ m/e41 [解] 在未知物的质谱图中最高质荷比131处有1个丰度很小的峰,应从分子量减去这一部分,剩下的质量数是44,仅足以组为分子离子峰,即未知物的分子量为131。由于分子量为奇数,所以未成1个最简单的叔胺基。知物分子含奇数个氮原子。根据未知物的光谱数据中无伯或仲胺、腈、CH3N酞胺、硝基化合物或杂芳环化合物的特征,可假定氮原子以叔胺形式存CH3在。红外光谱中在1748 cm-1处有一强羰基吸收带,在1235 cm-1附近有1典型正好核磁共振谱中δ2. 20处的单峰(6H ),相当于2个连到氮原子上的宽强C-O-C伸缩振动吸收带,可见未知物分子中含有酯基。1040 的甲基。因此,未知物的结构为:-1cm处的吸收带则进一步指出未知物可能是伯醇乙酸酯。O核磁共振谱中δ1.95处的单峰(3H),相当1个甲基。从它的化学位移来CH3N看,很可能与羰基相邻。对于这一点,质谱中,m/e43的碎片离子CHCHCHOC223CH(CHC=O)提供了有力的证据。在核磁共振谱中有2个等面积(2H)的三重33峰,并且它们的裂距相等,相当于AA’XX'系统。有理由认为它们是2个此外,质谱中的基峰m /e 58是胺的特征碎片离子峰,它是由氮原子相连的亚甲-CH-CH,其中去屏蔽较大的亚甲基与酯基上的氧原子22的β位上的碳碳键断裂而生成的。结合其它光谱信息,可定出这个相连。碎片为至此,可知未知物具有下述的部分结构:CHO3NCH2CHCHCHOCCH32231 2013/12/23.某未知物CH的UV、IR、1H NMR、MS谱图及13C NMR数据如下,推[解] 1. 从分子式CH,计算不饱和度Ω=4;11161116导未知物结构。 2. 结构式推导未知物碳谱数据UV:240~275 nm 吸收带具有精细结构,表明化合物为芳烃;序号δc序号δc碳原子碳原子IR ::695、740 cm-1 表明分子中含有单取代苯环;(ppm)个数(ppm)个数MS :m/z 148为分子离子峰,其合理丢失一个碎片,得到m/z 91的苄基离子;1143.01632.01 313C NMR:在(40~10)ppm 的高场区有5个sp杂化碳原子;2128.52731.51 1H NMR:积分高度比表明分子中有1个CH和4个-CH-,其中(1.4~1.2)3128.02822.5132 ppm为2个CH的重叠峰;4125.51910.012因此,此化合物应含有一个苯环和一个CH的烷基。511536.01 1H NMR 谱中各峰裂分情况分析,取代基为正戊基,即化合物的结构为:23

解析解与数值解 精确解和近似解

解析解与数值解精确解和近似解 默认分类2011-01-19 12:51:37 阅读93 评论0 字号:大中小 订阅 在解组件特性相关的方程式时,大多数的时候都要去解偏微分或积分式,才能求得其正确的解。依照求解方法的不同,可以分成以下两类:解析解和数值解。 解析解(analytical solution)就是一些严格的公式,给出任意的自变量就可以求出其因变量,也就是问题的解, 他人可以利用这些公式计算各自的问题. 所谓的解析解是一种包含分式、三角函数、指数、对数甚至无限级数等基本函数的解的形式。用来求得解析解的方法称为解析法〈analytic techniques、analytic methods〉,解析法即是常见的微积分技巧,例如分离变量法等。解析解为一封闭形式〈closed-form〉的函数,因此对任一独立变量,我们皆可将其带入解析函数求得正确的相依变量。因此,解析解也被称为闭式解(closed-form solution)数值解(numerical solution)是采用某种计算方法,如有限元的方法, 数值逼近,插值的方法, 得到的解.别人只能利用数值计算的结果, 而不能随意给出自变量并求出计算值. 当无法藉由微积分技巧求得解析解时,这时便只能利用数值分析的方式来求得其数值解了。数值方法变成了求解过程重要的媒介。在数值分析的过程中,首先会将原方程式加以简化,以利后来的数值分析。例如,会先将微分符号改为差分符号等。然后再用传统的代数方法将原方程式改写成另一方便求解的形式。这时的求解步骤就是将一独立变量带入,求得相依变量的近似解。因此利用此方法所求得的相依变量为一个个分离的数值〈discrete values〉,不似解析解为一连续的分布,而且因为经过上述简化的动作,所以可以想见正确性将不如解析法来的好。 解析解一般可以理解为通过已经有的方法,是对应的问题在这个解决域上,进行变换演绎得到解的一种结果,变换过程也会有增根或漏根。数值解是将问题化解为比较多的子域,然后用比较简单的已知函数来逼近需求函数的相关问题。解析法要求基本功比较强,对概念理解非常有利,仅适合简单形式问题;数值解比较简单,要求运算量大,适合工程实际中的复杂问题。 解析解是解的形式可以表达为一个显式函数的表达式的解;而数值解其解的形式不能表达为显式函数,只能通过数值计算的方式求解,得到的是一系列离散的数值,不能表达为一个明确的函数的形式。对于大多数问题是得不到解析解的,只能得到数值解。能得到解析解的只是一小部分问题,而且通常有比较严格的限制条件。解析解能够很直观的体现各参数之间的关系,对于定性分析是很重要的。对于得不到解析解的问题,进行数值计算得到数值解,对于工程应用很重要。 精确解和近似解 所谓精确解和近似解,是从算法上决定的。一般的力学模型都是有一定的使用和假设条件的,主要是看在求解有关的问题时,计算的结果与模型的真实值的误差是否为零,如果为零,则是精确解法,如算法本身不能保证得到真实值,则是近似解法,与其是否是解析解无关,与

tomcat web.xml配置详解

web.xml元素介绍 每一个站的WEB-INF下都有一个web.xml的设定文件,它提供了我们站台的配置设定. web.xml定义: .站台的名称和说明 .针对环境参数(Context)做初始化工作 .Servlet的名称和映射 .Session的设定 .Tag library的对映 .JSP网页设定 .Mime Type处理 .错误处理 .利用JDNI取得站台资源 要了解web.xml的设定值,必须了解它的schema,从web.xml中知道它的schema是由Sum Microsystems公司定制的,如果你想更为详细的了解它, 可以到https://www.doczj.com/doc/bb17883116.html,/xml/ns/j2ee/web-mapp_2_4.xsd网页,那里有更为详细的介绍。这里我介绍我们平常见得最都的. 这是一般在写XML时所做的声明,定义了XML的版本,编码格式,还有重要的指明schema的来源,为https://www.doczj.com/doc/bb17883116.html,/xml/ns/j2ee /web-app_2_4.xsd. ,, ____________________________________________ 站台描述 对站台做出描述. 站台名称 定义站台的名称. icon元素包含small-icon和large-icon两个子元素.用来指定web站台中小图标和大图标的路径. /路径/smallicon.gif small-icon元素应指向web站台中某个小图标的路径,大小为16 X 16 pixel,但是图象文件必须为GIF或JPEG格式,扩展名必须为:.gif或 .jpg. /路径/largeicon-jpg large-icon元素应指向web站台中某个大图表路径,大小为32 X 32 pixel,但是图象文件必须为GIF或JPEG的格式,扩展名必须为; gif

NMR,VU,IR,MS四大图谱解析解析

13C-NMR谱图解析 13C-NMR谱图解析流程 1.分于式的确定 2.由宽带去偶语的谱线数L与分子式中破原子数m比较,判断分子的对称性. 若L=m,每一个碳原子的化学位移都不相同,表示分子没有对称性;若L

基团类型Qc/ppm 烷0-60 炔60-90 烯,芳香环90-160 羰基160 4.组合可能的结构式 在谱线归属明确的基础上,列出所有的结构单元,并合理地组合成一个或几个可能的工作结构。 5.确定结构式 用全部光谱材料和化学位移经验计算公式验证并确定惟一的或

可能性最大的结构式,或与标准谱图和数据表进行核对。经常使用的标准谱图和数据表有: 经验计算参数 1.烷烃及其衍生物的化学位移 一般烷烃灸值可用Lindeman-Adams经验公式近似地计算: ∑ Qc5.2 =nA - + 式中:一2.5为甲烷碳的化学位移九值;A为附加位移参数,列于下表,为具有某同一附加参数的碳原子数。 表2 注:1(3).1(4)为分别与三级碳、四级碳相连的一级碳;2(3)为与三级碳相连的二级碳,依此类推。 取代烷烃的Qc为烷烃的取代基效应位移参数的加和。表4一6给出各种取代基的位移参数

web.xml配置解析

一.监听器: 1.ContextLoaderListener 配置信息: org.springframework.web.context.ContextLoaderListener 配置解释: ContextLoaderListener的作用就是启动Web容器时,自动装ApplicationContext的配置信息。因为它实现了ServletContextListener这个接口,在web.xml配置这个监听器,启动容器时,就会默认执行它实现的方法。至于ApplicationContext.xml这个配置文件部署在哪,如何配置多个xml文件,书上都没怎么详细说明。现在的方法就是查看它的API文档。在ContextLoaderListener中关联了ContextLoader这个类,所以整个加载配置过程由ContextLoader来完成。看看它的API说明 第一段说明ContextLoader可以由ContextLoaderListener和ContextLoaderServlet 生成。如果查看ContextLoaderServlet的API,可以看到它也关联了ContextLoader 这个类而且它实现了HttpServlet接口。 第二段,ContextLoader创建的是XmlWebApplicationContext这样一个类,它实现的接口 WebApplicationContext->ConfigurableWebApplicationContext->ApplicationContext-> BeanFactory,这样一来spring中的所有bean都由这个类来创建。 第三段,讲如何部署applicationContext的xml文件,如果在web.xml中不写任何参数配置信息,默认的路径是"/WEB-INF/applicationContext.xml,在WEB-INF目录下创建的xml文件的名称必须是applicationContext.xml。如果是要自定义文件名可以在web.xml 里加入contextConfigLocation这个context参数: view plaincopy to clipboardprint? contextConfigLocation /WEB-INF/classes/applicationContext-*.xml

四大图谱综合解析

2013/12/2
四大图谱综合解析
1 某未知物分子式为C5 H12 O,它的质谱、红外光谱以及核磁共振谱如图,
它的紫外吸收光谱在200 nm以上没有吸收,试确定该化合物结构。
CCl4稀溶液的红外光谱, CCl4浓溶液 在3360cm-1处有1宽峰
[解] 从分子式C5H12O,求得不饱和度为零,故未知物应为 饱和脂肪族化合物。 未知物的红外光谱是在CCl4溶液中测定的,样品的CCl4稀溶液 的红外光谱在3640cm-1处有 1尖峰,这是游离 O H基的特征吸收 峰。样品的CCl4浓溶液在 3360cm-1处有 1宽峰,但当溶液稀释 后复又消失,说明存在着分子间氢键。未知物核磁共振谱中δ4. 1处的宽峰,经重水交换后消失。上述事实确定,未知物分子 中存在着羟基。 未知物核磁共振谱中δ0.9处的单峰,积分值相当3个质子,可 看成是连在同一碳原子上的3个甲基。δ3.2处的单峰,积分值 相当2个质子,对应1个亚甲基,看来该次甲基在分子中位于特 丁基和羟基之间。 质谱中从分子离子峰失去质量31(- CH2 OH)部分而形成基 峰m/e57的事实为上述看法提供了证据,因此,未知物的结构 CH3 是
H3C
C
CH3
CH2OH
根据这一结构式,未知物质谱中的主要碎片离子得到了如下 解释。
CH 3
2. 某未知物,它的质谱、红外光谱以及核磁共振谱如图,它的 紫外吸收光谱在210nm以上没有吸收,确定此未知物。
CH2
+ OH m/e31 -2H
+ . CH2OH
H3C
CH3
H3C
C
CH 3
C+
CH3
m/e88 -CH3 m/e29 m/e73
m/e57 -CH3 -H CH 3 C + CH 2
m/e41
[解] 在未知物的质谱图中最高质荷比131处有1个丰度很小的峰,应 为分子离子峰,即未知物的分子量为131。由于分子量为奇数,所以未 知物分子含奇数个氮原子。根据未知物的光谱数据中无伯或仲胺、腈、 酞胺、硝基化合物或杂芳环化合物的特征,可假定氮原子以叔胺形式存 在。 红外光谱中在1748 cm-1处有一强羰基吸收带,在1235 cm-1附近有1典型 的宽强C-O-C伸缩振动吸收带,可见未知物分子中含有酯基。1040 cm-1处的吸收带则进一步指出未知物可能是伯醇乙酸酯。 核磁共振谱中δ1.95处的单峰(3H),相当1个甲基。从它的化学位移来 看,很可能与羰基相邻。对于这一点,质谱中,m/e43的碎片离子 (CH3C=O)提供了有力的证据。在核磁共振谱中有2个等面积(2H)的三重 峰,并且它们的裂距相等,相当于AA’XX'系统。有理由认为它们是2个 相连的亚甲-CH2-CH2,其中去屏蔽较大的亚甲基与酯基上的氧原子 相连。 至此,可知未知物具有下述的部分结构:
O CH 2 CH 2 O C CH 3
从分子量减去这一部分,剩下的质量数是 44,仅足以组 成1个最简单的叔胺基。
CH 3 CH3 N
正好核磁共振谱中δ2. 20处的单峰(6H ),相当于2个连到氮原子上 的甲基。因此,未知物的结构为:
CH3 CH3 O N CH2 CH2 O C CH3
此外,质谱中的基峰m /e 58是胺的特征碎片离子峰,它是由氮原子 的β位上的碳碳键断裂而生成的。结合其它光谱信息,可定出这个 碎片为
CH3 CH3 N CH 2
1

场景描述需求分析实例精编版

场景描述需求分析实例集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-

场景描述场景主要包括4种主要的类型:正常的用例场景,备选的用例场景,异常的用例场景,假定推测的场景。用场景法来测试需求是指模拟特定场景边界发生的事情,通过事件来触发某个动作的发生,观察事件的最终结果,从而用来发现需求中存在的问题。我们通常以正常的用例场景分析开始,然后再着手其他的场景分析。 下面来看具体的例子:假设你现在需要完成的是一套出租车预定系统(顾客进行出租车的预定,系统完成扣款以及出租车司机的任务分配等相关的任务:顾客中的大部分都是在出租车租赁公司立有相关存款账户的用户,他们一般通过电话的方式进行预约,有些是要求立马预定的,也有一些是预定几周后的,我们需要使用计算机系统来确保这些存款账户到目前为止是有效的,系统需要知道什么时候顾客需要出租车,以及接送地址和他们的目的地。接送地址一般来说是顾客账户信息上填写的地址,根据我们车辆调度员的经验,我们可以告诉顾客最佳的接送时间。系统会根据订阅情况产生一个司机工作编号并记录预定过程中的详细信息,并会根据接送时间的顺序对这些信息按照接送的时间进行排序,然后会给顾客一个订阅的确认信息,同时包括司机的工作编号)。与这个预定出租车用例相关的,就是给出租车司机分配具体工作的用例。用场景法来对这个需求进行测试,应该如何进行呢 首先我们来看一下正常用例场景的构建过程

a.识别商业事件流:发现需求的过程包括研究和调查特定需求相关的业务规则和策略,调查包括一系列的业务事件以及商业规则的边界点。业务事件包括事件名,输入数据(由这个事件引起的输入数据),输出数据(为了响应这个事件产生的输出数据) b.画一个非正式的商业场景草图 c.把这个场景草图形成场景的具体步骤 以顾客预定出租车为例,这个事件是在当顾客决定需要一个出租车时发生的,这个事件导致客户和出租车公司之间发生一个预定请求的交互动作,当出租车公司收到预定请求时,它触发了安排出租车登记事件用来响应这个需求,从分析得出其中有一个需求是出租车公司需要提供一个预定确认响应信息给顾客的过程,那么什么是预定确认,在什么情况下这个确认信息会产生,其他与之相关的需求是什么?下面我们就通过构建场景的方式来进行细节上的分析 a.事件源:顾客想预定出租车,发出出租车预定请求 事件结果:安排出租车预定行为(包括许多商业逻辑规则),发送一个出租车预定确认信息给顾客 事件名:顾客想要预定出租车 输入数据:出租车预定请求 输出数据:出租车预定确认响应 b.场景草图如下: c.结构化场景: 1.第一步顾客告诉我们他想预定出租车

bird在web.xml中的配置及详解

一.web.xml 1> 参数配置context-param BIRT_VIEWER_LOCALE en-US BIRT_VIEWER_TIMEZONE BIRT_VIEWER_WORKING_FOLDER BIRT_VIEWER_DOCUMENT_FOLDER

WORKING_FOLDER_ACCESS_ONLY true BIRT_VIEWER_IMAGE_DIR BIRT_VIEWER_LOG_DIR BIRT_VIEWER_LOG_LEVEL WARNING

场景描述需求分析实例

场景描述 场景主要包括4种主要的类型:正常的用例场景,备选的用例场景,异常的用例场景,假定推测的场景。用场景法来测试需指模拟特定场景边界发生的事情,通过事件来触发某个动作的发生,观察事件的最终结果,从而用来发现需求中存在的问题。我们通常以正常的用例场景分析开始,然后再着手其他的场景分析。 下面来看具体的例子:假设你现在需要完成的是一套出租车预定系统(顾客进行出租车的预定,系统完成扣款以及出租车司机的任务分配等相关的任务: 顾客中的大部分都是在出租车租赁公司立有相关存款账户的用户,他们一般通过的方式进行预约,有些是要求立马预定的,也有一些是预定几周后的,我们需要使用计算机系统来确保这些存款账户到目前为止是有效的,系统需要知道什么时候顾客需要出租车,以及接送地址和他们的目的地。接送地址一般来说是顾客账户信息上填写的地址,根据我们车辆调度员的经验,我们可以告诉顾客最佳的接送时间。系统会根据订阅情况产生一个司机工作编号并记录预定过程中的详细信息,并会根据接送时间的顺序对这些信息按照接送的时间进行排序,然后会给顾客一个订阅的确认信息,同时包括司机的工作编号)。与这个预定出租车用例相关的,就是给出租车司机分配具体工作的用例。用场景法来对这个需求进行测试,应该如何进行呢? 首先我们来看一下正常用例场景的构建过程

a.识别商业事件流:发现需求的过程包括研究和调查特定需求相关的业务规则和策略,调查包括一系列的业务事件以及商业规则的边界点。业务事件包括事件名,输入数据(由这个事件引起的输入数据),输出数据(为了响应这个事件产生的输出数据) b.画一个非正式的商业场景草图 c.把这个场景草图形成场景的具体步骤 以顾客预定出租车为例,这个事件是在当顾客决定需要一个出租车时发生的,这个事件导致客户和出租车公司之间发生一个预定请求的交互动作,当出租车公司收到预定请求时,它触发了安排出租车登记事件用来响应这个需求,从分析得出其中有一个需出租车公司需要提供一个预定确认响应信息给顾客的过程,那么什么是预定确认,在什么情况下这个确认信息会产生,其他与之相关的需什么?下面我们就通过构建场景的方式来进行细节上的分析 a.事件源:顾客想预定出租车,发出出租车预定请求 事件结果:安排出租车预定行为(包括许多商业逻辑规则),发送一个出租车预定确认信息给顾客 事件名: 顾客想要预定出租车 输入数据:出租车预定请求 输出数据:出租车预定确认响应

web_xml标签介绍

Web.xml文件标签介绍说明 ● 用于为父元素提供一个文本描述。这个元素不仅可以在元素中出现,还可以在其他多个元素中出现。他有一个可选的属性xml:lang,用于指示在描述中使用的语言,该属性的默认值是en(英语)。 ● 为这个web应用程序指定一个简短的名字,这个名字可以被一些工具所显示。他有一个可选的属性xml:lang,用于指示在描述中使用的语言,该属性的默认值是en(英语)。 ● 包含了两个元素,用于指定大小图标(GIF或JPEG格式的图标)的文件名。指定的图标在图形界面工具中将用于表示父元素 ● 是一个空元素,用于指示这个web应用程序可以被部署到分布式的servlet容器中 ● 用于声明web应用程序servlet上下文的初始化参数。他包含两个子元素用于指定参数的名字,用于指定参数的值。在servlet中可以使用getServletContext().getInitParameter(“”);来获取初始化参数。 ● 用于在web应用程序中声明一个过滤器。包括为过滤器指定一个名字,该元素的内容不能为空。元素用于指定过滤器的完整的限定类名。元素用于指定过滤器的初始化参数,他的子元素指定参数的名字,指定参数的值。过滤器在运行时,通过FilterConfig接口对象访问初始化参数。 ● 元素用于设置过滤器负责过滤的URL或者Servlet。包括子元素的值必须在元素中已声明过的过滤器的名字。元素和元素可以选择一个,元素指定过滤器对应的URL,元素指定过滤器对应的Servlet。元素指定过滤器对应的请求方式,可以是REQUEST,INCLUDE,FORWARD,ERROR4种之一,默认为REQUEST。 ● 用于指定web应用程序的监听类。可以包含0个或者多个

Web.xml中配置Struts

Web.xml中配置Struts1: 1.配置Struts的ActionServlet 元素来声明ActionServlet 元素:用来定义Servlet的名称 元素:用来指定Servlet的完整类名 Eg: action org.apache.struts.action.ActionServlet 还要配置元素,它用来指定ActionServlet可以处理哪些URL action *.do 注意:(1)中的?的要填写一致,它就是一根线,把联接在一起的。 (2)在Struts框架中只能有一个Servlet,因为Servlet支持多线程。而org.apache.struts.action.ActionServlet中的ActionServlet是在Struts.jar包中的.在导入Struts包时会导入。 (3)在显示层所有以*.do为扩展名提交的URL,都会交由这个Servlet来处理。*.do可以改写成你想要的任何形式,例如:/do/* ,此时该Servlet会处理所有以"/do"为前缀的URL,如http://localhost:8080/helloapp/do/helloWord, 扩展(1)我们可以继承org.apache.struts.action.ActionServlet 得到我们可以扩展的子类,在子类中重写一个方法init()。这时?中的?是我们新建的类的路径,同样只能存在一个。 2. 声明ActionServlet的初始化参数 初始化参数用来对Servlet的运行时环境进行初始配置。子元素用于配置Servlet初始化参数。 config :以相对路径的方式指明Struts应用程序的配置文件位置,如不设置,则默认值为/WEB-INF/struts-config.xml debug : 设置Servlet的debug级别,控制日志记录的详细程度。默认为0,记录相对最少的日志信息。 detail : 设置Digester的debug级别,Digester是Struts框架所使用的用来解析xml配置文件的一个框架,通过此设置,可以查看不同详细等级的解析日志。默认为0,记录相对最少的日志信息。 中?号的值是此ActionServlet在服务器开启时加载的次序,数值越低,越先加载。 eg: action org.apache.struts.action.ActionServlet

四大谱图综合解析

3 待鉴定的化合物(I)和(II)它们的分子式均为C8H12O4。它们的质谱、红外光谱和核磁共振谱见图。也测定了它们的紫外吸收光谱数据:(I)λmax223nm,δ4100;(II)λmax219nm,δ2300,试确定这两个化合物。 未之物(I)的质谱 未之物(II)质谱

化合物(I)的红外光谱 化合物(II)的红外光谱 化合物(I)的核磁共振谱

化合物(II)的核磁共振谱 [解] 由于未知物(I)和(II)的分子式均为C8H12O4,所以它们的不饱和度也都是3,因此它们均不含有苯环。(I)和(II)的红外光谱呈现烯烃特征吸收,未知物(I):3080cm-1,(υ=C-H),1650cm-1(υ=C-C) 未知物(II)::3060cm-1 (υ=C-H),1645cm-1(υ=C-C) 与此同时两者的红外光谱在1730cm-1以及1150~1300 cm-1之间均具有很强的吸收带,说明(I)和(II)的分子中均具有酯基; (I)的核磁共振谱在δ6.8处有1单峰,(II)在δ6.2处也有1单峰,它们的积分值均相当2个质子。显然,它们都是受到去屏蔽作用影响的等同的烯烃质子。另外,(I)和(II )在δ4. 2处的四重峰以及在δ1.25处的三重峰,此两峰的总积分值均相当10个质子,可解释为是2个连到酯基上的乙基。因此(I)和(II)分子中均存在2个酯基。这一点,与它们分子式中都含有4个氧原子的事实一致。 几何异构体顺丁烯二酸二乙酯(马来酸二乙酯)和反丁烯二酸二乙酯(富马酸二乙酯)与上述分析结果一致。现在需要确定化合物([)和(II)分别相当于其中的哪一个。 COOEt COOEt COOEt EtOOC 顺丁烯二酸二乙酯反丁烯二酸二乙酯 利用紫外吸收光谱所提供的信息,上述问题可以得到完满解决。由于富马酸二乙酯分子的共平面性很好,在立体化学上它属于反式结构。而在顺丁烯二酸二乙酯中,由于2个乙酯基在空间的相互作用,因而降低了分子的共平面性,使共轭作用受到影响,从而使紫外吸收波长变短。

数值分析试题及答案解析

数值分析试题 一、 填空题(2 0×2′) 1. ??????-=? ?????-=32,1223X A 设x =0.231是精确值x *=0.229的近似值,则x 有 2 位有效数字。 2. 若f (x )=x 7-x 3+1,则f [20,21,22,23,24,25,26,27]= 1 , f [20,21,22,23,24,25,26,27,28]= 0 。 3. 设,‖A ‖∞=___5 ____,‖X ‖∞=__ 3_____, ‖AX ‖∞≤_15_ __。 4. 非线性方程f (x )=0的迭代函数x =?(x )在有解区间满足 |?’(x )| <1 ,则使用 该迭代函数的迭代解法一定是局部收敛的。 5. 区间[a ,b ]上的三次样条插值函数S (x )在[a ,b ]上具有直到 2 阶的连续导数。 6. 当插值节点为等距分布时,若所求节点靠近首节点,应该选用等距节点下牛顿差商 公式的 前插公式 ,若所求节点靠近尾节点,应该选用等距节点下牛顿差商公式的 后插公式 ;如果要估计结果的舍入误差,应该选用插值公式中的 拉格朗日插值公式 。 7. 拉格朗日插值公式中f (x i )的系数a i (x )的特点是:=∑=n i i x a 0)( 1 ;所 以当系数a i (x )满足 a i (x )>1 ,计算时不会放大f (x i )的误差。 8. 要使 20的近似值的相对误差小于0.1%,至少要取 4 位有效数字。 9. 对任意初始向量X (0)及任意向量g ,线性方程组的迭代公式x (k +1)=Bx (k )+g (k =0,1,…) 收敛于方程组的精确解x *的充分必要条件是 ρ(B)<1 。 10. 由下列数据所确定的插值多项式的次数最高是 5 。

场景分析法详解

场景分析法简介 用例场景用来描述流经用例的路径,从用例开始到结束遍历这条路径上所有基本流和备选流. 为什么引入场景分析法 现在的软件几乎都是用事件触发来控制流程的,事件触发时的情景便形成了场景,而同一事件不同的触发顺序和处理结果就形成事件流。 这种在软件设计方面的思想也可引入到软件测试中,可以比较生动地描绘出事件触发时的情景,有利于测试设计者设计测试用例,同时使测试用例更容易理解和执行。提出这种测试思想的是Rational公司. 基本流和备选流 图中经过用例的每条路径都用基本流和备选流来表示. 直黑线表示基本流,是经过用例的最简单的路径. 备选流用不同的彩色表示,一个备选流可能从基本流开始,在某个特定条件下执行,然后重新加入基本流中(如1和3);也可能起源于另一个备选流(如2),或者终止用例而不再重新加入到某个流(如2和4). 场景如下: ?场景1:基本流; ?场景2:基本流,备选流1; ?场景3:基本流,备选流1,备选流2; ?场景4:基本流,备选流3; ?场景5:基本流,备选流3,备选流1;

?场景6:基本流,备选流3,备选流1,备选流2; ?场景7:基本流,备选流4; ?场景8:基本流,备选流3,备选流4; 场景分析法测试设计方法 根据说明,描述出程序的基本流及各项备选流; 根据基本流和各项备选流生成不同的场景; 对每一个场景生成相应的测试用例; 对生成的所有测试用例重新复审,去掉多余的测试用例,测试用例确定后,对每一个测试用例确定测试数据。 场景分析法举例 用户进入一个在线购物网站进行购物,选购物品后,进行在线购买,这时需要使用账号登录,登录成功后,进行付钱交易,交易成功后,生成订购单,完成整个购物过程。 第一步:确定基本流和备选流 基本流:登录在线网站→选择物品→登录账号→付款→生成订单; 备选流1:账户不存在; 备选流2:账户密码错误; 备选流3:用户账户余额不足; 备选流4:用户账户没钱。 第二步:根据基本流和备选流确定场景 场景1成功购物:备选流; 场景2账号不存在:基本流,备选流1; 场景3账号密码错误:基本流,备选流2; 场景4账户余额不足:基本流,备选流3; 场景5账户没钱:基本流,备选流4。 第三步:对每一个场景生成相应的测试用例

web.xml配置详细说明教程

Web.xml常用元素 定义了WEB应用的名字 声明WEB应用的描述信息 context-param元素声明应用范围内的初始化参数。 过滤器元素将一个名字与一个实现javax.servlet.Filter接口的类相关联。 一旦命名了一个过滤器,就要利用filter-mapping元素把它与一个或多个servlet或JSP页面相关联。 servlet API的版本2.3增加了对事件监听程序的支持,事件监听程序在建立、修改和删除会话或servlet环境时得到通知。 Listener元素指出事件监听程序类。 在向servlet或JSP页面制定初始化参数或定制URL时,必须首先命名servlet或JSP页面。Servlet元素就是用来完成此项任务的。 服务器一般为servlet提供一个缺省的URL:http://host/webAppPrefix/servlet/ServletName。 但是,常常会更改这个URL,以便servlet可以访问初始化参数或更容易地处理相对URL。在更改缺省URL时,使用servlet-mapping元素。 如果某个会话在一定时间内未被访问,服务器可以抛弃它以节省内存。 可通过使用HttpSession的setMaxInactiveInterval方法明确设置单个会话对象的超时值,或者可利用session-config元素制定缺省超时值。 如果Web应用具有想到特殊的文件,希望能保证给他们分配特定的MIME类型,则mime-mapping元素提供这种保证。 指示服务器在收到引用一个目录名而不是文件名的URL时,使用哪个文件。 在返回特定HTTP状态代码时,或者特定类型的异常被抛出时,能够制定将要显示的页面。 对标记库描述符文件(Tag Libraryu Descriptor file)指定别名。此功能使你能够更改TLD文件的位置, 而不用编辑使用这些文件的JSP页面。 声明与资源相关的一个管理对象。 声明一个资源工厂使用的外部资源。 制定应该保护的URL。它与login-config元素联合使用 指定服务器应该怎样给试图访问受保护页面的用户授权。它与sercurity-constraint元素联合使用。 给出安全角色的一个列表,这些角色将出现在servlet元素内的security-role-ref元素 的role-name子元素中。分别地声明角色可使高级IDE处理安全信息更为容易。 声明Web应用的环境项。 声明一个EJB的主目录的引用。

相关主题
文本预览
相关文档 最新文档